
Hypervisor-based Protection of Sensitive Files in a Compromised
System

Junqing Wang, Miao Yu, Bingyu Li, Zhengwei Qi, Haibing Guan
Shanghai Key Laboratory of Scalable Computing and Systems

Shanghai Jiaotong University, Shanghai 200240, China
{ junqingwang, superymk, justasmallfish, qizhwei, hbguan }@sjtu.edu.cn

ABSTRACT
One of the most fundamental issues in computer security is
protecting sensitive files from unauthorized access. Tradi-
tional file protection tools run inside the target operating
system, which hosts sensitive files. This makes previous ap-
proaches vulnerable in face of a compromised OS. To address
this limitation, recent approaches seek for a good isolation
by putting file system into a dedicated virtual machine or
by using a network file system. However, they suffer a sharp
increase in trusted computing base size which degrades their
reliability.
In this paper, we present Filesafe, a special purpose hy-

pervisor aimed at protecting sensitive files in a compromised
operating system. It bridges the semantic gap between guest
OS and hypervisor by reconstructing file hierarchy from raw
data, which incurs no runtime overhead. By enforcing se-
curity policies created in hypervisor, Filesafe could prevent
sensitive files from unauthorized access even if they have ker-
nel privileges in guest OS. We have implemented a proof-of-
concept prototype on Windows XP with FAT32 file system.
Furthermore, we evaluate Filesafe’s performance and code
size to demonstrate it is practical in real world scenarios.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
security

Keywords
file protection, semantic gap, hypervisor, hardware assisted
virtualization

1. INTRODUCTION
The widespread of commercial operating systems (OS)

makes it easier and cheaper to host large amount of digital

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

content. How to protect sensitive content from unauthorized
access has become a major concern for governments, corpo-
rations and individuals. Unfortunately, commercial OSes
like Windows and Linux are large and complex, making
them hard to be protected from malicious software exploita-
tion. Once compromised, all the files including sensitive files
are exposed to intruders. This raises the problem of how to
protect sensitive files in a compromised system.

Protecting sensitive files in a compromised system is dif-
ficult. Many existing file protection mechanisms [10, 12, 14]
reside in the same space as the victim OS. They have an
excellent view of the file system and could be implemented
with a small code size by utilizing existing OS interfaces and
drivers. Nevertheless, if the OS is compromised, these ap-
proaches become vulnerable to intruders. In the untrusted
environment, isolation is an indispensable ingredient of fea-
sible solutions.

Therefore, recent works focus on introducing isolation by
putting file system into a dedicated virtual machine (VM)
[11, 20] or by using a network file system (NFS) [15, 18].
These approaches provide a strong isolation while still main-
taining a regular view of the file system. However, including
another VM or the NFS server into systems, will greatly
increase the trusted computing base (TCB) size of these
systems and therefore degrade their reliability. Besides, the
configuration cost in these approaches is noticeable because
a general-purpose virtual machine monitor (VMM) or a NFS
server has to be setup first.

In this paper, we present Filesafe, a lightweight hypervi-
sor leveraging both BitVisor [16] architecture and hardware
assisted virtualization (HAV) to protect sensitive files in a
compromised OS. It offers strong isolation to the guest OS,
and it is more resistant to attack due to small TCB size.
Hypervisor or VMM, offers isolated execution environment
from the untrusted guest OS. If the guest OS is compro-
mised, it will not affect the security of the hypervisor. Hy-
pervisor also provides the ability to interpose on hardware
interface, which means we could monitor the interactions be-
tween the hardware and the guest OS. Therefore this enables
intrusion detection and hardware access control.

Using hypervisor to protect sensitive files poses a prob-
lem well-known as semantic gap [4]. It is a gap between the
view of the guest OS from the outside and the view from
the inside. For example, we only see disk blocks from the
outside of the guest OS while we could see files and directo-
ries, which are semantic objects of the OS, from the inside.
To address this problem, we need to reconstruct internal se-
mantic objects, such as directories and files, of the guest OS

1765

from the outside. This approach has already been proved to
be feasible to solve this problem [9].
Using hypervisor to protect sensitive files faces another

problem: the security of hypervisor. It is not acceptable to
trust in a hypervisor if this hypervisor is hardly more se-
cure than guest OS. Reducing the TCB size of hypervisor is
an effective approach to improve reliability. Unfortunately,
traditional VMMs including hypervisors are large because
they are designed for general purpose. They may consist of
device drivers, virtual devices and resource managers. On
the contrary, our hypervisor is a special purpose hypervisor,
so it only needs some special device drivers, which makes it
small.
In this paper, we make the following contributions.

