
Trusted Display on Untrusted Commodity Platforms

Miao Yu
ECE Department and CyLab
Carnegie Mellon University

miaoy1@andrew.cmu.edu

Virgil D. Gligor
ECE Department and CyLab
Carnegie Mellon University
virgil@andrew.cmu.edu

Zongwei Zhou
∗

ECE Department and CyLab
Carnegie Mellon University

zongwei@alumni.cmu.edu

ABSTRACT
A trusted display service assures the confidentiality and au-
thenticity of content output by a security-sensitive applica-
tion and thus prevents a compromised commodity operating
system or application from surreptitiously reading or mod-
ifying the displayed output. Past approaches have failed
to provide trusted display on commodity platforms that use
modern graphics processing units (GPUs). For example, full
GPU virtualization encourages the sharing of GPU address
space with multiple virtual machines without providing ade-
quate hardware protection mechanisms; e.g., address-space
separation and instruction execution control. This paper
proposes a new trusted display service that has a minimal
trusted code base and maintains full compatibility with com-
modity computing platforms. The service relies on a GPU
separation kernel that (1) defines different types of GPU
objects, (2) mediates access to security-sensitive objects,
and (3) emulates object whenever required by commodity-
platform compatibility. The separation kernel employs a
new address-space separation mechanism that avoids the
challenging problem of GPU instruction verification with-
out adequate hardware support. The implementation of the
trusted-display service has a code base that is two orders of
magnitude smaller than other similar services, such as those
based on full GPU virtualization. Performance measure-
ments show that the trusted-display overhead added over
and above that of the underlying trusted system is fairly
modest.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion—Security kernels

∗Current affiliation: VMware Inc, 3401 Hillview Ave, Palo
Alto, CA 94304.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
c© 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813719.

Keywords
GPU separation kernel; Trusted display

1. INTRODUCTION
A trusted display service provides a protected channel

that assures the confidentiality and authenticity of content
output on selected screen areas. With it users can rely
on the information output by a security-sensitive applica-
tion (SecApp) without worrying about undetectable screen
“scrapping” or “painting” by malicious software on commod-
ity systems; i.e., the display output is surreptitiously read
or modified by a compromised commodity operating systems
(OSes) or applications (Apps).

Security architectures that isolate entire SecApps from un-
trusted commodity OSes and Applications (Apps) [35] im-
plement trusted display functions via trusted path [55, 56].
That is, a user’s explicit activation of the trusted-path ef-
fectively removes all untrusted OS and Apps access to the
display device and assigns the device to a SecApp for the
entire duration of a session. Unfortunately, the exclusive
use of display devices via trusted path does not allow both
untrusted OS/Apps and SecApps to output content concur-
rently on a user’s screen; i.e., untrusted output cannot be
displayed until after the trusted path releases the screen at
the end of the SecApp session. As a consequence, it would
not be possible to maintain the typical multi-window user
experience for applications that comprise both trusted and
untrusted components and use the same display screen.

Problem. Some past approaches that allow trusted dis-
play of output with different sensitivity on the same screen
concurrently have been based on encapsulating and protect-
ing graphics cards within high-assurance security kernels [14,
42, 17]. In addition to requiring changes of commodity OSes,
adopting such an approach for the entire graphics processing
unit (GPU) would not work since the complexity of modern
GPU functionality1 would rule out maintaining a small and
simple code base for the security kernel, which is a prerequi-
site for high assurance. For example, the size of Intel’s GPU
driver for Linux 3.2.0 - 36.57 has over 57K SLoC, which is
more than twice the size of a typical security kernel [54]. Fur-
thermore, GPU functions operate asynchronously from the
CPUs [46, 53] to improve graphics performance and intro-
duce concurrency control for multi-threading in the trusted

1Modern GPUs include graphics/computation accelera-
tors [39, 16]. They are equipped with hundreds of proces-
sors [32] to provide complex functions of 2D/3D hardware
rendering, general-purpose computing on GPU (GPGPU),
and hardware video encoding/decoding.

code base. This would invalidate all correctness proofs that
assume single-thread operation [27, 47].

Full GPU virtualization [46, 45] can be used to enable con-
current display of both trusted and untrusted output on a
user’s screen without requiring commodity OSes/Apps mod-
ification. However, full GPU virtualization, which is largely
motivated by improved performance, relies on address-space
sharing between different virtual machines (VMs) and the
GPU without providing adequate hardware mechanisms for
protecting different VMs’ code and data within the GPU;
e.g., address-space separation and instruction execution con-
trol. As a concrete example, we illustrate a class of new
attacks that exploit the inadequacy of address-space separa-
tion on fully virtualized GPUs; viz., Section 2.2. Moreover,
full GPU virtualization intrinsically requires a large trusted
code base; e.g. supporting native GPU drivers/Apps re-
quires emulating all accesses to all GPU configuration regis-
ters for the VMs scheduled to access the GPU. Thus, adopt-
ing full GPU virtualization for high-assurance trusted dis-
play would be impractical.

Solution. The trusted display design presented in this
paper satisfies the following four requirements.

• it allows the confidentiality and authenticity of dis-
play contents to be assured to whatever degree of rigor
deemed necessary by minimizing and simplifying the
trusted-display code base.

• it avoids redesign and modification of underlying trusted-
system components, and preserves their correctness
properties; e.g., proofs of high-assurance micro-kernels
and micro-hypervisors [27, 47].

• it preserves full compatibility with commodity plat-
forms; i.e., it does not require any modification of com-
modity OS/Apps code and GPU hardware or reduce
their functionality.

• it maintains a typical user’s perception and use of ap-
plication output and relies on easily identifiable screen
geometry; e.g., it uses different windows for trusted
and untrusted screen areas.

The central component of our trusted display design is a
GPU Separation Kernel (GSK) that (1) distinguishes differ-
ent types of GPU objects, (2) mediates access to security-
sensitive objects, and (3) emulates object access whenever
required by commodity-platform compatibility. The GSK
employs a new address-space separation mechanism that
avoids the challenging problem of GPU instructions verifi-
cation without adequate hardware support. The implemen-
tation of the trusted display service has a code base that is
two orders of magnitude smaller than other similar services,
such as those based on full GPU virtualization.

