
Enhanced privilege separation for commodity sofware on virtualized platform

Mingyuan Xia, Miao Yu, Qian Lin, Zhengwei Qi, Haibing Guan
School of Electronic, Information and Electrical Engineering; School of Software Engineering

Shanghai Jiao Tong University
Shanghai, China

{kenmark, superymk, linqian, qizhwei, hbguan}@sjtu.edu.cn

Abstract—Conventional privilege separation can effectively
reduce the TCB by granting privilege to only the privileged
process. However, since they rely on process isolation for secu-
rity assurance, kernel space malware can easily compromise.
Meanwhile, the frequent inter-process communications between
the privileged and unprivileged process incurs notable and
inevitable overhead. To ameliorate these problems, we propose
to keep both the privileged and unprivileged portions in the
same process and leverage virtualization to construct a secure
container for the privileged fraction. The virtual machine
monitor intercepts all the boundary switches transparently to
ensure the integrity and privacy.

We have implemented a prototype, named Coir, based on
Xen hypervisor. As a case study, a real-world remote control
application named TightVNC is partitioned and protected in
Coir-enabled unmodified Windows XP. The experiment result
illustrate the effectiveness and performance penalty of our
system.

Keywords-virtualization; privilege separation; security;

I. INTRODUCTION

Growing functionalities of commodity software incur
more complexity and uncertainty, which downgrades the
security guarantee of them. Recent researches [1] and prac-
tical projects 1 apply privilege separation on the source code
of application to maintain least privilege. These approaches
partition the original program into two processes (privileged
process and unprivileged one) and employ Inter-Process
Communication (IPC) for interaction. However, since the
security of this setting relies on process isolation, malware
residing in the OS kernel can easily exploit against the
integrity and privacy. Furthermore, frequent IPC requests im-
pose remarkable and inevitable overhead which is claimed to
be about 2x to 8x slowdown for basic communication prim-
itives from existing tools. Facing this situation, we propose
to perform the privilege separation without employing the
dual process mechanism. Instead, we rely on virtualization
to ensure the isolation of security-critical fraction of a target
application from the other parts (unprivileged application
code and untrusted OS kernel).

With the renewed popularity of system level virtualization,
an increasing number of recent researches on security are
leveraging virtual machines. Recent research showed that

1Privilege separated OpenSSh:
http://www.citi.umich.edu/u/provos/ssh/privsep.html

strong isolation of virtualization benefits security tools by
separating them from untrusted surroundings. Introspection
techniques [2], [3] monitoring the system from trusted VM
witness better reliability [4]. Though strong isolation char-
acterizes the virtualization, it always suffers tough efforts to
be effectively applied for the security usage. Many former
studies of the virtual machine based software protection are
rough and of the guest OS dependence [5]. The approaches
of passive monitoring [6], [7], [8], [9] only detect malicious
instructions without defending the attacks. Although the
active monitoring could detect attacks earlier and prevent
certain attacks from succeeding [10], [4], the considerable
overhead induced by the frequent boundary switching be-
tween Virtual Machine Manager (VMM) and virtual ma-
chines limits their practical usage. Moreover, fine-grained
protection is generally unavailable in these approaches due
to the lack of sensitive semantic and protector awareness.

Instead of monitoring the overall guest environment from
a higher privilege level, our system targets privilege sep-
arated applications which expose the security semantics
during privilege partition. We reuse part of the conventional
privilege partition to delimitate the security-critical portions
with the help of user annotations. During runtime, we
add a protection component to the hypervisor and realize
the isolation between the privileged code and unprivileged
fraction.

The contributions of our work are summarized below:
∙ We propose a novel mechanism to combine the advan-

tage of virtualization and privilege separation to gain
better protection for privileged fraction of applications.

∙ We employ virtualization isolation instead of process
isolation to ensure security assurance. Instead of de-
pending on the whole OS kernel which is prone to
compromise, security-critical portions are ultimately
protected by the separate execution environment that
our system provides.

∙ By taking a solo process approach, we manage to
reduce the overhead caused by IPC methods. We ob-
serve a general speedup from our practical case study
when compared with conventional privilege partition.
Besides, our performance is expected to improve as
advanced virtualization support (like hardware-assisted
nested paging) matures.



