
Vis: Virtualization Enhanced Live Forensics Acquisition for Native System

Abstract

Live forensic is becoming one significant part in modern
digital investigation. It is effective in obtaining criminal
evidence which only exists in memory. Unfortunately,
current efforts either fail to provide accurate acquisition
of native system state at the given time point or require
suspending the machine and altering the execution envi-
ronment drastically.

To address this issue, we propose Vis, a light-weight
virtualization approach to provide accurate retrieving of
native system state while preserving the execution of tar-
get system. Vis is built on two key technologies. The
first one - Virtual-Snapshot - ensures the accuracy of the
dumped system state without suspending the target sys-
tem. The second one - Late-Virtualization - builds the
required virtualization environment by encapsulating the
native system into a single virtual machine after the OS
finishes booting without environment impact upon the
target system execution.

Our experimental results indicate that Vis is capable
of reliably retrieving an accurate system image. Besides,
Vis accomplishes live acquisition within 97.09∼105.86
seconds, which proves Vis is practical when comparing
with hours needed by previous remote live acquisition
tools and even days needed in static acquisition. In aver-
age, Vis introduces only 9.62% performance overhead to
the target system.

1 Introduction

A typical computer forensics scenario has three steps:
Acquisition, Analyzing and Reporting [38]. Focusing on
the acquisition and analyzing stage, computer forensics
proposes two key challenges: how to obtain the complete
system state and how to analyze the retrieved image ef-
fectively [31]. The former problem is more important,
since missing evidence leads to an incomplete or wrong
investigation result, even with an ideal analyzing tech-

nology.
Most static forensic tools concentrate on the data in

file systems because criminal evidence is regarded to be
stored on permanent I/O device only [10]. In order to get
the critical information effectively, static forensic exam-
iners require to clone disks offline and then search the
images for possible evidences. Traditional static foren-
sic tools, like Encase [22] and FTK [3], are able to dig
out massive volumes of installed programs, deleted files,
email contents and browsing history from the images.
Nevertheless, due to the significant growth in memory
capacity, a wealth of evidence can only exist in volatile
memory, which is totally beyond the acquisition scope
of static forensic tools. Static forensic is also limited
in practice with enterprise servers. With a requirement
of 24/7 availability, these servers cannot bear the eco-
nomic loss brought in by offline forensic operations. In
the meantime, aiming at improving both the capacity
and robustness, a distributed storage manner adopted in
server extends the retrieving time from hours to days,
even months [5].

One solution to address this issue is to perform live
forensic on a target system. Revealed by its name, live
forensic focuses on obtaining and analyzing the target
system while keeping it in a running state [5]. Transcend-
ing static analysis approach, it extends the examiners’s
information gathering range to the volatile data, such
as process information [8], process list [23], kernel ob-
jects [18] and raw memory content [6, 33]. From the ar-
chitecture perspective, previous software live acquisition
solutions can be divided into two categories. The first
one is Virtualization Introspection, which means the tar-
get system is wrapped in a Virtual Machine (VM) while
the acquisition module exists in hypervisor like Xen [16].
VIX tools [23], Ruo’s work [6], Srinivas’s work [26]
and BodySnatcher [34] all belong to this type. The
second one is Non-Virtualization Introspection, named
In-OS State Fetching in this paper because no previous
work supposes any native out-of-OS live acquisition ap-

1

proach. It is designed to obtain indicated volatile system
state and data with a minimal environment impact. In
Iain’s work [35] there lists several practical tools for dif-
ferent scenarios, e.g Win32dd [30], KnTTools [20] and
Fport [29]. Memoryze [27] is another popular user pro-
cess forensic tool in this type.

While owning the ability of unearthing tremendous
volume of volatile data, live analysis also faces signifi-
cant challenges and risks. The first challenge is previous
virtualization based live acquisition methods, especially
those required to load hypervisor prior than Operating
System (OS), alter the system environment significantly.
When employing this method on a non-virtualized host,
the forensic examiners more or less change the system
running environment. In the extreme case, rebooting
even reinstalling the whole system is required, causing a
great loss of information from volatile memory. The sec-
ond challenge is raised from the fact that the system is not
static [5]. The continuous changing files and processes
make those previous in-OS live acquisition methods un-
able to guarantee the accuracy of the retrieved Machine
State, which includes system running environment and
volatile data, at the given time point unless suspending
the machine [31]. Figure 1 shows the accuracy evalua-
tion of different common studied live forensic tools. It
proves the inaccuracy of some existing in-OS live foren-
sic methods. In Section 4, we will analyze this result
in detail. Moreover, it is noteworthy that dumping an
accurate machine state is still difficult by manipulating
all page tables for in-OS live acquisition tools, because
possible existence of hiding processes make it extremely
difficult to actively trace all working page tables.

In addition, it is possible that a system is configured
to detect a live analysis attempt (e.g., suppose that a
suspect installed a hardware component that requires a
user to hit the escape key within 5 seconds to main-
tain system configurations) and to delete incriminating
data [23] or even to destroy the whole physical machine
if detected. In these conditions, stealthy live acquisition
approaches should be employed. Unfortunately, even
for virtualization based live acquisition, existing reli-
able volatile memory acquisition methods still need to
suspend the whole machine for a period of time, e.g.,
VMWare Workstation [37]. Meanwhile, the acquisition
task takes longer when transmitting data over cables. It
is reported that BodySnatcher requires suspending the
target system for 45 minutes to accomplish a complete
128MB RAM acquisition over 115kbps serial I/O ca-
ble [34].

Virtualization has three essential characteristics: iso-
lation [14, 19, 36], introspection [6, 25] and perfor-
mance [4]. Inspired by the recent resurgence of system
virtualization and its application to commodity proces-
sors, we adopt virtualization to address these problems.

0

5000

10000

15000

20000

25000

30000

100 200 400 800 1600 2500

M
is

si
n

g
 P

a
g
es

Pollution Rate (pages per second)

Memoryze win32dd Vis

Figure 1: Accuracy evaluation. Different page pollu-
tion rate is tested for 2GB memory dumping in each test.
Missing Pages means the number of the obtained pages
containing polluted content.

We propose Vis, a light-weight virtualization approach,
for commercial OSes to obtain accurate retrieved system
state without environment impact while the target system
keeps running.

To solve the first challenge in live acquisition, we in-
troduce Late-Virtualization technique to ensure no en-
vironment impact is incurred during Vis lifetime. In
order to be more applicable in real scenarios, Late-
Virtualization also needs to build the virtual introspection
environment after the OS is started up as well as keep hy-
pervisor functioning without suspending the target sys-
tem. To achieve these goals, it is necessary for Late-
Virtualization to record and keep the original machine
control state. Besides, Vis employs Virtual-Snapshot
technique to provide accurate acquisition which solves
the second challenge. Virtual-Snapshot leverages this
virtual introspection environment to satisfy accurate sys-
tem state retrieving. This is done by actively removing
and granting write access of certain address space range
on the additional level of address translation.

To the best of our knowledge, Vis is the first tool capa-
ble of providing accurate live acquisition for native sys-
tem without suspending the target. To validate our ap-
proach, we have implemented a proof-of-concept proto-
type and conducted a series of evaluation. As shown in
Figure 1, even under the high pollution rate for a period
of time, Vis can still ensure the result accuracy while pre-
serving the target system execution. Moreover, the per-
formance evaluation result demonstrates that Vis is able
to retrieve an accurate system image in 97.09∼154.57
seconds comparing with a range of 17∼76 seconds for
existing live acquisition tools, while it incurs 9.62% per-
formance overhead to existing applications. These re-
sults prove that Vis is practical in real world scenarios.

The rest of the paper is organized as follows. Sec-

2

Machine State

Machine Control

State

- IDT

- GDT

- EIP/ESP

- Page Tables

General Registers

Physical Memory

I/O Devices

- Hard Disk

- Tape

- Flash Storage

- Network Card

- ...