Outline. In Section 2, we provide a brief overview of
GPU functions to enable the reader understand the vul-
nerabilities of GPU virtualization to adversary attacks, and
challenges of trusted display on commodity platforms. In
Section 3, we define the adversary threats, security secu-
rity properties that counter them, and an informal security
model that satisfies these properties. In Section 4, we de-
scribe the detailed design and implementation of the trusted
display system, and in Section 5, we evaluate our implemen-
tation. The related work in this area is presented in Section
6, common use of trusted display is briefly discussed in Sec-
tion 7, and conclusions are provided in Section 8.

GPU

Configuration
Registers

Commands Instructions

Local Page Tables Global Page Table

Display
Engine

Graphic
Output

Processing
Engine

Legend: Objects GPU Access

CPU

CPU Access

Programs (e.g., GPU drivers, Apps)

Data

Other
Engines

GPU Address Spaces

Figure 1: Overview of a modern GPU architecture.

2. COMMODITY GPU ARCHITECTURE
AND SECURITY VULNERABILITIES

In this section, we present an overview of common archi-
tecture features of modern GPUs to enable an unfamiliar
reader understand their vulnerability to attacks. The GPU
architecture described herein is common to widely avail-
able commodity devices from vendors such as Intel [23, 2],
AMD [6], Nvidia [4], and ARM [3, 10].

2.1 GPU Architecture Overview
CPU programs (e.g. GPU drivers and Apps) control GPU

execution via four types of objects, namely data, page tables,
commands, and instructions that are stored in GPU mem-
ory, and GPU configuration registers; viz., Figure 1.

CPU programs produce the instructions and commands
that are executed by GPU hardware. For example, instruc-
tions are executed on GPU processor cores, process input
data, and produce results that are used by display engines.
In contrast, commands are executed by dedicated command
processors and are used to configure the GPU with correct
parameters; e.g., specify stack base address used by instruc-
tions. Groups of commands are submitted for processing
in dedicated command buffers; e.g., they are received in in-
put (ring) buffers from drivers and (batch) buffers from both
applications and drivers.

As shown in Figure 1, a GPU also contains several en-
gines [46, 23, 7], such as the processing engine and display
engine. The processing engine executes instructions on mul-
tiple GPU cores for computation acceleration. It references
memory regions known as the GPU local address space via
the GPU local page tables. The display engine parses screen
pixel data stored in frame buffers according to the engine’s
configurations, and outputs images for display. Other en-
gines perform a variety of functions such as device-wide per-
formance monitoring and power management.

The display engine defines several basic configurations for
frame buffer presentation; e.g. geometry and pixel formats.
Furthermore, it provides the data paths from frame buffers
to external monitors. For example, the screen output may
comprise a combination of multiple screen layers, each of

which contains a separate frame buffer. In this case, GPUs
support a hardware cursor as the front layer of the screen and
display it over the primary image. Since a single GPU may
be connected to multiple screen monitors, a monitor may
consume the same frame buffers as another monitor, which
implies that GPU memory protection requires a controlled-
sharing mechanism. Furthermore, an image presented on
a screen may be torn as the result of frame-buffer updates
by CPU programs during screen refreshing. To address this
synchronization problem, display engines of modern GPUs
also provides a V-Sync interrupt to notify CPU programs of
the time when it is safe to update a frame buffer [49].

Although the GPU architecture illustrated in Figure 1 is
common to many commodity GPUs, some of these GPUs
differ in how memory is accessed and managed. For ex-
ample, Intel’s GPUs use a global page table (GGTT) for
memory access in addition to local page tables. The GGTT
maps the memory region referred as the GPU global address
space, which includes frame buffers, command buffers, and
GPU memory aperture, which is shared between CPU and
GPU. In contrast, AMD and Nvidia GPUs do not have a
GGTT and allow direct access to GPU physical memory
address space2. This implies that GPU memory access may
also differ in different GPUs; e.g., the processing engine of
Nvidia’s GPU can access only the local address space [45,
26], whereas the Intel and AMD’s3 can also access the global
address space [23, 6, 2].

2.2 Address Space Separation Attacks
A fully virtualized GPU shares its global address space

with multiple virtual machines (VMs) to support concurrent
accesses to its memory [46]. For example, while the GPU’s
display engine fetches a VM’s frame buffer to display its
content, the GPU’s processing engine generates content for
other VMs’ frame buffers. Furthermore, the hardware design
of the GPU’s processing engines (e.g. Intel, AMD) allows
instructions to access the global address space. Because full
GPU virtualization supports native drivers, any malicious
VMs can submit GPU instructions that access another VM’s
GPU data for screen output.

Figure 2(a) illustrates this simple attack. Here, a mali-
cious VM2 submits valid GPU instructions that ostensibly
address GPU memory inside VM2’s address space but in fact
access victim VM1’s GPU memory. For example, VM2 can
submit malicious instructions that contain large address off-
sets which fall into VM1’s GPU address space4. Unless an
additional “base-and-bound” mechanism for address space
protection is supported by GPU address translation, the
GPU’s processing engine would allow the malicious VM2
to access victim VM1’s GPU output data thereby violating
confidentiality and authenticity.

We note that some fully virtualized GPUs support a single
“base-and-bound” pair of registers for address space protec-
tion; e.g., Intel GPUs limit memory access range of GPU

2To simplify presentation, we consider that these GPUs use
a GGTTs with flat mappings (e.g. virtual addresses are
identical with physical addresses) even though the GGTT
does not exist in these GPUs.
3Although this feature is undocumented by AMD’s GPUs,
it is supported in the open source GPU driver provided by
AMD [6].
4Other full GPU virtualization approaches [45] are also sub-
ject to such attacks.

High	
 	

address	

Base	

Bound	

VM2	

VM1	

Low	
 	

address	

(a) Simple

VM2	

VM1	

Low	
 	

address	

VM2	

VM1	

Base	

Bound	
 High	
 	

address	

(b) General

Figure 2: GPU address-space separation attacks.

instructions by correct setting of the “base-and-bound” reg-
ister pair for GPU command execution [23]. These GPUs
can mediate memory accesses and deny address-space vio-
lations by GPU instructions and commands issued by mali-
cious VMs [46].

