15-121 Introduction to Data Structures Carnegie Mellon University

15-121 – Introduction to Data Structures
Project #2
Due Tuesday, October 4, 2016 Midnight

Topics: Infix Expression Tokenization and The Shunting-Yard algorithm
Part 1 Infix Expression Tokenization (60 points)

See the Javadoc documentation for Project 2 here:

http://www.andrew.cmu.edu/user/mm6/15-121/15-121Project2/dist/javadoc/index.html
Your task in Part 1 is to implement two classes within the package called infixexpression. These two classes will be named Token.java and InfixTokenizer.java. The class Token is a very simple class and is described in the Javadoc. You will need to implement four methods and a constructor. Be sure to implement these methods with the exact same method signatures as shown in the Javadoc.

The second class you will implement in Part 1 is called InfixTokenizer.java. You are required to implement each method as described in the Javadoc. Here is an example main routine that may be used as a test of your InfixTokenizer code:
public static void main(String args[]) {

 String line = "x = (23 + 2) * (3 - 49)^6";

 InfixTokenizer tok = new InfixTokenizer(line);

 Token[] tokens = tok.parseLine();

 for (int i = 0 ; i < tok.getSize(); i++) {

 System.out.println(tokens[i].getType() + " " + tokens[i].getVal());

 }
 }

}

The output of this main testing code looks like this:

variable x

operator =

leftParen (

number 23

operator +

number 2

rightParen)

operator *

leftParen (

number 3

operator -

number 49

rightParen)

operator ^

number 6

Part 1 Grading For Token.java and InfixTokenizer.java

The main routine runs as shown above and handles other infix expressions. 45 Points

Documentation is clear and concise and is helpful to the reader. 5 Points

The package structure is correct and all methods and classes were named as in the provided Javadoc. 5 Points

The methods are all implemented correctly as described in the Javadoc. 5 Points

Part 2 Shunting-Yard algorithm (40 points)

The Shunting-Yard algorithm is described on this Wikipedia site:

https://en.wikipedia.org/wiki/Shunting-yard_algorithm
Note that it makes use of a stack and a queue. You will need to implement a stack and a queue for this part of Project 2. You may use an old stack that you have implemented in Project 1. The stack class is not described in the Javadoc provided. It is assumed that you know how a stack works and can build one without guidance. There is Javadoc provided for the Queue.java class. This class is a linked list implementation of a queue. The queue and the stack class may make use of a Node.java class. This class would encapsulate a data field (of type Object) and a next field (of type Node). If you decide to use an array based stack, you would not need the Node class. You will need a Node class for the Queue. There is no Javadoc provided for Node.java.
Unlike Shunting-Yard as described on the Wikipedia site, we are not handling function calls in our expressions. We are, however, handling assignment with the ‘=’ operator. This is described in the Javadoc.

Implement ShuntingYard.java according to the Javadoc provided. Each method needs to be implemented as specified in the JavaDoc (same signature and same behavior). The most difficult method to write is the method:
public void shuntingYard(Token[] toks, int size)

When it completes, the token array (which represents an infix expression) has been processed and the output is available in the internal queue maintained by the ShuntingYard class.
By calling the method String getQueueAsString(), the user can have a String representing the same expression in postfix form.
Here is a copy of my main routine that should be used to test your Shunting-Yard class.

public static void main(String args[]) throws IOException {
 BufferedReader input = new BufferedReader(new InputStreamReader(System.in));

 while (true) {

 String line = input.readLine();

 if(line.isEmpty()) break;

 InfixTokenizer tok = new InfixTokenizer(line);

 Token[] tokens = tok.getTokens();

 ShuntingYard sy = new ShuntingYard();

 sy.shuntingYard(tokens, tok.getSize());

 String postFix = sy.getQueueAsString();

 System.out.println(postFix);

 }

 }
Note: You may assume that our user is friendly and will never enter an illegal infix expression. So, for example, we need not worry about the user entering any of the following:
(2 + 3 * 2 illegal infix expression missing a right parenthesis.

2.3.4 + 4 illegal representation of a double with two decimal points

3 # 4 illegal operator #

Part 2 Grading For Node.java, Stack.java, Queue.java, and ShuntingYard.java

The main routine as shown above runs and converts infix to postfix. 20 Points

The Queue class is built correctly and works in the ShuntingYard algorithm. 10 Points

Documentation is clear and concise and is helpful to the reader. 2 Points

The package structure is correct and all methods and classes were named as in the provided Javadoc. 2 Points

The methods are all implemented correctly as described in the Javadoc. 6 Points

PAGE
1

