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Abstract—Return-Oriented Programming (ROP) is a sophis-
ticated exploitation technique that is able to drive target applica-
tions to perform arbitrary unintended operations by constructing
a gadget chain reusing existing small code sequences (gadgets).
Existing defense mechanisms either only handle specific types
of gadgets, require access to source code and/or a customized
compiler, break the integrity of application binary, or suffer from
high performance overhead.

In this paper, we present a novel system, ROPecker, to
efficiently and effectively defend against ROP attacks without
relying on any other side information (e.g., source code and
compiler support) or binary rewriting. ROPecker detects an ROP
attack at run-time by checking the presence of a sufficiently long
chain of gadgets in past and future execution flow, with the
assistance of the taken branches recorded in the Last Branch
Record (LBR) registers and an efficient technique combining
offline analysis with run-time emulation. We also design a sliding
window mechanism to invoke the detection logic in proper tim-
ings, which achieves both high detection accuracy and efficiency.
We build an ROPecker prototype on x86-based Linux computers
and evaluate its security effectiveness, space cost and performance
overhead. In our experiment, ROPecker can detect all ROP
attacks from real-world examples and generated by the general-
purpose ROP compiler Q. It has small footprints on memory and
disk storage, and only incurs acceptable performance overhead
on CPU computation, disk I/O and network I/O.

I. INTRODUCTION

Return-Oriented Programming (ROP) is a code-reuse secu-
rity exploitation technique introduced by Shacham et al. [12]–
[14]. By chaining together existing small instruction sequences
(gadgets) from target programs, ROP empowers a remote
adversary to perform Turing-complete computation without
injecting any malicious code. Due to its great threat, recent
years have witnessed many proposed methods (Table I) to
defend against ROP attacks [1]–[9], [11], [15].

The approaches, such as DROP [1], ROPDefender [2],
ROPGuard [3] and Return-less kernel [4], only focus on the
ROP gadgets ended with return instructions (e.g., ret-based),
allowing the adversary to use other gadgets (e.g., jmp-based).
In addition, the first two schemes [1], [2] also incur high
overhead to their protected applications. Defense mechanisms,

such as CFLocking [5] and G-Free [6], aim to defend against
all types of ROP attacks, but they require the knowledge of
side information (e.g., source code and/or customized compiler
tool chain). In fact, this side information is often unavailable
to the end users in the real world.

Recent proposals, such as ILR [7], Binary stirring [8],
IPR [9], CCFIR [10] and KBouncer [11], cover all ROP
attack types, achieves good attack-type coverage and run-
time efficiency, and requires no side information. However,
they all leverage binary rewriting technique to instrument the
code, in the purposes of randomly shuffling instructions, en-
forcing control flow integrity, or monitoring abnormal control
transfers. Binary instrumentation breaks the integrity of the
binary code, which raises compatibility issues against security
mechanisms, such as Window 7 system library protection,
Integrity Measurement Architecture (IMA) [16], and remote
attestation. In addition, KBouncer [11] only monitors the
application execution flow on selected critical paths, e.g.,
system APIs. It inevitably misses the ROP attacks that do not
use those paths.

This paper presents the first generic and practical ROP
countermeasure, called ROPecker, that effectively and efficient-
ly defends against all types of ROP attacks without requiring
source code access, customized compiler support and binary
rewriting, as summarized in Table I. We observe that the dis-
tinguishing feature of an ROP attack is that the execution flow
of a victim application consists of a sufficiently long sequence
of gadgets chained together by branching instructions. Thus,
ROPecker analyzes all gadgets located in the target application
binary and shared libraries via offline pre-processing. During
run-time check points, ROPecker identifies the gadget chain
in the past execution flow, using the history of taken branches
recorded in the Last Branch Record (LBR) registers, and also
inspects the future execution flow to detect any ROP gadget
chain, leveraging the information from offline analysis and
occasional instruction emulation.

We also propose a novel sliding window mechanism to
decide run-time check points, which sets the most recent
visited code regions of the protected application as executable,
and leaves the application code outside of the window as
non-executable. Any attempt to execute the code beyond the
window boundary automatically triggers the ROP checking
logic, while the application execution within the window re-
mains unaffected. The sliding window design takes advantage
of the temporal and spatial locality of application code and
the sparsely distribution of meaningful gadgets across the
application code base, to achieve both run-time efficiency and
detection accuracy.
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TABLE I. THE COMPARISON OF SEVERAL TYPICAL ROP DEFENDING APPROACHES.

ROP Types No Source No Binary Run-time
Code Rewriting Efficiency

DROP [1] Ret-based
√

X X
ROPDefender [2] Ret-based

√
X X

ROPGuard [3] Ret-based
√

X
√

Return-less Kernel [4] Ret-based X
√ √

CFLocking [5] All X
√ √

G-Free [6] All X
√ √

ILR [7] All
√

X
√

Binary Stirring [8] All
√

X
√

IPR [9] All
√

X
√

CCFIR [10] All
√

X
√

KBouncer [11] All
√

X
√

ROPecker All
√ √ √

We build an ROPecker prototype on x86-based Linux plat-
form, though our design can be extended to other commodity
operating systems. We experiment ROPecker with real world
ROP attacks and those generated by the ROP compiler Q [17].
The results demonstrate that ROPecker successfully detects all
of them. We also evaluate the space cost of ROPecker on the
Ubuntu Linux 12.04 distribution. The experiment results show
that the database for all 2393 shared libraries under under
/lib and /usr/lib is surprising small, which can be compressed
to about 19MB using bzip2. Moreover, We evaluate the
performance by running several macro-benchmark (e.g., SPEC
INT2006, bonnie++, and Apache server httpd) and micro-
benchmark tools. The results show that ROPecker introduces
reasonable performance overhead on CPU computation, disk
I/O, and network I/O. Specifically, ROPecker incurs only
2.60% overhead on average on CPU computation, 1.56%
overhead on disk I/O, and 0.08% overhead on typical (4KB)
HTTP communications.

Contributions. In specific, we make the following contribu-
tions:

• Design the first generic and practical ROP counter-
measure to protect legacy applications from all types
of ROP attacks without side information and binary
rewriting.

• Propose novel techniques combining sliding window,
offline gadget analysis with run-time instruction emu-
lation to achieve high efficiency without compromis-
ing detection accuracy.

• Implement an ROPecker prototype on x86-based Lin-
ux platform and evaluate its security effectiveness,
space cost and run-time performance.

Organization. The rest of the paper is structured as fol-
lows. In Section II and Section III, we briefly describe the
background knowledge, and highlight our system goals, threat
model and assumptions. We introduce in detail the design
rationale, system architecture and implementation of ROPecker
in Sections IV, V, and VI, respectively. Section VII discusses
the parameter effects on the performance and accuracy, and
Section VIII presents the security, space and performance
evaluation of ROPecker. In Sections IX and Section X, we
discuss several subtle attacks and compare our system with
the existing work. At last, we conclude this paper and discus

the future work in Section XI.

II. BACKGROUND

A. Return-Oriented Programming

The main idea of ROP attack is to reuse instructions from
existing code space to perform malicious operations. There
are two major steps to launch an ROP attack: (1) to identify
a set of useful instruction sequences, called gadgets, from the
entire code segment, e.g., the application code and the shared
libraries; (2) to link the selected gadgets into a gadget chain
through a crafted payload. Note that the gadgets are not limited
to using aligned instructions, e.g., on x86 platform, a sequence
of unaligned instructions may also be converted to a valid
gadget.