The rest of this paper is organized as follows. Section
II provides the assumptions and design goals for our work.
Section III explains the design of the architecture and the
implementation of current prototype. Section IV evaluates
our system with a practical case study which includes the
effectiveness test and overhead analysis. Section V summa-
rizes related work and Section VI concludes.

II. ASSUMPTIONS AND DESIGN GOALS

In this section we examine the requirements for security
sensitive portions and present the pre-requisite for our pro-
tection approach.

A. Security Requirements

After privilege partition, the sensitive portions are ex-
tracted and the security requirements can be concluded as
follow:

∙ (R1) Launch Time Integrity Verification: Before the
secure execution environment builds up, any attempt to
tamper with the integrity sensitive code and data before
launch time should be detected and blocked.

∙ (R2) Legitimate Runtime Access: Only privileged
fraction owns the permission to manipulate the sensitive
data or change the sensitive code (self-modifying code).
The unprivileged part can by no means corrupt the
integrity of the sensitive code or have access to the
sensitive data.

∙ (R3) Controllable Sensitive Boundary Transition:
The switches between the untrusted and sensitive zone
should be known, i.e., the execution flow can transfer
between the untrusted part (OS or unprivileged fraction)
but the protection system should be aware and provide
the correct view of private resources.

∙ (R4) Trusted Services: Sensitive code should be able
to request system services by issuing system call but
the OS should not be able to corrupt the code integriy
or leak the private data to others.

B. Assumptions and Threat Model

We make the standard assumptions seen in most other
virtualization security architectures [10], [11], [12], [2], [13].
Coir is expected to run on the bare metal environment, i.e.
directly on hardware rather than within the host operating
system, excluding the recursive virtualization situation. The
VMM ensures the isolation among guest VMs, and owns
the highest privilege level to monitor VMs’ behavior. Note
that attacks such as Blue Pill2 [14] are not possible because
a VMM using virtualization extensions is already installed
as part of our architecture [10].

This paper is concerned with privilege-aware application
that can be separated by conventional privilege partition
tools. The vulnerabilities of the privileged code are not

2Blue Pill: http://invisiblethings.org/

within the protection and in extreme cases, the proactive
leakage of private information by the privilege code will
not be protected.

Our threat model is realistic and assumes that an attacker
can do any behaviors including diverse attacking tricks
in the guest VM. This includes malicious code injection,
rootkit, buffer overflow, etc. Besides, the untrusted guest VM
environment involving OS kernel, drivers and services may
also expose security holes.

III. DESIGN

A. Overview

The overall composition of our system is shown in Fig-
ure 1. Coir reuses the front end of conventional privilege
separation tools to identify and extract the sensitive-critical
portion from the original source code. The back end is
redesigned to cater to Coir runtime protection component.
Instead of constructing another process for security-critical
portions extracted, Coir utilizes compiler directives to gather
sensitive portions into certain section of the executables.
During runtime, Coir-enabled hypervisor will create a sepa-
rate execution environment for the privileged part, which is
aided by memory virtualization as well as the hooks plugged
by the back end to inform Coir of possible boundary switch.

Generic front end

Ordinary fraction

Sensitive fraction

Annotated source code

Coir specific back end

Coir-aware sensitive fraction

Build system

Executable

Figure 1. The work flow of Coir. The back end of traditional privilege
separation tools is modified to cater to Coir.

B. Privilege separation

Coir does not invent a new method to analyze the legacy
source code. Instead, we utilize the majority of existing priv-
ilege partition techniques [1], [15] and take full advantage
of the static analysis capacity of these tools. These previous
work leverage static analysis like data flow analysis [1] to
delimitate the privileged code that handles the resources



indicated by the programmer annotation. These tools follow
two phases to process the source code. The front end takes
annotated source code as input and export the partition
result (in forms like a list of sensitive functions or the
like). Then the back end is cascaded to revise the extracted
sensitive portions. The modification done to the sensitive
portions is on demand. Traditional privilege partition needs
to examine all the function call in the sensitive portions and
replace some of them with Remote Procedure Call (RPC) to
functions within the unprivileged process, or slave process.
Finally the build system will generate the executables from
the modified source code.

