
SuperCall: A Secure Interface for Isolated
Execution Environment to Dynamically Use

External Services

Yueqiang Cheng1(B), Qing Li2, Miao Yu1, Xuhua Ding3, and Qingni Shen2

1 CyLab, Carnegie Mellon University, Pittsburgh, USA
{yueqiang,miaoy1}@andrew.cmu.edu

2 Department of Information Security, School of Software and Electronics,
Peking University, Beijing, China

qingli@pku.edu.cn, qingnishen@ss.pku.edu.cn
3 School of Information Systems, Singapore Management University,

Singapore, Singapore
xhding@smu.edu.sg

Abstract. Recent years have seen many virtualization-based Isolated
Execution Environments (IEE) proposed in the literature to protect a
Piece of Application Logic (PAL) against attacks from an untrusted
guest kernel. A prerequisite of these IEE system is that the PAL is
small and self-contained. Therefore, a PAL is deprived of channels to
interact with the external execution environment including the kernel
and application libraries. As a result, the PAL can only perform limited
tasks such as memory-resident computation with inflexible utilization
of system resources. To protect more sophisticated tasks, the applica-
tion developer has to segment it into numerous PALs satisfying the IEE
prerequisite, which inevitably lead to development inefficiency and more
erroneous code. In this paper, we propose SuperCall, a new function call
interface for a PAL to safely and efficiently call external untrusted code
in both the kernel and user spaces. It not only allows flexible interac-
tions between a PAL and untrusted environments, but also improved
the utilization of resources, without compromising the security of the
PAL. We have implemented SuperCall on top of a tiny hypervisor. To
demonstrate and evaluate SuperCall, we use it to build a PAL as part of a
password checking program. The experiment results show that SuperCall
improves the development efficiency and incurs insignificant performance
overhead.

1 Introduction

Numerous Isolated Execution Environments (IEE) [4,8,11,17,20,23] have been
proposed using virtualization techniques to tackle attacks from both the user and
kernel spaces. An IEE separates a Piece of Application Logic (PAL)’s execution
from the rest of the platform, including the operating system, so as to protect
its execution integrity as well as data secrecy. An indispensable prerequisite of

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 193–211, 2015.
DOI: 10.1007/978-3-319-28865-9 11

194 Y. Cheng et al.

an IEE’s protection over a PAL is the self-contained property stating that the
execution flow does not leave the PAL’s code, which implies no function calls
to external code including the kernel code. The reason of this restriction is that
sharing the same execution flow jeopardizes the security of the PAL and IEE.

One limitation of PAL-based IEE is its impact on the utilization of system
resources. Without dynamically resource (e.g., memory) allocation and deal-
location services, the PAL has to acquire all needed resources before execu-
tion and hold them till the end. For instance, the OS allocates to the PAL a
bulky memory region with the maximum size in estimation. Such resource usage
strategy is obviously not efficient. Moreover, the self-contained property requires
the PAL to assemble all needed inputs before its execution. Dynamic data or
events generated at runtime cannot be used as an input, which significantly lim-
its the PAL’s functionality. At last, the PAL based IEE also introduces great
efforts into the development of PAL. For instance, developers have to carefully
write their PAL code to avoid invoking library function calls. As a result, the
PAL capable of running within an IEE is either small with limited functional-
ity (e.g., computation only), or cumbersome with a higher chance of harboring
vulnerabilities.

In this work, we propose a novel interface for a PAL inside an IEE to safely
utilize external functions and system calls, e.g., to allocate/deallocate memory
buffers and to load encrypted files. It dismisses the self-contained PAL prereq-
uisite and allows the PAL developers to code PALs like a normal program. Our
new mechanism is called SuperCall as depicted in Figure 1. SuperCall separates
the execution flow of the external code from the isolated one, and ensures that
the invocation and return procedures always go through the predefined out-
and-back gates. Out gates are for safely switching isolation spaces (i.e., from
IEE space to non-IEE space) and facilitating call invocations, and back gates
are for securely resuming IEE’s execution flow, e.g., restoring execution con-
text as well as sanitizing and validating inputs (i.e., return values). Due to the
non-bypassable verifications in the back gates and the secure space switches,
SuperCall is able to defend against Iago attacks [5] and code reuse attacks [3],
and keep other desired security properties, e.g., code and data integrity, data
secrecy and control flow integrity.

SuperCall is a new interface, allowing existing IEEs to actively and securely
invoke external services. It is similar to upcall [16] that allows the hypervisor to
actively invoke guest services. Due to SuperCall needs to validate all inputs of
the back gates, developers should carefully select the external services to mini-
mize the validation costs. If the cost is quite high, e.g., requiring numerous code
or a long execution, we suggest to reconsider about the possibility of adding the
external service into the PAL. There are two typical scenarios for SuperCall.
One is to dynamically update resources (e.g., memory can be dynamically allo-
cated/released by malloc-like functions), providing flexible usage model, instead
of preserving them in a maximum estimation. The second one is to do securely
data exchange with untrusted environments, e.g., saving or reading encrypted
files. To demonstrate these two typical scenarios, we have implemented a

SuperCall for Securely Use External Services 195

Untrusted OS PAL

PAL Apps
App

Hypervisor

IEE

Untrusted

Secure Interface

Channels

Fig. 1. PALs within IEEs on virtualization-based system. PALs can securely
communicate with untrusted applications/OS functions via the SuperCall interface.

password authentication scheme called PwdChecker which is a secure login con-
sole in a multi-user system and uses passwords to authenticate users with secret
questions as a back-up means. It uses SuperCall to dynamically request mem-
ory, load an encrypted database (i.e., secure questions and answers) and get user
secure answers. Moreover, this case study also demonstrates that the develop-
ment efforts of PAL are much reduced. We have conducted performance evalua-
tion of SuperCall by using micro-benchmark tools. The results indicate that the
performance overhead of SuperCall is reasonably small.