A typical gadget has a code section for computation
operations (e.g., assigning a value to a general CPU register),
and a link section manipulating the control flow to link
gadgets. The control flow manipulation is achieved through the
indirect branch instructions such as ret and indirect jmp/call
instructions1. According to the difference of the link section,
ROP attacks are classified into ret-based ROP and jmp-based
ROP or JOP. In a real-life ROP attack, the adversary may
mix both types of gadgets. The gadgets used in ROP attacks
typically have the following features.

Small Size. A gadget’s code section is usually small, e.g.,
consisting of 2 to 5 instructions [18], which leads to the lack
of the functionality of a single gadget. Though the gadgets
with large code sections can perform more operations, they
inevitably lead to more side effects and some of them may
conflict with each other, e.g., a gadget accidentally changes the
stack pointer, which may lead to the failure of the execution
of the next gadget. In fact, the adversary usually prefers to
collect the gadgets only with the intended operations, instead
of using long gadgets2. Thus, a real ROP attack usually needs
many such small gadgets, e.g., as illustrated in [14], a jump-
oriented Turing-complete JOP needs up to 34 small gadgets.

1Traditionally, the direct branch instructions can not be used as the link
section, since their destinations are fixed. However, we identify the gadget
gluing attack (Section IX-B) that may leverage direct branches to foil our
detection. For completeness, we discuss the extension of ROPecker to mitigate
such attacks in Section IX-B.

2Our mechanism can be tuned to detect gadgets of different length, as
discussed in Section VII-B
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Sparse Distribution. Although the gadgets are distributed
across the entire code space, the ones meeting for the ad-
versary’s needs are not guaranteed to exist due to the sparse
density. To have higher success probability, the adversaries
usually need a large code base to collect enough gadgets to
perform the malicious operations. The experiment results of
Q [17] imply that the adversaries has low possibility to launch
a meaningful ROP attack, if we can limit the size of the
executable code within 20KB at any time. If we can further
reduce the size, the possibility will consequently go down.

B. Last Branch Record

In our solution, we leverage Last Branch Record (LBR)
registers to provide reliable information about the execution
trace of the protected application. LBR are dedicated CPU
registers widely available on modern Intel and AMD proces-
sors. LBR provides a looped buffer to store the sources and
destinations of the most recently executed branch instructions.
The length of the buffer is limited, e.g., the Intel i5 only has
16 register pairs for recording the branches. It leads to that the
new records inevitably override the old ones when the LBR
buffer gets full.

The LBR functionality is disabled by default, and can only
be enabled/disabled through certain Model Specific Registers
(MSRs). Without the kernel privilege (i.e., ring-0), the user
space applications cannot modify the value in the LBR MSRs.
The LBR can be configured to only record the branches taken
in user space. However, when recording user-space branches,
the LBR does not distinguish branches in different processes.
Thus, we have to filter out the unavoidable noise records
to get the ones relevant to a specific process. Note that the
branch recording is performed by the hardware processor and
it introduces almost zero overhead for application executions.

III. PROBLEM DEFINITION

A. System Goals

Our goal is to design a security system to detect and prevent
ROP attacks at run-time with the following features.

G1: Generic. We aim to protect binary applications against
all types of user space ROP attacks. The ROP gadget chain
can be constructed by ret-based gadgets, jmp-based gadgets,
or both of them.

G2: Transparent. Our system should transparently work for
the legacy binary applications. In addition, 1) it does not rely
on source code or customized compiler tools; 2) it does not
instrument the binary code.

G3: Efficient. We aim to minimize the performance overhead.
Our system should not incur high performance overhead to
protected applications, as well as the OS and other applications
that coexist on the same platform.

B. Threat Model

In this paper, we focus on defending against application-
level ROP attacks. We consider a remote adversary attacking
a target application by manipulating inputs in order to launch
an ROP attack. We suppose that the adversary knows all

implementation details of the target application and can send
arbitrary inputs. Nonetheless, it cannot subvert the target
platform’s hardware (e.g., MMU) and the operating system
services (e.g., page table permissions) to their favor.

C. Assumptions

We assume that both the processor and the operating
system enable the Data Execution Prevention (DEP) mech-
anism. In fact, the DEP mechanism is supported by default in
modern operating systems. We do not assume that the Address
Space Layout Randomization (ASLR) mechanism is enabled.
In essence, our attack detection mechanism does not rely on
ASLR. The application is not created with malicious purpose,
e.g., it is not maliciously compiled to contain abundant gadgets
within a small code base. Furthermore, we do not assume that
the application is released and distributed with side information
(e.g., source code and debugging information). We do not
attempt to protect any self-modifying applications, because
they require writable code segment, conflicting with the DEP
mechanism.

IV. DESIGN RATIONALE

Essentially, our approach is to capture the application
execution features at proper moments and then to identify the
existence of the ROP gadget chain. The detection accuracy and
efficiency are affected by two critical design issues. The first
issue is the types of run-time features to capture. Ideally, the
features should be reliable in the sense that the adversary can
not modify them to evade detection, and sound in the sense
that they provide a solid evidence to infer the presence of
ROP attacks. The second is the timing of detection. A poorly
designed timing may either miss critical information which
leads to a low detection success rate or introduces unnecessary
checks with a high performance loss.

Hallmark of ROP Attacks. Most existing ROP counter-
measures are based on catching run-time abnormalities of the
ROP-infected application, e.g., call-ret violation [1], [2] or
deviation from the control flow graph (CFG) or call graph
(CG) [5], [19]. None of these approaches can achieve all our
goals listed in Section III. For instance, the method of catching
any broken call-ret pairing is not applicable to jump based
ROP attacks. It is extremely difficult to extract control flow
information completely and accurately, without source code
access. In Section X, we elaborate more on the disadvantages
of using those abnormalities.

In this paper, we observe that the hallmark of ROP attacks
is that the execution flow of a victim application consists of
a long sequence of gadgets chained together by branching
instructions. Because all gadgets can be located from the
constant binary code [12]–[14], the history of branches in an
execution flow, enhanced by prediction of future branches,
can be the solid evidence to decide whether the execution
comprises a gadget chain. This hallmark applies to all kinds
of ROP attacks, achieving the goal of G1.

Based on this observation, we propose a novel ROP
defense mechanism, which relies on a payload detection
algorithm: 1) identifying past executed gadget chain using
LBR information, and 2) searching potential gadget chain in
future execution flow, assisted with information from offline

3



gadget analysis, and/or occasional run-time instruction emu-
lation (Section V-C). If the total number of gadgets chained
together in both past and future detection exceeds a chosen
threshold, ROPecker reports the ROP attack and terminates
the application. Note that the adversary can not tamper with
the LBR values due to the hardware and the OS protection,
i.e., the accessing of LBR registers needs kernel privilege.
Furthermore, when the detection algorithm is executing, the
monitored application is suspended and cannot change its fu-
ture execution flow. Thus, all information collected is reliable
for the detection.

An offline pre-processor is introduced to analyze the
instruction and gadget information. The results cover the
most frequently used gadget cases and leaves only minor
cases to run-time analysis/emulation, which greatly reduces
the ROPecker run-time overhead without sacrificing detection
accuracy (Sections V-A and VI-A).

Timing of Checking. To meet the goal of G2, we refrain
from inserting code in critical execution paths of the protected
application [3], [11] to trigger our ROP checking. In addition,
it is obviously inefficient to monitor every branch instruction
of the application. Periodic sampling may incur less cost, but
it is prone to miss the ROP attacks taking place within the
sampling interval.

