Application of Nanostructured powders synthesized by new chemical processes

2003.10

Byoung-Kee Kim

Korea Institute of Machinery and Materials,

Characteristics of Nanopowder Materials

Surface Effect

- Enhanced catalytic properties
- Enhanced absorption ability
- Capilary Condensation

Bulk Effect

- Appearance of New Phases
- Decrease of Melting Point
- Polycrystallization of Single Crystal
- Enhanced Scattering Effect of Waves

Interaction between Nanopowders

- Electric and heat transfer
- Compressability
- Solid state reactivity

Property	Materials	Size()	Nano- materials	Micro- materials
Magnetic Property	Fe	50	1030Oe	~470Oe
Melting Point	Au In	30 40	933K 370K	1300K 430K
Light Absorption (6~10µm)	Au	100	95%	2~5%
Transition Temperature of Superconductivity	Al	90	5.3K	3.4K
Heat Transfer	Ag	100	2.0mK	20mK
Sintering Temperature	Ni W	200 220	~200 ~1000	700
Catalytic Property (As : standard Activity)	Ni	10	6As	~3As

KIMM Korea Institute of Machinery and Materials

Area	Materials
Tool Materials	Abrasives, Cutting tools, CMP, Wear-resistant components WC-Co hard materials
Magnetic Materials	Ferrofluid, Magnetic refrigerator, Recording media, Hard/Soft Magnets, Fe/Co magnetic materials, Nd-Fe-B hard magnet
Electric/Electrode Materials	Thermistor, Varistor, Piezoelectric actuator Cu-Al ₂ O ₃ electrode, W-Cu heat sink
Chemical/Catalytic Materials	Chemical Sensor, Membranes, Filter, TiO ₂ photocatalysts

KIMM Korea Institute of Machinery and Materials

Comparison of Thermal Properties

	W-20Cu Thermkon -76	W-20Cu Thermkon -83	Mo-15Cu Thermkon -65M	Mo-20Cu Thermkon -70M	W-20Cu KIMM 700-8	W-20Cu KIMM 700-8	W-20Cu KIMM 750-4
Density (g/ant)	15.94	14.63	9.89	9.81	15.48-L 15.17-T	15.43-L 15.17-T	15.16-L 14.85-T
Specific Heat (J/Kg·K)	223.2	240.1	294.5	300.0	223.2	223.2	223.2
Thermal Conductivity (W/mK)	207 (180-210)	242 (180-210	141 (180-210	170 (180-210	233.0	245.8	221.3
Thermal Expansion Coefficient (ppm/K)	6.5 (7.2-8.0)	8.0(8.1-8.9)	5.4 (6.0-7.0)	6.5 (6.8-7.6)	7.80	7.88	7.25