Figure 2: Machine State Scope.

tion 2 presents Vis’s design model and assumptions. Sec-
tion 3 provides the implementation details and related
discussions, while Section 4 evaluates Vis through ex-
periments. We survey related work in Section 5, then
illustrate the future work and conclude in Section 6.

2 Design

For non-virtualized hosts, Vis ensures the accuracy of the
retrieved machine state at the given time point. In this
section, we begin with an illustration of how we define
machine state, and then present the assumption we made
in this paper. At last, we describe Vis’s design and corre-
sponding key technologies in detail.

2.1 Machine Context
The highest priority action of live acquisition is to dis-
tinguish which kind of information is needed to recon-
struct the scene of crime. Generally, it needs to obtain the
running environment information as well as both volatile
and persistent state of a physical host, all of which con-
stitute the machine state. A well defined machine state
scope determines to which extent the target’s information
should be available to forensic practitioners. In our study,
machine state contains the following three items: Ma-
chine Control State (MCS), General registers and main
memory, as well as Disk and other I/O device. MCS
includes all host control related data, e.g., Interrupt De-
scriptor Table (IDT), Global Descriptor Table (GDT) and
page tables. With these information, MCS is able to de-
scribe how the target system is executing currently. Gen-
eral registers and main memory, which are used to store
the volatile system data, reveals what the target system is
executing now. At last, acting as data warehouse, Disk
and other I/O device supply tremendous volume of aux-
iliary information to construct the complete scene.

Figure 2 shows their relation hierarchy. Similar to
storage hierarchy, various registers hold architecture in-
formation, describing the functionality of specific main
memory content as well as how the main memory is used.
Then, main memory holds file information in form of

file descriptors stored in process structure. As a result,
obtaining these registers and main memory content en-
ables forensic examiners to form a better understanding
of what the target system has done. It worths noting that
the content in transparent memory devices (e.g., Cache
and Translation Look-aside Buffer (TLB)) is unneces-
sary to be obtained because losing their content has no
effect to the evidence integrity. In this paper, we regard
the MCS, general registers and main memory as Core
State due to their importance in live forensic acquisi-
tion. According to this definition, previous live foren-
sic approaches apparently have more or less shortages in
acquiring core state. For example, previous virtualiza-
tion based live forensic method changes the MCS signif-
icantly during installation, and prior in-OS live forensic
methods cannot assure the accuracy of the cloned core
state. Even worse, both of them focus on main memory
only and need suspending the target system to obtain an
accurate result. It is worth noting that Vis only focuses on
accurately retrieving target system’s core state currently.
The main reason is that supporting disk cloning in live
forensic tools has no impact on the original design, only
requiring additional engineering effort. And also, much
previous work on static forensic [9, 10, 13] focuses on
how to dump disk content. Hence, a system designed for
how to obtain target system’s core state accurately can
also ensure the accuracy of dumping the target system’s
machine state.

2.2 Goals and Assumptions

Two main design goals are identified to provide accu-
rate core state acquisition without suspending the target
system. First, the proposed techniques should cause no
modification to MCS. By constructing execution envi-
ronment for live forensic tools with no influence to MCS,
it is possible to obtain an accurate MCS copy during ac-
quisition. And more important, no host environment im-
pact makes it come true to continue running the target
system when loading and unloading Vis acquisition tool.
Second, the proposed techniques should not write to the
result image with any content which is produced after the
acquisition time point. The challenge of this goal is that
the proposed techniques should be able to identify which
part of core state content is newly generated and point
out what is the original content in that location. In this
way, the proposed live forensic tool owns the ability to
dig out the evidence which is possibly contaminated, or
even lost from the result produced by previous forensic
tools.

Assumption Loading as an OS driver, Vis shares the
same usage model with many existing forensic tools
listed in [35]. Occupying certain amount of memory
is necessary according to the Locard’s exchange princi-

3

ple [15]. We assume this does not impact on the exis-
tence of critical evidence. It is acceptable since this us-
age model is popular in a large amount of modern live
forensic tools [35]. Moreover, Vis leverages the isolation
perspective in virtualization when loaded and hence has
no impact on machine state. In the mean time, we assume
Vis is started from commercial OS on non-virtualized en-
vironment. We do not consider the recursive virtualiza-
tion situation due to the lack of hardware virtualization
support inside guest virtual machine. Vis theoretically
works on fully nested virtualization environment.

2.3 Vis Design

Based on Vis’s design goal, we propose two key tech-
niques of Late-Virtualization and Virtual-Snapshot, to
fulfill the design requirement. Next, we will describe
how the proposed technologies achieve Vis’s correspond-
ing design goals.

2.3.1 Late-Virtualization Approach

In any live acquisition approach, the tool should pro-
vide itself suitable environment to produce trustworthy
result. As described earlier, forensic examiners need to
obtain target system’s core state to form the idea of what
has happened. Since acquisition environment decides a
tool introspection capability and the impact to the target
system during obtaining, a suitable environment helps
the tool produce a reliable result. Hence, an ideal en-
vironment should fulfill the following two requirements:
Space Isolation and Introspection. Space Isolation means
the acquisition tools should not violate the target sys-
tem’s machine state integrity. Unfortunately, according
to Locard’s exchange principle [15], it needs balance be-
tween reliable observing and retaining integrity. Hence,
practical live acquisition tools, particularly those in-OS
ones, always minimize their impact on target system in-
tegrity by decreasing usage of the unallocated memory.
Introspection means the environment is capable of reli-
ably intercepting certain types of important events, and
has a superior or at least the same view of MCS com-
pared with the target system.

Late-Virtualization fulfills the Space Isolation and
Introspection requirements by leveraging virtualization
technology. It is worth noting that because of the widely
support of hardware virtualization on commercial x86
processors currently, our discussion will mainly focus on
hardware virtualization which is also needed in Vis’s im-
plementation. Hardware virtualization use the “trap and
emulate” method [4] to provide abstract hardware inter-
face to guest OS. Available since 2005, commercial x86
hardware solutions enable hypervisor to handle certain
OS-related critical events in a first-hand manner. More-

Virtual Machine

User Space

Hypervisor

Kernel Space

Handle Guest Critical Events
Launch/Resume

VM

VMCS

Load Vis vis_main()
Acquire MCS &

General Register
Fill VMCS

In the first call

Application

Figure 3: Late-Virtualization Procedure. This figure
shows the key steps in Late-Virtualization to wrap the
target system into a virtual machine. Also, it shows how
to handle traps and then resume running the target sys-
tem.

over, by booting hypervisor prior than OS, it allows hy-
pervisor to manage and reallocate available resources. In
this way, hypervisor, isolated from guest OS and appli-
cations, is still capable of monitoring the whole guest
machine.

Hardware virtualization’s characteristic decides its
suitableness in live acquisition. However, there is one
notable pitfall. In traditional ways, rebooting is needed
to enable virtualization. It is intolerable in live acqui-
sition practices since rebooting significantly jeopardizes
the content in volatile memory and registers. Though
prior work [34] claims to have solved this problem, it
is still reported that it sacrifices the target system’s ma-
chine state integrity at a cost. In short, previous virtu-
alization approaches fail to fulfill the Space Isolation re-
quirements. Inspired by NewBluePill Project [24], Late-
Virtualization is proposed to completely solve this issue.