In this paper, to meet the goal of G3, we propose a
sliding window technique which can catch an ROP attack in a
timely fashion without a heavy performance toll (Section V-B).
Shifting along with the execution flow, a sliding window refers
to the portion of the application code region which are set
executable by ROPecker, while the instructions outside of the
window are non-executable. Therefore, attempting to execute
an instruction out of the window triggers an exception where
the ROP checking logic is invoked. This design is advan-
tageous for the following two reasons. Firstly, the window
size is small comparing with the large code base that is
needed in launching a meaningful ROP attack. As there are
not enough gadgets for an ROP attack in one sliding window,
an attack always triggers our ROP checking. Secondly, it is
highly efficient since there is no intervention for executions
within the sliding window. In addition, the window covers
the most recent, non-contiguous code pages visited by the
monitored application, meaning that we can take full advantage
of the temporal and spatial locality feature of the application
execution [20]. This guarantees that the ROP checking logic
is not frequently invoked.

A prerequisite of using the sliding window technique is
that the adversary cannot bypass the checking or disable it.
Despite of lacking the kernel privilege, the adversary may
mislead the kernel through certain special system calls, e.g.,
mprotect and mmap2. The adversary may leverage ROP to
invoke those system calls with malicious inputs, which leads
the kernel to set the code pages of the monitored application
that contains gadgets to be executable, evading the ROPecker’s
detection, or even to disable the DEP mechanism and allow
code injection. Thus, ROPecker have to intercept those system
calls and check the existence of the ROP gadget chain before
passing them to the kernel.

Offline Phase 

App X  
Binary  

Pre-processor 

ROPecker 
Kernel Module 

Run-time Phase  

Kernel  

lib1 

libn 

…
 

Instruction & Gadget  
Database 

Apps 
App X 

CPU 
Execution 

 Trace 

Monitor Window 

IPd IPs 

Code … … 

Runtime Info 

Stack 

…
 

Fig. 1. The architecture of ROPecker. The shaded square represents a
protected application.

V. SYSTEM OVERVIEW

In this section, we elaborate on the design of the ROPecker
system. As depicted in Figure 1, the general work-flow of
ROPecker proceeds in two phases: an offline pre-processing
phase followed by a run-time detection phase. In the offline
pre-processing phase, the ROPecker pre-processor disassem-
bles the binary code of the protected application X and system
libraries that it depends on, analyzes each instruction and
gadget in the disassembled code, and saves the results in a
Instruction & Gadget (IG) database (Section V-A). During
the run-time detection phase, the ROPecker kernel module
that implements our ROP attack detection logic is invoked,
when the application X executes outside the sliding window
or invokes risky system calls (Section V-B). The kernel module
suspends the application X, and performs ROP attack detection
by analyzing the CPU execution trace, the stack and code seg-
ments of the protected application, and the IG database, and if
necessary, invoking instruction emulation (Section V-C). Note
that ROPecker can protect multiple applications in parallel.

A. Offline Pre-processing

In this phase, the ROPecker pre-processor extracts all
instruction information (e.g., offsets, types, and alignment) of
the protected applications as well as the shared libraries that
they depend on. The pre-processor also identifies the potential
gadgets from the application binary and libraries, analyzes
their impacts on the code stack and the CPU instruction
pointers (e.g., pop and push instructions can change the CPU
stack pointer). The pre-processor constructs a IG database to
store all the above instruction and gadget information. The
pre-processing of the shared libraries (e.g., libc) is an one-
time effort, as their results can be re-used among different
protected applications. Note that our pre-processor does not
depend on a perfect disassembler that can analyze the entire
application binary and figure out each instruction completely
and accurately. Our pre-processor starts from the first byte
of the application code segment, and tries to disassemble a
pre-defined number (e.g., 6) of instructions (as is analyzed
in Section VII-B). If this instruction sequence ends with
an indirect branching instruction (e.g., ret, jmp %eax), and
does not contain any direct branching instruction (e.g., call
0x8049000), it will be treated as a potential gadget. The pre-
processor further analyzes all instructions in this gadget to
determine its impact on the CPU instruction and stack pointers.
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Old  
Sliding Window  

1:  int helper(int cmd,char* in){ 
2: log(cmd, in); 
3: switch(cmd){ 
4:     case CMD_START: 
5:   start(inputs); 
6:   break; 
     . . . 
    } 

start: 
… 

helper 
… 

log: 
… 

Code  

page_a page_b page_c 

New  
Sliding Window  

Fig. 2. The sliding window and its update. In this example, the size of the
sliding window is 2 pages. When the execution flow reaches to log function
(line 2), the sliding window is (page b, page c). Later the window is updated
to (page a, page b) when the start function (line 5) is executed. Note that
the code pages in the sliding window can be non-contiguous.

This procedure is simply redone in each byte of the application
binary. In short, we only require the pre-processor to correctly
analyze a short sequence of code, instead of disassembling the
entire application code all at once. Thus, our pre-processor
can base on any existing linear-sweeping disassembler, such
as objdump, or diStorm [21]. We will introduce the detailed
implementation of the pre-processor and the IG database in
Section VI-A.

B. ROP Detection Triggers

Before describing the run-time detection phase, we first
introduce two types of events that trigger the detection logic:
execution out of the sliding window and invocation of the risky
system calls.

1) Sliding Window: As explained in previous sections,
application code pages outside of the sliding window are all set
as non-executable by ROPecker kernel module. Consequently,
any attempt to execute an instruction out of the window
triggers a page fault exception, and the exception handler
invokes the ROPecker checking logic. If no ROP attack is
detected, ROPecker slides the window by replacing the oldest
page with the newly accessed code page. In this way, the
window always covers the most recent active pages. For
instance, the sliding window in Figure 2 consists of page b
and page c when the execution flow reaches to the log function
(line 2). When the start function (line 5) is executed, page a
is added to the sliding window and page c is deleted.

Due to the temporal and spatial locality of application-
s [20], the usage of the sliding window significantly reduces
the number of times of the ROP checking, and thereby reduces
the performance overhead. The window size is a critical
parameter to keep the balance between the detection accuracy
and performance. Increasing the window size can decrease the
frequency of the invocation of the ROP checking and thus
reduce the system performance overhead, but at the same time,
it increases the possibility for the adversary to launch an ROP
attack only using the gadgets within certain sliding window.
According to the experiment results of Q [17], we recommend
using 16KB or 8KB as the window size. Note that it is
safe to use a relatively larger window in certain cases. For

instance, the target application has been processed by a gadget-
elimination tool, such as G-Free [6]. In that case, the gadgets
in the target application are expected to be extremely sparse.

2) Risky System Calls: Some system calls such as mprotect
and mmap2 are risky because they can allow the adversary to
disable the DEP mechanism so that no exception is raised
when executing outside of the sliding window. To intercept
those security system calls, we modify the system call table
such that the kernel invokes the ROP checking logic prior to
serving the system call request. If an ROP payload is detected
in the application context, ROPecker rejects the request and
terminates the application execution; otherwise it transfers the
execution flow back to the requested system call handler. Note
that we only intercept the system calls that are risky and
invoked by the protected applications.

C. Run-time ROP Detection

The ROPecker kernel module implements the ROP check-
ing logic which detects the existence of an ROP gadget
chain in the past and future execution flow of the protected
application during each trigger. Figure 3 depicts the flow chart
of the detection logic. It begins with condition filtering, which
filters out the irrelevant events that are not triggered by the
protected application. The second step is the past payload
detection, which identifies the gadget chain from the branching
instruction history saved in LBRs. The last step is the future
payload detection that identifies a potential gadget chain that
will be executed right after the triggers. If the total number
of the chained gadgets exceeds a pre-defined threshold (as is
analyzed in Section VII-A), ROPecker concludes that an ROP
attack is caught and terminates the application. Otherwise it
updates the sliding window and resumes the original execution
flow.