• We implement a special purpose hypervisor named File-
safe, which successfully protects sensitive files in a com-
promised system. It bridges the semantic gap between
guest OS and hypervisor by reconstructing file hier-
archy from raw data instead of relying on guest OS
interface.

• We utilize both BitVisor architecture and HAV to min-
mize TCB size of Filesafe, which is at least an order of
magnitude smaller than that of contemporary virtual-
ization environments. (e.g The TCB size of Filesafe is
only 6% of that of Xen [2].)

Besides, we deploy Filesafe on off-shelf hardware platform
with legacy OS. That means Filesafe requires no specific
hardware support and no modification to the guest OS.
The rest of the paper is organized as follows. Section 2

describes the threat model and assumptions underlying our
hypervisor. Section 3 and Section 4 present the design and
the implementation of our hypervisor. Section 5 illustrates
the experimental results obtained by measuring the code size
and performance of our hypervisor. Section 6 discusses the
related work in this research field. Finally, we conclude the
paper in Section 7.

2. THREAT MODEL AND ASSUMPTIONS
We assume the following adversary model:
Our adversary or the intruder aims at stealthily read-

ing the content of sensitive files, distorting sensitive files by
modifying them, destroying sensitive files by deleting them.
By exploiting vulnerabilities of the victim guest OS, the in-
truder may have the highest privilege level of it (e.g., the
Administrator privileges in Windows). That means the in-
truder could easily bypass the file access control system in
the guest OS and make any operations to sensitive files. We
assume that intruder does not have physical access to the
machine on which the system deploys and the hardware and
firmware of that machine are considered trusted.
We assume the load-time integrity of our hypervisor. This

could be achieved by leveraging the recent Intel TXT tech-
nology [1] which provides a reliable way called measured late
launch to load a clean hypervisor. This approach is already
listed in our future work. We also assume a trustworthy hy-
pervisor with no vulnerabilities. We have spent great efforts
on minimizing TCB size of our hypervisor, which will be de-
tailed in the following section. Code size of our hypervisor is
relatively small compared with that of a legacy OS. Besides,
our hypervisor provides no interface to the guest OS.

We protect sensitive files that are most important to users,
such as users’ private data, and do not protect system-
critical files and other files. Restricting access to system-
critical files may lead to instability of guest OS, especially
when the guest OS is patching or updating. Our current im-
plementation cannot protect system critical files. However,
OSes have many methods to protect themself such as Kernel
Patch Protection [7] in Windows Vista, which is out scope
of this paper.

3. DESIGN OF FILESAFE

3.1 BitVisor Architecture
Filesafe is based on BitVisor project. BitVisor is a tiny

hypervisor designed for enforcing I/O device security [16]. It
introduces a hypervisor architecture called para-passthrough
for I/O access. The hypervisor only intercepts the I/O ac-
cess that is configured to be watched, and others are passed
through to the device. It is designed to minimize the code
size of the hypervisor at the cost of running only one guest
OS at the same time. Since BitVisor is a special purpose
hypervisor for security, it is worthwhile to trade off the ca-
pability of running multiple guest OSes for the following
benefits:

• It does not need any virtual devices which are shared
among guest OSs. Including these virtual devices, such
as QEMU [3], will greatly increase the code size of the
hypervisor.

• The performance of the I/O devices in such architec-
ture is almost equivalent to the native performance, be-
cause the guest OS operates physical devices directly.

In pursuit of simplicity and high performance, we leverage
the cutting-edge Intel Virtualization Technology (Intel-VT)
to make BitVisor core even smaller and faster. We replace
SPT implemented by software with EPT feature supported
by hardware. We eliminate real-mode instruction simulator
by utilizing Unrestricted Guest feature supported by hard-
ware. These will be detailed in Section 4.

3.2 Bridging The Gap
As mentioned in Section 1, we need to bridge the semantic

gap between the view of the guest OS from the outside and
the view from the inside. Therefore, File System Parser is
designed to address this problem.

