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Abstract—Commodity operating systems are usually large and
complex, leading host-based security tools often provide inade-
quate protection against malware because execution environment
for software is untrusted. As a result, most software currently
uses various ways to defend malware attacks. However, these
approaches not only raise the complexity of the software but also
fail to offer an engrained security solution. The focal point in
the software protection battle is how to protect effectively versus
how to conceal the protector from untrusted OSes. This paper
describes a lightweight, transparent and flexible architecture
framework called HBSP (Hypervisor Based Software Protector)
for software protection. HBSP, which is based on hardware
virtualization extension technology such as Intel VT, and by
taking advantage of Memory-Hiding strategy, resides completely
outside of the target OS environment. Our security analysis
and the performance experiment results demonstrate that HBSP
effectively protects applications running on unmodified Windows
XP, while the total overhead is only 0.25% in average.

Index Terms—Hardware Virtualization, Lightweight Trans-
parent Software Protection, Commodity Operating Systems,
Memory-Hiding, HBSP

I. INTRODUCTION

Nowadays, commodity operating systems are deployed ev-
ery corner in the house, office, and government, managing
various commercial software on them. Unfortunately, most of
the OSes cannot provide adequate security and software pro-
tection due to the design and hardware limitation. Therefore,
nearly all the commercial software needs to implement its own
additional protection module, which raises the total cost on
software development.

Current approaches of software protection can be separated
into two categories [1]. One is to implement both static and
dynamic code validation through the insertion of objects into
the generated executable, such as watermarking and software
birthmark [2] [3]. The other, more radical, method is to protect
software with hardware supporting [15]. The target program
is divided into various parts which run in an encrypted form
on secure COprocessors.

Nevertheless, the risk of attacking the target software still
exists for the following reasons: first, hardware architecture
protection is limited. Hardware architecture defines that the

code running in the privileged mode owns system-wide access
to the resources, while the code in the user mode can only
access a limit range [16]. So once the malicious code or
analyzing tools are running in the privileged mode, no more
powerful mode can be used to restrict it.

Second, bugs and debugging functions in the OSes are
inevitable. The kernel and the 3™ party device drivers of the
OS contain millions of lines of code [6]. Meanwhile, nearly all
the commodity OSes provide tools to observe other processes’
address space and attach a thread to each process for debug
use. In such cases, there is no way to stop someone who
intends to crack commercial software.

The growing popularity of hardware virtualization motivates
our new solution for software protection. Previous efforts
address to retrofit a trusted execution environment on com-
modity system by separating malicious code and system kernel
in isolated VMs [9] [10] [11] , or using active monitor to
handle security sensitive behaviors [12] [14]. However, these
approaches pose a substantial barrier to adoption as their
low performance or critical requirement of modification to
application code or system kernel.

Our work represents the following contributions:

o A lightweight framework with least temporal and spatial
overhead of the communication between the guest OS
and hypervisor as our experiment results revealed. The
hypervisor implemented on which requires no code mod-
ification to the existing OS.

o Implementation of a transparent memory-protecting
mechanism which takes advantage of hardware virtual-
ization and Memory-Hiding technology offering protec-
tion to hypervisor by memory remapping, thus makes it
feasible to conceal the hypervisor in a private memory
region.

o Description of the flexibility and extensibility of HBSP
which offers a rich set of interfaces for configuration as
well as being compatible with other hardware virtualiza-
tion platform.

The following section presents the design goals of HBSP.
In section 3, we explain the framework implementation and
the challenges when introducing in Memory-Hiding. Section
4 describes an example to protect software with the help of



HBSP framework in detail. Section 5 shows how we apply
our implementation to a default installation of the Windows
XP and evaluates the overall performance. Section 6 reviews
related work. Finally we will conclude the ideas in section 7.

II. DESIGN GOALS

Hardware Enabled Virtualization (HEV) technology can
be adopted as a way of software defense [7] [8] [14]. Our
motivation is to offer another line of software protection
even on an untrusted environment while keeping external and
transparent to existing software, as well as being adopted
easily. As a result, we build the lightweight HBSP with the
following advantages:

Install/Uninstall on the fly The key idea of HBSP is to
load the host OS into a VM at runtime. By install/uninstalling
hypervisor on the fly, it is much easier to use and debug the
hypervisor, while not affecting the legacy OS and application’s
integrity, as well as the user experience.

Flexible Configuration In order to support various ways
to protect software, HBSP supplies a rich set of interfaces
to configure Virtual Machine Control Structure (VMCS) and
memory strategy. Hypervisor can be configured at both the
compile time and the runtime. However, it’s not advised
to keep all sensitive content in hypervisor for performance
reasons.