ROP Attack 

Checking Point 
Triggered 

Past Payload 
Detection 

Yes 

No 

No ROP 

Continue The Original 
Execution Flow 

Future Payload 
Detection 

Yes 

No 
3 2 

Condition 
Filtering 

1 

Yes 

No 

Fig. 3. The ROP checking logic.

1) Condition Filtering: In this step, the ROP module
checks whether the triggering event is due to the target ap-
plication. For page fault exceptions, ROPecker can distinguish
the exceptions triggered by the sliding window from others,
because the page fault error codes relevant to the sliding
window indicates executing instructions in a non-executable
code page, whereas the normal execution of applications never
trigger page faults with this kind of error code. For system
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call invocation, the kernel module compares the process ID of
the invoker against the IDs of the target applications to select
relevant system calls. The condition filtering is efficient since
it only involves several integer comparisons.

2) Past Payload Detection: As introduced earlier, the re-
cent branches are recorded in the LBR registers. Each LBR
entry records the source and destination address of an executed
branch instruction. To identify a gadget chain, ROPecker
verifies the following two requirement on each LBR entry,
starting from the most recent one: 1) the instruction at the
source address is an indirect branch instruction, and 2) the
destination address points to a gadget. Note that the verification
is very efficient, because ROPecker simply queries the IG
database to get the answer for 1) and 2). Once one LBR
entry fails to satisfy either requirement, ROPecker stops LBR
checking and outputs the length of the identified gadget chain.
If the identified gadget chain length exceeds the threshold,
ROPecker reports the ROP attack and terminates the applica-
tion. Otherwise, it moves to the future payload detection with
the length of identified chain as input parameters.

Recall that the LBR value is not application/process spe-
cific. Thus, we face the challenge of sifting out those records
belonging to the protected application, since noisy records
may increase the false negative or false positive rates of the
ROPecker attack detection. Our solution is to traverse the LBR
queue backwards starting from the most recent one, until we
reach one LBR entry that indicates a context switch. The
context switch entry can be recognized by its unique feature.
Namely, its source address is in kernel space and its destination
address is in user space. Other types of branches must have
the source and destination addresses in the same space. The
ROPecker module does not use LBR entries older than the
context switch one, because the older entries are likely noisy
records (e.g., belong to unprotected applications). Interestingly,
if the context switch entry with its source address in the
ROPecker module, it is exactly the mark left by the previous
detection. In this case, the following LBR entries are still in
our monitored application.

Another challenge is from the limitations of the LBR
mechanism. In LBR, the new records will override the old ones
when the LBR buffer gets full, and the current implementation
of LBR does not provide any mechanism to intercept the
override event or to backup the previous ones. Thus, ROPecker
can not get the whole historical taken branches. In addition, the
noise records may occupy several entries in the limited LBR
registers. Thus, in certain cases, the identified gadget chain
is not long enough to confirm an ROP attack, necessitating
additional information collecting from the future payload de-
tection.

3) Future Payload Detection: This step predicts any in-
coming gadget along the execution flow. According to the
gadget types, i.e., ret-based and jmp-based gadgets, we apply
two methods to handle them respectively.

It is relatively easy to handle ret-based gadgets, because
their destinations are stored on the application stack and the
relative positions can be calculated according to the gadget
instructions. For instance, in the gadget (pop %eax, pop %ebp;
ret), the two pop instructions move the stack pointer 8 bytes
towards the stack base, while the instruction ret retrieves the

top integer of the application stack as its next destination
and increases the stack pointer 4 bytes at the same time.
Following their stack operations, we can correctly re-position
the stack pointer and get the destination of the next gadget.
The ROPecker pre-processor performs this costly instruction
analysis and stack pointer calculation offline and stores the
results in the IG database (Section VI-A). At run-time, the
ROPecker kernel module simply queries the database and
retrieves the results efficiently.

Dealing with the jmp-based gadgets is more challenging,
as their destinations are dependent on the semantics of the
instructions in the gadget. It is obvious that enumerating all
possible combinations of a gadget in the offline processing
phase consumes enormously large storage space. We propose
to emulate such jmp-based gadgets at run-time to reveal the
destinations of the jump instructions. Since most gadgets only
have a few instructions, and the number of jmp-based gadgets
are relatively smaller comparing with ret-based ones in a nor-
mal application, the overhead of gadget emulation is limited.
Moreover, because the offline databases cover most popular
gadget cases, ROPecker seldomly triggers its emulation step.
The performance evaluation results in Section VIII-C2 also
demonstrate this point.

To avoid any side effect on the actual context due to the
emulation, we build a new instruction emulator that emulates
the instructions in a temporally created environment with an
initial context identical to the present one. The implementation
details of the emulator is provided in Section VI-B4.

VI. IMPLEMENTATION

To evaluate the effectiveness and performance of our
approach, we have implemented a prototype ROPecker for
x86 32bit Ubuntu 12.04 with kernel 3.2.0-29-general-pae. The
ROPecker system consists of two key components: 1) an offline
pre-processor which aims to generate a database accelerating
run-time checking, and 2) a loadable kernel module which
responds to the run-time events and invokes the ROP checking
algorithm.

A. Offline Pre-processor

Given a target application, the ROPecker pre-processor
collects the application binaries and their dependent shared
libraries. For each binary, the pre-processor extracts the size
of the executable code segments from the binary header. For
a code segment of n bytes, the pre-processor allocates a bit-
vector of n/2 bytes, such that each byte in the executable
code segment corresponds to a 4-bit slot in the bit-vector.
The slots are indexed by the byte offset in the executable
code segment. As shown in Table II, the slot values are
assigned according to: 1) the type and optional alignment
information of the instruction starting from this byte; and
2) the type and stack modification behavior of the gadget
(in our case, a maximum of six contiguous instructions that
ended with an indirect branch) starting from this byte. During
emulation, instruction information is used to decide whether
the end of the emulated gadget is reached, which is an indirect
branch instruction. During run-time gadget chain detection,
we use the gadget information to identify gadgets and their
chaining points (e.g., a gadget manipulates the stack pointers
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TABLE II. THE FORMAT OF THE BIT-VECTOR TABLE.

Value Instruction Information Gadget Information
Instruction Type Emulation Decision Gadget Type Payload Detection

0000 Aligned non-branch Continue emulation. Not a gadget Stop gadget chaining
0001 Aligned direct branch Stop emulation Not a gadget Stop gadget chaining
0010 Aligned indirect branch (ret) Stop emulation Ret-based gadget Stack offset 4
0011 Aligned indirect branch (call *,jmp *) Stop emulation Jmp-based gadget Need emulation

0100 Aligned non-branch Continue emulation
1) Stack pivoting

Need emulation2) Jmp-based gadget
3) Stack offset too large

0101 to 1110 Aligned non-branch Continue emulation Ret-based gadget Stack offset 4*(Value-4)
1111 Unaligned Stop Emulation Unaligned gadget ROP Found

to point to the next gadget). The bit-vector tables from all
binaries form the IG database. The IG database covers the most
frequently used instruction types, gadget types and their stack
manipulation behavior, and leaves only the rare cases to the
run-time emulator. This design minimizes the invocations of
our emulator and thus reduces the run-time detection overhead.

To build the IG database, we develop a tool to analyze the
gadget information of a given binary, based on the disassembly
library diStorm [21] (around 11K SLOC). Specifically, for
each byte in the executable code segment, we run the gadget-
analysis tool to disassemble six instructions starting at that
byte. If an indirect branch instruction is found, we further
analyze the stack manipulation behavior of the gadget, and
store the result in the IG database. The alignment information
in our implementation is extracted from readelf and objdump
outputs. Note that we could use other disassembler tools
(e.t., IDA Pro or the tool in [22]) to verify the alignment
information.