Coir rewrites the back end and manages to plugs hooks on
each function call in the sensitive portions. These hooks are
necessary to inform the runtime protection component of the
upcoming function call, which will be discussed in the next
section. Sensitive functions identified by the front end of
privilege partition are adorned by certain compiler directives
to gather them in fixed section of the final executables.
Though these directives differ from one compiler to another,
we manage to wrap them with macros and eliminate the
difference of compiler and system. In our current prototype,
Microsoft Visual C++ and GNU C/C++ Compiler that gen-
erate Portable Executable (PE) for Windows are supported
and Executable and Linkable Format (ELF) for Linux is
also acceptable since both executable format employ the
segment (section) design and modern linkers are capable of
customizing the layout with specific directives. Finally, the
sensitive section of the executables is encrypted and hashed
to enable checksumming at launch time, which verifies that
the static integrity is not corrupted (R1).

C. Sealed runtime execution environment

Once the sensitive area is validated by R1, Coir will
shepherd the runtime integrity to ensure that the access
to sensitive area is well limited (R2), the control flow
transfers between boundaries are verified by VMM(R3) and
the system services for sensitive code are trusted(R4). Coir
virtualizes a trusted execution environment called sealed
execution environment for sensitive code while unprivileged
code still inhabits the primitive environment supplied by the
guest operating system. The sealed execution environment
(SEE), creates an isolated and limited scope for the sensi-
tive resources to be accessed. These resources (code, data,
runtime stack, etc.) will be automatically cloaked at the very
point that the border transition happens (R2) and will by no
means be leaked to the outside world.

We abstract the communication between the sealed exe-
cution environment and the primitive one into three patterns:

∙ Sensitive entry refers to the invocation of a sensitive
function from the outside world.

∙ Ordinary entry refers to calling functions outside the
privileged area during the sealed execution. Common

Normal Code 

(Coden)

Normal Data 

(Datan)

Sensitive Code 

(Ann(Codes))

Sensitive Data 

(Ann(Datas))

Virtual Machine Manager

OS Kernel

Primitive
execution environment

Sealed
execution environment

Runtime binary Image

Coir security component

R1

Execution

Data access

R2

R3

R4
Border

Figure 2. Coir relies on a runtime protection component added to
hypervisor to protect the Coir-aware applications. Four requirements for
the separated model are examined in the architecture.

manifestations are calling unprivileged functions or
making system call.

∙ Interrupt refers to the interruption of sealed execution
by asynchronous events like external interrupts and
program exceptions.

Coir employs multiple strategies to intercept all these
transition events, including hardware-assisted virtualization
(HAV) and Coir-aware configuration done via privilege
partition. These strategies take the advantage of advanced
virtualization technology and privilege partition to achieve
a balance of flexibility and efficiency.

Nested paging.: The fundamental mechanism in use
benefits from the memory virtualization technology. Nested
paging enables another level of address mapping which
translates guest physical address to machine address. The
additional mapping can be performed either by hardware
(Intel Extended Paga Table (EPT) [16], AMD Nested Page
Table (NPT) [17]) or by software (Shadow Page Table [18])
transparently and unnoticeably to the guest OS. Similar to
conventional paging scheme, nested paging allows for setting
access bit for a certain guest physical page. When HAP
access violations occur (also named as nested page fault), a
VM Exit causes control flow to be passed from the guest to
the VMM. The analogue relationship between conventional
paging facility on x86 architecture and HAP enabled by
hardware-assisted virtualization is demonstrated in Figure
3.

