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Introduction

# Problems

© The execution
environment Is
untrusted.

User-Level

Ring 3 Virus [ A Virus Detector

=ty
=

Q

Commodity OSes /
provide inadequate

. Ring 0 Kernel-Level
protection Rootkit Virus Detector
e Apps use their own Untrusted Kernel

protection module.

The focal point is how to do the protection effectively
versus how to conceal the protector from untrusted OSes.




Introduction

# What causes the problems
© Hardware architecture protection is limited

© Bugs and debugging functions in the OSes are
Inevitable

e Debuggers & Malware can observe other processes’ address
space once owning high enough privilege level.

It's extremely difficult to prevent someone from
hacking commercial software




Introduction

» Contributions
2 A lightweight hypervisor framework called HBSP

e Requires no code modification to the existing OS

> A transparent memory-protecting mechanism
offering protection to hypervisor
e Takes advantage of hardware virtualization

2> Description of the flexibility and extensibility of
HBSP

e Arich set of interfaces
e Compatible with other platforms
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Design

» Design Goals
© Install/Uninstall on the fly
© Flexible Configuration
© Support for other HEV (Hardware Enabled
Virtualization) technology




Design

» Intel VT® Technology
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Design

Guest Machine Hypervisor Physical Machine
#VMEXIT @ ®
MOV CR3,EAX > Move Move

CR3 FakeCR3

MOV EBX, [ESP+8] |

O
O
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o o #VMEXIT
( Interrupt Handler ) |&- Return Return [& Timer Interrupt
RealVal FakeVal




Design

+ HBSP Control Flow

®
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Transitions happen on #VMEXIT and
#VMRESUME events

Handling the in-transitions makes the hypervisor
get the knowledge of what is going on in both
sides.

Guest Machine
. Applications <«

1 Guest OS 2

3 4

& Rypervisor

ypervisor
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Implementation

# Architecture

/—3“’ Hypervisor Layer

Customized Hypervisor Implementation
/—Customize Strategies ~ /—I-I;BfP I?:ﬁrvlces
- efault Memory
Customized Customized Management
Memory
M t Event Handler
anagemen Default Execution
Customized Debugging Tools |[ Control Service
Debugging Default Event
System Handler
o AN
HBSP Interfaces
Memory Strategy Event Strategy Debugging Strategy
Interfaces Interfaces Interfaces
Platform Related Layer
Hardware Abstraction Layer
v v

Intel VT Platform

AMD SVM Platform
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« 379 Hypervisor Layer
 Customize hypervisor logic

* HBSP Interfaces
* Enable customized strategies
* Memory
e Event Handling
» Debugging

 Platform Related Layer
* Hide the hardware differences
e Intel-VT
s AMD-SVM
* Others



Implementation

» Memory-Hiding Technology

© The Memory-Hiding Technology is applied to
conceal the hypervisor completely

Virtual Address VA > Mod[;i;agl;age PAspare > Spare Page
of Hypervisor Memory Space
P' (VA’ PAspare)

Non-root mode & Guest OS .
Physical

Memory Space

Root mode & Hypervisor

Virtual Address VA Real Page Table PAreal Hypervisor

of Hypervisor > P(VA, PA_.) > Memory Space




Implementation

» Steps to Hide Hypervisor Memory

1. Clones the OS page table for private usage.

2. Redirects the hypervisor’s address space to the
special spare page address in OS page table.
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Case Study

» Protecting Software with HBSP - SNProtector

/—Guest.Ma.chine ~ /—Hypervisor ~
/—Appllcatlon ~
Input Lo Verttont #VMEXIT—» ify Seri
Serial Key Vlearlﬁcatu:n Verify Serial Key
eques

N

. . Manage
Registration . . ) Resume Update
State(Application) /™ Regslftrtatlon N #VMEntry Guest Registration
ate Machine State

- Y, :
. Update
Activate ;
Timer — Registration | Registratiqn
Simulator #VMEXIT——¥ state Verifier State(Hypervisor)
- J - J

The key idea is to maintain the registration state in hypervisor
and detect attacking by comparing the state on both sides.
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Case Study

Sample Protected App
main:
/[ If regire unload hypervisor, reveal hypervisor then exit.
if( reqRevealHypervisor ) {
RevealHypervisor();
exit;
}
ReadIn(&UserName,&SerialNumber);
// Hide hypervisor, Pass the reg info into hypervisor
HideHypervisor();
bRegState = VerifySN(&UserName, &SerialNumber);
/[ 1 am Cracker!!!

/| bRegState = TRUE;

I’; (%“F;g“gg;p)er info Even bRegState is locked in the
: RegSuccessful(); app. side, SNProtecter is still
else able to point out the app. Is

RegFailure(); unregistered.
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Experimental Results

# Microbenchmark Result

Microbenchmarks.

TABLE 11

Clock cycles of execution CPUID

instruction before and after installing SNProtector.

Before Loading
SNProtector

After Loading
SNProtector

Execution Cycle

218

2573
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Experimental Results

» Application Benchmark Results
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Experimental Results

» Application Benchmark Results

Performance %
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Experimental Results

» Application Benchmark Results

© Web server experiment shows the overhead of
running the SNProtector is 0.55%

Merged results demonstrates the overall overhead to
the guest machine is 0.25% In average.
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Related Work

» HEV Technology used In Security

©

Isolating buggy code and protected code
[DASCO7]

Hypervisor based monitoring on behaviors
[SP0O8, CCSO08]

Transparent page-mapping on sensitive context
[VEEQS8, ASPLOS08]

Uy mM\JIl L \J IV

Construct trust VMs for apps. [OSDI'06 ]

Collaborate with other hardware-based software

security approach
e Intel TXT

24



Conclusion

# Conclusion
© The architecture and the design of HBSP
© Memory-Hiding Technology
@ A case study to prove HBSP’s effectiveness
® Performance evaluation of HBSP
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