Figure 3 demonstrates Late-Virtualization’s key pro-
cedure in creating hypervisor and used by hypervisor in
later running. The two steps, Acquire MCS and General
Registers as well as Fill VMCS, are used to achieve the
Space Isolation goal without rebooting. Acquiring MCS
and General Registers is used to supply necessary archi-
tecture information in constructing VM with the same
MCS and general registers later. Besides, part of these
architecture information are required to be shadowed to
conceal the content on real control registers from the
view of guest VM. For example, launching hardware vir-
tual machine is required enabling virtual machine mode
first. Specifically, CR4 register is modified for this rea-
son during Vis loading. By shadowing CR4 register ac-
cess from guest VM, the target system can never get the
real CR4 register value, and hence no MCS modifica-
tion is actively incurred by Vis. In order to achieve the
goal, firstly it needs to know what the guest VM should

4

execute at instruction level after creating/resuming exe-
cution from hypervisor; secondly it is required to oper-
ate atomically to avoid gathering dubious content. To
be specific, EIP and ESP registers are needed to decide
the first instruction to execute after creating VM. Mean-
while, the length of the current instruction is required to
adjust guest EIP when resuming to guest. Also, CR regis-
ters contents are also recorded to provide shared page ta-
ble between hypervisor and guest machine. With shared
page table, it is possible to reuse the guest OS drivers to
facilitate live acquisition in loose restrictions. What is
more, without the need to acquire OS specific informa-
tion in constructing VM, Late-Virtualization makes Vis
independent to legacy OS and applications.

VMCS, referred as Virtual Machine Control Structure,
is used to define VM execution environment as well as
the trapping conditions in hardware virtualization tech-
nology. When it turns to the next step to Fill VMCS,
Late-Virtualization needs to fill all the recorded system
MCS and general registers contents in the corresponding
field of VMCS. What is more, Late-Virtualization also
needs to register the interested guest critical events as
well as their handlers in VMCS. As a result, once these
events happen, hardware will automatically store guest
state and transfer control to Vis hypervisor before exe-
cuting any single instruction in guest machine, making it
possible for Vis to access all core state of the guest ma-
chine. In this way, Late-Virtualization helps Vis hyper-
visor start up and work while preserving the execution of
target system. Since Vis’s unloading operation is similar
to its loading procedure, Late-Virtualization makes Vis
cause no active machine state modification during Vis’s
lifetime.

2.3.2 Virtual-Snapshot Approach

Virtual-Snapshot is used to accurately capture the target
system’s core state while the target system keeps run-
ning. According to the difficulty level of obtaining vari-
ous scope, core state can be divided into 2 groups. The
first group includes MCS and General Registers. The
second group includes Main Memory only. Based on
Late-Virtualization technology, Virtual-Snapshot is able
to obtain an accurate dump of the first group’s content
by nature. The reason is that during each trap to hyper-
visor, the control flow will be interrupted by hardware
to automatically record guest machine’s MCS in VMCS.
In addition, Late-Virtualization approach will store the
general registers content in its own data space for resum-
ing guest machine execution later. In this way, Virtual-
Snapshot only needs to save these information in the in-
dicated file when the corresponding hypercall is issued
from Vis client console to achieve the accurate acquisi-
tion on guest machine’s MCS and General Registers.

GVA GPA MPA

W
Guest Address

Space

R

W

X

Guest Physical

Memory

R

W

X

Machine

Memory

R

X

G

H

H

G

TLB

Figure 4: Nested Paging Mechanism. This figure de-
scribes how GVA is translated into MPA. G means that
the corresponding TLB entry stores GVA to MPA trans-
lation, while H means that the TLB entry is used for
translating GPA into MPA. RWX stands for read, write
and execute permissions on specific memory region.

Unfortunately, it is not the same situation for Main
Memory. First, it is difficult to monitor modification to
all available Main Memory, especially for those in-OS
acquisition approaches. Previous virtualization acquisi-
tion approaches bypass this problem by suspending tar-
get and then obtaining the memory content. Second, the
large size of Main Memory causes that a long time is al-
ways needed to acquire all memory content. Suppose the
target system owns 2GB physical memory, it takes more
than 20 seconds to obtain a complete memory dump and
output it to the local disk at 100MB/s transfer speed. To
make things worse, previous live acquisition approaches
need to suspend the machine in order to ensure the re-
sult’s accuracy. Hence, the required long suspending
time makes them inappropriate in stealthy live acquisi-
tion occasion.

The first problem is solved by Nested Paging mech-
anism in Virtual-Snapshot. Figure 4 shows how Nested
Paging mechanism translates arbitrary Guest Virtual Ad-
dress (GVA) into corresponding Machine Physical Ad-
dress (MPA). In traditional virtualization, Nested Pag-
ing mechanism is employed to host multiple VMs on the
same physical machine. As a result, a two-level trans-
lation mechanism is needed to ensure the compatibility
with legacy OSes. Since modern hardware virtualization
tries to eliminate the guest OS sense of the underlying
hypervisor, the first level address translation, which turns
GVA to Guest Physical Address (GPA), still employs the
origin guest OS page table pointed by CR3 register as the
traditional way does. At the same time, the second level
address translation, which uses Nested Page Table (NPT)
to translate GPA into MPA, is pointed by Nested Page
Table Pointer. It is worth noting that Shadow Page Table
(SPT), the traditional software Nested Paging approach
which uses another sets of page tables to achieve GVA
to MPA translation, can also be employed by Virtual-
Snapshot in the situation that hardware assisted nested
paging is unsupported on legacy hardware.

5

(a) Modification to Write-locked Pages (b) Modification to Normal Pages

Vis hypervisor

Nested Paging Access Violation Handler

Page Table EntryR X

Page Table EntryR X

Page Table EntryR X

Physical

Memory Page

R

X

Nested Page Table

Vis hypervisor

Nested Paging Access Violation Handler

Page Table EntryR W X

Page Table EntryR W X

Page Table EntryR W X

Physical

Memory Page

R

W

X

Nested Page Table

Figure 5: Virtual-Snapshot Approach. Comparing with modification to normal pages, a different control flow is
executed when modifying write locked pages.

In order to monitor modification on the whole range
of target system’s Main Memory, Virtual-Snapshot first
creates an identical mapping from GPA to MPA on the
second level address translation. After that, Virtual-
Snapshot actively queries guest OS for its valid physical
memory range. This is because certain amount of system
memory address space is required for existing I/O de-
vices, e.g., graphic card, network card, etc. In addition,
on x64 architecture the valid physical address space is far
more tremendous than the maximum supported memory
capacity currently. Hence, distinguishing physical mem-
ory range from I/O memory range and unallocated mem-
ory range helps build core state’s border.

After owning the knowledge of a clear physical mem-
ory scope during Vis startup, Virtual-Snapshot disables
write permission on the whole guest physical memory
range when acquisition command is issued from Vis
client. As shown in Figure 5(a), achieved by manipu-
lating the second level NPT, revoking the write permis-
sion on guest OS physical memory page makes any sub-
sequent writing to this page generate nested page fault
before changing any single bit within it. Then, hardware
automatically traps to Vis hypervisor to handle it accord-
ingly with hardware generated guest fault frame, which
includes the address of the modifying page, the allowed
permission as well as the desired permission. The pre-
registered nested paging access violation handler in Vis
hypervisor dumps the content of the trapped page, re-
moves write lock from the trapped page by regranting the
write permission, and then resumes guest machine run-
ning from the trapped instruction. Since the guest ma-
chine resumes from writing to the same guest physical
page again and this time no write lock is put on the same
page, the write operation is succeed without interrupting

the original information flow, as shown in Figure 5(b).
In this way, Virtual-Snapshot obtains the origin content
of the guest physical page being modified, while keeping
the guest OS and application’s information flow, even in
the case that Vis is orthogonal to the guest machine.

The second problem is solved in an Amortized man-
ner by Virtual-Snapshot. According to our observation,
only a small portion of guest physical pages are modified
on each processor during a single instruction execution.
Hence, it is sufficient for Vis to dump only the chang-
ing pages in order to obtain a complete origin content
of guest physical memory. For the remaining compara-
tive huge part of guest physical pages, their dumping are
deferred until either their modification or the end of ac-
quisition, if their content is never changed. As a result,
by lengthening the necessary acquisition time, Vis has
no need to suspend the target system. Even acquisition
incurred overhead becomes slight for Virtual-Snapshot
dumps small portion of critical pages first and large part
of remaining pages later in little pieces.

