HBSP: A Lightweight Hardware Virtualization
Based Framework for Transparent Software
Protection in Commodity Operating Systems

Miao Yu, Peijie Yu, Shang Gao, Qian Lin, Min Zhu. Zhengwei Qi

School of Software, Shanghai Jiao Tong University
{superymk.yupiwang chillygs.lingian,zhumin,qizhwei } @sjtu.edu.cn

Speaker: Miao Yu
Dec. 17t , 2009

Agenda

Introduction

Design
Implementation

Case Study
Experimental Results

Related work & Conclusion

Introduction

Problems

© The execution
environment Is
untrusted.

User-Level

Ring 3 Virus [A Virus Detector

=ty
=

Q

Commodity OSes /
provide inadequate

. Ring 0 Kernel-Level
protection Rootkit Virus Detector
e Apps use their own Untrusted Kernel

protection module.

The focal point is how to do the protection effectively
versus how to conceal the protector from untrusted OSes.

Introduction

What causes the problems
© Hardware architecture protection is limited

© Bugs and debugging functions in the OSes are
Inevitable

e Debuggers & Malware can observe other processes’ address
space once owning high enough privilege level.

It's extremely difficult to prevent someone from
hacking commercial software

Introduction

» Contributions
2 A lightweight hypervisor framework called HBSP

e Requires no code modification to the existing OS

> A transparent memory-protecting mechanism
offering protection to hypervisor
e Takes advantage of hardware virtualization

2> Description of the flexibility and extensibility of
HBSP

e Arich set of interfaces
e Compatible with other platforms

Agenda

Introduction

Design

Implementation
Case Study
Experimental Results

Related work & Conclusion

Design

» Design Goals
© Install/Uninstall on the fly
© Flexible Configuration
© Support for other HEV (Hardware Enabled
Virtualization) technology

Design

» Intel VT® Technology

v I
vy vy
App i
ol & Ring 3
Virtual Machine Monitor “Ring -1 4

(Hypervisor)

Intel® Virtualization Technclogy

Shared Physical Hardware

Design

Guest Machine Hypervisor Physical Machine
#VMEXIT @ ®
MOV CR3,EAX > Move Move

CR3 FakeCR3

MOV EBX, [ESP+8] |

O
O
O
o o #VMEXIT
(Interrupt Handler) |&- Return Return [& Timer Interrupt
RealVal FakeVal

Design

+ HBSP Control Flow

®

10

Transitions happen on #VMEXIT and
#VMRESUME events

Handling the in-transitions makes the hypervisor
get the knowledge of what is going on in both
sides.

Guest Machine
. Applications <«

1 Guest OS 2

3 4

& Rypervisor

ypervisor

Y -
5 6
Ny Physical Hardware —;

Agenda

Introduction
Design

Implementation

Case Study
Experimental Results

Related work & Conclusion

11

Implementation

Architecture

/—3“’ Hypervisor Layer

Customized Hypervisor Implementation
/—Customize Strategies ~ /—I-I;BfP I?:ﬁrvlces
- efault Memory
Customized Customized Management
Memory
M t Event Handler
anagemen Default Execution
Customized Debugging Tools |[Control Service
Debugging Default Event
System Handler
o AN
HBSP Interfaces
Memory Strategy Event Strategy Debugging Strategy
Interfaces Interfaces Interfaces
Platform Related Layer
Hardware Abstraction Layer
v v

Intel VT Platform

AMD SVM Platform

12

« 379 Hypervisor Layer
 Customize hypervisor logic

* HBSP Interfaces
* Enable customized strategies
* Memory
e Event Handling
» Debugging

 Platform Related Layer
* Hide the hardware differences
e Intel-VT
s AMD-SVM
* Others

Implementation

» Memory-Hiding Technology

© The Memory-Hiding Technology is applied to
conceal the hypervisor completely

Virtual Address VA > Mod[;i;agl;age PAspare > Spare Page
of Hypervisor Memory Space
P' (VA’ PAspare)