File System Parser is the bridge mapping files to blocks.
It parses file system information from disk following specific
file system standard. It cooperates with user when user is
setting policy in hypervisor before guest OS starts up, so it
does not incur any overhead to guest OS.

As shown in Figure 1, the flow of how to set policies is
represented by dotted lines. After the machine is booted,
user could log in our hypervisor to set his/her access pol-
icy of sensitive files before starting the guest OS. A console
is offered to let user interact with our File System Parser.
User could use command line to browse the file system, just
the same as what we do in the OS. Then user could set
read/write restriction to sensitive files, and after that both
the block range in which these sensitive files are stored and
access permission bits will be recorded in the block-level
Policy List.

1766

Storage DeviceHardware

Hypervisor

ATA Driver

Guest OS

File System
Parser

Block-Level
Policy List

Policy Ctrl

①

②

③

④

⑤

Figure 1: Design of Filesafe. Dotted lines represent
the flow of how to set policies. Solid lines depict the
flow of how policy control works.

Solid lines in Figure 1 depict the flow of how policy control
works. When the guest OS is running, every read or write
request to disk blocks will be intercepted to check whether it
violates the policies in the Policy List, and if so, it will be si-
lenced and the guest OS will receive a notification indicating
that the operation is failed.
Currently, the Policy List is stored in the memory and

will be lost after machine is powered off. It should be stored
somewhere in the hard disk before machine is powered off
and be read from disk after the hypervisor starts up. We
will make this improvement in the future.

4. IMPLEMENTATION

4.1 EPT Implementation
Extended Page Table(EPT) is a feature supported in Intel-

VT technology. The AMD equivalent is called Rapid Vir-
tualization Indexing (RVI), formerly known as Nested Page
Tables (NPT).
Due to the lack of hardware support for memory manage-

ment unit (MMU) virtualization in first CPUs that support
virtualization technology, virtual environments which sup-
port full virtualization introduce Shadow Page Table(SPT)
to manage memory virtualization. SPT is a table main-
tained by the hypervisor. It maps virtual address to machine
address while the guest OS still maintains its own page table
which maps virtual address to physical address. The crucial
defect of SPT is that each MMU address translation needs
to be trapped into the hypervisor, which is termed as VM
exit, and travels another execution path to fetch the real
address. This introduces more than 10 times CPU cycles
compared with the native MMU address translation.
To reduce this overhead, both AMD and Intel provide

hardware assists to facilitate address translation. The hy-
pervisor can now rely on hardware to eliminate the need for
shadow page tables. EPT translates guest physical address
to machine address, and any updates to guest page table
will no longer incur a VM exit, which avoids much of the
overhead.

SPT is implemented in BitVisor which has about 2,000
lines of code (including other related code), and high over-
head is noticed in memory-bound benchmarks. In our work,
we replace the SPT with EPT, which has only about 200
lines of code. To implement EPT, we first allocate memory
space for this 4-level table and fill every page entry at each
level with appropriate values. After that, the machine mem-
ory address of this table should be provided to VM. VM will
do address translation according to this table. Our EPT im-
plementation supports up to 4GB memory, the hypervisor
lies at the top of 4GB memory, other memory belongs to the
only one guest OS. Though we greatly reduce the code size,
the overhead is not reduced as much. We observe more than
20% overhead in some benchmarks. This will be discussed
in Section 5.

4.2 Unrestricted Guest Implementation
Unrestricted Guest is a feature supported in Intel-VT

technology.
The first Intel processors to support Intel-VT technology

require CR0.PE and CR0.PG to be enabled when starting
a VM. This restriction implies that guest OS cannot run in
unpaged protected mode or in real-address mode. In order
to address this problem, BitVisor implements an instruction
emulator to emulate instruction execution in real-address
mode and the switch between real-address mode and pro-
tected mode. The instruction emulator has about 2,500 lines
of code and incurs overhead at runtime.

Later processors which support Unrestricted Guest fea-
ture allow guest OS to run in unpaged protected mode or in
real-address mode. The processor operates instructions of
VM in these modes natively. Since these two modes do not
use paging, each linear address is passed directly to the EPT
for physical address translation, so EPT feature mentioned
in the section above should be enabled as well.

Implementation of Unrestricted Guest is simple and straight-
forward. After EPT is setup, we enable Unrestricted Guest
feature by setting corresponding bit in the secondary processor-
based VM-execution control and set the right value to some
registers. With the help of Unrestricted Guest feature, our
implementation does not require an instruction emulator.