Unfortunately, a single pair of base and bound registers is
insufficient to counter all address-space separation attacks
mounted by malicious VMs. These attacks are enabled by
another important performance optimization of full GPU
virtualization. That is, address space “ballooning” [46] al-
lows the GPU to directly access virtual memory at addresses
provided by guest VMs. This optimization improves GPU
memory-access performance and greatly reduces complexity
of GPU programming. Without it, trusted code would have
to translate the referenced GPU virtual addresses for every
object, and even recompile GPU instructions on the fly. For
example, AMD’s GPU instructions perform register-indirect
memory accesses, and hence would require such recompila-
tion for address translation.

However, address space ballooning allows the GPU mem-
ory of a guest VM to be mapped into two or more non-
contiguous blocks in GPU global address space; e.g., one in
GPU memory aperture for exchanging data between CPU
and GPU, and the other in non-aperture space for holding
GPU data. As a consequence, the separated memory blocks
cannot be protected by the setting of the single pair of“base-
and-bound” registers in the GPU commands; e.g., viz., Intel
GPU. As illustrated in Figure 2(b), malicious VM2 uses the
simple attack of Figure 2(a) but this time it can access victim
VM1’s GPU memory despite base-and-bound protection,
because one of VM1’s GPU memory blocks falls between
two of VM2’s non-contiguous memory blocks. It should be
noted that the simple attack succeeds for other GPUs, not
just Intel’s; e.g. some instructions in AMD GPUs can per-
form register-indirect memory accesses, without specifying
added address-space protection [7].

2.3 Challenges of Commodity Platforms
Implementing a trusted display service on untrusted com-

modity OS and hardware platforms that support SecApp
isolation faces three basic challenges.

Incompatibility with commodity platforms. The goal of
maintaining object-code compatibility with untrusted OSes
that directly access GPU objects in an unrestricted manner
poses a dilemma. If one re-designs and re-implements GPU
functions on commodity OSes to block memory accesses that
breach address space separation, one introduces object-code

incompatibility. If one does not, one forgoes trusted display.
To retain compatibility, access to GPU objects by untrusted
commodity OS/Apps code must be emulated by the trusted-
system, which increases the trusted code base and makes
high-assurance design impractical.

Inadequate GPU hardware protection. The inadequacy of
the hardware for memory protection has already been noted
in the literature for Intel GPUs [46]. The address-space sep-
aration attack by malicious GPU instructions of Section 2.2
illustrates another instance of this problem and suggests that
simplistic software solutions will not work. For example, ver-
ifying address offsets of GPU instructions before execution
does not work because operand addressing cannot always be
unambiguously determined due to indirect branches [23] and
register-indirect memory accesses [23, 7].

Unverifiable code base. Even if, hypothetically, all the
OS/Apps functions that access GPU objects could be iso-
lated and made tamper-proof, their code base would be nei-
ther small (i.e., tens of thousands of SLoC) nor simple,
and hence the formal verification of their security prop-
erties would be impractical. A large number of diverse
GPU instructions and commands spread throughout differ-
ent drivers and application code provide access to a large
number of GPU objects; e.g., a GPU can have 625 con-
figuration registers and 335 GPU commands, as shown in
Section 5. Furthermore, since the underlying trusted base
(e.g., micro-kernel or micro-hypervisor) must protect differ-
ent SecApps on a commodity platform, the functions that
access GPU objects directly must be implemented within
the trusted base. Hence, these functions’ code would have
to preserve all existing assurance of the underlying trusted
base; i.e., their security properties and proofs must compose
with those of the trusted base. These challenges have not
been met to date.

3. SECURITY MODEL
In this section, we define the threats posed by an adver-

sary to trusted display and present security properties that
counter these threats. Furthermore, we present an infor-
mal GPU security model that satisfies those properties in
commodity systems.

3.1 Threats
An adversary can leak a SecApp’s security-sensitive out-

put via screen scraping attacks whereby the content of dis-
play output in a GPU’s memory is read by a malicious
program of a compromised commodity OS/App or SecApp.
The adversary can also modify the SecApp’s output content,
configuration (e.g., geometry, pixel format, frame buffer’s
base address) via screen painting attacks whereby a ma-
licious program modifies GPU memory and configuration
registers. For example, to launch both attacks the adver-
sary can breach the separation of GPU’s address spaces.
These breaches can be implemented by unauthorized ac-
cess to GPU objects, either directly by CPU programs (e.g.,
drivers, applications), or indirectly by GPU commands and
instructions that cause the GPU to access other GPU ob-
jects in an unauthorized manner. Furthermore, the adver-
sary can manipulate the display engine’s data paths and
overlay a new frame buffer over a SecApp’s display thereby
breaking the integrity of SecApps’ display output without
touching its contents.

In this paper, we do not consider hardware, firmware, side-
channels, device peer-to-peer communication and shoulder-
surfing attacks [20]. We ignore I/O channel isolation attacks,
which have already been addressed in the literature [56, 55].
We also omit denial of service (DoS) attacks, such as manip-
ulation of GPU configurations to disable screen output; e.g.,
disable-then-resume GPU, color shifts. For a well designed
SecApp, it would be difficult for an adversary to launch a
DoS attack that would remain unnoticed by an observant
user.

3.2 Security Properties
A security model for trusted display on commodity sys-

tems must satisfy three abstract properties (defined below)
that are intended to counter an adversary’s threats. To ex-
press these properties, we partition the GPU objects into
two groups: security sensitive and insensitive objects. In-
tuitively, the security-sensitive GPU objects are those that
can be programmed by untrusted software (e.g., malicious
drivers, applications) to break the confidentiality or authen-
ticity of trusted display output, and those which can be
tainted by access to other sensitive GPU objects. For ex-
ample, sensitive GPU objects include directly accessible ob-
jects, such as frame buffers, page tables, configuration reg-
isters, and objects that can affect the security of other ob-
jects, such as GPU commands, and instructions, which can
modify GPU page table structures. Furthermore, because
GPU objects are mapped into GPU address spaces, the cor-
responding virtual and physical GPU memory regions are
regarded as sensitive. In contrast, the security-insensitive
GPU objects cannot affect the confidentiality and authen-
ticity of trusted display even if they are manipulated by
malicious software.