The alignment information is optional since it is platform-
dependent and the alignment analysis may not be completely
accurate for certain applications. Thus, end users can se-
lectively or completely disable the alignment checking. The
main benefit of the alignment checking is to increase the
bar for launching ROP attacks on x86 platform, because the
adversary has to give up using unaligned gadgets. By doing
so, the adversary generally needs more gadgets to launch an
ROP attack. According to the analysis on the Q data set,
the adversary generally needs two more gadgets for an ROP
attack. Moreover, the adversary also needs more code base.
For example, Q generally requires 100KB or more code base
for constructing an ROP payload with only aligned gadgets.

We choose bit-vectors as our pre-processing database in-
stead of hash tables, because the bit-vector indexing/query is
more efficient and stable. For the bit-vector, the time cost of a
query is only one memory access without false positive, while
for a hash table, the time cost of a query is the computation
cost of the hash function plus one or more memory access if
there is a collision. In addition, the bit-vector is also space
efficient, as indicated in our experiment (Section VIII-B).

B. Kernel Module

We build the ROPecker module as a loadable kernel
module, which can be automatically installed when the system
boots up. The module consists of 7K SLOC, where a large
portion (around 4.4K) is attributed to the instruction emula-
tor [23]. The ROPecker module undertakes four main tasks:

1) to set up ROP checking triggers; 2) to collect the address
locations of the shared libraries, 3) to check the branching
history; and 4) to emulate instructions.

1) ROP Checking Triggers: The module inserts hooks in
the Interrupt Descriptor Table (IDT) and the system call table
to intercept the page fault exceptions and risky system calls,
respectively.

Sliding Window Setup. We use the NX (Never eXecute)
page table permission in any DEP-capable modern processor,
to set up the sliding window. ROPecker initially sets the NX
bits in the loaded virtual memory pages of the application
and library code. During execution, the application will trig-
ger page faults by trying to execute code in non-executable
pages. Once the page fault is captured, the ROPecker module
identifies the relevant faults by using process ID and page
fault error code. The error code is a special combination
(PF INSTR|PF USER|PF PROT ), which means that
the page fault exception is triggered due to the protection
violation during instruction fetching from user space. In the
normal application execution, the code (NX pages) without
execution right will never be executed. Thus, this error code
confirms that the exception is triggered by the sliding window
mechanism.

Risky System Call Interception. The system calls to inter-
cept are mprotect, mmap2 and execve. For the mprotect and
mmap2 calls, the module checks the request before passing it
to the kernel. Any request to change a read-only code region
to writable is rejected. Any request to change the data regions
to executable is rejected. Then, the module invokes the ROP
checking algorithm to ensure that there is no ROP gadget
chain in the current stack. Otherwise ROPecker will return
the system call with an error code to indicate the failure of the
request.

The system call execve is able to start a new process with
some prepared input parameters. For instance, the adversary
may use the libc function system or directly invoke the system
call execve to open a shell, in which the adversary is able
to execute arbitrary commands. The end user can create a
simple policy: ROPecker directly rejects all such requests
for all selected applications. In most cases, it works well.
However, for some legitimate applications, they may also send
such requests for certain purposes. The first policy may lead
to the non-coexistence of ROP with these applications. To
support such applications, ROPecker can be configured to
launch the ROP checking algorithm to verify if there is an
ROP attack. If not, ROPecker passes the request to the kernel.
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By doing so, ROPecker and such applications can coexist, but
the performance overhead may slightly increase due to the
extra checking.

2) Memory Mapping Acquisition: ROPecker should ac-
quire the virtual memory mapping of the protected application
and its shared libraries. If the Address Space Layout Random-
ization (ASLR) mechanism is enabled, the shared libraries are
loaded to random addresses in different application instances.
In the commodity OSes, there is no exported interface for
kernel modules to get the mappings of a particular application.
Thus, in order to locate the exact memory mappings for the
target application, the ROPecker module has to intercept the
mapping-manipulation operations or analyze the corresponding
kernel data structures to construct the mappings.

Operation Interception. For the memory mapping manipu-
lation operations, they are driven by the application requests
through certain system calls. In a Linux system, the kernel
reserves the mapping region for the application binary in the
system call execve, while in the system call mmap2/mummap,
the kernel reserves/releases the mapping region for shared
libraries. By intercepting such system calls, ROPecker can
get the mapping information from the parameters and the
return values. For instance, in the system call mmap2, the
base address of a shared library can be obtained either from
the return value or the first parameter, and the length of the
occupied memory region can be obtained from the second
parameter. In addition, we need to intercept the open and close
system calls, as they provide the name of the shared libraries.
The names will be used in the database installation phase.

Data Structure Analysis. Certain shared libraries (e.g., the
library loader) are loaded by the kernel by default, rather than
being driven by the application request. Thus, we can not
find their mapping information by intercepting system calls.
To handle such cases, we can analyze the corresponding data
structures to get the needed information. In a commodity oper-
ating system, the kernel usually has one or more dedicated data
structure to maintain the memory mapping information. The
Virtual Memory Area (VMA) is the data structure in Linux that
maintains the start and end of memory mappings/segments.
Each library is represented by a VMA structure (i.e., memory
segment). The name of the shared library is also linked to
the VMA structure. In addition, all VMAs are linked together
and the list header can be easily found following the task
structure. Thus, by traversing the VMA list, we can easily
locate the corresponding VMA and get the memory mapping
information. Note that the traversing is only done once, since
the library locations are fixed when the application starts to
run.

3) LBR Access: The IA32 DEBUGCTL MSR is the
control register in the LBR mechanism. Through this MSR,
ROPecker can enable, disable and manipulate the record-
ing behaviors, e.g., it allows the LBR to only record us-
er space branches. The LBR values are stored in the M-
SR registers, from MSR LASTBRANCH k FROM IP and M-
SR LASTBRANCH k TO IP, where k is the number of the
branch record, e.g., the range of k is 0-16 on the Intel i5
processors. To read and write such LBR MSRs, ROPecker
must leverage the privileged instructions such as rdmsr and
wrmsr.

4) Instruction Emulation: The ROPecker module creates a
shadow environment for emulating instructions. In the shadow
environment, the initial context is initialized using the context
of the interrupted application. It is challenging to create the
shadow virtual address space. The virtual address space is
quite large, e.g., 3GB in an x86-32bit system. To get a
complete copy, the time and space cost will be extremely
high. In addition, the shadow environment will be immediately
dropped when the current round of the checking finishes. To
save cost, we borrow the copy-on-write idea from the Linux
kernel. Specifically, we make the virtual address space read-
only for the emulator, meaning that the emulator can freely
read any address but can not write. When a write operation
is needed, ROPecker creates a mapping table which records
the destination address together with the new value. Later, any
reading or writing to this address will be redirected to the
corresponding table entry. After the checking algorithm, the
mapping table is cleared for avoiding polluting the next round
emulation.

VII. PARAMETER EFFECTS

In this section, we discuss and evaluate the effects of
ROPecker parameter tuning, in terms of performance and
security (accuracy).

A. Gadget Chain Threshold

The gadget chain threshold affects the performance of the
monitored processes. Bigger threshold generally incurs higher
performance overhead. However, the performance degradation
is very limited according to our experiment results. Figure 4
indicates that ROPecker stops the ROP detection after one or
two attempts in up to 96.8% cases. The gadget chain threshold
also affects the detection accuracy. An ideal threshold should
be smaller than the minimum length minrop of all ROP gadget
chains, and at the same time, be larger than the maximum
length maxnor of the gadget chains identified from normal
execution flows. The threshold can be any number between
maxnor and minrop, and the choice does not affect the
performance, because the ROP detection algorithm always
stops before it reaches the threshold. If maxnor is larger than
minrop for certain applications, it is impossible to find out
an ideal threshold and ROPecker inevitably produces false
positives and/or false negatives.