3 Implementation

We have implemented a prototype of Vis and applied it
to live acquisition of Windows 7 x86 system. Currently,
Vis leverages Intel VT technology [2] to provide the nec-
essary hardware virtualization functionality. The Late-
Virtualization is implemented by directly using virtual
machine extension to build the underlying hypervisor.
For Virtual-Snapshot, we employ Intel’s Extended Page
Table (EPT) technology [2] (We refer EPT to Extended
Page Table instead of the corresponding technology in
the following), feasible from CPUs produced after 2008
with Nehalem micro architecture, to enable hardware as-

6

sisted paging. The engineering effort shows that Vis is
a lightweight approach. Vis totally needs 5962 Source
Lines of Code (SLOC), involving 871 SLOC for Virtual-
Snapshot and 5091 SLOC for Late-Virtualization tech-
nique.

During Vis’s implementation, it is necessary to bal-
ance between Vis’s effectiveness and its applicability.
There are two groups of alternative decisions: Restor-
ing Timer Stamp Counter (TSC) vs. Non-Restoring TSC
and Synchronized Write vs. Asynchronized Write.

3.1 Restoring TSC vs. Non-Restoring TSC
The alternative choice between Restoring TSC and Non-
Restoring TSC comes from the fact that TSC, which in-
crements its value by 1 atomically after every clock tick,
keeps updating itself by hardware even in hypervisor ex-
ecution. In this case, memory write instruction on write
locked guest physical page will update TSC thousands of
times. Comparing with its execution in the original tar-
get system, it incurs a latency of tens of clock ticks. Ac-
cording to our observation, it needs 196505 clock ticks
to handle a single nested paging access violation and
perform corresponding dumping task. Vis hypervisor
utilizes 5% to 7% overall CPU time when performing
live acquisition. Subsequently, this side effect can poten-
tially, though never observed, change the target system’s
control flow, e.g., causing timeout on waitable locks.

The solution is to record TSC value during every trap
to Vis hypervisor (denoted as #VMEXIT) and later re-
store TSC just before resuming to guest machine (de-
noted as #VMRESUME). Also, since #VMEXIT and
#VMRESUME events cost constant clock ticks to ac-
complish, Vis hypervisor can adjust backwards the TSC
value to mask the corresponding overhead. However,
there is one notable pitfall. Although the target system
has difficulties in sensing Vis hypervisor existence by
checking TSC for instruction execution latency, it is pos-
sible to detect Vis acquisition action via external timers,
i.e., quartz clock. According to our experience, a 8∼12
seconds latency from external time is observed after fin-
ishing a complete Vis live acquisition.

3.2 Synchronized Write vs. Asynchronized
Write

Another alternative choice, Synchronized Write vs.
Asynchronized Write, comes from the need to balance
the reliability, performance and the required engineering
effort. Previous work [11] concerns that OS file system
drivers and disk drivers are unreliable in live acquisition
for the reason of possible contamination caused by ma-
licious code. However, a considerable amount of live
acquisition tools do not provide their own utility drivers,

for example, Win32dd and FAUdd. One benefit is that it
can reduce the required engineering effort, and another
one is that it can decrease the memory usage to mini-
mize the influence brought in by live acquisition tools to
the target system. In Vis implementation, there are two
methods available to output the dumped target system’s
core state to disk. The first one is Synchronized Write,
which means writing to result file immediately via static-
linked drivers during each nested page access violation;
the second one is Asynchronized Write, with the mean-
ing of buffering the original content during each trap to
Vis hypervisor, then reusing existing OS drivers and del-
egating the output task to OS worker thread.

Both of them have several advantages and disadvan-
tages. The biggest advantage of Synchronized Write is
that it can produce a more reliable target system’s core
state image. Since no buffer space is needed, Vis pri-
mary memory usage is to hold its code and EPT. It results
that Vis requires as much as the memory needed by other
live acquisition tools, which is acceptable according to
our assumption. Synchronized Write has several disad-
vantages. Since disk operation is involved during hyper-
visor execution, it downgrades the target system’s per-
formance and raises the Vis hypervisor CPU time during
acquisition, leading to a much higher possibility of caus-
ing timeout on target system’s waitable locks. Besides,
a significant engineering effort is needed to implement
the necessary drivers, though it has no impact on Vis de-
sign. Moreover, it is notable that Synchronized Write via
OS legacy drivers is sometimes unattainable for Vis due
to OS design. According to our experience, some of the
trapped guest memory write operation occurs at a higher
interrupt request level than that is required for disk oper-
ation on Windows 7 and always results in a Blue Screen
of Death.

On the contrary, Asynchronized Write frees Vis from
the burden to implement its own required drivers and in-
curs lower performance impact to the target system via
OS I/O scheduling. The biggest disadvantage is that the
acquisition result is of less reliability; and the required
buffer memory is usually large, depending on the char-
acteristics of workload. Since applying Asynchronized
Write incurs no design modification as we described be-
fore. The current Vis implementation employs Asyn-
chronized Write as its output technique. And Vis allows
only local disk can be used to store acquisition result.
Meanwhile, 1GB out of 2GB physical memory is re-
served for buffering. How to reduce the buffer memory
size and ensure the accuracy of obtaining origin buffer
content are left for future work.

Moreover, both Synchronized Write and Asynchro-
nized Write need to concern certain implementation is-
sue to achieve Vis functionality. Firstly, some guest
physical memory pages are never changed since the tar-

7

get OS startup, e.g., most of the OS code pages. Re-
lying on the dumping operations in the access violation
handler, Vis can not obtain the content in these pages.
To solve this problem, Virtual-Snapshot is configured to
dump the remaining pages in an amortized manner when
other guest machine event handlers in Vis is triggered. In
Vis current prototype, Virtual-Snapshot also dumps the
remaining pages from low page frame number when the
target OS tries to write CR3 register, which is a frequent
operation on multitasking OS on x86/x64 architecture.
Secondly, whenever nested paging access violation oc-
curs, it is required to set the write permission to the corre-
sponding page before resuming the guest machine. Oth-
erwise it will cause infinite trapping. Hence, the buffer
memory needed by the access violation handler is iden-
tified as Critical Buffer Space, and a Non Critical Buffer
Percentage (NCB%) is needed to avoid too much buffer
memory used by the dumping operations performed in
other handlers. NCB% is defined as the most percentage
of buffer memory to be used by the dumping operations
in other handlers. Generally, more pages dumped within
a single trap or less critical buffer space reserved for
dumping operation in the access violation handler leads
to a possible violation of Vis acquisition accuracy.

3.3 Vis Optimization

Vis has gained three optimizations in the current proto-
type. The first optimization shortens the acquisition time.
During the implementation of Asynchronized Write, we
noticed that it is unnecessary to limit Vis from dump-
ing one page per trap. The acquisition accuracy is still
guaranteed even if multiple pages are obtained at once,
which also shortened the acquisition time. The reason
is that obtaining multiple pages at once will reduce the
total trap times. Hence, less overhead is incurred on
the context switches between hypervisor and VM. Also,
a larger I/O buffer is needed when acquisition several
pages per trap is enabled. The I/O performance improves
greatly when I/O buffer increases within a certain range,
resulting in decreasing Vis acquisition time in advance.
Though shortening Vis acquisition time a lot, this opti-
mization has one disadvantage. Dumping multiple pages
per trap results that Vis hypervisor spends more time to
handle a single trap. Generally, the more pages dumped
during each trap, the shorter the time is required to ac-
complish live acquisition, and the higher possibility is
to incur side effect to the target system. We experi-
ment dumping 8, 16, 32, 64 pages within single trap. In
Section 4, we will evaluate the effectiveness and perfor-
mance under these conditions.