The three security properties that must be satisfied by
trusted display designs and implementations are expressed
in terms of the separation of sensitive-insensitive objects and
their accesses, complete mediation of accesses to sensitive
objects, and minimization of the trusted code base that im-
plements the separation and mediation properties.

P1. Complete separation of GPU objects and their
accesses. The trusted display model must partition all
GPU objects into security-sensitive and security-insensitive
objects and must define all access modes (e.g., content read,
write, configuration modification) for the security sensitive
objects and their memory representations.

P2. Complete mediation of GPU sensitive-object
access. The trusted display model must include a GPU
separation kernel that must satisfy the following three prop-
erties. The kernel must:
(1) mediate all accesses to the security-sensitive objects ac-
cording to a defined GPU access mediation policy;
(2) provide a GPU access-mediation policy that defines the
access invariants for security-sensitive objects; and
(3) be protected from tampering by untrusted OS/Apps and
SecApps5;

P3. Trusted code base minimization. The GPU sep-
aration kernel must: (1) have a small code base to facilitate
formal verification, and (2) preserve the existing assurance

5The isolation of the GPU separation kernel can be easily
achieved using the services of existing micro-kernel or micro-
hypervisor security architectures [27, 56]

 GPU

Legend:
Sensitive Access

Insensitive Access

Unprivileged Interface

Sensitive Objects

Insensitive Objects

App
1

 Commodity OS
(unmodified)

Apps Apps
 SecApp 1 SecApp 2

Access Mediation

Access Emulation

Hardware

Software

GPU
Separation

Kernel

Figure 3: GPU Separation Kernel Architecture.

of the underlying Trusted Computing Base (TCB) necessary
for its protection.

3.3 Separation of GPU Objects and Accesses
All security properties of trusted display ultimately rely

on the complete separation of GPU objects and their ac-
cesses by GPU design and implementation; e.g., GPU sep-
aration kernel (GSK) discussed below. This requires the
analysis of all interfaces between the software components
(untrusted commodity OS/Apps, and SecApps) and GPU
objects. The results of this analysis, which are abstracted in
Figure 3 and Table 1, enable the design of the access media-
tion mechanism, policy, and access emulation. For example,
this analysis shows that SecApps may provide only display
content and geometry configurations to the GPU without
sending any commands or instructions, and hence do not
need direct access to GPU objects. Hence, all their direct
accesses to GPU objects are blocked by the GPU separation
kernel.

3.4 GPU Separation Kernel

3.4.1 Access Mediation Mechanism
The mediation mechanism of the GSK distinguishes be-

tween two types access outcomes, namely direct access to
security-insensitive GPU objects, and verified (mediated)
access to security-sensitive GPU objects. Every CPU ac-
cess to sensitive objects must be mediated even though GPU
hardware lacks mechanisms for intercepting all GPU com-
mands and instructions individually at run time. Since most
GPU commands and instruction references cannot be medi-
ated at run time, they must be verified before submitting
them to the GPU. Although previous work [46] illustrates
how to verify GPU commands, it does not address the ver-
ification of GPU instructions, which is more challenging, as
argued in Section 2.3.

GPU instructions are limited to three types of opera-
tions: arithmetic/logic operations, control flow operations,
and memory access operations [23, 7, 50, 39]. Arithmetic/logic
operations run on GPU cores only and do not affect GPU
memory or other GPU objects. However, an adversary may
exploit control flow and/or memory access operations to
break the confidentiality and authenticity of trusted dis-
play contents. Mediating each of these operations individu-
ally without hardware support would be prohibitive since it

Table 1: GPU object and access separation.
GPU Objects Untrusted OS/Apps SecApps

Data
Mediated sensitive
access and direct
insensitive access

Submitted via GPU
separation kernel

Configuration
Registers

No access
Page Tables
Commands

Instructions Confined by address
space separation

would significantly enlarge and add complexity to the GSK
code base and hence diminish its security assurance. This
would also add significant overhead to the OS’s graphics
performance.

To resolve the above access-mediation problem, we use an
efficient address-space separation mechanism. Instead of ver-
ifying individual instruction access, this mechanism confines
the memory access of GPU instructions; i.e., it limits mem-
ory accesses only to those allowed by local GPU page tables.
As a consequence, GPU address-space separation attacks no
longer succeed since GPU instructions can no longer refer-
ence GPU memory via the shared GGTT. As the result, the
mediation mechanism does not require any GPU instruction
modification.

The mediation mechanism must also protect command
buffers from modification by malicious GPU instructions
and prevent TOCTTOU attacks. For example, some com-
mand buffers must be mapped into the local address space
of untrusted OS/Apps in GPU memory. However, mali-
cious GPU instructions can modify the GPU commands af-
ter command verification and invalidate the verification re-
sults for GPU commands at run time. Nevertheless, GPU
address-space separation hardware can still protect the in-
tegrity of GPU command buffers via write protection. The
confidentiality of command-buffer content does not need ex-
tra protection6 and hence the accesses to GPU instructions
that read command buffers need not be mediated.

3.4.2 Access Mediation Policy
GPU access mediation policy comprises a set of “access

invariants” that are enforced by the GPU separation kernel.
These invariants are designed to ensure the security of the
SecApps’ display output and must hold at all intermediate
points during trusted-display operation. They yield both
secure-state invariants and transition constraints in a state-
transition model of security policy [18].

Access invariants. As argued in Section 3.1, an adver-
sary’s attacks may either breach the confidentiality and au-
thenticity of trusted display content (i.e., content security),
or destroy the integrity of its configurations (i.e., configura-
tion integrity). For example, the adversary can modify the
configurations of both SecApps’ display and sensitive GPU
memory content. Hence, our access mediation policy is de-
fined in terms of invariants for GPU object accesses that
must be maintained for both content security and configu-
ration integrity.