Non-root mode & Guest OS .
Physical

Memory Space

Root mode & Hypervisor

Virtual Address VA Real Page Table PAreal Hypervisor

of Hypervisor > P(VA, PA_.) > Memory Space

Implementation

» Steps to Hide Hypervisor Memory

1. Clones the OS page table for private usage.

2. Redirects the hypervisor’s address space to the
special spare page address in OS page table.

14

Agenda

Introduction
Design
Implementation
Case Study

Experimental Results

Related work & Conclusion

15

Case Study

» Protecting Software with HBSP - SNProtector

/—Guest.Ma.chine ~ /—Hypervisor ~
/—Appllcatlon ~
Input Lo Verttont #VMEXIT—» ify Seri
Serial Key Vlearlﬁcatu:n Verify Serial Key
eques

N

. . Manage
Registration . .) Resume Update
State(Application) /™ Regslftrtatlon N #VMEntry Guest Registration
ate Machine State

- Y, :
. Update
Activate ;
Timer — Registration | Registratiqn
Simulator #VMEXIT——¥ state Verifier State(Hypervisor)
- J - J

The key idea is to maintain the registration state in hypervisor
and detect attacking by comparing the state on both sides.

16

Case Study

Sample Protected App
main:
/[If regire unload hypervisor, reveal hypervisor then exit.
if(reqRevealHypervisor) {
RevealHypervisor();
exit;
}
ReadIn(&UserName,&SerialNumber);
// Hide hypervisor, Pass the reg info into hypervisor
HideHypervisor();
bRegState = VerifySN(&UserName, &SerialNumber);
/[1 am Cracker!!!

/| bRegState = TRUE;

I’; (%“F;g“gg;p)er info Even bRegState is locked in the
: RegSuccessful(); app. side, SNProtecter is still
else able to point out the app. Is

RegFailure(); unregistered.

17

Agenda

Introduction

Design
Implementation

Case Study
Experimental Results

Related work & Conclusion

18

Experimental Results

Microbenchmark Result

Microbenchmarks.

TABLE 11

Clock cycles of execution CPUID

instruction before and after installing SNProtector.

Before Loading
SNProtector

After Loading
SNProtector

Execution Cycle

218

2573

19

Experimental Results

» Application Benchmark Results

100.20% |
X 100.00%
O Before Loading
g 9980% ¢ SNProtector
B 9960% |
S B After Loading
8 99.40% | SNProtector
99.20%
99.00% : '
& & o SR S S P S S
H FESSFE LS &HHE LS
Qé‘ & & ¥
4 +

SPEC CINT 2006 Benchmarks

20

Experimental Results

» Application Benchmark Results

Performance %

100.00% r _
99.80%
O Before Loading

99.60% SNProtector
99.40% 8 After Loading

SNProtector
98.20%
99.00% Y 1 1 I 1 1 ! ! 1 1 I 1 1 ! ! 1 1 I_

F PN L8 F DS NN N O g
W F & & g & N S L& S LS
& & FFTFF LI PHT S’ g

00

SPEC CFP 2006 Benchmarks

Experimental Results

» Application Benchmark Results

© Web server experiment shows the overhead of
running the SNProtector is 0.55%

Merged results demonstrates the overall overhead to
the guest machine is 0.25% In average.

22

Agenda

Introduction

Design
Implementation

Case Study
Experimental Results

Related work & Conclusion

23

Related Work

» HEV Technology used In Security

©

Isolating buggy code and protected code
[DASCO7]

Hypervisor based monitoring on behaviors
[SP0O8, CCSO08]

Transparent page-mapping on sensitive context
[VEEQS8, ASPLOS08]

Uy mM\JIl L \J IV

Construct trust VMs for apps. [OSDI'06]

Collaborate with other hardware-based software

security approach
e Intel TXT

24

Conclusion

Conclusion
© The architecture and the design of HBSP
© Memory-Hiding Technology
@ A case study to prove HBSP’s effectiveness
® Performance evaluation of HBSP

25

Thank you!