Organization In the next section, we explain the background and the
setting of the problem we undertake to resolve, and present the overall design
of SuperCall. Then we describe the typical execution flow and a SuperCall and
present the typical application scenarios in Section 3 and Section 4. In Section 5,
we use a case to demonstrate the benefits of using SuperCall, and further evaluate
the incurred cost. We discuss the related work in Section 6. Section 7 concludes
the paper.

2 The Problem Definition and Design Overall

In this section, we first explain the background of the PAL in existing literature,
and then highlight our goals followed by a description of the security assump-
tions. At last, we generally describe how a SuperCall works.

2.1 Piece of Application Logic (PAL)

As shown in [23], PALs in various isolation systems share a common layout con-
sisting of three sections depicted in Figure 2(a). The private section contains

196 Y. Cheng et al.

the security related data, such as cryptographic keys, and other sensitive infor-
mation, such as credit card numbers. Accesses to the private section are only
allowed if they are from the PAL. Any external access is blocked. Note that the
PAL’s stack and heap regions are also in this section and they are not shared
with untrusted code.

The public section contains read-only information shared between the PAL
and untrusted code. It contains the PAL’s code and constant data, such as
constant numbers and strings. The public section defines the entry point address
for the PAL to start execution. Any execution flow not originating from the entry
point is not allowed by the IEE, so as to prevent ROP [3] like attacks whereby
the adversary twists the control flow to a chosen instruction for a malevolent
purpose.

The shared section is for data exchange between the PAL and the external
environment. Although it is writable for both of them, their accesses are exclusive
to each other. This is to deal with the Time-Of-Check-To-Time-Of-Use (TOCT-
TOU) attack which alters the data when the PAL is about to use sanitized data
in the section. Note that this section could be dynamically allocated at runtime
(Figure 2(b)).

Public
Sec on

Private
Sec on

Shared Sec on
(Preserved)

Pa
ge

 A
lig

ne
d

Entry Point

(a) The layout of tradi-
tional PAL.

Public
Sec on

Private
Sec on

Shared Sec on
(On-Demand)

SuperCall Out/Back Pairs

…

Pa
ge

 A
lig

ne
d

Entry Point

(b) The layout of PAL with
SuperCall support.

Fig. 2. The layout of PAL. The shared section (shaded region) could be dynamically
allocated for PALs with SuperCall support.

2.2 Desired Security Properties

We consider a PAL under the protection of the SuperCall. Specifically, the hyper-
visor maintains a table for a pre-registered PAL’s section information as well as
the entry points. It checks the initial integrity of the PAL’s public and private
sections and ensures that their memory pages are exclusively occupied by the
PAL. Upon this, SuperCall is able to ensure address space isolation and execu-
tion integrity of a PAL.

SuperCall for Securely Use External Services 197

Address Space Isolation. Address space isolation implies code integrity, data
integrity and secrecy. Various isolation mechanisms have been proposed [8,11,17,
23] which leverage the processor virtualization to prevent illicit software accesses.
Specifically, the hypervisor controls the attribute bits of the Extended Page Table
(EPT)1 entries to specify the desired access control permissions according to the
entity occupying the CPU. To prevent malware from making DMA access to
unauthorized memory regions, the hypervisor leverages device virtualization to
block illicit DMA accesses by configuring the IOMMU page table in the same way
as the EPT entries. Note that since all memory resources are allocated before
PAL execution, the address mapping is never changed during PAL execution.
Thus, the hypervisor can enforce the isolation in the beginning of the PAL and
freeze the address mapping until the PAL exits.

Execution Integrity. Execution integrity refers to the property that PAL
actually executes with inputs P ins and produces outputs P outs. It implies
control flow integrity (CFI), code and data integrity. The hypervisor enforces
that the execution flow of PAL always starts to run from a pre-defined entry
point, e.g., a back gate or the entry point. At runtime, hypervisor isolates the
entire execution environment of the PAL from the rest of the platform without
allowing any intervention, so that the PAL’s context and control flow are not
exposed to any untrusted code.

2.3 Design Goals

We aim to design the SuperCall mechanism for the PAL to securely call external
(untrusted) code without undermining the aforementioned security properties.
Through SuperCall, a PAL can efficiently invoke system calls and library func-
tions, e.g., invoking malloc to allocate memory buffers or issuing mmap2 for a
file reading.

To make SuperCall secure, efficient and practical, we use the following criteria
to guide our design.

– Small TCB. The TCB of SuperCall should be small and simple. It mini-
mizes the risk of subverting the TCB and allow for formal verification [12].
This property implies that the size expansion and complexity increasing of
the hypervisor should be minimum.

– High Efficiency. The SuperCall interface should have minimum perfor-
mance impact on the PAL execution, the IEE protection and the platform
as a whole. In addition, SuperCall should minimize the latency for one invo-
cation by reducing unnecessary operations and simplifying interactions.

– Easy to Use. The APIs of SuperCall should be easy to use. Thus, the
calling convention of SuperCall is the same as regular system calls. SuperCall
provides a routine as a wrapper to handle the minor differences which is
therefore transparent for PAL developers.