4.3 File System Parser Implementation
File System Parser helps the user map file to blocks the

file occupies when he is setting file security policy. Usually,
the most convenient way of doing that is utilizing the file
system interfaces in OS, such as [5] does. But in that case,
system vulnerabilities may be introduced in due to these
untrusted interfaces. As to how to implement such a tool
is file system specific, we only implement the support for
FAT32 file system to prove our design is feasible.

File allocation table 32 (FAT32) [6] is a simple and pre-
vailing file system. It consists of three important data struc-
tures: boot sector, file allocation table (FAT) and directory
table. Boot sector is the first sector in a FAT32 partition. It
contains BIOS parameter block (BPB), which portrays the
key information of this partition. FAT is a table with 32-bit
entry in FAT32 file system. Each entry represents the status
of a cluster, which is the minimum unit of file allocation. All
the files and directories are stored in one or more clusters,
which are not necessarily continuous in the disk. Linked list
data structure is used and FAT is the table that describes
this structure. The value in each entry may indicate a free

1767

cluster, the next cluster number of a file, this cluster being
the last cluster of a file, a bad or reserved cluster. Direc-
tory table is a special type of file that represents a directory.
Each file or directory stored within it is represented by a
32-byte entry in the table. Each entry records information
of each file, such as name, attributes, size and especially the
cluster number of the first cluster of file data.
To get the blocks that the file named A occupies, File

System Parser first locates the root directory entry of the
FAT32 partition. If A is in root directory, by matching the
file name of each entry in this directory, the parser could
get the file entry of A as well as the cluster number of first
cluster of A’s data. Next, it should query FAT to get the
next cluster in linked list with the results of Formula 1 and
Formula 2. When all the cluster numbers of A’s data have
been collected, cluster number should be converted to sec-
tor number with Formula 3 and Formula 4. At last, Logic
Sector Number (LSN) is converted to Logical Block Address
(LBA) by adding an offset because LSN is the sector index
in this partition while LBA is the sector index in the whole
disk. If A is in the subdirectory, as directories are treated as
files that contain the directory information, the subdirectory
should be accessed recursively the same as the procedure de-
scribed above. The abbreviations used in formulas are list
in Table 1.
Once we have the mapping from file to blocks, we could

set the security policy, such as read only or not accessible,
for all the blocks of sensitive files. When the guest OS is
running, Policy Control will enforce these polices to protect
sensitive files. Guest OS usually does disk access operations
by specifying three parameters: LBA, number of sectors,
and sector data. Operations will be intercepted and these
parameters will be sent to Policy Control. In the view of
guest OS, any attempt to read a read protect file will get
an empty file and to write a write protect file will result in
a failure. But deleting a write protect file will always be
succeed, because in FAT32 file system, deleting a file will
only set the first byte in the directory entry to 0xE5 rather
than erase all the data of that file. It could be recovered
with ease. Formatting a partition will also work well since
formatting will only erase the data in FAT. As all the sector
numbers of sensitive files are listed in Policy List, FAT could
be reconstructed for these sensitive files. Filesafe does these
recover work after the guest OS is shutdown.

FATEntrySN = BPB.RSC + (CN ∗ 32/8)/BPB.BPS (1)

FATEntrySO = (CN ∗ 32/8)%BPB.BPS (2)

FirstDataSN = BPB.RSC +BPB.NF ∗BPB.SPF (3)

LSN = FirstDataSN + (CN − 2) ∗BPB.SPC (4)

5. EVALUATION
In this section, we first show the comparison of the TCB

size of various contemporary virtual environments. Then we
evaluate the performance of our implementation on an Intel
machine with Core i5-650 3.20 GHz, 3GB DDR3 RAM and
250 GB Seagate SATA2 disk. A Windows XP with sp3 runs
on this machine, and it will become a guest OS after our
hypervisor is installed in.