1) Sensitive entry.: Coir manipulates two sets of sensitive
pages for different execution environment and maintains the
correct mappings between switches. Only the sensitive pages
for sealed execution contain decrypted sensitive content
and no access control. The other set, however, has useless
data with no execution permission. During the primitive
execution, when a certain function call refers to the address
within sensitive pages, a nested page fault will happen. The
VMM intercepts this fault and informs Coir to change the
execution state. Once Coir has done all the preparation work
and enters the sealed execution environment, sensitive pages



Guest Virtual 

Address Space

Machine Address 

Space

Guest Physical 

Address Space

Paging 
(Managed by Guest OS)

Nested Paging
(Managed by Hypervisor)

R

W

X

R

W

X

Ordinary 
Code/Data

Sensitive 
Code/Data

R

W

X

R

W

-

R

W

X

Shadow 

view

Real view

Figure 3. Nested paging compared with traditional paging scheme.
The extra mapping enables Coir to manipulate different view of memory
according to the context while keeps unnoticeable to the guest environment.

with real content and full access are mapped and the return
address is marked non-executable to trap the exit (R3). The
VMM resumes the execution of the guest virtual machine
and unless another two events that transfer the control back
to the outside are encountered, sensitive code can execute
without any interference from the VMM. On exit, CPU will
be redirected to the return address and trapped again into
Coir to finish necessary tasks before resuming to primitive
execution environment.

2) Ordinary entry.: Although hardware-assisted memory
virtualization can intercept most transfers, yet this method
cannot settle all the problems engaged. Suppose a function
call to the unprivileged code is needed during the sealed
execution, it is essential to cloak sensitive area at the very
moment when the control is transferred (R2). Under this
circumstance, Coir cannot intercept the crucial transfer,
unless all the pages other than the sensitive ones are marked
non-executable. This method, as discussed in SecVisor[19],
tortures unbearable overhead for applications. Besides, be-
fore the very instruction that causes border transition, it is
necessary to pass some parameters for the function call.
These parameters, however, cannot be encrypted along with
the sensitive stack frame when the boundary switch happens
(the preservation of private stack will be discussed later).
Before the branch instruction and parameter stacking, the
VMM should be notified to stop preserving private stack. To
ameliorate this situation, Coir utilizes the hooks previously
plugged to each function calls within sensitive portions
accomplished by the privilege partition to be informed of
the ordinary entry. Before making a function call inside the
sensitive portion, a hypercall with the destination address is
invoked first, right before it begins to stack the parameters.
Coir is informed to stop the preservation of private stack
and temporarily marks the destination page non-executable.
Then, when the branch instruction triggers the nested page
fault, Coir is able to preserve the correct range of private
stack and switch execution state timely. Finally, the exe-

cution guard on the destination page is evacuated and the
VMM resumes the guest machine running in normal code.
On exit, similarly to sensitive entry, Coir verified the return
address before resuming to sealed execution. The ordinary
entry also applies to system calls since modern programming
language wraps system calls with function calls.

3) Interrupt and exception.: Interrupts are asynchronous
events that will lead to the transfer of control flow from
anywhere to handler function given by Interrupt Descriptor
Table (IDT). Modern virtualization supports can intercept the
interrupts and exceptions, especially with hardware-assisted
virtualization supports. Coir handles the interrupt during
sealed execution by emulating a burst normal entry. In our
current prototype, the trap for interrupts is only used to
maintain the page remapping. Supporting interrupts has no
conflict with the overall architecture but requires additional
engineering effort and is reserved for future work.

D. Session management

For each border transition, Coir creates a new session to
trace the execution. The session usually contains the call
stack status related to certain execution status. Sessions are
also organized like a stack similar to the call stack frame
each owns. When a new ordinary session is triggered, Coir
encrypts and hashes the stack frame of previous sealed
execution to prevent integrity corruption or privacy leakage.
The session design of Coir enables a track for individual
stack frame and protects the runtime stack regions.

IV. EVALUATION

In order to illustrate the practical use of Coir, we have
picked up a popular open source project for remote control,
named TightVNC for a case study. This study includes
the partition efforts required, the sensitive part extraction,
the effectiveness of sealed execution environment and the
overhead analysis based on microbenchmark. The imple-
mentation of Coir is based on hardware-assisted virtualiza-
tion, including Intel Extended Page Table support for nested
paging.

A. Privilege separation

To begin with, we download the up-to-dated source code
(version 2.0 beta 1) from the website3. The authentication
password is marked as the sensitive data and we apply the
privilege partition tools and receive the result of a list of
two functions involved in the operation of the sensitive data.
We then manually analyze the source code to examine the
correctness of privilege partition. The composition of the
source code and the modification done by Coir is shown in
Table I.