1 In AMD’s virtualization terminology, the Nested Page Table plays the same role as
Intel’s EPT.

198 Y. Cheng et al.

– Well Defined Entry Points. The entry point for the SuperCall should
be well defined, and the inputs of each entry point should be sanitized and
validated before using them, which aim to defend against Iago attack [5].

2.4 Assumptions

We consider a subverted commodity OS as the adversary. This is a realistic
threat, since the legacy OS usually has a large code base and a broad attack sur-
face. After gaining the root privilege, the adversary can launch arbitrary code
and DMA operations to access or even modify any memory regions and other
system resources, e.g., Model Specific Registers (MSRs). The purpose of the
adversary is to compromise the security properties of the PAL, for example, to
tamper with the PAL’s private data and/or to manipulate it execution logic.
SuperCall requires that the underlying platform supports hardware-assisted vir-
tualization techniques, and the hypervisor is trusted. We also assume all the
I/O devices are trusted and always behave according to their hardware specifi-
cations. In this paper, we do not consider attacks that involve physical control
of the platform. In addition, we do not consider side channel attacks.

2.5 Overview of SuperCall

The semantics of SuperCall is the same as a function call as shown in Figure 3
where the control flow transfers from the caller (X) to the callee (Y), and returns
back after the end of the execution of Y. During the development of a PAL, peo-
ple could simply replace the function with a SuperCall and add the corresponding
out and back gates/interfaces for parameter marshaling and inputs validation
(e.g., defending against Iago attack [5]).

Specifically, when caller X attempts to invoke callee Y through a SuperCall,
the PAL firstly transfers the control flow to the corresponding out gate. The
out gate prepares the stack frame needed by the called function (Y) and do
the parameter marshalling. The hypervisor saves the context of PAL, and iso-
lates the PAL by manipulating the guest context and transfers the execution
flow to the callee function. In SuperCall, this request is issued through a dedi-
cated hypercall, named as SuperEnter. When returns, the callee function2 issues
another hypercall, SuperExit, to notify the hypervisor return to the correspond-
ing back gate. In the back gate, all returns should be sanitized and validated
before they are used. The SuperEnter and SuperExit together indicate the start
and the end of a SuperCall. Their working style is similar to fast-system-call
instruction pair SYSENTER and SYSEXIT [14].

2 In the implementation, an inserted code issues the SuperExit hypercall for the callee
function (details in Figure 4).

SuperCall for Securely Use External Services 199

X()
{
 Call Y
}

Y()
{
 …
}

X()
{
 Supercall Y
…
}

Y()
{
 …

}

Hypervisor

Func on Call

Supercall

Context
Manipula on

Context
Valida on

Fig. 3. The SuperCall mechanism. a SuperCall is quite similar to a traditional
function call, but it always go through well-defined interfaces and invoke the hypervisor
to protect the control flow transitions.

3 Typical Control Flow of SuperCall

A typical control flow of a SuperCall is also similar but relatively complex com-
paring to the control flow of the traditional function call. It always starts from
an out gate and ends with a back gate, involving two space switches driven by
a SuperEnter and a SuperExit respectively, as despited in Figure 4.

Guest

Hypervisor

SuperEnter

From
IEE?

Save IEE
Context

Marshal
Arguments

Prepare Stack
Frame for Callee

No: Directly
Return to Guest

Yes Instan ate
Callee Context

Restore IEE
Context

SuperExit

Correct
Back Gate?

Yes

No: Return to the
IEE Exit Func on

Un-marshal
Return Values

Validate Return
Values

IEE Out Gate Back Gate

Callee
Func on

Control
flow

Con nue
Control flow

Trampoline
(End SuperCall)

Fig. 4. The execution path of the SuperCall interface. The shaded operations
are executed in the untrusted guest environment. Other operations are trusted and
executed either in the PAL or in the hypervisor.

200 Y. Cheng et al.

3.1 Out Gate

The out gate that is like a wrapper of the callee function shares the same calling
conversion and the same parameters with the callee function. After doing several
pre-processing operations, the out gate would transfer the control flow to the
callee function. Specifically, it does two main tasks: 1) prepare a stack frame
for the callee function, and 2) do argument marshalling. It is relatively easy to
finish the first task, as the out gate could reuse the stack frame prepared by
its caller. The only update is for the return address, which should point to the
entry of the prepared trampoline (Figure 4). During the argument marshalling,
all non-pointer arguments are kept the same in the stack frame. For pointer
arguments, the out gate will move the pointed data, e.g., structures or buffers,
into the shared section, and update the pointers to point to the new copies. After
these two tasks, the out gate will issue a SuperEnter to inform the hypervisor
to transfer the control flow to the callee function.

3.2 SuperEnter

The SuperEnter has two main purposes: 1) functional purpose which aims to
achieve the control flow transferring like the traditional function call (i.e., trans-
ferring the control flow from the caller to the callee), and 2) security purpose
that aims to keep the desired security properties of PALs.

Functional Requirement. SuperCall should be able to transfer the execution
flow to the callee function, and let the callee function execute as normal. To
achieve these, the following information should be provided and set properly:

– The arguments needed by the callee function. They are necessary for the
execution of the callee function.

– The starting address of the callee function. SuperEnter requires it to continue
the execution flow from an address specified by the caller function, and that
address can not be calculated in advance.

– The stack used by the callee function. Its stack should be different from the
one used by the PAL due to the security requirement.

– The return address: The callee will return to this address to indicate the end
of its execution flow.