• GPU data. Content security requires the following in-
variants: (1) no untrusted read of the trusted display’s

6Our adversary model omits side channels and inference
analyses that may deduce sensitive output from command
content.

frame buffer; and (2) no untrusted write to sensitive
GPU data.

• GPU page tables. The following invariants must hold
for GPU address space separation: (1) no untrusted
OS/Apps can map sensitive GPU memory to be writable
in any GPU local page tables; (2) no untrusted OS/Apps
can map the trusted display’s frame buffer to be read-
able in any GPU local page tables; (3) untrusted OS/
Apps must have a single mapping to sensitive GPU
memory in GPU global address space; and (4) GPU
instructions uploaded by untrusted OS/Apps cannot
reference the GPU’s global address space.

• GPU configuration registers. Configuration integrity
requires the following invariants: (1) no untrusted re-
configuration of SecApps’ display; and (2) no untrusted
re-configuration of sensitive GPU memory. Content
security requires the following invariant: no untrusted
read of the trusted display’s frame buffer, and no un-
trusted write to sensitive GPU memory.

In addition, the invariant that untrusted access to con-
figuration cannot violate the access invariants of GPU
page tables must also be enforced.

• GPU commands. Content security requires the follow-
ing invariants: (1) no GPU command can read trusted
display’s frame buffers; and (2) no GPU command can
write sensitive GPU memory.

In addition, the invariant that GPU commands cannot
violate (1) any GPU configuration register invariants,
and (2) GPU page table invariants must also be en-
forced.

Soundness. In order to show these invariants are sound,
we need to show that if they hold, malicious access to and
configuration of the above sensitive GPU objects is pre-
vented. To show this, we note that an adversary can per-
form only four types of attacks that represent combinations
of two basic methods (i.e., unauthorized access to trusted-
display content and alteration of its configurations) exercised
either directly or indirectly. To prevent direct manipulation
of trusted-display content, GPU mediation policy ensures
no untrusted access to the trusted display’s frame buffers is
possible. And to prevent indirect manipulation of trusted-
display content, GPU mediation policy ensures that no un-
trusted write to other sensitive GPU memory is possible.

The protection of the trusted-display configuration pro-
tection is similar. To prevent direct tampering of output,
untrusted re-configuration of trusted display is disallowed.
Indirect re-configuration is prevented by requiring the same
access invariants as those for indirect access to the display
content. Finally, additional invariants are required to ensure
that GPU address space separation is maintained in order
to avoid complex GPU instructions verification.

3.4.3 Access Emulation
The GSK maintains full object-code compatibility with

commodity platforms by retaining the common access meth-
ods (e.g., memory-mapped and port I/O) of commodity
GPUs and by emulating the expected returns when un-
trusted commodity OS/Apps perform security-sensitive ob-
ject operations. We use the security model to identify the

minimal set of object accesses and functions that require em-
ulation; viz., Section 4.5. This enables us to minimize the
GSK code base; viz., Table 2 in Section 4.4, which shows
that only a small number of mediated GPU objects requires
function emulation. For example, direct access to security-
insensitive objects and security-sensitive access to objects
used only by commodity OS/Apps (i.e., outside trusted dis-
play) do not need emulation. In contrast, full GPU virtu-
alization has to emulate accesses to all GPU objects of the
VMs scheduled to access the GPU. In particular, it has to
emulate a wide variety of accesses to all GPU configuration
registers7 and thus requires a large trusted code base.

When object-access emulation is required by the security
model, the GSK returns the expected access results as de-
fined in the GPU specifications without actually accessing
the real GPU objects. It does this by “shadowing” the real
objects; viz., Section 4.5. For example, to locate OS’s frame
buffer, GSK emulates accesses to frame buffer base by ac-
cessing this register’s shadow. Furthermore, for sensitive-
object accesses that violate security invariants, the GSK
simply drops write accesses and returns dummy values for
read accesses8.

3.5 Verifiable code base
The GSK code base is both small and simple, and hence

verifiable, for the following three reasons. First, as shown in
Section 5.1, the number of security-sensitive GPU objects is
very small. Most of the GPU objects are security-insensitive,
and can be direct accessed without kernel mediation.

Second, the GSK outsources most GPU functions (in-
cluding all GPU functions used by commodity software and
GPU objects provisioning for trusted display) to untrusted
OS/Apps because it can verify all untrusted-code results
very efficiently. The verification is driven by the policy
invariants. Furthermore, only a small number of sensitive
GPU objects require function emulation and this takes only
a small amount of code, as shown in Section 5.1. Thus, im-
plementing the GPU functions themselves (e.g., the large
and complex native GPU drivers) within the GSK becomes
unnecessary. The GSK also exports GPU driver code to Se-
cApps using standard techniques [56]; i.e., the traditional
GPU software stack already deprivileges frame buffer ren-
dering functions and management logic and exports them
to user libraries. The GSK uses a similar approach, except
that it requires SecApps to provide their own display con-
tents. (Recall that SecApps cannot directly access any GPU
objects.)

Third, GSK perserves existing assurance of the underly-
ing trusted code bases. This is because GSK relies on exist-
ing security primitives and services already provided by the
underlying trusted code bases; e.g., CPU physical memory
access control [25, 9], and Direct Memory Access control [8,
24].

7Failure to emulate all accesses causes incompatibility
with commodity OS/Apps; e.g., Tian et al. [46] virtualize
GEN6 PCODE MAILBOX register without emulating its
functions, which causes GPU initialization errors in VMs.
8To date, we have not found any malware-free commodity
OS/Apps code that would be denied accesses to security-
sensitive objects.

Micro-Hypervisor

App
1 SecApp 2

 Commodity
OS

(unmodified)

Privileged Interface

Hardware

Software

 SecApp 1
Apps Apps

Legend:
Sensitive Access

Insensitive Access

Unprivileged Interface

GPU

Sensitive Objects

Insensitive Objects

Trusted Display Kernel
Access

Mediation
Access

Emulation

TD add-on

Screen
Overlay

CPU Inst. Emulator

Fast Comm. Trapper

Figure 4: Architecture of the trusted display service.
The grey area denotes the trusted base of SecApps.