Support for other HEV technology Currently HBSP sup-
ports Intel VT technology. Other technologies such as AMD
SVM are also largely adopted in the market. To minimize
the cost when refactoring the hypervisor to support these
platforms, we build a layer to hide the hardware details. Hence,
extending hypervisor platform support will not affect other
components.

III. SYSTEM IMPLEMENTATION

It is challenging to implement the HBSP running on un-
modified commodity OSes. In this section, we firstly describe
the HBSP architecture, and then introduce its control flow and
how it controls the guest OS. The analysis and implementation
of Memory-Hiding technology will be discussed at the end of
this section.

A. HBSP Architecture

Figure 1 presents the HBSP architecture. Tailored from
BluePill Project [4] and migrated on to the x86 platform to
expand its usage scope, HBSP is divided into three layers:
Platform Related Layer, HBSP Interfaces and 3™ Hypervisor
Layer.

Platform Related Layer This layer is used to mask
implementation differences among HEV technologies (e.g.
HEV-related instructions, checking platform, VMCS config-
urations, etc) and provide unique interfaces to upper layers.
In Platform Related Layer, HBSP requires implementation
of HEV technology supporting the following routines, listed
in Table 1 (Since HBSP is tailored from BluePill Project,
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Fig. 1. HBSP Architecture HBSP consists of three layers. User defined
hypervisor will be placed in the top layer, with the help of the HBSP Services
and the HBSP Interfaces.

TABLE I
The Required Routines in Platform Related Layer.

This procedure checks if a hardware plat-

ArchIsHvmImplemented() form supports HEV technology.

This procedure takes the responsibility of
initializing the hypervisor and guest ma-
chine, it can also enter the VMM if needed.

Archlnitialize()

This routine is responsible for starting the
guest machine. As a result, the original OS
is put into the virtual machine and continue
executing instructions with no sense to the
underlying hypervisor.

ArchVirtualize()

This function dispatches events to the proper
handler. It is invoked under the following
condition: the hypervisor is using the De-
fault Event Handler supplied in HBSP, and
a #VMEXIT event is occurred in virtual
machine.

ArchDispatchEvent()

we keep most of the procedure names and some function
implementations).

HBSP Interfaces HBSP exports a set of interfaces
called Strategy to meet the requirement on the framework’s
behavior and resource management from hypervisor developer.
For instance, with respect to Memory Strategy Interfaces, in
order to allocate memory for future use, the Platform Related
Layer calls proper functions declared in this set of interfaces. If
Memory Hiding Strategy is used as the definition of the current
memory strategy, HBSP always uses its private page table to
allocate memory for the caller. Besides, by default, the Default
Memory Strategy delegates all the memory management tasks
to Windows system.

3 Hypervisor Layer This layer is concentrated on
implementing customized hypervisor logic. Building on top of
HBSP Interfaces, it supplies services and default HBSP Inter-
faces implementation to accelerate constructing a hypervisor.



By default, the build-in HBSP Services mainly include:

e Default Memory Management HBSP supports two
memory management strategies by default. The Default
Memory Strategy uses the Windows kernel API to man-
age the hypervisor’s code and data memory. Thus, any
allocation and deallocation to this address space can be
detected by other processes. In contrast, the Memory-
Hiding Strategy is dedicated to keep the hypervisor out
of the view of guest OS; see Section 3.3 for details.

o Default Event Handler This is used to register a
callback function with the indicated #VMEXIT Reason.
For the performance optimization, each #VMEXIT Rea-
son is linked to an independent event handler chain,
cutting down the total time spending in the hypervisor
via limiting the length of the chain.

Currently, HBSP is designed to support only one guest
machine at the moment, though a typical hypervisor can
support more virtual machines as a nature. Regardless the
amount of guest VMs, HBSP offers a new approach in
protecting software. It brings in a valuable layer of protection,
and requires no change to the hardware and the operating
system.

B. HBSP Control Flow

Since HBSP is based on HEV technology, it plays a role
as guest machine controller between the guest machines and
the physical hardware. Considering a single guest machine
running on the top layer, at any time, the whole system can
be in only one context among the following three types: guest
application (Ring 3), guest kernel (Ring 0/1) and hypervisor
(VMM). Both the hypervisor interested events and the ones
which should not be handled in the guest machine will
be transferred to hypervisor and activated. Later, hypervisor
transfers control back to the guest machine explicitly after it
finishes handling the events.
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Fig. 2. Basic State Transition Diagram

As shown in Figure 2, both guest user mode instructions and
guest kernel mode instructions are capable to trigger hardware
to generate #VMEXIT events and then transfer control to the
hypervisor. For example, when a guest application executes
the CPUID instruction, a #VMEXIT event is generated and
hardware activates the hypervisor automatically to handle the

event (Transition 1). The hypervisor examines the stored guest
machine state to determine how to handle it properly, then uses
VMX instructions to force hardware to resume the execution
of guest machine and transfer the control back to the guest
machine (Transition 2).

