Nanoscale Silicon Based Nonvolatile Memory

Samsung Advanced Institute of Technology

Chungwoo Kim, Ph.D. cw_kim@samsung.com

Acknowledgements

Collaboration

Seoul Nantional University (SNU) Prof. Park, Byung-GooK

Korea Institute for Advanced Study (KIAS) Prof. Kim, Dae Mann Cornell University, USA Prof. Sandip Tiwari

Institute of Semiconductor Physics, Russia Prof. Vlradmir Gritsenko

Kwangju Institute of Science and Technology (KJIST) Prof. Hwang, Hyun sang

Sungkyunkwan University Prof. Chung Ilsub

Funding

Tera-level Nanodevices 21st Century Frontier R&D Program, Ministry of Science and Technology

SEC and SAIT

Outline

Introduction

Current research status

- Nano fabrication Process
 - Nanoscale patterning
 - SiN thin film
 - Si Nanoparticle
- Nano devices
 - Nanoscale SONOS memory
 - Vertical channel memory

Given Future Work

ADVANCED INSTITUTE

OF TECHNOLOGY

Environment of Memory

New application, unification

- Diversfied from PC into digital application
- Increasing capacity of voice, motion picture information
 - → Need higher density of memory
- Increasing demand for unified memory
- Uncertainty of DRAM & Flash Memory scalability

Memory Market: \$35 billion (2001), \$72 billion (2010), 8.3% increase/year

Flash Memory Roadmap

(Source: ITRS 2001)

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

Flash Technology Requirements

(Source: ITRS 2001)

Year of Production	2001	2002	2003	2004	2005	2006	2007
Flash tech. Node, F[nm]	150	130	115	100	90	80	70
NOR highest W/E Voltage[V]	8-10	8-10	8-10	8-10	7-9	7-9	7-9
NAND highest W/E Voltage[V]	19-21	18-20	18-20	18-20	18-20	17-19	17-19
NOR tunnel dielectric thickness[nm]	9.5-10.5	9.5-10	9-10	9-10	8.5-9.5	8.5-9.5	8.5-9.5
NAND tunnel dielectric thickness[nm]	8.5-9.5	8.5-9	8-9	8-9	8-9	7.5-8	7.5-8
NOR interpoly dielectric thickness[nm]	13-15	12-14	11-13	11-13	10-12	9-11	9-11
NAND interpoly dielectric thickness[nm]	14-16	13-15	12-14	12-14	12-14	11-13	10-12

: ITRS 2001

Solutions Exist

Solutions are Known

Solutions are NOT Known

Problems of conventional technologies

□ What's the limits of flash scaling ?

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

Discrete traps

Discrete traps (SiN traps or Nanocrystal)

* SONOS (Silicon-Oxide-Nitride-Oxide-Silicon)

Motivation for SONOS

< Advantages >

- Compatibility of SONOS with CMOS with the use of thin nitride
- Lower programming voltage
- Smaller dimension capability than FG EEPROM
- Longer retention & low defect induced tunneling leakage (Nitride instead of poly Si)
- Higher programming speed (depends on ONO thickness)

ADVANCED INSTITUTE OF TECHNOLOGY

Comparison of Memory Technologies

	FRAM	MRAM	PRAM	SONOS	
Cell size	8~25 F ²	8~9 F ²	6 F ²	4~10 F ²	
Read time	30~200 ns	10~100 ns	10~100 ns	20~120 ns	
Write time	30 ns	10~15 ns	10~100 ns	1 μs ~ 1 ms	
Retention	> 10	> 10	> 10	>10	
Endurance	> 10E12	> 1E13	> 10E13	> 1E5	
Current/Power	Low	High	High	Low	
Cost	High	High	Low	Low	
Process	Special	Special	Special	CMOS	
Issues	Etching process Cost Retention, Fatigue	Etching process Uniform thin films Cost	Power consumption	Thin Oxide film Faster P/E time	

SAMSUNG

SONOS Memory Development

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

OF TECHNOLOGY

Nano Lithography

Sidewall Patterning

Positive Resist : PMMA

Negative Resist : Calixarene

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

Si Nanoparticle Fabrication by Aerosol Laser Ablation

30nm SONOS Memory by SWP

Key Features of SONOS Cell

□Memory Node Size: 30 x 30 nm2

- □ Write/ Erase Voltage: <10V
- □ Write/Erase Time: 1 msec
- **\Box** Endurance: >10⁶ cycles
- **\square** Retention = 1year @T=85

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

Key Characteristics of SONOS Memory

Nano Device

SONOS Memory by E-beam Lithography

SONOS Cell by E-beam Lithography

W/L: 33nm / 46nm

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

ONO layer TEM & AES Analysis

- TEM of the ONO (2 nm/7 nm/9 nm) stack
- Auger profile showing the stoichiometric of ONO layer.

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

ADVANCED INSTITUTE OF TECHNOLOGY

Program & Erase Characterisics

△ ∆Vth ~ 2.4V
□ Trapped Charge density = 4.1 ~ 5.9 x 10¹² cm ⁻²
□ No. of e⁻ = 61 ~ 88 for 33nm x 46nm node size

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

ADVANCED INSTITUTE OF TECHNOLOGY

Memory Window Comparison

• Memory window is nearly similar for SONOS devices with different memory node areas

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

ADVANCED INSTITUTE OF TECHNOLOGY

Retention Time

Endurance

- Retention time is good with 75nm width and 100 nm length at 85 .
- It remains unchanged up to 10⁵ cycles, indicating superior endurance characteristics at 85

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

ADVANCED INSTITUTE OF TECHNOLOGY

Memory Effect at 30 nm dimensions

• Single electron charging effect at 30 nm dimensions.

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

ADVANCED INSTITUTE OF TECHNOLOGY

Vertical Channel SONOS

Schematic of VC SONOS

• ∆Vth=1.6V @ 8/-8V &10ms

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

ADVANCED INSTITUTE OF TECHNOLOGY

TEM images

C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003

ADVANCED INSTITUTE OF TECHNOLOGY

Future Work

□ Nano fabrication process for Integration

□ Improvement of SONOS memory characteristics

- High-k materials
- New memory cell structure
- Optimal bias conditions

Device physics

- Single electron effect
- Reliability failure mechanism
- Memory cell Modeling/Simulation