The second optimization decreases Vis startup time.
During Vis loading, Virtual-Snapshot needs to build EPT,
the four level page table, with identical mapping from

GPA to MPA. In the earlier version of Vis, building iden-
tical mapping is done with a one-by-one page frame
mapping. Hence, it always needs to traverse the same
EPT structures and set different entries on the last level
of EPT. As a result, Vis requires about 8 seconds to con-
struct the EPT to finish the mapping task. This optimiza-
tion is to batch every 512 mappings within a single oper-
ation. Thus, it significantly reduced the times of walking
EPT. In the current Vis prototype, the loading time of
current Vis prototype is imperceptible.

The third optimization is more related to engineering.
In order to be more flexible, we create the idle state for
Vis. Vis is implemented to stay in the idle state and tran-
sit to acquisition state if and only if the acquisition com-
mand is issued from Vis client. After the acquisition is
accomplished, Vis transits to the idle state again. In idle
state, Vis does not intercept any write attempt to guest
physical memory though EPT is still enabled. Hence, no
single bit in guest physical memory is dumped and out-
putted to local disk and the performance impact to the
target machine is minimized.

4 Evaluation

The current Vis implementation realizes its design goals
described in earlier sections on Windows 7. All experi-
ments are conducted on a Dell Optiplex 980MT host with
a 3.2GHz Intel i5-650 processor, 2GB RAM and a giga-
bit ethernet card. We use the uniprocessor x86 version of
Windows 7 in our experiments. In this section, we first
analytically examine the accurate live acquisition guar-
antees provided by Vis. Then we present its overall per-
formance as well as the performance impact on the target
system.

4.1 Effectiveness Evaluation
In Section 1, we compare the acquisition accuracy eval-
uation of Vis with another two commonly studied live
forensic tools, as shown in Figure 1. The experiment
methodology is that we load the acquisition process first,
and then manually start pollution process immediately
after beginning acquisition. The pollution process al-
locates and fills memory with unique content that will
be nonexistent if not polluting. As Figure 1 shows that,
even in the situation that the pollution process allocates
and pollutes memory at the rate of 2500 pages per sec-
ond for 20 seconds, no single polluted page is dumped
by Vis with the target running. On the contrary, though
Win32dd tool finishes its dumping physical memory task
in 17 seconds and Memoryze, 18 seconds, they recorded
71.62% and 56.96% polluted pages in the result file re-
spectively. In addition, both Win32dd and Memoryze
acquisition tool are not able to obtain MCS, or at least

8

Pages Dumped Per Trap

8 16 32 64

NCB% = 0%

Time (s) N/A N/A N/A N/A

Missing pages N/A N/A N/A N/A

Disk write (KB/s) N/A N/A N/A N/A

NCB% = 20%

Time (s) 105.86 77.90 66.92 55.06

Missing pages 0 5650 29402 63089

Disk write (KB/s) 19101.9 25959.6 30217.3 36728.6

NCB% = 40%

Time (s) 101.05 76.08 62.60 51.87

Missing pages 0 10228 35327 61343

Disk write (KB/s) 20011.9 26579.3 32305.6 38986.0

NCB% = 60%

Time (s) 97.09 72.57 58.76 49.07

Missing pages 0 14185 33242 59526

Disk write (KB/s) 20829.0 27864.0 34412.3 41210.6

NCB% = 80%

Time (s) 90.20 69.00 53.63 44.75

Missing pages 599 18377 39028 65202

Disk write (KB/s) 22420.1 29307.3 37705.2 45193.0

NCB% = 100%

Time (s) 85.47 63.86 51.57 43.01

Missing pages 5364 21974 38133 72508

Disk write (KB/s) 23658.7 31665.2 39214.3 48136.3

Table 1: Vis’s Overall Performance. This figure com-
pares Vis overall performance under different configura-
tions when enabling Non-Restoring TSC. It is notewor-
thy that the result is not available when NCB% = 0%.

there are no claims about it. In comparison, Vis can re-
trieve MCS and assure its accuracy in theory.

To the best of our knowledge, Vis is the first system
that is able to provide accurate live acquisition while
the target native system keeps running. This guaran-
tee is achieved by Late-Virtualization’s isolation and in-
trospection characteristics as well as Virtual-Snapshot’s
amortized obtaining manner. With hardware virtualiza-
tion support, Vis always obtains the target system’s orig-
inal content before any subsequent modification.

4.2 Overall Performance

In order to evaluate Vis overall performance in acqui-
sition state, a series of experiments are conducted un-
der different configurations, including the number of
pages dumped in each trap, NCB% and Restoring/Non-
Restoring TSC.

Vis shows different overall performance under vari-

Pages Dumped Per Trap

8 16 32 64

Average 338.62% 143.83% 52.58% 18.15%

Table 2: The Ratio of Range to Average of Missing
Pages. We calculate the ratio of range to average of
missing pages under different configurations. Then, we
record the average value of every data column as the final
result.

ous configurations, as shown in Table 1. In these ex-
periments, Vis’s performance under each configuration
is tested for 5 times, then the average value is recorded
as the final result. After analyzing Table 1 thoroughly,
we can see that it firstly shows Vis can accurately ob-
tain the original memory content in the target system
by dumping 8 pages in each trap and being configured
with NCB% = 60%. Secondly, with the same number
of pages dumped in each trap, Vis acquisition time de-
creases when the NCB% raises. However, the result is
not available when Vis is configured with NCB% = 0%.
With this configuration, Vis can not obtain the content in
those never changed pages because no buffer space can
be used outside Vis’s access violation handler. Hence,
Vis requires 97.09∼105.86 seconds for accurate acquisi-
tion, in the case of dumping 8 pages per trap with NCB%
varies from 20% to 60%. Thirdly, with the same NCB%,
Vis decreases its acquisition time by increasing the num-
ber of pages dumped per trap, which proves the claim
that the more pages obtained per trap, the less time is
needed in Vis acquisition. Also, the trend of Missing
Pages proves that dumping more pages per trap or config-
uring a higher NCB% leads to Vis acquisition accuracy
violation, as described in Section 3.

From the experiment results, we also observed two
noteworthy symptoms. The first symptom is that Vis
has a smaller Missing Pages number with NCB% = 60%
than that with NCB% = 40% under the configuration of
dumping 32 pages per trap, as shown in Table 1. Also,
Table 2 shows the recorded Missing Pages results have
a wide range under the same configuration. It is nor-
mal because non-deterministic events such as interrup-
tions lead to various amount of modification to the target
system’s code and data portions. All the modifying pages
are required to be dumped before overwriting their orig-
inal content. As a result, a large amount of modification
pages exhaust critical buffer space more easily, leading
to acquisition accuracy violation. Another reason is that
NCB% is defined as the most percentage of buffer space
which can be used except the access violation handler.
It is possible for the access violation handler to take any
proportion of the buffer space, since the access violation
handler always has a higher priority in using Vis’s buffer

9

Speed Mode Buf. Size Time CPU Util. Disk Write

Normal 4 KB 76 s 46.18% 26607.95 KB/s

Fast 64 KB 18 s 19.59% 112344.67 KB/s

Sonic 512 KB 17 s 6.00% 118953.18 KB/s

Hyper Sonic 1024 KB 17 s 5.36% 118953.18 KB/s

Table 3: Win32dd Performance. When smaller than
512KB, the I/O disk buffer is the major effect to the disk
write thoughput.

space.
The second symptom is that the ranges of Missing

Pages become smaller in average when Vis dumps more
pages per trap, as shown in Table 2. The reason comes
from both the memory layout and its space locality on
Windows 7. Because kernel code and data always start
from the low physical address space in Windows 7 x86
version. The kernel memory is more likely to be dumped
in Vis’s guest CR3 write handler. As a result, the impact
caused by non-deterministic events is minimized and the
Missing Pages result is more stable among different runs.