5.1 TCB Size Comparison

Abbr.
BPB BIOS Parameter Block
RSC Reserved Sector Count
NF Number of FATs
SPF Sectors Per FAT
SPC Sectors Per Cluster
BPS Bytes Per Sector
SN Sector Number
SO Sector Offset
CN Cluster Number
LSN Logic Sector Number

Table 1: Abbreviation

1000000
Hypervisor Linux Qemu ATA Driver

100000

L
in

e
s
 o

f
S

o
u

r
c
e

 C
o

d
e

10000

L
in

e
s
 o

f
S

o
u

r
c
e

 C
o

d
e

10000

L
in

e
s
 o

f
S

o
u

r
c
e

 C
o

d
e

1000

Filesafe Bitvisor Xen KVMFilesafe Bitvisor Xen KVM

Figure 2: Comparison of the TCB size of virtual
environments.

In Figure 2, we compare the size of the TCB for contem-
porary virtual environments. The total height of each bar
indicates the TCB size of an operating system when it runs
inside that VMM or hypervisor as a guest OS.

Filesafe consists of a modified BitVisor core that has ap-
proximately 20KLOC with a FAT32 file system parser that
has 2.3KLOC, and the ATA driver which has 4.4KLOC. For
Xen and KVM, we assume that all unnecessary functional-
ity, such as unused device drivers and file systems, has been
removed from the Linux kernel. The code size of that kernel
is about 200 KLOC. By removing support for non-x86 archi-
tectures, code size of QEMU can be reduced to 140 KLOC
[17].

5.2 Impact on Performance
We execute both compute-bound and I/O-bound appli-

cations with Filesafe. For compute-bound applications, we
use the SPECint 2006 suite. The SPECint suite consists
of a series of long-running computationally intensive appli-
cations intended to measure the CPU and memory man-
agement performance. For I/O-bound applications, we use
Iometer to evaluate disk I/O performance.

Results of SPECint benchmarks are presented in Figure
3. On average, the overhead of our hypervisor is less than
8%, but the gcc and mcf benchmarks show more than 20%
overhead. We attribute this to EPT performance overhead
and hope the hardware will be improved in the near future.
Besides, We also observe high overhead (up to 80%) mea-
sured by SPECint in other works [13, 19, 21] implemented
with EPT support.

1768

100%

120%

140%

N
o

r
m

a
li

z
e

d
 t

o
 n

a
ti

v
e

 r
u

n
ti

m
e

Filesafe Native

80%

100%

N
o

r
m

a
li

z
e

d
 t

o
 n

a
ti

v
e

 r
u

n
ti

m
e

40%

60%

N
o

r
m

a
li

z
e

d
 t

o
 n

a
ti

v
e

 r
u

n
ti

m
e

0%

20%

N
o

r
m

a
li

z
e

d
 t

o
 n

a
ti

v
e

 r
u

n
ti

m
e

0%

Figure 3: SPEC CINT 2006 Benchmarks. It shows
the percentage of runtime overhead relative to the
native Windows. Lower is better.

120%

N
o

rm
a

li
ze

d
 t

o
 n

a
ti

v
e

 t
h

ro
u

g
h

p
u

t

Random Read Random Write Sequential Read Sequential Write

80%

100%

N
o

rm
a

li
ze

d
 t

o
 n

a
ti

v
e

 t
h

ro
u

g
h

p
u

t

40%

60%

N
o

rm
a

li
ze

d
 t

o
 n

a
ti

v
e

 t
h

ro
u

g
h

p
u

t

20%

40%

N
o

rm
a

li
ze

d
 t

o
 n

a
ti

v
e

 t
h

ro
u

g
h

p
u

t

0%

4KB 16KB 64KB

N
o

rm
a

li
ze

d
 t

o
 n

a
ti

v
e

 t
h

ro
u

g
h

p
u

t

Block SizeBlock Size

Figure 4: Iometer Benchmarks. It shows the per-
centage of I/O throughput overhead relative to the
native Windows. Higher is better.

Results of Iometer benchmark are presented in Figure 4.
We evaluate disk I/O performance of Filsafe with various
block size and various operation types. When the block size
is increased to 64KB or higher, the performance overhead
is negligible. For the sake of brevity, results of block size
larger than 64KB are not shown in the figure.
This figure indicates that the I/O operation overhead of

Filesafe is a constant value, rather than in proportion to
block size. Firstly, we focus on the bars whose block size is
4KB. We know that random operation is much slower than
sequential operation. Sequential operation overhead of File-
safe is notable because sequential operation takes short time,
while for random operation, overhead is not notable because
random operation itself costs much more time. Secondly, we
compare the bars whose block size is 4kb with others, as the
block size increases and the I/O operations cost more time,
and the overhead incurred by Filesafe becomes negligible.