Guest kernel has more chances to trap into the hypervisor.
It is possible the case that a guest machine always triggers
#VMEXIT event once to read MSR registers if and only if the
hypervisor is configured to monitoring RDMSR instructions
with the help of HBSP. Then the hypervisor does the same
handling process as that with application (Transition 3, 4).

HBSP also supports intercepting the guest machine on
accessing physical resources such as I/O related instructions.
A hypervisor mediating between guest machine and physical
hardware can always perform additional operations on the I/O
access (Transition 5, 6) before resuming to the guest machine.
With such approach, a hypervisor can cheat the malicious
kernel and software to protect applications.

C. Memory-Hiding Technology

A hypervisor is vulnerable if it can be accessed from
the guest OS. To improve the approach of hypervisor based
software protection, Memory-Hiding technology is applied to
conceal the hypervisor completely. In this section, we firstly
describe the conventional transparency limitation, then analyze
the implementation of Memory-Hiding technology and show
its effectiveness after the hypervisor is turned on.

A typical commodity OS needs to build and manage process
page tables for address translation. Consequently, the mapping
from the hypervisor’s virtual address (VA) to real physical
address (PAycy) is created as P(VA, PA.,) in the system page
table, as shown in Figure 3. Being accessible from the guest
OS, a hypervisor can be easily invalidated in the face of a
malicious kernel.

Hypervisor Unmodified Hypervisor
virtual Page Table physical
address memory
space VA HFAPA.) PAes space
Virtual Physical
Address Address
Space Space

Fig. 3. Translation without Memory-Hiding. The space of hypervisor can
be accessed even if the hypervisor itself is running under the guest machine.

Memory-Hiding technology patches the indicated PTE in
the guest OS’s page table. It clones the current page table
for private usage, and then changes the mapping from P(VA,
PAca1) in the hypervisor own address space to P (VA, PAgpare),
where PAgp.e refers to the physical address of a special spare
page. This strategy makes all access to the hypervisor be swept
out from the patched page table. As shown in Figure 4, when



the execution context switches to hypervisor, the private page
table takes effect and the hypervisor can reference itself. Once
leaving the hypervisor context, the patched page table with
mapping of P (VA, PApare) Will be enabled automatically by
hardware, making the hypervisor obscure again.
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Fig. 4. Translation Procedure with Memory-Hiding.

We make no attempt to let the Memory-Hiding technology
support PAE mode in current system, though it is a promo-
tional functionality and not hard to implement.

IV. CASE STUDY: PROTECTING SOFTWARE WITH HBSP

In order to verify the efficiency and effectiveness of HBSP,
we develop a simple hypervisor called SNProtector to store
the application’s serial key validation algorithm and registra-
tion state. Our protection goal is: even the source code of
the application field is publicly known, the application still
remains protected as long as the SNProtector hypervisor is
active.
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Fig. 5. SNProtector Design and Usage Model.

Figure 5 illustrates the design and usage model of SNPro-
tector. To fulfill the protection goal, it is important to use
Memory-Hiding Strategy to conceal its code and data segment
and render guest OS imperceptible. Thus, it is hard for an
attacker to find out and lock the registration state in the

hypervisor space in that the hidden pages are never referenced
in the guest OS’s virtual space.

main:
// if reqire unload hypervisor
// Reveal hypervisor then exit

if ( reqgRevealHypervisor ) {
RevealHypervisor () ;
exit;

}
ReadIn (&UserName, &SerialNumber) ;

// Hide hypervisor

// Pass the reg info into hypervisor
HideHypervisor () ;
bRegState = VerifySN (&UserName,

&SerialNumber) ;

// I am Cracker!!!
// bRegState = TRUE;

// Output proper
if ( bRegState )
RegSuccessful () ;
else
RegFailure () ;

info

// To simulate a real commercial software
while ( bRegState ) {

printf ("WorkWork!\n") ;

Sleep (2000);
}

exit;

Fig. 6. The Protected Software Implementation

It’s also vital to realize that the conventional way of pro-
tecting software using serial key is weak because it merely
verifies the serial key for only once. To address this prob-
lem, SNProtector sets up a timer simulator, which will be
triggered to verify the registration state in the hypervisor
field after a fixed amount of CR3 switches. A better choice
of adopting VMX Preemption Timer is omitted here due to
the limited hardware support temporarily. Nevertheless, the
design reliably renders attackers impossible to find out which
instruction exactly causes the timer trap into the SNProtector
hypervisor and intercept it on a multi-tasking operating system
like Windows.