4. DESIGN AND IMPLEMENTATION
We design the GSK as an add-on security architecture [19]

based on two components: a Trusted Display Kernel (TDK)
and a trusted display (TD) add-on to the underlying micro-
hypervisor (mHV). This section first describes the system
architecture, and then presents its detailed design for the
trusted display.

4.1 Architecture Overview
As illustrated in Figure 4, mHV runs underneath all the

other software components, protects itself, and hosts a TD
add-on component. The TD add-on extends mHV and takes
advantage of the mHV primitives to isolate its execution in
a similar manner as that used in past work [35, 56]. The
TD add-on notifies Trusted Display Kernel (TDK) about
untrusted OS/Apps’ requests to access sensitive GPU ob-
jects, since the TDK is the only software component in the
trusted-display service that is allowed to access these ob-
jects directly. The TDK runs at the OS privilege level and
provides trusted-display services to user-level SecApps that
generate sensitive display content via CPU rendering. The
TDK also mediates accesses to sensitive GPU objects by
native drivers of untrusted OS/Apps and emulates these ac-
cesses whenever necessary.

TDK. The TDK includes three components. The first
is the screen overlay component, which displays SecApps
output over that of untrusted OS/Apps (Section 4.2).

The second component mediates access to all GPU sensi-
tive objects that reveal or modify SecApps’s overlayed dis-
play (Sections 4.3 and 4.4). The access mediation mecha-
nism uses the CPU’s protection rings to prevent direct Se-
cApps access to GPU objects and uses the privileged mHV
interfaces to program TD add-on to intercept sensitive ac-
cesses to GPU objects by untrusted OS/Apps.

The third component emulates access to security-sensitive
objects to assure object-code compatibility with untrusted
OS/Apps. shadowing sensitive GPU objects (Section 4.5).
To emulate untrusted accesses, this component either con-
figures CPU/GPU to operate on the shadow GPU objects
or simulates object accesses.

TD add-on. The trusted display (TD) add-on supports
the TDK in the mediation of security-sensitive accesses to

GPU objects by untrusted OS/Apps. It implements tradi-
tional hypercalls to receive TDK-initiated communications,
and fast communication channels to notify the TDK of ac-
cess requests received from untrusted OS/Apps. The hyper-
calls enable the TDK to define the security-sensitive GPU
objects so that the TD add-on knows what access requests
from untrusted OS/Apps to trap. Once an access is tapped,
the TD add-on uses its CPU instruction emulator to iden-
tify the object-access requested, access mode, and access
parameters; e.g. the new value to be written. This informa-
tion is sent to the TDK for the mediation and emulation of
the requested access to the object, via a fast communication
channel.

The TD add-on is implemented using the TrustVisor [35]
extension to XMHF, which isolates SecApps and enables
them to request on-demand isolated I/O operations [56].

4.2 Screen Overlay
The screen overlay component of TDK displays SecApps’

output over that of untrusted commodity software. The
screen overlay provides interfaces to SecApps and performs
frame buffer merging in response to SecApps’ requests. Frame
buffer merging can be done either purely by software (i.e.,
by “software overlay”) or by hardware acceleration (i.e., by
“hardware overlay”). In software overlays, TDK shadows
the screen frame buffer when TDK is initialized. During
the trusted-display session, the TDK merges the SecApps’
display contents with the untrusted frame buffer using their
geometry information, and outputs the resulting image to
the shadow frame buffer. Then, the TDK programs the
display engine to present the shadow frame buffer on the
display. In comparison, hardware overlays are supported by
some modern GPUs that layer one frame buffer over others.
This improves the SecApps’ CPU performance by eliminat-
ing frame-buffer merging by the CPU.

Frame buffer merging does not necessarily ensure that
the SecApps display content is layered over all untrusted
OS/Apps content. The hardware cursor can still be shown
over the merged image, and hence TDK must ensure that
the hardware cursor operation is trustworthy. To do this,
the TDK provides and protects its cursor image and the
corresponding GPU configurations9. Similarly, the TDK
emulates all hardware overlay not used by SecApps. Thus,
SecApps can display over all untrusted contents.

SecApps also provide their display geometries to the TDK
to prevent SecApp-output overlaps. Furthermore, the TDK
provides a V-sync interrupt to SecApps to prevent image
tearing. To enhance human perception of trusted screen
areas, a SecApp always starts its display at the center of
the screen. The current trusted-display implementation sup-
ports hardware overlays only, and allows a single SecApp to
execute at a time though a multi-window version implemen-
tation does not pose any additional security problems.

4.3 Access Mediation Mechanism
In general, the access mediation mechanism of TDK inter-

poses between commodity software and GPU by intercept-
ing Memory-Mapped I/O (MMIO) and Port I/O (PIO), in a
similar manner to that of previous systems [46, 45]. The ac-
cess mediation mechanism also performs two tasks, namely

9The cursor location needs protected only if the mouse de-
vice is a trusted-path device. This issue is orthogonal to the
design of the trusted-display service.

GPU address space separation, and GPU command protec-
tion, as described in Section 3.4.1.

GPU Address Space Separation. GPU address space
separation mediates instructions accesses by limiting their
scope to GPU local page tables. Nevertheless, GGTT may
also contain mappings to security-insensitive objects to be
used by GPU instructions. To satisfy these requirements,
the TDK shadows GGTT to separate GPU address space as
follows:

(1) TDK shadows GGTT in a GPU local page table (GGTT’),
and updates GGTT’ whenever GGTT is modified.

(2) TDK verifies the access invariants for GGTT’.

(3) TDK forces GPU instructions execution to use GGTT’
for all GPU engines except the display engine, which
uses GGTT.

Note that in Step 3, the TDK forces GPU instructions to
use GGTT’ instead of GGTT in two steps. First, the TDK
wraps related GPU commands into a batch buffer. Second,
it sets the batch buffer to use GGTT’. As a result, GPU
instructions preserve both their original functionality and
security of the trusted display.