– The entry point of a back gate: The control flow of the PAL will restart from
the specific back gate.

All stack-based arguments are handled by the out gate. Thus, the SuperEnter
only ask the hypervisor to handle the arguments that are passed through reg-
isters. Note that it is not safe that the out gate in the PAL space to directly
set those registers, because the values in some or all of them would be flushed
or replaced by the hypervisor during its execution for serving the SuperEnter
request.

Besides these arguments, the SuperEnter has to prepare some additional
information to smoothly transfer the control flow. In particular, the entry of

SuperCall for Securely Use External Services 201

the callee function and the callee’s stack should be provided. In addition, to
make the control flow correctly resume, the entry of the corresponding back
gate should be also specified. The provided information as well as the identity
of the PAL is safely saved in a dedicated list within the hypervisor space, which
is always inaccessible for the untrusted execution environment. Note that the
saved record will be used for the validation of the return flow, as well as the
context restoration.

Context Manipulation. After getting such information, the hypervisor needs
to manipulate the context to let the callee function execute as normal. The hyper-
visor achieves it by leveraging the processor virtualization technique. Specifically,
in hardware-assisted virtualization, almost all guest context information is auto-
matically stored in a dedicated control structure, named as the Virtual Machine
Control Structure (VMCS) in Intel VT-x [14]. Only the general registers are
manually saved by the hypervisor. The hypervisor is able to read and write the
VMCS and the saved general registers. Thus, it manipulates the values of the
corresponding registers before the processor enters the guest domain using VM-
entry instructions (i.e., VMLAUNCH and VMRESUME). More specifically,
the hypervisor can modify the IP value to let the guest start the execution from
the called starting address, and change the stack pointer SP to assign the top
of the stack for the callee function.

Security Requirement. The two basic security properties (i.e., address space
isolation and execution integrity) of the PAL should be guaranteed by the hyper-
visor during the SuperCall process. Specifically, the hypervisor should protect
both memory regions occupied by the PAL and the context registers temporally
used by the PAL. The private data and all code of the PAL are located in the
PAL memory regions. Any malicious modifications and/or illicit reads are possi-
bly lead to the integrity breaking and/or the leakage of the sensitive information.
Even worse, the modifications of control data (e.g., function pointer) will sub-
vert the control flow integrity. The context registers can contain temporal data
relevant to the private data or even the cryptographic keys. Moreover, a smarter
attacker is able to infer more sensitive information from the leaked seed-data.
Some registers can also impose the execution behaviors of the PAL, e.g., if the
stack pointer SP is illicitly modified, the PAL will fetch wrong local variables
or even use incorrect return address, violating the control flow integrity.

To protect the memory regions, the hypervisor could prepare two
EPTs/NPTs. One EPTiee is for the PAL, where the memory regions occupied
by the PAL are accessible, and another one EPTothers is for the untrusted code,
where all PAL memory regions are completely inaccessible. When the PAL occu-
pies the CPU, the hypervisor installs the EPTiee. When the PAL invokes the
SuperCall to transfer the control flow to an external function, the hypervisor
switches to another one EPTothers. In this way, the untrusted code occupying
the CPU still can not access the memory regions of the PAL.

202 Y. Cheng et al.

To protect the context information in the processor registers, the hypervisor
should save them before passing the control to the untrusted code, and restore
them after the execution flow returns. Specifically, the guest context includes
the general registers, flag registers, stack pointer, instruction pointer, as well
as the segment descriptors and selectors. After the backup, the hypervisor clears
the values of general registers, flags register, stack pointer, instruction pointer
and segment descriptors/selectors to avoid the potential data leakage. Note that
the stack pointer, instruction pointer and/or general registers will be set for the
callee function according to the request of the caller. Note that the SuperCall
states are maintained in PAL granularity and saved separately. Thus, those states
would not intervene with each other.

3.3 SuperExit

Similar to SuperEnter, the functionalities of SuperExit are also separated into
functional and security aspects. For the functional support, SuperExit is to
inform the exit of the previous SuperCall. Specifically, the caller function pre-
pares the return address for the callee function. When the callee function finishes
and returns, the processor automatically loads the prepared return address into
instruction pointer (IP), and jumps to the specific address to continue the exe-
cution. The specific address is a prepared trampoline, which can be located in
the PAL public section or a pre-defined address (similar to the vdso on Linux
platform for assisting system calls [19]). Note that the data in the Private section,
before the SuperCall returns, is inaccessible. In order to allow the PAL to per-
form full operations (e.g., accessing the private data), the SuperExit is non-
bypassable. This exit request is sent through a dedicated hypercall - SuperExit.
More specifically, we put a SuperExit at the very beginning of the prepared
trampoline, which is able to guarantee that the processor immediately perform
the VMCALL instruction.

Context Validation. The primary purpose of the context validation is to
guarantee that the resumed control flow is correct. Recall that the hypervisor
saves the PAL and the entry of the back gate during the invocation of the
SuperEnter. Thus, the hypervisor will attempt to locate the record by searching
in the saved items. If there is one record matched, the hypervisor will remove the
record and close this temporal entry point from this PAL before returning to the
PAL. Otherwise, there must be something wrong in the current guest execution
flow. For such cases, the hypervisor can either inform the guest using an error
code or directly terminate the PAL with a fatal error.