6. RELATED WORK
File security issues such as confinement and protection

have been studied extensively, and many approaches have
been proposed to address these issues. In this section, we
first introduce the out-of-the-box approaches that leverage
virtualization technology, and then we describe classical in-
the-box approaches. Finally, some other approaches are

summarized.

6.1 Out of the Box Approaches
HyperSpector [11] is a virtual distributed monitoring en-

vironment that employs multiple Intrusion Detection Sys-
tems (IDS) to protect distributed system. A specific IDS
VM mounts the file system of the target OS as shadow file
system and enforces the access control on that file system.
SVFS [20] takes a similar approach of using a Data Virtual
Machine store and protect sensitive files for other applica-
tion VMs. Though this approach may be a good solution
for distributed systems, it is not suitable for our problem be-
cause introducing another VM inevitably increases the TCB
size and performance overhead. Our approach does not need
any additional VMs but only a thin hypervisor.

Livewire [8] is a VMM-based IDS, first proposing the method-
ology of inspecting a VM from the outside, which is termed
as virtual machine introspection (VMI). Livewire does the
introspection by primarily engaging in passive checks on the
guest OS, which is similar to what Tripwire does, while our
prototype intercepts malicious file accesses actively. The
successor VMWatcher [9] is a malware detector rather than
an IDS. It moves anti-malware out of the VM while still
maintaining native view of that VM by using the technique
named guest view casting, reconstructing internal seman-
tic views of a VM from the outside [9]. Both Livewire and
VMWatcher encounter the semantic gap problem and their
solutions give us lots of inspiration.

BitVisor [16] is a thin hypervisor for enforcing I/O de-
vice security. It proposes the parapass-through architecture,
which makes most of the I/O requests from the guest OS
go directly to devices instead of handling by the hypervisor.
The later work [5] utilizes BitVisor to prevent persistent
rootkits by protecting system-critical files from writing op-
erations. Besides, the later work introduces a mode named
Administrator Mode in which they make security policy by
using user-level tool in guest OS, while in this mode guest
OS is assumed to be secure. However, our approach makes
no assumption about the guest OS. We leverage the method-
ology of VMI instead of depending on OS interfaces.

6.2 In the Box Approaches
Classical approach for protecting sensitive files is to use

a mandatory access control system [12], which commonly
belongs to the operation system. The access control is en-
forced at the OS kernel level, which makes it is hard to be
bypassed by user-level intruders.

Tripwire [10] and I3FS [14] are both file integrity checkers,
which validate specified files by comparing cryptographic
hash values of them with trusted values. The essential differ-
ence between them is Tripwire runs in user mode and I3FS
runs in kernel mode. They may detect any file modifications
but they do not protect sensitive files from malicious access.

These in-the-box approaches all depend on one assump-
tion that the guest OS kernel is trustworthy. However, un-
der our threat model, if the whole guest OS is compromised,
these approaches may hardly take effect.

6.3 Other Approaches
NFS [15] could be configured to protect sensitive files by

enforcing access control on NFS server. This approach is
more convenient and it also provides strong isolation. How-
ever, including external NFS server and network connection

1769

makes it vulnerable to network related attacks.
Another idea proposed by Strunk et al. [18] is that using

disk-level versioning protects data in a compromised system.
Old versions of data are stored in a NFS-like server named
Self-securing storage server (S4) for a window of time, within
this window, administrators have a wealth of information for
data recovery. The longer window of time is, the more disk
space is consumed. It may cancel malicious writing opera-
tions of sensitive data by recovering from old versions, but
it offers limited confinement to keep intruder from reading
the sensitive data. Besides, it does not prevent malicious file
accesses in real time.
Finally, file encryption could be regarded as an auxiliary

approach where access control could not be enforced (e.g.
Intruder has physical access to hard disk).

7. CONCLUSION
We presented a special purpose hypervisor called Filesafe,

which could protect sensitive files from unauthorized access
even if the OS is compromised. We described two primary
challenges to design this kind of hypervisor. One is the se-
mantic gap between hypervisor and guest OS. The other is
the security of hypervisor itself. We implemented a pro-
totype of our design, which has a File System Parser to
bridge the semantic gap. Moreover, our implementation has
a very small code base that makes verification feasible. Our
work demonstrates that such a hypervisor could be built
with negligible performance overhead and such a small TCB
size, thanks to recent hardware virtualization features and
BitVisor architecture.
In order to guarantee the load-time integrity of hypervisor,

we plan to apply Intel TXT technology to Filesafe in the
future. We will also make Filesafe support various prevailing
OSes and file systems. And some technical details will be
improved to make Filesafe more practical.