Forcing GPU instructions to use a new GPU local page
table poses some implementation challenges. For example,
it is possible that no spare slot exists to load GGTT’. Our
solution is to randomly kick out a GPU local page table,
switch to GGTT’ to execute the GPU instructions, and then
switch back the original GPU local page table after the GPU
instruction execution finishes. In principle, it is also possi-
ble that a single GPU command group uses all GPU page
tables. Although we have never encountered this situation
in normal GPU driver operation [2, 6, 4], our TDK splits
the command group into smaller pieces and reuses the solu-
tion to the first challenge described above. The TDK also
pauses the verification of new GPU command submission in
this case and resumes when this command group is executed.

GPU Command Protection. The TDK also protects
GPU command buffers from malicious GPU instructions. As
GPU page tables support read-write access control in many
modern GPUs (e.g. Nvidia GPUs [4], AMD GPUs [6] and
recent Intel GPUs [23, 2]), the TDK can protect GPU com-
mand buffers by mapping their read-only accesses to GPU
local page tables. However, some Intel GPUs provide dif-
ferent hardware protection mechanisms. For example, GPU
privilege protection disallows execution of security sensitive
GPU commands from the batch buffers provided by applica-
tions. Using this feature, the TDK can enforce the security
invariants for GPU commands by de-privileging these com-
mands from the batch-buffer accesses mapped in GPU local
page tables.

4.4 Access Mediation Policy
The access mediation policy of the TDK enforces the secu-

rity invariants for sensitive GPU objects references; viz., Sec-
tion 3.4.2. The TDK identifies a GPU object by its address
and verifies the validity of the object access by enforcing
the corresponding invariants. The TDK enhances the per-
formance of GPU command mediation without sacrificing
trusted-display security [46]. In particular, the TDK mon-
itors specific GPU configuration registers and performs the

Table 2: Trusted Display Kernel Minimization. Leg-
end: Bold letters denote object categories that con-
tribute a significant number of GPU objects. (*) de-
notes categories where objects need mediation. The
underline denotes mediated objects that do not re-
quire function emulation.

Category Examples Mediation Func.
Virt. TDK Emu.

GPU
Data

Display
Engine Data

Shadow
Framebuffer Yes Yes Yes

Processing
Engine Data

Other VM’s
GPU Data Yes No No

Data of
Other Engines

Performance
Report Yes No No

GPU
Configu-
ration

Config
Registers

Used By TD

Presentation:
SecApps’
Geometry,

V-Sync Enable

Yes Yes Yes

Data Path:
Framebuffer

Bases, Target
Display

Yes Yes Yes

Others: Ring
Buffer Base Yes Yes Yes

Other Access
Sensitive

GPU Memory

Performance
Report

Buffer Base
Yes Yes No

Others Yes No No

GPU
Page

Tables

Global
Page Table GGTT Yes Yes Yes

Local
Page Tables Yes Yes No

GPU
Comm-

ands

Access
Config Regs./
Page Tables

Update GPU
Page Table Yes Yes Yes

Access Other
Sensitive

GPU Objects

Batch Buffer
Base Yes Yes No

GPU
Processing

3D
Commands Yes* No No

Others No No No
GPU Instructions Yes* No No

batch verification of an entire group of submitted GPU com-
mands instead of trapping and mediating single GPU com-
mand individually. Furthermore, the TDK protects the veri-
fied GPU commands from malicious modification in TOCT-
TOU attacks, by shadowing the ring buffers and write- pro-
tecting batch buffers as illustrated by Tian et al. [46].

The access mediation policy has a small code base, since
sensitive GPU objects comprise only a small group among
all the GPU objects. As illustrated in Table 2, the TDK
needs to mediate accesses to only a few GPU objects of each
type and all accesses for GPU global page tables. However,
the mediation of page-table access is simple due to their lim-
ited formats and sizes. In addition, special GPU protections
built in hardware, such as GPU privilege protection, further
reduces the mediation effort. It should also be noted that
the TDK forces GPU commands to use GGTT’ instead of
GGTT whenever possible to reduce the mediation overhead
of GPU command accesses. Section 5.1 presents the TDK
code base minimization results.

Table 2 also shows that TDK has to mediate access to
far fewer GPU objects than full GPU virtualization [46, 45].
This is largely due to fine-grained object separation provided
by our security model. For GPU data, full GPU virtual-

ization must mediate all the accesses to other VM’s GPU
data, whereas TDK needs to mediates the accesses only to
a small set of trusted-display sensitive GPU data and GPU
configuration registers. In contrast, full virtualization ap-
proaches need to mediate all accesses to GPU configuration
registers to isolate the GPU configurations among different
VMs. Full GPU virtualization also requires mediation of ac-
cesses to GPU instructions by design, whereas the TDK uses
address space separation to avoid verifying individual GPU
instructions. In addition, full GPU virtualization needs to
mediate accesses to more GPU commands than the TDK,
due to the virtualization of the GPU processing engines.
In Section 5.1, we will provide a detailed evaluation on the
mediation-policy trusted base.

4.5 Access Emulation
The TDK emulates accesses to four categories of GPU ob-

jects (viz., Table 2) operating on the shadow objects instead
of the originals, as follows.

• For GPU data accesses, the TDK allocates dummy
memory with equal size of the sensitive GPU data,
and invokes TD add-on to remap the sensitive GPU
data to the dummy memory for untrusted OS/Apps.

• For GPU configuration registers, the TDK maintains
shadow registers, and updates their values on untrusted
accesses and chronology events (e.g. V-Sync) accord-
ing to their function definitions. TDK also keeps all
the pending updates if the corresponding register re-
quires stateful restoring during trusted-display finaliza-
tion; e.g., register update relies on previous updates.

• For GPU page tables, the TDK updates the shadow
GGTT’ whenever the original GGTT is updated.

• For GPU commands, the TDK modifies their param-
eters or results to access shadow objects.

Table 2 shows that only a small number of mediated GPU
objects requires function emulation. The result is unsurpris-
ing since many sensitive GPU objects are not used by the
trusted display. Section 5.1 shows the results of access em-
ulation minimization.