The last task of the context validation is to restore the original context of
PAL. The unrelated registers, such as ESP and EBP, will be overwritten by
previously saved PAL’s context. If the hypervisor misses this step and directly
reuse the untrusted context left by the SuperExit, the execution integrity is
likely to be broken. Note that the hypervisor needs switching back to EPTiee to
allow the PAL to access its private data. At the same time, the hypervisor has
to restore the context of the PAL, as the context used by the SuperExit is not

SuperCall for Securely Use External Services 203

trusted. If the hypervisor reuse the context left by the SuperExit, the execution
integrity is likely to be broken, e.g., the start point of the resumed control flow
could be wrong.

3.4 Back Gate

When the callee function finishes and the execution flow returns to the PAL,
a SuperExit is immediately issued to indicate the end of the SuperCall. From
that time, the hypervisor isolates the PAL and restores the control flow. The
following work for the back gate is to un-marshal and validate the return values,
and continue the original execution flow. Unmarshalling return values is the
reverse operation of the parameter marshaling. If the return values are non-
pointer values, PAL could directly use them. If the return values are pointer
values, the back gate should move the pointed data into the private section, and
update the pointer accordingly.

After the unmarshalling of return values, the control flow will move to the
return validation procedure. In our SuperCall design, each back gate has its own
validation procedure, and guarantees that the control flow always goes through
the validation procedure before resuming the original control flow. The validation
code for a specific input is usually small and simple. Thus, the IEE developers
could manually verify its correctness. In addition, it is highly possible to formally
verified using certain formal verification methods [12]. As all inputs of back gates
are sanitized and validated, an adversary cannot bypass the verification to launch
Iago attacks [5] or code reuse attacks.

4 Typical Scenarios

There are two main scenarios for PALs to invoke external functions: 1) update
(i.e., allocate/release) memory resources (e.g., main memory and I/O ports),
such as allocating/deallocating memory, and 2) exchange data with outside,
such as getting file/socket content, reading the inputs of peripheral devices (e.g.,
user passwords, biometric information), or processing data instead of PALs (e.g.,
sorting data).

4.1 Resource Update

The first typical scenario is to update memory resource. In the real cases, a PAL
usually need extra memory for new inputs or generated data. For a PAL without
SuperCall support, it has to allocate a bulky memory with the maximum size in
estimation. Obviously the resource usage is not efficient in this situation. With
SuperCall support, a PAL does not need to do pre-allocation, instead it could
dynamically allocate memory according to the real demand.

To securely use the dynamically allocated memory, the PAL has to trace the
memory boundary and requires the protection from the hypervisor. Specifically,
in the validation step of the back gate, the PAL gets the boundary (i.e., the

204 Y. Cheng et al.

start address and the length) of the newly allocated memory resource. Once it is
done, the PAL issues a hypercall to the hypervisor to mark the occupied physical
memory into its own address space. If the memory is PAL’s private resource, it
will be marked into the private section. If it is for sharing with others, it will be
put into the shared region. Once the newly allocated memory resource is moved
into the PAL’s address space, the hypervisor will set proper access permissions
to grant legal PAL accesses and prevent illicit accesses that are originated from
outside of the PAL.

When the allocated memory is not needed, the PAL will release it for max-
imizing resource utilization. In such cases, the PAL needs to inform the hyper-
visor to remove the resource from its address space. In particular, the out gate
of the PAL collects the memory boundary of the memory resource and issues a
hypercall to inform hypervisor that it does not exclusively occupy this memory
resource. Note that there would be some problems if the releasing notification
to the hypervisor is done in the back gate, because the released memory could
be immediately reused by others, before the execution flow returns. In this case,
there will be exception to indicate the access violation. If it happens in the user
space, the corresponding process would be killed. If it is in the kernel space, it
could lead to unrecoverable events, such as system shutdown or rebooting.

4.2 Data Exchange with Outside

Another typical scenario of using SuperCall is to exchange data. In the real cases,
a PAL usually needs to exchange data with outside, such as sending dynamic
output data (e.g., log file, warning messages) or receiving dynamic input data
(e.g., user name, password and PIN number). In the PAL without SuperCall
support, it has to get all possible inputs at the very beginning and send all
output data at the final end. In this case, the developers have to predict all
possible inputs needed by the PAL. In certain extreme cases, the number of the
possible combination is extremely large, and consequently the needed memory
region is huge. In addition, the generated output data could also occupy a large
number of memory regions. If one of these two extreme cases happens, the PAL
has to be totally redesigned or divided into many smaller pieces. All these cases
imply the impracticality and inflexibility of the traditional PAL design. With the
help of SuperCall, the PAL could dynamically receive the inputs according to
the real demand. In addition, the PAL also does not need to hold the generated
output data to the end of the whole control flow, it could send output data as
normal.

To securely send the output data, the PAL has to prepare the data in its
private section or the shared section. For the common cases, the out gate could
handle them automatically, such as sending a string message or a binary stream.
For certain cases, the related data structures could be extremely complex. Facing
such conditions, SuperCall has to rely on the developers to manually handle those
output data. To facilitate the implementation of SuperCall and allow SuperCall
to automatically handle the output data, we recommend that all output data
are processed into a string or a binary stream.

SuperCall for Securely Use External Services 205

In addition, all I/O data could be selectively encrypted according to the
requirement of the PAL, achieving secure I/O. The encryption key will be pro-
vided by the hypervisor. As the hypervisor space is inaccessible for the untrusted
guest environment, the key generation process done by the hypervisor is secure.
The encrypted data could be safely stored in the hard drive or send to the remote
cloud server.