We also compare Vis and Win32dd acquisition perfor-
mance. Table 3 shows the Win32dd acquisition perfor-
mance under 4 speed modes, which only leads to differ-
ent I/O buffer size according to the technology support
of Win32dd. The elapsed time we recorded is directly
obtained from Win32dd acquisition report, while the av-
erage CPU utilization is retrieved by means of Win-
dows Management Instrumentation (WMI) [39]. The
Win32dd acquisition performance evaluation shows that
it needs 17∼76 seconds for a complete live acquisition
and the more I/O buffer space the less acquisition time as
well as cpu utilization is needed. Also, the result shows
that the performance improvement is imperceptible when
the I/O buffer space is larger than 512KB due to hard-
ware limitation. With the same experiment methodol-
ogy, Vis evaluation result shows that it incurs 4.74% to
6.48% cpu utilization in average under different NCB%
when dumping 16 pages per trap. Considering the ac-
quisition time with this configuration shown in Table 1,
it can be calculated that Vis results in 20.5% to 23.1%
cpu utilization without amortizing I/O operations in the-
ory, suggesting Vis main acquisition performance impact
is caused by I/O operations when comparing this result
with Win32dd cpu utilization in fast mode. In addition,
though taking 39.3%∼471.1% more time than Win32dd
to accomplish live acquisition, Vis is applicable when
comparing its acquisition with that of real world static
forensic tools, which needs hours or even days to obtain
a complete dump result.

After enabling Restoring TSC configuration in Vis, it
shows a decrease in acquisition time in all situations, as
shown in Table 4. In average, the acquisition time is de-

NCB%
Pages Dumped Per Trap

8 16 32 64

0% N/A N/A N/A N/A

20% 8.84 s 5.43 s 6.44 s 4.91 s

40% 7.23 s 5.86 s 5.14 s 3.91 s

60% 7.27 s 5.24 s 5.10 s 3.95 s

80% 5.82 s 4.41 s 4.08 s 2.45 s

100% 5.60 s 4.29 s 3.60 s 3.48 s

Table 4: Decreased Acquisition Time (seconds) by En-
abling Restoring TSC.

On Acquisition Idle

Scenario 1: Read CR3

#VMEXIT world switch 966 777

Read CR3 value 316 179

#VMResume world switch 1355 760

Scenario 2: Write CR3

#VMEXIT world switch 966 548

Write CR3 value 113 113

Handle dumping 214934 N/A

#VMResume world switch 1355 760

Scenario 3: Handle EPT Violation

#VMEXIT world switch 919 N/A

Clone origin page contents 36232 N/A

Reset EPT entry 157112 N/A

#VMResume world switch 2243 N/A

Table 5: Vis Micro Analysis. This figure shows the
needed clock ticks in handling Read/Write CR3 and EPT
violation happens in the target system.

creased by 7.30% compared with that configured Non-
Restoring TSC. Besides, Table 4 shows that the more
pages dumped per trap, the smaller the difference in ac-
quisition time between Restoring/Non-Restoring TSC.
This is obvious since the more pages dumped per trap,
the less traps are needed for a complete acquisition to the
same target system. Since the total I/O operation takes a
constant time for the same target system, less traps de-
crease the total time spent on context switch between
guest machine and Vis hypervisor. It is worth mentioning
that this acquisition time difference only reflects query-
ing system time by means of reading local TSC. Restor-
ing TSC has no effect on external timer, as described in
Section 3.

4.3 Performance of Legacy Software

Micro Analysis Table 5 presents the micro analysis
that measures the overhead of handling Reading/Writing
CR3 and handling EPT violations, both including acqui-

10

sition state and idle state. In these experiments, Vis is
configured to dump 8 pages per trap with NCB% = 20%.
We perform a complete live acquisition as well as keep
Vis in idle state for the same time length. Hence, the
Guest Read CR3 scenario has happened for hundreds of
times, and the other scenarios have happened for tens of
thousands of times. Then, the average is recorded as the
final result. In Table 5, #VMEXIT World Switch means
the total clock ticks spent on hardware context switch
and delegating event to the proper handler; #VMResume
World Switch means the total clock ticks needed for both
necessary cleaning work and hardware resuming VM. In
these experiments, all the benchmarks exhibit low over-
head in context switch between the target system and
Vis. Besides, there is no EPT violation handling in Vis
idle state because write attempt interception is disabled
in idle state.

During Vis acquisition, the Handle Dumping value
item takes the most clock ticks in Table 5. The reason
is that it includes both the Clone Origin Page Contents
and Reset EPT Entry functionality, as well as other func-
tions to check whether its own buffer space is exhausted.
Reset EPT Entry takes the second most clock ticks, in-
dicating it is possible to improve Vis acquisition perfor-
mance by adopting better EPT entry resetting algorithm
(e.g., 8 entries batching resetting) or waiting for EPT
technology to become more mature. Moreover, the more
mature EPT technology becomes, the more performance
improvement for Vis in idle state gains, especially for the
practical scenarios that Vis needs to stay in idle state for
a long time before acquisition starts.

Application Macrobenchmark In the former subsec-
tion, we have evaluated and analyzed Vis performance
in acquisition state. For a complete performance evalua-
tion, we also measure Vis in idle state runtime overhead
to target system. We execute cpu-intensive, I/O-intensive
benchmarks with Vis. For cpu-intensive applications, we
use the SPECint 2006 suite. For I/O-intensive applica-
tions, we select IOMeter 1, netperf 2 and Apache web
server.

For IOMeter, we perform sequential read (sread), se-
quential write (swrite), random read (rread) and ran-
dom write (rwrite) with 512KB buffer. For netperf, we
use the Vis running system as the netperf server, and
run both TCP STREAM (net tcp) and UDP STREAM
(net udp) benchmarks to evaluate network performance.
The Apache web server (httpd) is also deployed on Vis
running system, hosting the test website with 8 ran-
dom files, the size of which varies from 4KB to 16MB.
Http load 3 is a flexible program that parallel performs
HTTP requests and can do operations on the requested

1http://www.iometer.org/
2http://www.netperf.org/
3http://www.acme.com/software/http_load/

Item

Overhead (%)
Vis -

No Restoring TSC

Vis -

Restoring TSC

perlbench 4.74% 4.51%

bzip2 3.03% 3.20%

gcc 14.16% 13.57%

mcf 50.38% 50.38%

gobmk 0.22% 0.45%

hmmer 0.24% 0.24%

sjeng 6.13% 6.32%

libquantum 6.34% 6.34%

h264ref 1.91% 1.91%

omnetpp 15.30% 15.85%

astar 8.39% 8.60%

xalancbmk 7.46% 7.84%

Table 6: Vis Performance Impact - SPECint Bench-
marks.

Benchmark
Overhead

No Restoring TSC Restoring TSC

IOMeter

sread 0.45% 0.04%

swrite 0.71% 0.78%

rread 0.10% 0.13%

rwrite 0.78% 0.91%

Netperf
net tcp -2.09% -2.10%

net udp -0.01% 0.03%

Httpd throughput 0.30% -0.03%

Table 7: Vis Performance Impact - I/O Benchmarks.

files to verify their safe arrival. Hence, http load tool is
used in Apache web server benchmark to parallel per-
form maximum 120 transactions with 120 seconds dura-
tion.