8. ACKNOWLEDGEMENT
This work is supported by Key Lab of Information Net-

work Security, Ministry of Public Security, National Nat-
ural Science Foundation of China (Grant No. 60873209,
60970107, 60970108,61073151), the Key Program for Basic
Research of Shanghai (Grant No.10511500100, 10DZ1500200),
IBM SUR Funding and IBM Research-China JP Funding.

9. REFERENCES
[1] Intel Trusted Execution Technology Architecture

Overview. Intel Corporation, Denver, CO, 2006.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L.
Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP, pages 164–177, 2003.

[3] F. Bellard. Qemu, a fast and portable dynamic
translator. In USENIX Technical Conference, pages
41–46, 2005.

[4] P. M. Chen and B. D. Noble. When virtual is better
than real. In Workshop on Workstation Operating
Systems (now HotOS)/Workshop on Hot Topics in
Operating Systems, pages 133–138, 2001.

[5] Y. Chubachi, T. Shinagawa, and K. Kato.
Hypervisor-based prevention of persistent rootkits. In
SAC, pages 214–220, 2010.

[6] M. Corporation. Microsoft extensible firmware
initiative fat32 file system specification. (12), 2000.

[7] M. Corporation. Kernel patch protection: Frequently
asked questions, Jan. 2006.

[8] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion
detection. In Network and Distributed System Security
Symposium, 2003.

[9] X. Jiang, X. Wang, and D. Xu. Stealthy malware
detection through vmm-based ”out-of-the-box”
semantic view reconstruction. In Computer and
Communications Security, pages 128–138, 2007.

[10] G. H. Kim and E. H. Spafford. The design and
implementation of tripwire: a file system integrity
checker. In Proceedings of the 2nd ACM Conference on
Computer and communications security, CCS ’94,
pages 18–29, New York, NY, USA, 1994. ACM.

[11] K. Kourai and S. Chiba. Hyperspector: virtual
distributed monitoring environments for secure
intrusion detection. In International Conference on
Virtual Execution Environments, pages 197–207, 2005.

[12] P. Loscocco and S. Smalley. Integrating flexible
support for security policies into the linux operating
system. In USENIX Technical Conference, pages
29–42, 2001.

[13] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D.
Gligor, and A. Perrig. Trustvisor: Efficient tcb
reduction and attestation. In IEEE Symposium on
Security and Privacy, pages 143–158, 2010.

[14] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok.
I3fs: An in-kernel integrity checker and intrusion
detection file system. In Proceedings of the 18th
USENIX conference on System administration, pages
67–78, Berkeley, CA, USA, 2004. USENIX
Association.

[15] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan,
M. Eisler, D. Noveck, D. Robinson, and R. Thurlow.
The nfs version 4 protocol. 2000.

[16] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai,
Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo,
and K. Kato. Bitvisor: a thin hypervisor for enforcing
i/o device security. In VEE, pages 121–130, 2009.

[17] U. Steinberg and B. Kauer. Nova: a
microhypervisor-based secure virtualization
architecture. In EuroSys, pages 209–222, 2010.

[18] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A.
Soules, and G. R. Ganger. Self-securing storage:
Protecting data in compromised systems. Foundations
of Intrusion Tolerant Systems, 0:195, 2003.

[19] M. Xia, M. Yu, Q. Lin, Z. Qi, and H. Guan. Enhanced
privilege separation for commodity software on
virtualized platform. In ICPADS, pages 275–282, 2010.

[20] X. Zhao, K. Borders, and A. Prakash. Towards
protecting sensitive files in a compromised system. In
IEEE Security in Storage Workshop, pages 21–28,
2005.

[21] M. Zhu, M. Yu, M. Xia, B. Li, P. Yu, S. Gao, Z. Qi,
L. Liu, Y. Chen, and H. Guan. Vasp: virtualization
assisted security monitor for cross-platform protection.
In ACM Symposium on Applied Computing, pages
554–559, 2011.

1770