5 Evaluation

To evaluate SuperCall, we have implemented an exemplary application to use
SuperCall, and then measured its performance using several benchmark tools.

5.1 Case Study: PwdChecker

To conduct the case study, we develop an application called PwdChecker which
performs the back-end authentication of a remote server. The logic of Pwd-
Checker is as follows. It first loads user password file and the secure question
database from the disk to the main memory. It then accepts user inputs includ-
ing user name and password. If the password is incorrect, PwdChecker allows
the user to have another try and increases the login-attempt counter accordingly.
When the counter is more than three, it challenges the user with a predefined
question. The user has the last chance to get authenticated by supplying the
correct answers.

The details of the workflow is depicted in Figure 5 which shows runtime
inputs are fed in different stages. There are three dynamic inputs and one static
inputs. The static inputs are the inputs passed as parameters (i.e., username and
password), while the dynamic inputs are dynamically got at runtime according to

Auth. Req and
Authen cator

Match?
Yes

SUCCESS

Increase
Counter

No Reach to
Threshold?

Yes

RETRY

Update
List

Sta c Input Dynamic Input

Read
List

Memory
Allocation

Memory
Regions

Verify List
Integrity

Locked User
List

No

Tradi onal IEE Scope

Locked User
List

Dynamic Output

Issue Service
Ticket

FAILED

Integrity
Preserved?

Yes

FAILED

No

Clear
Counter

Fig. 5. The work flow of PwdChecker.

206 Y. Cheng et al.

the demands (e.g., user answers). It is noteworthy that the dynamic inputs could
be passed as the static inputs through carefully modifying the code or even the
algorithm logic, e.g., the database containing the secure questions and answers
can be passed as a static input. However, it will lead to a waste of memory, e.g.,
the database occupies many memory pages but it may not be used in most cases.

According to this logic, PwdChecker makes at least three types of system
calls in order to acquire the needed resources and inputs during runtime.

– Memory allocation. It needs memory buffers to hold data, e.g, the secure
questions and answers.

– File operation. It needs to load the database which encloses user authenti-
cation related information.

– I/O operation. It needs to read from the device (e.g., a keyboard) the user’s
inputs, such as user name and passwords.

5.2 PwdChecker without SuperCall

We select the PwdChecker as a representative example to discuss the PAL devel-
opment, and SuperCall in particular, when considered in comparison with the
two alternatives available at current. The first alternative is to put everything
inside a single PAL. As a result, it needs great engineering effort to write their
own code or customize existing code, e.g., adding a memory management in the
PAL. This design will lower PAL’s security level because the size of PAL will
be dramatically enlarged. The other solution is to separate PwdChecker logic in
multiple PALs in order to maintain the self-contain property for each PAL. As
shown in Figure 5, PwdChecker is divided into three PALs. With this design, all
the three PALs are self-contained and isolated from each other, and the dynamic
inputs are now static inputs for each of them. However, this design is likely to
introduce the following issues: 1) it breaks the original logic into multiple pieces,
which may not be easily divided in most cases; 2) it would lead to a waste of
resource, e.g., the PALs will need to reserve the memory with the highest esti-
mation; and 3) it will increase the size and the complexity to manage shared
global states and the communication channels.

5.3 PwdChecker with SuperCall

With the support of SuperCall, developers can easily build a PAL with the
similar logic to the traditional insecure implementation, as well as the flexible
resource utilization. We only describe the additional operations to demonstrate
how easy to convert traditional code into self-contained with SuperCall.

The first operation is the stack switch. As introduced in Section 2.1, the stack
for the PAL should be separated with the one for the untrusted code. Thus, in the
entry point of the PAL, it immediately backups the untrusted stack and switches
to its private stack. Before exiting the execution, it switches the stack back to
prevent information leakage. To facilitate this step, we introduce two macros
with 6 SloC to perform all these backup, switch and restoration operations. The

SuperCall for Securely Use External Services 207

second operation is to prepare stack frame and marshal the arguments for the
untrusted callee function. Traditionally, the compiler generates suitable assembly
code to implicitly complete these operations. But now we must explicitly do such
operations via a dedicated function (i.e., the out gate). The out gate works like
a wrapper of the callee function. The caller function firstly invokes the out gate
as normal. In the out gate, it copies the arguments into the untrusted stack, and
adjusts the top of the untrusted stack. If there are pointers in the arguments,
the out gate must copy the content into the shared memory and update the
corresponding pointers to keep semantic consistency. SuperCall adds 12 SLOC
to achieve all these goals. The operations in the back gate are case by case due
to the return validation processes are different. However, the basic frame is the
same. Thus, we insert a framework for each back gate. The left things are to fill
the validation operations accordingly. The verification of the encrypted database
is to decrypt the ciphered database, re-calculate and compare the hash value
with the trusted one. As the memory allocation and deallocation are common
in the real cases, we summarize their verification operations into macros. Later,
developers could reuse the Macos to further simplify the development.

Although the out and back gates are manually added, we believe that all
code could be automatically generated. Even for pointer arguments, it is still
possible once the type and the size of the pointed data structure are collected,
e.g. from the data structure definitions and/or the runtime parameters.

Untrusted
Code

IEE

Memory
Alloca on

Read
List

Update
List

Out Gate Back Gate

Fig. 6. External function invocations in PwdChecker based on SuperCall.