The SPECint benchmark result is presented in Table 6.
Most of the SPEC benchmarks show less than 6% perfor-
mance overhead. However, there are three benchmarks
with over 10%, and one of them, MCF benchmark, with
about 50% overhead. According to our investigation, this
overhead is caused by the high EPT TLB Miss frequency
during MCF running. On the one hand, arc t type is 32
bytes long and nr group variable is always set to be 870
at runtime. When executing the for-statement shown in
Figure 6, the arc value increments 870 times 32 bytes
in each for-loop. This leads to a poor space localization,
which then causes higher probability in occupying EPT
TLB due to the fact that TLB is shared by both Nested
Paging and traditional paging in current implementation
of hardware virtualization. On the other hand, every EPT
TLB Miss costs the guest machine a maximum 14 times
of memory access overhead to complete the nested ad-
dress translation on x86 platform. This is calculated ac-

11

165 for(; arc < stop_arcs; arc += nr_group)
166 {
167 if(arc->ident > BASIC)
168 {
169 /* red_cost = bea_compute_red_cost

(arc); */
170 red_cost = arc->cost - arc->tail->

potential + arc->head->potential;
...

178 }
179 }

Figure 6: A For-Statement in MCF Source Code. This
for-statement is the hottest spot of TLB miss in MCF
benchmark. It originally exists in the source code of
pbeampp.c

cording to the following facts: traditional page table has
two level paging structures, while EPT has four on x86
platform. Hence, the TLB Miss overhead will be greatly
amplified when EPT is introduced in.

The I/O benchmark results prove that the overhead
brought in by Vis is imperceptible, as shown in Table 7.
In theory, Vis with Restoring TSC enabled should have
a better performance than that with Non-Restoring TSC
configuration. However, the measurement error as well
as the low number of times trapping to Vis leads to oppo-
site results recorded in portion of I/O benchmarks. In av-
erage, Vis in idle state incurs 9.62% performance impact
to the target system when activating Non-Restoring TSC
configuration, compared to 9.00% when enabling Restor-
ing TSC. At last, the network throughput result shows it
is increased by 1% in average after Vis is loaded, no mat-
ter Restoring TSC or Non-Restoring TSC is adopted. We
are still investigating on it.

5 Related Work

Live acquisition has been studied for several years. Pre-
vious live acquisition approaches can be divided into two
categories: Software Acquisition and Hardware Acqui-
sition. As introduced in Section 1, in the field of soft-
ware acquisition, prior approaches include both Virtual-
ization Introspection and In-OS State Fetching. Leverag-
ing Xen to construct isolated introspection environment,
VIX tools [23] and Srinivas’s work [26] are examples of
Virtualization Introspection. Xen developers even pro-
pose an on-going project with Copy-on-Write technique
to obtain VM state [17]. By running in the Dom0, both of
them have no modification to guest system during acqui-
sition in theory. However, all Xen based forensic tools
are inapplicable when performing live acquisition on na-
tive system, since they bring in a significant environment
impact to the target system, including a different hard-

ware interface from that of native devices and modifica-
tion on IDT, GDT and the Master Boot Record (MBR)
on disk. As a result, it needs to reinstall the target na-
tive OS and reboot the physical machine after the Xen
based live forensic tools are deployed. Vis solves these
problems by encapsulating the native system into a sin-
gle virtual machine after the target OS starts up. Also,
shadowing is needed to conceal necessary MCS modifi-
cation and present their original values to the target sys-
tem. Ruo’s work [6] is another Xen based live forensic
tool, which incurs additional environment impact to the
target system because it uses guest modules for acquisi-
tion.

Another example of Virtualization Introspection is
employing process based virtual machine. VMWare
Workstation [37] is one representative hypervisor in this
type. It provides a means of taking a snapshot of the
state of the virtual machine, which includes the whole
core state. However, it has the same problem with those
Xen based forensics tools. VMWare Workstation needs
to suspend the target system during acquisition and pro-
vide a different hardware interface to VMs. In short, this
technique does not address imaging of the host machine,
either.

BodySnatcher [34] uses OS driver to load hyper-
visor on the fly, which is quite similar to our Late-
Virtualization technology. And it uses a built-in acqui-
sition OS to obtain target system volatile memory. The
first problem is that in order to dump accurately, BodyS-
natcher needs to suspend the target system during acqui-
sition, and it is ineffective if the target OS is configured
to detect a live analysis attempt as introduced in Sec-
tion 1. Second, BodySnatcher must expose its modifica-
tion to target system’s MCS, e.g., IDT, in order to keep
the target system running and capable of handling crit-
ical events in hypervisor. Vis solved the first problem
by Virtual-Snapshot, with nested paging and amortized
acquisition method, Vis can accurately obtain the target
system core state without suspending the target system.
Vis has never run into the second problem, because there
is no need to modify target system’s IDT during Vis’s
lifetime.

For traditional In-OS live acquisition tools, many of
them exist in user level only, e.g., Memoryze [27] and
GNU dd 4. Meanwhile, some of In-OS live acquisition
tools are loaded as kernel module. All the acquisition
commands are issued from their user level client con-
soles. Win32dd [30] belongs to this type. The biggest
problem for these approaches is that they fail to as-
sure the accuracy of the obtained target system’s core
state. In Vis, this problem is solved by Virtual-Snapshot.
Another feasible accurate live acquisition method is to

4http://www.gnu.org/software/software.html

12

leverage the crash dump facility on modern commer-
cial OSes. This function has been long provided for
debugging support. For example, by proper configura-
tion, Windows can generate memory dumps under cer-
tain events, e.g., “magic” keystrokes and hardware/soft-
ware failures. When a failure occurs, OS dumping facil-
ity provides necessary information to correct or avoid the
error. Kdump [21] provides this functionality by load-
ing a crash dump specific kernel on Linux system. Sun,
AIX and HP’s UNIX hardware platforms use firmware
to achieve crash dumping when coming across special
key sequences [1]. However, it is impossible to continue
running the target OS or application after a crash dump.
Also, the accuracy of the acquisition result is doubtable
because rootkits probably hook critical functions in ei-
ther crash dump modules or filesystem drivers to conceal
the important evidences. Finally, alternating the config-
uration of crash dump facilities requires rebooting ma-
chine on some commercial OSes, for example, Windows.
As a result, Vis surpasses the approach of employing
crash dump facility in live acquisition in both effective-
ness and applicableness. Meanwhile, it also shows that
Vis can be leveraged in debuggers.

Previous work also proposes hardware acquisition
methods to be an alternative method in live acquisition.
Currently, these methods rely on accessing target sys-
tem’s main memory through the use of Direct Memory
Access (DMA). To achieve this goal, Carrier’s work [12]
proposes an acquisition specific PCI card which disables
CPU and performs DMA operation to obtain target sys-
tem’s volatile memory content. Also, Boileau’s work [7]
and Martin’s work[28] employ firewire protocol to per-
form DMA operations. This approach seems to have the
capability of accurate dumping. However, Rutkowska’s
work [32] proves that it is probable to present a different
memory view to DMA based acquisition devices through
configuring Memory Mapped I/O features on emerging
chipsets. Hence, the obtained volatile memory content is
quite different from the real content present to CPU. Vis
does not have this problem because the hardware virtual-
ization technology ensures that hypervisor has a broader
view than guest machine. Thus, Vis can access all the
target system content within its own context.

In addition, to the best of our knowledge, Vis is the
first live acquisition tool capable of obtaining native tar-
get system’s MCS. Obtaining the target system’s core
state help forensic examiners form a better understand-
ing of how the main memory content is organized than
dumping main memory content only. Also, Vis’s ability
of accurate acquisition without halting the target system
makes it applicable in real world practices.

6 Future Work and Conclusion

Though Vis is proved to be practical in real world sce-
narios, some meaningful extensions are still needed to
strengthen its capability. The first extension is attestation
of the acquisition result in Vis. Attesting the obtained
result ensures its integrity and this is required in live
forensic’s reporting step. The second extension is per-
mitting result outputted to non-local disk, for example,
removable media or remote system. With this feature,
it is possible to include accurate dumping disk contents
into Vis functionality scope, even allowing live cloning
among native systems. The third extension is to protect
Vis from being detected, and attacked by malware (like
kernel rootkits). As a result, live forensic will benefit
from Vis in advance for making the subsequent analysis
much easier.