Figure 6 demonstrates a typical implementation of pro-
tected program. Uncommenting the line "bRegState = TRUE;”
will crack and lock the registration state in the application
field, while not affecting that in the hypervisor field. Thus,
the tamper behavior is detected immediately as long as the
SNProtector hypervisor is running in the background. So our
approach is effective even in the condition that the source code
of application is public.

Taking performance optimization into account, SNProtector
also stores the registration state in the application field to
reduces the clock cycles at runtime as the application doesn’t
need to query the registration state initiatively by means of
triggering traps. Although it costs tens of hundreds of cycles



TABLE II
Microbenchmarks. Clock cycles of execution CPUID
instruction before and after installing SNProtector.

Before Loading
SNProtector
Execution Cycle 218

After Loading
SNProtector
2573

to handle a VMM trap, the overall performance overhead when
applying the protection is limited.

V. EXPERIMENTS AND RESULTS

All experiments were conducted on a desktop computer
with an Intel Core2 Duo E6320 processor and 2GB RAM.
SNProtector is installed on both the processor cores. Windows
XP SP3 is selected as the guest operating system of the testbed.

Microbenchmarks Table 2 highlights the results of
microbenchmarks that measure the overhead of intercepting
instruction execution by SNProtector. In this experiment, the
benchmarks exhibited low performance on executing inter-
cepted instructions on guest machine, nearly 11 times more
cycles needed to handle the interception and relevant events
after loading SNProtector. The reason is that trapping to
hypervisor introduces in overhead due to access VMCS region,
so does invoking the proper callback function.

Application Benchmarks  Although the microbenchmarks
show an unacceptable result, the performance impact on the
real application is imperceptible. Scaling the performance by
measuring the program run time, Figure 7 and 8 present results
from the SPEC CPU2006 integer suite and float point suite,
illustrating that running the hypervisor only brings in a little
overhead. Even the worst individual benchmark suffers less
than 0.9% performance overhead.

The web server experiment, measuring the throughput bytes
per second (Bps), used the default configuration of APACHE
2.2.11 win32 version. A test website is created with 10 random
files, the size of which varies from 1KB to 8MB. The http_load
tool was set up on a remote host to generate requests for
fetching all of these files with 100 concurrent connections.
The client and server were connected by a 100Mbps switch.
The overhead of running the SNProtector is 0.55%. Merged
with the overall SPEC benchmarks, the total overhead to the
guest machine is 0.25% in average.

VI. RELATED WORK

HEV technology enables transparent intercepting guest OS
exceptions and interrupts. One example is Overshadow [5],
which also can be implemented by HBSP. With the help of
additional layer of address translation, it provides different
views of the sensitive application’s address space according
to the current context. Without affecting the existing OS
and legacy protected application, even the hardware, kernel
and other programs can only get the encrypted content from
the protected application’s virtual space. Considering only

instruction interception at the moment, the performance of
SNProtector is much higher than Overshadow comparatively.

Many previous systems have attempted to provide a higher-
assurance execution environment by means of building sepa-
rate VMs. Proxos [9] runs its protected applications in trusted
VMs, with the ability of using the resource in the untrusted
VM. Similarly, iKernel [10] improves the commodity operat-
ing system’s reliability and security by isolating the buggy and
malicious device drivers running on separate virtual machine.
To establish a configurable trust between applications and
operating systems, partition system call interface or separation
of privilege [11] is utilized to enable secure level code running
in different VMs. Hypervisor based monitoring on malicious
behaviors [12] [14] is used to handle certain security sensitive
instructions. Focusing on the similar design goal, our approach
excels at higher performance and less affect to legacy OS
kernel on account of the optimized design. Proxos [9] requires
code modification to both application and the kernel. While
Igor Burdonov’s work [11], Ether [12] and Lares [14] pose
a high performance penalty and iKernel [10] hasn’t range its
experiment statistics on temporal overhead test.

Intel’s Trusted Execution Technology [13] is another
hardware-based software security approach, providing isolated
protected execution environment, which offers no privilege
to unauthorized software even to observe. Furthermore, it
provides protected input and storage channel to ensure the
data security. This approach can be regarded as a complement
of our Memory-Hiding technology, albeit only available on
some special hardware.

VII. CONCLUSION

In this paper, we have presented the architecture and design
of HBSP, which can be used to implement external hypervisor
running transparently under the guest OS and intercepting
indicated guest machine actions without modifying existing
OS and hardware, even software.

Memory-Hiding is entitled by patching the page table of
guest OS while holding a real one in the hypervisor. This
causes some anti-debug tools and hypervisor detect tools
invalid in the face of HBSP. Thus it constructs a safer ex-
ecution environment for customized hypervisor layer software
protector.

As a prototype implementation, we build a simple serial key
protector using HBSP. A series of experiments on Windows
OS have proven that our approach introduces little overhead to
the existed environment. We believe that HBSP is a practical
approach to protect software in commodity operating systems.
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