46-690 Object-Oriented Programming III Homework 2

Due: Wednesday, February 9,2005 CMU/MSCF

Topics: Option pricing using Binomial Trees, Web Forms, Web Services, .NET Remoting
(1) 50 Points. In chapters 10 and 18 of the Hull book binomial trees are introduced. A numerical approach is used to compute the price of European and American options.
Write a method in C# with the following signature:

public static decimal priceOption(decimal s0,decimal sigma,

decimal k, decimal r, decimal t, int n, OptionType

 type, bool earlyExercise)

// preconditions:

// s0 = initial value of stock

// sigma = volatility

// k = strike price

// r = risk free rate

// t = time in years until expiration

// n = the number of binomial steps

// type = Call or Put

// earlyExercise = true iff American

// postconditions:

// returns price of option

Write a console application that tests the priceOption method. Your program will prompt the user for each of the method’s parameters and compute the price of the option. It will then display this value to the user.

Your program will contain a class called Node. This class will have two properties called StockPrice and OptionPrice and will override Object’s ToString. Your program will also contain a class called BinomialTree with two static methods. One method will be priceOption and the other will be Main.

The priceOption method will create a binomial tree. The binomial tree will live in a one dimensional array of Nodes. The size of the array will be determined by n (the number of steps.) Suppose you call your array bt. The array element bt[0] will be a reference to an object of type Node and will represent the root of the tree. The depth of the root is 0. The depth of both of the root’s children is 1. The first node’s left child is at bt[1] and the first node’s right child is at bt[2]. In general, given a node with index i at depth d, its left child is located at bt[i + depth+1] and its right child is located at bt[i + depth+2]. We can get away with this array implementation because this type of tree is always perfectly balanced. In general, arrays are not the appropriate data structure for trees. In this case, an array implementation is quite called for and is required.

The priceOption method will first populate the tree with stock prices working from the top of the tree (at depth 0) and working down to the leaves of the tree. Leaves are tree nodes with no children and all of these leaves will have the same depth.

The priceOption method will then compute an option price for each leaf. Note that these prices are computed differently depending upon the type of option (put or call.) See Hull for details.
 The priceOption method will then work its way back up the tree from the leaves to the root. At each node it will compute an option price based on the option prices it finds at its two children. This computation differs depending upon whether the option is European or American. Again, see Hull for details on these computations.

I would recommend that you first write priceOption so that it prices a European call option. If you follow the outline above you should find it fairly straightforward to modify the code so that it handles European puts and the American options. As an additional simplification, you might begin by writing it to handle only a one step European call. When this is complete you can add an array and handle multiple steps.

To test your solution you should use Hull’s DerivaGem software. Your option and stock prices should be the same that his code generates. DerivaGem can be found on the disk that comes with Hull’s fifth addition.

An example execution of my solution follows:

Binomial Tree Option Calculator

Enter American (A) or European (E)

A

Enter put (P) or Call (C)

P

Enter stock price

25.0

Enter volatility,Eg. 0.4

0.40

Enter strike price

26.0

Enter risk free rate,Eg. 0.10

0.10

Enter time till expiration (years)

0.4167

Enter number of steps

10

Stock price 25

volatility 0.4

Strike price 26

Risk free rate 0.1

Time till expiration 0.4167

Number of steps 10

Option price = 2.7128032217898199726621260661

Submission:

 Paste two files to blackboard. There will be one ".cs"

file and a Microsoft Word document containing screen shots showing the program running. You must show it running with European puts and calls as well as American puts and calls.
(2) 20 Points. Use Visual Studio and ASP.NET to create a Web Form that allows a user to interact with your option calculator by way of a standard HTML browser. To add your calculator class to the web application use “Project/Add existing item”. When referring to the priceOption method, use its namespace and class name.
Submission:

 Paste four files to blackboard. There will be two ".cs"

Files (one will contain the priceOption method and the other will contain the event handling code.) Paste the one html file and a Microsoft Word document containing screen shots showing the program running. You need only take one shot of your screen showing a browser with the parameters and option price.
(3) 15 Points. Use Visual Studio and ASP.NET to create a web service that allows client programs to interact with your calculator by way of a standard SOAP client. Write a console client that uses this web service. The interaction will be the same as in question 1.

Submission:

Paste four files to blackboard. There will be two ".cs"

files (the client and the proxy), one .asmx file (the web service in C#) and a Microsoft Word document containing screen shots showing the program running on the client.
(4) 15 Points. Write a C# server program that creates a marshal by reference singleton object. The singleton will provide option pricing using the priceOption method. Write a client program that interacts with the remote object and produces the same interaction as problem 1.
Submission

Paste four files to blackboard. There will be two server side ".cs"

files (the server and the class served), and one client side “cs” file. The fourth file will be a Microsoft word document showing a screen shot of your client running.
PAGE
1