5.4 Performance Evaluation

We evaluated the performance of our SuperCall implementation and the example
app PwdChecker on Ubuntu 10.04 LTS with the Linux kernel 2.6.32.59. These
tests were run on a machine with Intel i5-670 CPU (3.47GHZ) and 4GB memory.
SuperCall is built upon the Guardian hypervisor [7]. The original Guardian is
about 25K SLOC, and the SuperCall service adds about 145 SLOC3.

Firstly, we measure the performance cost of an empty hypercall. It is the
baseline to launch a hypercall. This cost can be used later to evaluate the costs
of SuperEnter and SuperExit. We create an empty hypercall, and call it from
3 We use the tool sloccount [22] to calculate the source code.

208 Y. Cheng et al.

Table 1. The time cost of SuperCall.

Operations CPU Cycles Time (µs)
An Empty Hypercall 3879 1.12

SuperEnter 13794 3.98
SuperExit 13438 3.87
SuperCall 27232 7.85

the guest domain. We treat the hypercall as a whole, and measure the round
time from issuing the hypercall to its returning (i.e., from guest domain to guest
domain via the hypervisor). The time cost (i.e., 1.12µs on average) demonstrate
the basic cost of a hypercall. Based on this, we can evaluate the extra cost
added in SuperEnter and SuperExit. The measurement results of SuperEnter
and SuperExit are listed in Table 1. Because an empty SuperCall contains one
SuperEnter and one SuperExit only, the total round-trip time on a SuperCall
is about 7.85µs. To further demonstrate the performance cost, we also measure
the time cost in the PwdChecker example. The results in Table 2 show that the
performance overhead is small that is roughly the cost of one SuperCall. We do
not measure the third SuperCall due to the instability of typing answers through
keyboard.

Table 2. The measurement results of PwdChecker.

Operations Time (µs) Overhead (µs)
Original Malloc 0.08 8.33Malloc with SuperCall 8.41

Original LoadDB 30.69 9.45LoadDB with SuperCall 40.14

The code expansion is limited due to the support of SuperCall. In the Pwd-
Checker example, there are three out and back gates. All of them together need
180 SLoC in total, which is even far less than the memory allocation function
(e.g., malloc).

6 Related Work

PAL Protection. There are many existing schemes to protect a PAL [4,17,
18,23]. The Flicker [18] system aims to put a PAL into the isolated environment
protected by the DRTM technique [9]. Due to the high latency and the poor

SuperCall for Securely Use External Services 209

communication channel, many virtualization-based schemes proposed [4,17,23].
However, in all of them a PAL still has only limited functionalities, without
a secure interface to invoke untrusted services. This gap is addressed by our
scheme. In addition, many virtualization-based schemes [6,10,13] aim to protect
a whole high-insurance application, rather than a PAL. For all of them, the
interaction interfaces are system calls that are not well-defined, and therefore
surfer from the Iago [5] attack. In our scheme, back gates explicitly sanitize and
validate all inputs, with the purpose to defend against Iago attack. The Intel
SGX technique [15] and a similar architecture [21] are also promising techniques
to protect a PAL or a whole application [2]. Similar to SuperCall, both also
require adding specific well-defined interfaces for PALs.

Hypercall. Traditionally, a PAL has only one communication channel, through
which the PAL can issue hypercalls to ask for services from the hypervisor. But
it now has another new channel, allowing it to communicate with the untrusted
code without losing the security properties. The virtualization technique provides
hypercall, a communication channel for guest to actively communicate with the
hypervisor. In paravirtualization, the hypercall is implemented as an interrupt,
e.g., int 0x82 on Xen [1], similar to the traditional system call mechanism. In the
hardware-assisted virtualization, the processor is extended to support a series of
virtualization instructions [14], and one of them is to launch a hypercall. In the
original design of hypervisor, the return address of a hypercall is always the next
instruction of the hypercall instruction. But in SuperCall technique, we reuse
the virtualization instructions, and change the return behaviors of hypercalls.
Specifically, the SuperEnter returns to the specified callee function, instead of
the next instruction. The new return behavior (i.e., SuperExit) is similar to the
SymCall mechanism [16], but not the same.

Upcall. The SymCall [16] provides a synchronous way (upcall) to invoke a func-
tion in a running guest environment. It provides a shared structure between the
hypervisor and the guest domain. Through the shared structure, the hypervisor
is able to enumerate the available functions (like system calls in syscall table).
The guest and the hypervisor can directly read/write to this memory regions
without triggering any vm exit or protection violation. In our SuperCall design,
we choose the synchronous way, but do not use the shared structure, because
the hypervisor does not need to know the callee functions in advance. Dynami-
cally updating function information to the hypervisor increases the flexibility of
SuperCall. The direct benefit is that PAL can freely decide to use which function
at runtime, without needing the registration procedure to register to the hyper-
visor. Another benefit is saving memory and the corresponding maintain cost. If
a large number of PALs attempt to use many different functions, the size of the
shared structure will be dramatically enlarged in SymCall setting, while in our
design, the hypervisor only temporally maintains the function information and
throws it away after the end of the execution.

210 Y. Cheng et al.

7 Conclusion

In this paper, we introduced SuperCall as a new interface, through which a PAL
could securely and efficiently invoke untrusted external functions, increasing the
flexibility of interactions and improving the utilization rate of resources. The con-
trol flow is escorted by the hypervisor and all inputs of the SuperCall interfaces
are sanitized and validated, and therefore Iago attacks and code reuse attacks
do not work here. We implemented and evaluated a prototype of SuperCall on
Guardian hypervisor by adding 145 SLOC. The experiment results indicated
that SuperCall improved the development efficiency with insignificant perfor-
mance overhead.