The practical application of privilege partition shows that
sensitive code in the overall application is comparatively
isolated from the other part. Thus it is much easier to

3http://www.tightvnc.com/



Aspect Module Files LOC Percentage

Raw I/O Network 23 1560 1.83%
File 14 1073 1.26%

Utility

zlib 25 7206 8.46%
libjpeg 57 23809 27.97%

omnithread 3 1398 1.64%
X11 7 3302 3.88%

Protocol RFB 34 5305 6.23%
File share 61 6883 8.09%

Misc
Wrapper 45 5652 6.64%

OS related 64 5083 5.97%
Other 34 5002 12.41%

UI GUI 93 9261 10.88%
controller 2 4028 4.73%

Security Authentication 3(2) 224(24)
0.26%

(0.03%)

DES 2(1) 493(8)
0.58%

(0.01%)

Coir Coir Headers 2 138 0.16%

Table I
THE SOURCE CODE COMPOSITION OF TIGHTVNC VERSION 2.0 BETA 1.

THE VALUE IN PARENTHESES MEANS THE MODIFICATION WE HAVE
MADE. THE GENERATED EXECUTABLES WITNESS A SIZE INFLATION OF

LESS THAN 0.32% DUE TO THE INCLUSION OF AUXILIARY HOOKS. RPB
IS A SIMPLE PROTOCOL FOR REMOTE ACCESS TO GRAPHICAL USER

INTERFACES.

extract this small fraction from the whole program. Be-
sides, protection from Coir is not necessarily related with
growing expansion in code size. This is also in accord with
Coir’s goal to constraint the protection domain. And more
important, Coir loses no competitive power compared with
existing protection methods even with a limited intervention
into the original code. This will be further illustrated in the
following investigation.

B. Effectiveness investigation

To illustrate the protection requirements compliance, we
carry out several common attacks on both the original
version and the Coir enabled version of TightVNC. These
attacks include debugging and hooking to exploit the sensi-
tive data. We discuss the mechanisms employed by general
attackers and show how Coir strangles these attempts at the
very beginning.

In the code fragment (Figure 4 extracted from the original
code tree of TightVNC, the sensitive data are generated
from line 3(for file input) and line 9(for UI input) and
stored in plain text until cleared by line 16. Any pause of
the execution within this period can leak the sensitive data
to the attackers. Besides, given the file input situation, the
operating of sensitive data is not limited to sensitive code
in line 4, 5 and 16. Any hooks in these public functions
can spy the first hand decrypted sensitive data. The using of
public functions on sensitive data is the security hole of the
software design.

We eliminate these security holes and extract the three
sensitive functions (shown in red color in Figure 4 and the

challenge = ReadSocket(...);

if (m_passwdSet) {

char *pw = vncDecryptPasswd(m_encPasswd);

strcpy(passwd, pw);

free(pw);

} else {

LoginAuthDialog ad(...);

ad.DoDialog();

if (strlen(passwd) == 0)

...

vncEncryptPasswd(m_encPasswd, passwd);

m_passwdSet = true;

}

vncEncryptBytes(challenge, passwd);

/* Lose the plain-text password from memory */

memset(passwd, 0, strlen(passwd));

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

Figure 4. Code fragment from original TightVNC, which contains a
potential security hole.

challenge = ReadSocket(...);

if (m_passwdSet) {

passwd = vncDecryptPasswd(m_encPasswd);

} else {

...

}

vncEncryptBytes(challenge, passwd);

clearPasswd(passwd);

1:

2:

3:

4:

5:

6:

7:

8:

Figure 5. The partitioned version of TightVNC with potential security
holes fixed.

sensitive data into the sealed execution environment and
Figure 5 shows the modified version (only the part taking
input from file). The invalid operating of sensitive data by
normal functions is wiped and vncDecryptPasswd is
reorganized to decrypt the password, store the plain text
in the sensitive data and return only a reference. With the
partition done and protection component installed in VMM,
we again examine the former attack points. Two common
attacks that formerly take effect are eliminated.