We have presented Vis, a light-weight virtualization
approach to provide accurate retrieving of native system
state while the target system keeps running. Vis achieves
its goal by two key techniques: Late-Virtualization and
Virtual-Snapshot. Late-Virtualization is used to provide
an isolated running environment for live acquisition tools
while having at least the same view with the target sys-
tem. Also, Late-Virtualization has no impact to target
system’s MCS by transparently encapsulating the native
system into a single virtual machine after the target OS
starts up and actively shadowing control registers access
from the target system. Virtual-Snapshot is employed to
accurately obtain target system’s core state at the given
time point. It avoids suspending target system during
main memory content acquisition by adopting an Amor-
tized acquisition approach. A proof-of-concept proto-
type has been developed to obtain core state on Windows
7. The evaluation result shows that Vis can reliably pro-
vide the intended accurate live acquisition with a small
performance overhead.

References
[1] PANIC! UNIX System Crash Dump Analysis Handbook. Prentice

Hall PTR, 1995.

[2] Intel 64 and IA-32 Architectures Software Developer’s Manuals.
Intel Corporation, 2007.

[3] ACCESSDATA GROUP. FTK. http://www.accessdata.
com/.

[4] ADAMS, K., AND AGESEN, O. A comparison of software and
hardware techniques for x86 virtualization. In Proceedings of
the 12th international conference on Architectural support for
programming languages and operating systems (New York, NY,
USA, 2006), ASPLOS-XII, ACM, pp. 2–13.

[5] ADELSTEIN, F. Live forensics: diagnosing your system without
killing it first. Commun. ACM 49 (February 2006), 63–66.

[6] ANDO, R., KADOBAYASHI, Y., AND SHINODA, Y. Asyn-
chronous pseudo physical memory snapshot and forensics on par-
avirtualized vmm using split kernel module. In ICISC (2007), K.-

13

H. Nam and G. Rhee, Eds., vol. 4817 of Lecture Notes in Com-
puter Science, Springer, pp. 131–143.

[7] BOILEAU, A. Hit by a bus: Physical access attacks with firewire.
In Ruxcon (2006).

[8] BUCHHOLZ, F. Pervasive Binding of Labels to System Processes.
PhD thesis, Purdue University, 2005.

[9] BUCHHOLZ, F. P., AND SPAFFORD, E. H. On the role of file
system metadata in digital forensics. Digital Investigation 1, 4
(2004), 298–309.

[10] CARRIER, B. File System Forensic Analysis. Addison-Wesley
Professional, 2005.

[11] CARRIER, B. D. Risks of live digital forensic analysis. Commun.
ACM 49, 2 (2006), 56–61.

[12] CARRIER, B. D., AND GRAND, J. A hardware-based memory
acquisition procedure for digital investigations. Digital Investi-
gation 1, 1 (2004), 50–60.

[13] CASEY, E. Handbook of computer crime investigation: forensic
tools and technology. Academic Press, 2002.

[14] CHEN, X., GARFINKEL, T., LEWIS, E. C., SUBRAHMANYAM,
P., WALDSPURGER, C. A., BONEH, D., DWOSKIN, J., AND
PORTS, D. R. Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems. In Pro-
ceedings of the 13th international conference on Architectural
support for programming languages and operating systems (New
York, NY, USA, 2008), ASPLOS XIII, ACM, pp. 2–13.

[15] CHISUM, W. J., AND TURVEY, B. E. Evidence dynamics: Lo-
card’s exchange principle & crime reconstruction. Journal of Be-
havioral Profiling 1 (Janurary 2000).

[16] CITRIX. Xen. http://www.xen.org/.

[17] COLP, P., MATTHEWS, C., AIELLO, B., AND WARFIELD, A.
Vm snapshots (xen summit 2009). Xen Summit, North America,
Feb 2009.

[18] DOLAN-GAVITT, B., SRIVASTAVA, A., TRAYNOR, P., AND
GIFFIN, J. T. Robust signatures for kernel data structures. In
ACM Conference on Computer and Communications Security
(2009), E. Al-Shaer, S. Jha, and A. D. Keromytis, Eds., ACM,
pp. 566–577.

[19] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M., AND
BONEH, D. Terra: a virtual machine-based platform for trusted
computing. In Proceedings of the nineteenth ACM symposium on
Operating systems principles (New York, NY, USA, 2003), SOSP
’03, ACM, pp. 193–206.

[20] GMG SYSTEMS, INC. KnTTools. http://
gmgsystemsinc.com/knttools/.

[21] GOYAL, V., BIEDERMAN, E. W., AND NELLITHEERTHA, H.
Kdump, a kexec based kernel crash dumping mechanism. In
Linux Symposium (2005).

[22] GUIDANCE SOFTWARE, INC. EnCase. http://www.
guidancesoftware.com/.

[23] HAY, B., AND NANCE, K. Forensics examination of volatile
system data using virtual introspection. SIGOPS Oper. Syst. Rev.
42 (April 2008), 74–82.

[24] INVISIBLE THINGS LAB. NewBluePill. http:
//theinvisiblethings.blogspot.com/2006/
06/introducing-blue-pill.html.

[25] JOSHI, A., KING, S. T., DUNLAP, G. W., AND CHEN,
P. M. Detecting past and present intrusions through vulnerability-
specific predicates. In Proceedings of the twentieth ACM sym-
posium on Operating systems principles (New York, NY, USA,
2005), SOSP ’05, ACM, pp. 91–104.

[26] KRISHNAN, S., SNOW, K. Z., AND MONROSE, F. Trail of
bytes: efficient support for forensic analysis. In ACM Conference
on Computer and Communications Security (2010), E. Al-Shaer,
A. D. Keromytis, and V. Shmatikov, Eds., ACM, pp. 50–60.

[27] MANDIANT CORPORATION. Memoryze. http:
//www.mandiant.com/products/free_software/
memoryze/.

[28] MARTIN, A. Firewire memory dump of a windows xp computer:
A forensic approach.

[29] MCAFEE, INC. Fport. http://www.scanwith.com/
download/Fport.htm.

[30] MOONSOLS. Win32dd. http://moonsols.com/blog/
2-blog/9-moonsols-windows-memory-toolkit.

[31] PEISERT, S., BISHOP, M., AND MARZULLO, K. Computer
forensics in forensis. In Systematic Approaches to Digital Foren-
sic Engineering, 2008. SADFE ’08. Third International Work-
shop on (May 2008), pp. 102 –122.

[32] RUTKOWSKA, J. Beyond the cpu: Defeating hardware based ram
acquisition. In Blackhat (2007).

[33] SAVOLDI, A., AND GUBIAN, P. Towards the virtual mem-
ory space reconstruction for windows live forensic purposes. In
SADFE (2008), IEEE Computer Society, pp. 15–22.

[34] SCHATZ, B. Bodysnatcher: Towards reliable volatile memory
acquisition by software. Digital Investigation 4, Supplement 1
(2007), 126 – 134.

[35] SUTHERLAND, I., EVANS, J., TRYFONAS, T., AND BLYTH, A.
Acquiring volatile operating system data tools and techniques.
SIGOPS Oper. Syst. Rev. 42 (April 2008), 65–73.

[36] TA-MIN, R., LITTY, L., AND LIE, D. Splitting interfaces:
making trust between applications and operating systems con-
figurable. In Proceedings of the 7th symposium on Operating
systems design and implementation (Berkeley, CA, USA, 2006),
OSDI ’06, USENIX Association, pp. 279–292.

[37] VMWARE, INC. VMware Workstation. http://www.
vmware.com/products/workstation/.

[38] WIKIPEDIA. Digital forensic process. http:
//en.wikipedia.org/wiki/Digital_forensic_
process.

[39] WIKIPEDIA. Windows Management Instrumentation.
http://en.wikipedia.org/wiki/Windows_
Management_Instrumentation.

14