To find maxnor, we measured the lengths of gadget chains
from many normal applications, which include 17 popular
Linux tools (e.g., grep, find, less and netstat) under directory
/bin and /user/bin, 12 benchmark tools of SPEC INT2006, and
3 large binaries (the video processing tool ffmpeg 2.2.0, the
graphic processing tool graphics-magick-1.5.1, and the Apache
web server httpd-2.4.6). In our experiments, ROPecker counts
the lengths of the identified gadget chain in each invocation.
As shown in Figure 4, no gadget is detected in 84.37%
of the ROPecker invocation. The counts of detected gadget
chain drops when gadget chain length increases. The detected
chains with 6, 7, 8, 9 and 10 gadgets together only occupy
0.00006% in the total measurements. 10 is the largest length
of gadget chain we have detected in the experiments. Note that
the percentage results also reflect the efficiency of our ROP
detection algorithm on normal applications, i.e., in the major
cases (84.37%) the future payload detection stops the analysis
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Fig. 4. The length of payload measurement results. The number (0 to 5)
is the gadget chain length. In the major cases (84.37%), there is no gadget
identified at all.

after one attempt. To decide minrop, we also measured the
ROP payload collected from the real world ROP attacks and
generated by the general-purpose ROP compiler Q [17]. The
shortest aligned gadget chain contains 17 gadgets and the
longest one has 30 gadgets. Based on the above results, we
can safely choose a number from 11 to 16 as the threshold for
major applications. Given a specific application, we can even
choose a smaller threshold. For instance, the longest gadget
chain in Apache server has only 4 gadgets, so the threshold for
Apache can be 5. In this way, any gadget chain that attempts
to use more than 5 gadgets will be detected.

B. Gadget Length

In our implementation, we assume a gadget contains no
more than 6 instructions. This is true for most of gadgets in
the real-world ROP attacks. However, a smart adversary may
attempt to use long gadgets (with more than 6 instructions) to
bypass our ROP detection. Fortunately, long gadgets usually
introduce more side effects, and hence the adversary has less
opportunity to collect enough suitable long gadgets to form a
valid chain for a meaningful ROP attack. If an adversary has
to use consecutive short gadgets, it is likely to be detected
by ROPecker. However, a smarter adversary may carefully
insert long gadgets into consecutive short gadgets to make the
length of each segmented gadget chain not exceed the gadget-
chain threshold, e.g., use a long gadget for every 10 gadgets.
Counting possible gadgets in a single window transition only,
ROPecker cannot reveal this type of ROP attack.

To mitigate long gadget attacks, we propose a solution
to extend ROPecker. When mixing short gadgets with long
gadgets, the adversary creates many segmented gadget chains
though each of them is shorter than the threshold. If we ac-
cumulate their lengths in several consecutive sliding windows,
the accumulated length may longer than the maximum one
collected from the normal execution flows. We evaluated this
extension in the experiment, where we choose to measure three
consecutive sliding windows and count the total number of
gadgets. According to the measurement results, the minimum
accumulated length of the tested ROP attacks collected from
real world samples and generated by Q is 43, while the
maximum accumulated length of the major tested applications
is 13. The gap still tolerates a certain degree of long-gadget

TABLE III. THE CONFIGURATIONS OF THE EXPERIMENT MACHINE.

Configurations Descriptions
CPU Intel i5 M540 with two 2.53GHZ cores
Memory 4GB DDR3 1333MHZ
Network Card Intel 82577LM Gigabit
Disk 320G ATA 7200RPM

attack, allowing our algorithm to distinguish ROP attacks from
normal executions. For a particular application, the gap is even
larger, e.g., the maximum length of htediter is 9. Even so, if the
adversary inserts too many long gadgets, our detection sill fails.
The extra space cost for the multiple-window accumulation
extension is small, since ROPecker only needs a short cycle
buffer (i.e., the length is 3 in our example) to maintain the
gadget lengths. In addition, the extra time cost is also small,
because the checking only needs one integer comparison.

C. Sliding Window Size

The sliding window size is also a critical parameter for
ROP detection. Larger window size offers better performance,
but it may give more opportunities for the adversary to collect
enough gadgets within the sliding window to launch a mean-
ingful ROP attack. Thus, we should select a proper window
size to balance the performance and security. According to the
statistical results from Q [17], the adversary has low possibility
to launch a meaningful ROP attack, if we can limit the scope
of the executable code at any time within 20KB. To be safety,
we recommend setting the window size smaller than 20KB.
In our experiment we set the window size as 8KB (2 pages)
and 16KB (4 pages). According to the performance results in
Section VIII-C, the performances with larger window size are
generally better, but the performance differences are not that
big. Even in some cases, they can achieve almost the same
performance.

VIII. EVALUATION

We evaluate the security effectiveness, the space cost
and the performance overhead of ROPecker. For the security
evaluation, we verify our algorithm with real ROP attacks and
those generated by Q. For the space evaluation, we measure
the disk and memory cost consumed by ROPecker. For the per-
formance evaluation, we use the SPEC CPU2006 benchmark
suite [24], which is processor, memory and compiler stressing,
Bonnie++ [25] which is disk I/O stressing and Apache server
httpd-2.4.6 [26] which is network stressing. The source code
of the SPEC CPU2006 benchmark suite is compiled with
gcc, g++ version 4.6.3 with the default Makefile. We run
our experiments on a system with the configurations shown
in Table III.

A. Security Evaluation

To verify the strength of ROPecker, we conduct several
tests on two real-world examples and a number of payloads
generated from Q. The experiment results show that ROPecker
can detect all these attacks with zero false negatives.

In the first test, we use a small program (demonstrated
in ROPEME [27]) that has a simple stack buffer overflow
triggered by a long input parameter. We use ROPEME to
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analyze the program and generate usable gadgets. We manually
chain them together to craft an ROP attack that causes the
program to start a shell which can facilitate the following
attacks. We then verify our system with a realistic program: a
Linux Hex-editer (htediter) (2.0.20). The ROP example on the
htediter can be found on the web site [28]. An appropriately
chosen long input can trigger a stack overflow. The template
of the ROP payload is also available on the website. We only
replace the gadget pointers according to the complied binary
in our system.

At last, we test ROPecker against the gadget chains gen-
erated by Q. Q uses semantic program verification techniques
to identify the functionality of gadgets and generates a valid
ROP payload. Specifically, we generate the payloads for the
applications under directory /bin/ and /usr/bin/. To avoid
manually exploiting each application, we build a new tool as
a simulator to simulate the application execution environment.
We assume that the adversary has compromised the process
and successfully make the execution flow start from the gadget
chain. Once a gadget jumps out of the simulated sliding
windows, an algorithm will count the number of gadgets in the
rest of chain. If the number is larger than the threshold, an ROP
attack is identified. Specifically, the detection algorithm itself
can successfully detect 100% all the payloads generated from
253 applications under directory /bin and directory /usr/bin/.

B. Space Evaluation

The space cost includes disk and memory costs, which are
mainly from the generated databases. In our experiment, the
databases for all 2393 shared libraries under /lib and /usr/lib
of the Ubuntu Linux 12.04 distribution is about 210MB. On
average, a database is 90KB. For example, the database of
libc-2.15 is 832KB, and the ld-2.15 database is 68KB. Note
that the size of a database is only related to the size of the
original binary file, rather than the detection parameters (i.e.,
gadget length, gadget chain threshold and sliding window
size). To further reduce the space cost on the disk, the database
can be compressed. The experiment results show that all
databases of shared libraries can be compressed to about
19MB using bzip2. The compression rate reaches up to 91%,
which also indicates that the potential gadgets are sparse in
the binary files.