Disabling debugging.: We use OllyDbg4 to emulate
the possible debugging procedures taken by attackers to
exploit the sensitive data. In the case of TightVNC, we
suppose that an attacker attempts to decode the encrypted
password inputted from the file to obtain the plain text.
First, by constructing an arbitrary authentication and mon-
itoring the access to user input (eg. setting breakpoints on
GetDlgItemText for Windows), the attacker is able to
trace the exact routine of the authentication process and
discover the period when plain text appears in memory.
Then, when the encrypted password is loaded from file and
starts another authentication, the attacker can exploit the
plain text view of password by pausing on line 4 or 5 in

4http://www.ollydbg.de/



Figure 4.
The Coir-aware version of TightVNC separates the sen-

sitive part from the normal code where precise protection
is granted. Then only sensitive code manages to operate the
real content of sensitive part. Since the debugger resides
the primitive execution environment, it can by no means
access the sensitive part (eg. setting software breakpoints on
sensitive code or reading sensitive content). We follow the
same procedure taken to exploit the original version and the
sensitive part keeps a “blackout zone” from the debugger.
Breakpoint on line 7 in Figure 5 exhibits only a reference
to sensitive data but no real content can be leaked.

Against hooking.: The sensitive data should be only
accessible to sensitive code and not be operated by public
functions. However, the original version of TightVNC au-
thentication process uses several stdlibc functions before the
plain text of sensitive data is cleared. Any means of hooking
on the public functions strcpy, free, and strlen
enable the attacker to access the sensitive data in Figure 4.
Coir eliminates the potential security hole by restricting the
margin for the access of sensitive data. Unnecessary depen-
dence on stdlibc functions in the sensitive code is eliminated
to satisfy R3 and will not leak the sensitive data. Moreover,
even if the attacker intercepts and replaces the return value
given by line 3 in Figure 5, the authentication message
composed by vncEncryptBytes will in no ways be
authenticated by the server. Finally, clearPasswd is used
to replace the invalid use of memset and strlen to clear
the sensitive data (potential dumping before clearing) in the
former version. However, since the plain text will seldom
be revealed to the primitive execution environment, this
function is not necessary at all.

C. Overhead analysis

We measure the influence introduced by Coir to the
application being protected by performing microbenchmark
on different layers of the whole program. It is shown that
through the instruction-level witnesses a notable overhead,
when we measure its influence to the whole authentication
process the impact is greatly reduced.

All experiments are conducted on the platform configured
with 3.20GHz Intel Core i7-965 processor, Intel DX58SO
motherboard and 6GB DDR3 memory. The VMM is Xen
3.4.2 with 2.6.18 XenLinux as domain0. The guest virtual
runs Windows XP sp3 and is configured with 2GB memory
and single processor.

Instruction level: We measure the machine cycles taken
for the one sensitive call and obtain a total value of 35,000.
Table II shows the detailed overhead composition. The cost
for nested page fault and operations on nested page table is
hardware specific. We attribute the overhead to hardware-
assisted paging and our performance will improve as the
technique matures.

Situation Reason Cycles

Sensitive entry

Nested page fault 5,000
Acceptance check 20,000

Remap the real content 5,000
Evacuate guard 5,000

Sensitive exit
Nested page fault 5,000

Remap the shadow content 5,000
Set guard 5,000

Table II
THE DETAILED CYCLE LATENCY INTRODUCED BY COIR FOR THE

BORDER TRANSITION. THE VALUE HAS BEEN ROUNDED.

Sensitive function level: Take an abstraction up to the
sensitive function, we measure the runtime of original func-
tion and calculate the time inflation induced by Coir. The
average time taken for a single encryption and decryption
is about 30,000 machine cycles as measured. According to
the microbenchmark applied to evaluate the border transi-
tion cycles, the sensitive entry requires on average 35,000
cycles and the exit takes 15,000. The total time inflation
ratio is 266.67% for each sensitive call. This inflation is
insignificant when compared with the network latency of
the authentication process although in the sensitive function
level the border transition cost surpasses the actual work.