Acknowledgments. We are grateful to the anonymous reviewers for their useful com-
ments and suggestions. This research was supported in part by the National Natural
Science Foundation of China under Grant No. 61232005.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles,
pp. 164–177. ACM, New York (2003)

2. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with haven. In: Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2014, pp. 267–283. USENIX Associa-
tion, Berkeley (2014)

3. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go
bad: generalizing return-oriented programming to RISC. In: Syverson, P., Jha, S.
(eds.), Proceedings of CCS 2008, pp. 27–38. ACM Press, October 2008

4. Champagne, D., Lee, R.B.: Scalable architectural support for trusted software,
Bangalore, India, January 9–14, 2010. Nominated for Best Paper Award (2010)

5. Checkoway, S., Shacham, H.: Iago attacks: why the system call api is a bad
untrusted rpc interface. In: Proceedings of the Eighteenth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2013, pp. 253–264. ACM, New York (2013)

6. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.K.: Overshadow: a virtualization-based app-
roach to retrofitting protection in commodity operating systems. In: Proceedings
of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XIII, pp. 2–13. ACM, New York
(2008)

7. Cheng, Y., Ding, X.: Guardian: hypervisor as security foothold for personal
computers. In: Huth, M., Asokan, N., Čapkun, S., Flechais, I., Coles-Kemp, L.
(eds.) Trust and Trustworthy Computing. LNCS, vol. 7904, pp. 19–36. Springer,
Heidelberg (2013)

8. Cheng, Y., Ding, X., Deng, R.H.: Driverguard: Virtualization-based fine-grained
protection on i/o flows. ACM Trans. Inf. Syst. Secur. 16(2), 6:1–6:30 (2013)

SuperCall for Securely Use External Services 211

9. INTEL CORPORATION. Intel trusted execution technology (intel txt) c software
development guide, December 2009

10. Criswell, J., Dautenhahn, N., Adve, V.: Virtual ghost: protecting applications from
hostile operating systems. In: Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2014, pp. 81–96. ACM, New York (2014)

11. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hard-
ware virtualization extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security, CCS 2008, pp. 51–62. ACM, New York
(2008)

12. Heitmeyer, C.L., Archer, M., Leonard, E.I., McLean, J.: Formal specification and
verification of data separation in a separation kernel for an embedded system.
In: Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS 2006, pp. 346–355. ACM, New York (2006)

13. Hofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E.: Inktag: secure appli-
cations on an untrusted operating system. In: Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2013, pp. 265–278. ACM, New York (2013)

14. Intel. Intel 64 and IA-32 architectures software developer’s manual combined
volumes: 1, 2a, 2b, 2c, 3a, 3b and 3c, October 2011

15. Intel. Software guard extensions programming reference, September 2013
16. Lange, J.R., Dinda, P.: Symcall: symbiotic virtualization through vmm-to-guest

upcalls. In: Proceedings of the 7th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE 2011, pp. 193–204. ACM,
New York (2011)

17. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: Trustvi-
sor: efficient tcb reduction and attestation. In: Proceedings of the 2010 IEEE Sym-
posium on Security and Privacy, SP 2010, pp. 143–158. IEEE Computer Society,
Washington, DC (2010)

18. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an
execution infrastructure for tcb minimization. In: Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems, Eurosys 2008,
pp. 315–328. ACM, New York (2008)

19. nixCraft. Explains: Linux linux-gate.so.1 Library / Dynamic Shared Object [vdso].
http://www.cyberciti.biz/faq/linux-linux-gate-so-1-library-dynamic-shared-
object-vdso/

20. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: an architecture for secure
active monitoring using virtualization. In: Proceedings of the 2008 IEEE Sympo-
sium on Security and Privacy, SP 2008, pp. 233–247. IEEE Computer Society,
Washington, DC (2008)

21. Shinde, S., Tople, S., Kathayat, D., Saxena, P.: PodArch: Protecting Legacy Appli-
cations with a Purely Hardware TCB. Technical Report NUS-SL-TR-15-01, School
of Computing, National University of Singapore, February 2015

22. Spillner, J.: Sloccount. http://www.dwheeler.com/sloccount/
23. Strackx, R., Piessens, F.: Fides: selectively hardening software application com-

ponents against kernel-level or process-level malware. In: Proceedings of the 2012
ACM Conference on Computer and Communications Security, CCS 2012, pp. 2–13.
ACM, New York (2012)

http://www.cyberciti.biz/faq/linux-linux-gate-so-1-library-dynamic-shared-object-vdso/
http://www.cyberciti.biz/faq/linux-linux-gate-so-1-library-dynamic-shared-object-vdso/
http://www.dwheeler.com/sloccount/

	SuperCall: A Secure Interface for Isolated Execution Environment to Dynamically Use External Services
	1 Introduction
	2 The Problem Definition and Design Overall
	2.1 Piece of Application Logic (PAL)
	2.2 Desired Security Properties
	2.3 Design Goals
	2.4 Assumptions
	2.5 Overview of SuperCall

	3 Typical Control Flow of SuperCall
	3.1 Out Gate
	3.2 SuperEnter
	3.3 SuperExit
	3.4 Back Gate

	4 Typical Scenarios
	4.1 Resource Update
	4.2 Data Exchange with Outside

	5 Evaluation
	5.1 Case Study: PwdChecker
	5.2 PwdChecker without SuperCall
	5.3 PwdChecker with SuperCall
	5.4 Performance Evaluation

	6 Related Work
	7 Conclusion
	References