At run-time, the databases are dynamically loaded into
memory according to the demands of the monitored processes.
To further reduce memory cost, we allow the loaded databases
to be shared by all processes. For instance, if one process has
loaded the libc database, all other monitored processes can
share it without reloading. Thus, the memory cost of ROPecker
is not large. Even if ROPecker loads all databases of the shared
libraries into memory, the memory cost is still acceptable. The
memory space effects from gadget chain threshold, gadget
length and sliding window size are quite small and limited.
To maintain n sliding windows for a process, ROPecker only
needs an n-length list recording the base addresses of the
code pages within the sliding windows. Due to the smallness
of gadget length and gadget chain threshold, they only need
limited data structures temporal available in the gadget chain
identification procedure.

TABLE IV. THE MICRO-BENCHMARK RESULTS FOR SYSTEM CALL
INTERCEPTION.

Operation open close execve mmap mprotect
Time (µs) 0.03 0.04 0.86 0.05 0.03
Operation munmap pre-exception post-exception
Time (µs) 0.04 0.03 0.01

TABLE V. THE TIME COST IN ROP CHECKING.

Operations Time (µs)
Past Gadget Chain Detection 0.07

Future Gadget Chain Detection W/o Emulation 0.91
W/ Emulation 2.61

C. Performance Evaluation

In this experiment, we use micro- and macro-benchmark
to evaluate the performance of ROPecker. We also evaluate
its performance impact to the target applications and other
applications in the same platform.

1) Micro-Benchmark: The micro-benchmark is used to e-
valuate the time cost of each operation introduced by ROPeck-
er. The time cost introduced by system call interception
may affect the performance of other applications, but other
operation costs (e.g., database installation) are confined to the
protected application.

To measure the time cost on the other applications, we
run ROPecker without any target application. The system call
interception code in the execve needs to check the application
name, while others only check the process ID (PID). The
checking costs are listed in Table IV. The experiment results
show that the time overhead introduced to other applications
is quite small.

We then use the htediter as an example to measure the time
cost of loading the IG database. Note that the time is dependent
on the size of the database. For instance, it takes 283µs to
load the database for libc-2.15 (849.93KB), and 51.07µs for
ld-2.15 (65.55kB). Although the loading is relatively high,
it is only performed once in the whole life cycle of the
protected application. In addition, the database installations
are mostly done in the application initialization stage, before
the application starts execution. Note that the databases of the
shared libraries will not be re-loaded if they have already been
loaded by other protected applications.

We also measured each step of the ROP checking algorith-
m. As shown in Table V, the performance overhead is quite
low. Note that the total time cost for a particular checking is
not the sum of all these steps. The reason is that some branches
(e.g., the payload checking with emulation) may not be taken
in that round. In fact, payload detection (with emulation) is
rarely performed. In our test cases, the emulation is only
invoked in about 1.7% of all detection invocations.

2) Macro-Benchmark: The macro-benchmark tests the
overall performance impacts of ROPecker on the target appli-
cation and the system. We choose three aspects to evaluate:
CPU computation, disk I/O and network I/O. Considering
accuracy, we set the size of the sliding window always under
the upper bound (20KB). Specifically, we choose 8KB (2
pages) and 16KB (4 pages) as the size of the sliding window
in our experiments.
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Fig. 5. The SPEC INT2006 Benchmark Results.

SPEC CPU Benchmark. We choose the benchmark tool
SPEC CPU2006 benchmark suite to evaluate the computation
performance. Specifically, we run the testing suits with and
without ROPecker. The results are illustrated in Figure 5,
which shows that ROPecker only introduces 2.60% perfor-
mance loss on average.

Disk I/O Performance Evaluation. We choose the bench-
mark tool Bonnie++ (version 1.96) to evaluate disk I/O perfor-
mance. The tool sequentially reads/writes data from/to a par-
ticular file in different ways. The read/write granularity varies
from a character to a block (i.e., 8192 Bytes). Furthermore, we
also test the time cost of the random seeking. Figure 6 shows
the disk I/O measurement results which show the performance
overhead on the disk I/O is quite low, i.e., 1.56% overhead on
average.
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Fig. 6. The disk performance results.

Network I/O Performance Evaluation. We choose the
Apache web server httpd-2.4.6 to evaluate the network I/O.
In our experiments, two machines are directly connected
through a network cable. The tool ab on the client ma-
chine sends network requests (e.g., ab -n 100000 -c 50
http://192.168.1.11/index.html) to retrieve a web page on the
server running with ROPecker. The Apache web server is
configured to work in mpm-worker mode. It has one worker
process with 40 threads. Figure 7 shows the experiment results
of multiple test scenarios: “HTTP” and “HTTP-4k” represent

that the server running HTTP protocol serves the default work
page (45 bytes) and a 4K bytes web page, respectively. ”HTTP-
S” and ”HTTPS-4k” denote that the server running HTTPS
protocol with a 1024 bit RSA key. The test results indicate
that a larger sliding window achieves better performance, and
the performance overhead on network I/O is acceptable. For
example, the performance overhead is 6.33% when the Apache
server delivers the default 45-byte HTTP web pages, and is
only 0.08% when serving 4K byte HTTP web page. Even in
more computation-bound cases, e.g., HTTPS, the ROPecker
overhead is only 9.72%, when choosing the 4-page sliding
window.
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Fig. 7. The network performance results.

IX. DISCUSSIONS

A. Stack Pivoting Attack

The adversary can launch the stack pivoting attack [29] to
evade ROPecker detection. In this attack, the adversary puts
the payload into another memory region (e.g., a heap buffer or
the global data region), and manipulates the stack pointer to
point to that region. Fortunately, the future payload checking
algorithm is able to defeat such attacks, since ROPecker always
follows the execution flow to identify the potential gadget
chain, without relying on the trustworthiness of the stack
information.
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B. Gadget Gluing Attack

Our payload detection algorithm is designed based on
the assumption that a gadget does not contain direct branch
instructions, which is also used in the many previous work [7]–
[9], [12], [14], [17]. Therefore, the gadget chain detection stops
when a direct branch instruction is encountered. However, the
ROP attack in theory can foil our detection by constructing
a special gadget which consists of two short code sequences
glued together by a direct branch instruction. We call this type
of attack as Gadget Gluing Attack, which has not been found
in real-life to the best of our knowledge.

Gadget gluing attacks are very powerful, as they lead to
high ambiguousness between ROP attacks and normal execu-
tions. The current version of ROPecker can not well defend
against them. To mitigate such attacks, in the future, one
possible extension of ROPecker is to follow the direct branch
at run-time. If its destination is a gadget, ROPecker treats the
whole as a glued gadget. The following step can be repeated
one, two or more times (according to the configuration) until
getting a gadget or reaching the times limit. This approach
may introduce more false positives and/or false negatives.

C. Short Gadget Chain

In certain extreme cases, the gadget chain may only contain
one or two gadgets. For such special ROP attacks, our scheme
can not detect or prevent them because the length of the gadget
chain does not exceed the threshold. However, due to the
limited power of the adversary in such attacks, in fact, their
goals usually are not directly launching malicious behaviors,
while they aim to open doors for facilitating the following
ROP attacks. In that way, our scheme is likely to detect the
following ROP attacks.