Authentication process level: The upper caller for sen-
sitive functions is the authentication module. It implements
the authentication contact between the VNC client with
server. Five phases compose the overall process and the cost
for each phase is shown in Table III. It is observed that the

Phase Cost(𝜇𝑠) Percentage Description

1 1263.25 20.94% Receive key from the server

2
24.05

(15.02)
0.40%

(0.25%)
Call sensitive function to
encrypt password

3
24.30

(15.25)
0.40%

(0.25%)
Call Sensitive function to
compose authentication
message

4 56.26 0.93% Send authentication mes-
sage

5 1247.78 20.69% Receive the authentication
result

Table III
AUTHENTICATION PROCESS COST. THE VALUE IN PARENTHESES

DEMONSTRATES THE OVERHEAD CAUSED BY COIR.

security sensitive code is limited in both time and space. And
when the higher layer is concerned, this portion accounts
for only a small share of the total execution time. Thus
the limited time inflation has a insignificant (approximately
0.5%) impact on the overall authentication process. The
overhead incurred for single socket send (phase 3 and 4)
shown in the table is about 18.93%. Compared with 8.83
performance penalty for a socket call exhibited in traditional
privilege partition approach like privtrans [1], Coir has a



notable improvement.
User interactive level: In this level, the frequent win-

dows message from the user and the refreshing cost overruns
the cost of the authentication process. Though the accurate
time is not measurable in this level, yet the estimated time
delay caused by this level will the larger by several orders
of magnitude. And the overhead caused by Coir in the very
bottom level is minor to the overall efficiency bottleneck.

V. RELATED WORK

We demonstrate a comparison between Coir and several
prestigious software protection models which are also based
on the virtual execution environment. While providing no
less security guarantees than those former models, Coir owns
some unique advantages in several aspects.

Prior approaches focus on supplying secure execution
environment, including dividing system call interfaces into
trusted and untrusted classifications [20] as well as recon-
structing a new private guest OS in separate VM [11].
With the goal of ensuring the target application’s dynamic
integrity, Overshadow [5] proposed a method of providing
different guest process memory views to different execution
contexts. However, Overshadow’s black-box protection ig-
nores the semantics of target application, forcing it to protect
the whole address space and rewrite syscall interfaces when
migrating on to a different OS. Coir is similar to Overshadow
in providing shadow view of the same guest memory. How-
ever, in our approach only the target application’s sensitive
code and data are protected and the protection is guided
by security semantics exposed during privilege partition.
By reducing the overall complexity, Coir greatly reduces
the chance of being attacked due to the application’s own
bugs and gain performance improvement. Meanwhile, aided
by privilege partition done to the source code, Coir is
much easier to port to different guest OSes and practical
applications.

An even more recent research [21] also extracts and pro-
tects selected portions of the security-sensitive applications.
However, this approach confines the functionality of secure
execution environment and work for only self-contained
sensitive code. Meanwhile, since no formal ways is provided
to extract the self-contained code, user has to manually
extract and total rewrite the fraction to cater to the protection
system, which incurs unbearable efforts for redevelopment.

Apart from software protection, several approaches have
then been proposed to use system level for providing security
in production systems [11], [2], [10], [9]. Most of these
approaches were implemented as the passive monitoring,
which can only detect an already successful attack with-
out defending. Bryan Payne et al [10] proposed an active
monitoring architecture that isolated the security tools in
a trusted virtual machine. However, it suffered high per-
formance overhead due to the frequent boundary switching

between untrusted and secure virtual machines. Secure In-
VM Monitoring (SIM) [4] also played an active monitoring
role but put the security tool in the untrusted virtual machine
while VMM only handled specific events. SIM featured
distinguished performance improvement compared with the
previous active monitoring approaches. But SIM lacked the
security semantic when doing the protection. Coir depends
on the security semantics exposed by the privilege partition
to offer fine-grained protection. In the meantime, Coir meets
the performance requirement in that VMM only intercepts
sensitive related event which is usually a small portion of
the whole program.

Additionally, unlike most other virtualization security
architectures, Coir needs no special booting requirement
such as clean or secure booting [10], [22] in that Coir does
not depend on any components in the guest OS.