D. Gadgets Within Sliding Windows

In most cases, the gadgets within the sliding windows are
not enough for an ROP attack. However, in the whole life-
cycle of a process, we can not eliminate the possibility for the
adversary to find one sliding window where an ROP attack
is possible. For such cases, the current version of ROPecker
cannot detect them. One possible solution is to dynamically
reduce the window size to lower the possibility of ROP attacks.
Specifically, we can observe all the sliding windows that
ever occurred during normal executions, analyze each of them
to evaluate the possibility of launching an ROP attack, and
record the highly possible ones. According to those recorded
sliding windows, ROPecker could choose a dynamic way to
temporally reduce the window size when the execution flow
is running in one of them, and immediately restore the size
when the execution flow moves out.

X. RELATED WORK

A. Randomization

Address Space Layout Randomization (ASLR) is proposed
to prevent ROP attack by randomizing base addresses of code
segments. Given that the adversary has to know the locations
of the gadgets to launch an ROP attack, the ASLR technique
seems to effectively prevent ROP attacks. However, it has been
shown that ASLR can be bypassed by leveraging brute-force

attacks [30] or information leakage attacks [31]. In addition,
some libraries or applications may not be ASLR-compatible,
which allows the adversary to find useful gadgets to circumvent
ASLR mechanism.

Facing such difficulties, researchers proposed the binary
stirring technique [8], which imbues x86 native code with
the ability to self-randomize its instruction addresses each
time it is launched. Note that the size of the modified binary
file increases on average by 73%. The ILR [7] technique is
proposed to randomize the location of every instruction in a
program for thwarting an attacker’s ability to re-use program
functionality. The new generated ILR-programs have to be
executed on a dedicated Virtual Machine (VM). The run-time
performance overhead is relatively low, but the rule files are
quite large and their in-memory size are even worse, e.g., the
on-disk size of the rule file for the benchmark tool 481.wrf is
about 264MB, while its in-memory size reaches to 345MB.
Note that the whole database in our system is only 210MB..

B. Compiler-Based Approaches

The control flow integrity [19] is a typical technique to
defend against the code reuse attack. However, the traditional
control flow works in function level, which leads to the failure
of the detection of the ROP attack since its disorder of control
flow is on instruction level. CFLocking [5] aims to limit/lock
the number of abnormal control flow transfer by recompiling
a program. Essentially this technique can not handle the ROP
attacks that use unaligned gadgets.

The return-less kernel [4] is a compiler-based approach
that aims to remove the ret opcode from the kernel image by
placing the control data into a dedicated buffer instead of the
stack. Obviously this technique only defends against ret-based
ROP attack. Following the same idea, Shuo et al. [15] propose
a virtualization based approach, which requires the source code
and compiler to insert control-data-integrity-checking code into
function prologue and epilogue. Again, this approach can not
defend against the ROP attack that use jump/call instructions.

G-free [6] is a compiler-based approach, which aims to
1) eliminate all unaligned indirect branch instructions with
aligned sled [6] and 2) protect the aligned indirect branch in-
structions to prevent them from being misused. G-free requires
side information, i.e., the source code. Moreover, the inserted
code may introduce new gadgets, which can be potentially
used by the adversary.

C. Instrumentation-Based Approaches

TRUSS [32], ROPDefender [2], DROP [1] and
TaintCheck [33] use code instrumentation technique to
insert checking code into binary code to detect ROP attack.
Such approaches not only break the binary integrity, but
also suffer high performance overhead. For instance, the
preliminary performance measurements for DROP range from
1.9X to 21X, and the performance overhead for TaintCheck is
over 20X. In addition, some of them, such as ROPDefender
and DROP only focus on ret-based ROP, rather than handling
all types of ROP attack.

To overcome the high performance overhead issue, sev-
eral new approaches are proposed. Specifically, the IPR [9]
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technique is proposed, which aims to smash the gadgets in
place without changing the code size. However, many gadgets
can not be removed using the in-place technique. In addition,
the in-place smashing technique may not always smash a
significant part of the executable address space [9], and it
is hard to give a definitive answer on whether the remaining
un-modifiable gadgets would be sufficient for constructing a
meaningful ROP attack. The ROPGuard [3] and KBouncer [11]
approaches only add the checking points in the selective
critical functions (e.g., Windows APIs) by instrumenting the
binary code on-the-fly. Although the infrequent invocations
of the checking algorithm lead to low performance overhead,
they inevitably miss the ROP attacks that do not use those
paths. Note that the ROPGuard only works the non-JOP
code and KBouncer completely relies on non-fully reliable
LBR records, which could be overflowed or polluted during
context switches. CCFIR [10] randomly inserts all legal tar-
gets of indirect control-transfer instructions into a dedicated
Springboard board, and then instruments the binaries to limit
indirect transfers to flow only to the board. CCFIR suffers
from compatibility issues due to the integrity protection of the
system shared libraries on certain platforms (e.g., Windows 7).
In addition, the compatibility issue may lead to the failure of
the ROP defence since the adversary may only use the gadgets
from such non-instrumented system libraries.

D. Others

CFIMon [34] is to detect a variety of attacks violating con-
trol flow integrity by collecting and analyzing run-time traces
on-the-fly. However it has high detection latency that may
cause it too late to detect an attack. MoCFI [35] is a framework
to mitigate control flow attacks on smart phones. It performs
control flow integrity checking on-the-fly without requiring the
applications source code, and the experiment results show that
it does not induce notable overhead when applied to popular
iOS applications. Polychronakis et al. propose a method [36]
to identify ROP payloads in arbitrary data. The technique
speculatively drives the execution of code that already exists
in the address space of a targeted process according to the
scanned input data, and identifies the execution of valid ROP
code at run-time. The basic idea of the payload detection
method has been adopted by our payload checking algorithm.

XI. CONCLUSIONS AND FUTURE WORK

We have presented ROPecker, a novel and universal ROP
attack detection and prevention system. We have innovated
two techniques as the main building blocks of ROPecker.
One is the gadget chain detection algorithm which detects
the chain in the past and future execution flow, and the other
is the sliding window mechanism which allows the detection
algorithm to be triggered with a proper timing so as to achieve
high accuracy and efficiency. ROPecker does not require source
code, special compiler, or binary instrumentations. In fact, our
scheme is complementary to instrumentation- and compiler-
based approaches, as well as randomization schemes. Our
scheme provides another line to defend against ROP attacks.
We evaluated the security of ROPecker by running experiments
with real-life ROP attacks and those generated from Q. We also
evaluated its performance by running benchmark tools which
show acceptable performance loss.

Future Work. The current design and implementation of
ROPecker focus on user-space ROP attacks. In the future
work, we will extend ROPecker to defend against kernel-
space ROP attacks, because the hallmarks of ROP attacks
are still there. However, ROPecker should not be placed in
the kernel space any more, since it may be disabled by the
adversary once the kernel is compromised. An promising way
is to move ROPecker into the hypervisor space, where the
adversary cannot access. By doing so, the performance penalty
will be higher because the host-guest switch cost is higher than
the one of kernel-user context switch. The performance loss
may also be introduced by interrupts and exceptions, because
they may introduce poor temporal and spatial locality for the
kernel execution flow, and thereby increase the frequency of
the detection algorithm invocation.

In the future work, we also aim to extend ROPecker to
support ARM platform. The ARM-based CPUs might not have
LBR registers or the registers with similar functionality. Thus,
the past payload detection will be removed in such environ-
ment. Fortunately, the ROPecker future payload detection still
works, unlike other schemes [11] that completely rely on LBR.
On ARM platforms, instructions are aligned to 16 bits or
32 bits. This will simplify the disassembler and the gadget
analysis of the ROPecker pre-processor. The minor change is
that the optional alignment checking does not work on ARM-
based platform.
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