VI. CONCLUSION

In this paper, we have presented a novel mechanism to
combine the benefits of privilege partition and strong isola-
tion that features virtualization. Our system can effectively
enforce privilege protection with little user intervention. As
an illustration, we have designed and implemented Coir, a
virtualization-based prototype that uses privilege partition to
protect the sensitive code and data of software. Coir utilizes
the security semantics exposed during privilege partition to
focus the protection to the security-critical portions of the
application. Coir reserves the privileged and unprivileged in
the same process, which eliminates the inevitable IPC over-
head caused by previous privilege separation approaches.

To evaluate the effectiveness and performance of our
approach, we have migrated TightVNC Viewer, an open
source remote control application, to Coir and carried out
series of evaluation. We succeed in exacting the sensitive
part by modifying 32 lines of code and adding 125 lines out
of the total 84.9 thousand lines of code. Our experiment re-
sults show that common attacks that previously succeed are
effectively prevented by Coir while incurring an overhead
of about 18.93% to communication primitives. We believe
that Coir demonstrates a promising approach in safeguard
software on virtualized platforms.

REFERENCES

[1] D. Brumley and D. X. Song, “Privtrans: Automatically
partitioning programs for privilege separation,” in USENIX
Security Symposium, 2004, pp. 57–72.

[2] T. Garfinkel and M. Rosenblum, “A virtual machine intro-
spection based architecture for intrusion detection,” in NDSS,
2003.

[3] B. D. Payne and W. Lee, “Secure and flexible monitoring of
virtual machines,” in ACSAC, 2007, pp. 385–397.



[4] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm
monitoring using hardware virtualization,” in ACM Confer-
ence on Computer and Communications Security, 2009, pp.
477–487.

[5] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. S. Dwoskin, and D. R. K. Ports,
“Overshadow: a virtualization-based approach to retrofitting
protection in commodity operating systems,” in ASPLOS,
2008, pp. 2–13.

[6] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection
through vmm-based ”out-of-the-box” semantic view recon-
struction,” in ACM Conference on Computer and Communi-
cations Security, 2007, pp. 128–138.

[7] A. Dinaburg, P. Royal, M. I. Sharif, and W. Lee, “Ether:
malware analysis via hardware virtualization extensions,” in
ACM Conference on Computer and Communications Security,
2008, pp. 51–62.

[8] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Antfarm: Tracking processes in a virtual machine environ-
ment,” in USENIX Annual Technical Conference, General
Track, 2006, pp. 1–14.

[9] N. L. P. Jr. and M. W. Hicks, “Automated detection of
persistent kernel control-flow attacks,” in ACM Conference
on Computer and Communications Security, 2007, pp. 103–
115.

[10] B. D. Payne, M. Carbone, M. I. Sharif, and W. Lee, “Lares:
An architecture for secure active monitoring using virtualiza-
tion,” in IEEE Symposium on Security and Privacy, 2008, pp.
233–247.

[11] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh,
“Terra: a virtual machine-based platform for trusted comput-
ing,” in SOSP, 2003, pp. 193–206.

[12] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen, “Revirt: Enabling intrusion analysis through virtual-
machine logging and replay,” in OSDI, 2002.

[13] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen,
“Detecting past and present intrusions through vulnerability-
specific predicates,” in SOSP, 2005, pp. 91–104.

[14] J. Rutkowska, “Subverting vista kernel for fun and profit,” in
Black Hat Japan, 2006.

[15] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege
escalation,” in SSYM’03: Proceedings of the 12th conference
on USENIX Security Symposium. Berkeley, CA, USA:
USENIX Association, 2003, pp. 16–16.

[16] Intel 64 and IA-32 Architectures Software Developer’s Man-
uals. Intel Corporation, 2007.

[17] AMD64 Architecture Programmers Manual. Advanced Mi-
cro Devices, 2006.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and
the art of virtualization,” in SOSP, 2003, pp. 164–177.

[19] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: a
tiny hypervisor to provide lifetime kernel code integrity for
commodity oses,” in SOSP, 2007, pp. 335–350.

[20] R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces: Making
trust between applications and operating systems config-
urable,” in OSDI, 2006, pp. 279–292.

[21] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “Trustvisor: Efficient tcb reduction and attestation.”
in IEEE Symposium on Security and Privacy, 2010.

[22] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure
and reliable bootstrap architecture,” in IEEE Symposium on
Security and Privacy, 1997, pp. 65–71.