4.6 TD add-on
Trapper. The trapper intercepts sensitive GPU object ac-
cesses by untrusted OS/Apps, as specified by the TDK dur-
ing the trusted display session. It use the CPU instruction
emulator to obtain the trapped instruction’s access infor-
mation; e.g., object being accessed, access mode, and access
parameters such as a new value to be written. Then it no-
tifies the TDK with the access information and busy waits
for TDK’s access decision. When TDK returns the access
decision, the trapper resumes the execution of the untrusted
OS/Apps.

CPU Instruction Emulator. CPU instruction emu-
lation is needed only for instructions that access security-
sensitive GPU objects, and hence its complexity is lower
than that of general purpose instruction emulators and dis-
assemblers. For example, only a small subset of CPU in-
structions can be used to access GPU objects; e.g., instruc-
tions for MMIO and PIO. Also, the only instruction func-
tions that need emulation are those operating in protected
mode.

Fast Communication Channel. The fast communica-
tion channels facilitate communications initiated by the TD
add-on with the TDK on multi-core platforms. They em-
ploy shared memory to hold the communication data and
use Inter-Processor Interrupts (IPI) for cross-core notifica-
tion [9, 25, 56]. However, these channels differ from previous
approaches in two ways. First, the communication initiator,
namely the TD add-on, busy waits for TDK’s response after
sending a request. Second, the communication receiver noti-
fies ready responses via shared memory, instead of issuing IPI
back to the TD add-on. Thus, these channels avoid expen-
sive context switches between mHV and TDK, and improve
the system performance. More importantly, fast commu-
nication channels preserve the mHV’s sequential execution
and verified security properties [47], since the TD add-on
neither receives or handles inter-processor interrupts.

4.7 Life-Cycle
As is the case with previous secure I/O kernel designs [56],

the TDK boots on-demand. This requires the mHV to iso-
late the execution of TDK from commodity OS/Apps and
the TDK to isolate its memory from SecApp access.

Initialization. The TDK configures the trusted display
services when invoked by a SecApp. The untrusted OS/App
provisions GPU objects (e.g. shadow frame buffer, V-Sync
interrupt) and pins the related GPU memory in GPU global
address space. Then the OS/App registers the configuration
via an OS-hypervisor interface. After configuration, the TD
add-on switches execution to the TDK. The TDK disables
interrupts, pauses GPU command execution, and calls the
TD add-on to specify and enable the interception of sensi-
tive GPU objects accesses from untrusted OS/Apps. Next,
the TDK initializes GPU access emulation and verifies all
GPU objects accesses according to the security invariants.
Lastly, the TDK configures shadow memories (e.g. shadow
ring buffer, shadow frame buffer) to start the trusted dis-
play service, resumes GPU command execution, enables in-
terrupts, and and returns to the SecApp. Trusted display
initialization is not needed for a SecApp unless all previous
SecApps that used the trusted display terminated. Finaliza-
tion reverses these steps and zeros shadow memories without
verifying GPU objects again.

Untrusted Code Accesses to Sensitive GPU Objects.
The TDK mediates the sensitive GPU object access using
the access information received from the TD add-on, allows
the access if the relevant security invariants are satisfied, and
emulates the access if necessary, as described in Section 4.5.
Then it returns the access decision to the TD add-on.

5. EVALUATION
We implemented and evaluated our system prototype on

an off-the-shelf HP2540P laptop, which is equipped with a
dual-core Intel Core i5 M540 CPU running at 2.53 GHz, 4
GB memory and an integrated Intel 5th generation GPU
(IronLake) with screen resolution of 1200 * 800. The lap-
top runs 32-bit Ubuntu 12.04 as the commodity OS with
Linux kernel 3.2.0-36.57. We implemented a test SecApp
that outputs a still image in all experiments.

Table 3: Number of GPU Objects Requiring Access
Mediation.

GPU Object Mediation in Total
TDK

Full GPU
Virtualization [46]

GPU Data ˜6 MB
All other

VM’s data 2 GB

GPU Configuration
Registers10

39 711 625

GPU Page Tables All
GPU Commands 21 43 269
GPU Instructions 0 14 66

5.1 Trusted Code Base
Access Mediation Comparison. The number of GPU
objects that require access mediation by TDK is much smaller
than the number of GPU objects mediated in full GPU vir-
tualization approaches [46]; viz., Table 3. This comparison is
based on the Intel 7th generation GPUs (Haswell), which has
an open-source driver (released by Intel) and detailed docu-
mentation. For GPU data, Haswell GPU maps a 2 GB GPU
memory into the GGTT. Full GPU virtualization hosts the
bulk of other VM’s GPU data in the global address space,
whereas in our system the sensitive GPU memory is mapped
in only about 6 MB. The memory used for sensitive GPU ob-
jects includes the shadow framebuffers (3750 KB for screens
with 1200 * 800 resolution and 4 bytes per pixel), GGTT’
(2052 KB), and other very small sensitive GPU memory ar-
eas; e.g., shadow ring buffers (128 KB). Note that the ratio
of sensitive GPU objects to all GPU objects may vary, since
the protection of multiple local GPU page tables requires
more mediation of GPU data accesses and also increases the
mapped memory space.

The TDK has to mediate access to far fewer GPU con-
figuration registers than full GPU virtualization. That is,
access to 39 out of 625 GPU configuration registers require
mediation, 13 of which are needed for hardware overlays. In
contrast, full GPU virtualization must mediate accesses to
all GPU configuration registers to share all GPU functions
securely among the different VMs that access the GPU. It
also mediates access to more GPU commands than the TDK
since it needs to perform additional tasks such as the virtu-
alization of the GPU 2D/3D processing engine. In addition,
the TDK does not need to mediate accesses of individual
GPU instructions due to its use of the address-space sepa-
ration mechanism.

Access Emulation Minimization. The TDK has to
emulates the functions of only 20 configuration registers and
12 GPU commands since the trusted display only uses a
subset of the sensitive GPU objects. As is the case with
access mediation, full GPU virtualization needs to emulate
the functions of all configuration registers to support all VMs
that access the GPU, and more GPU commands than the
TDK to virtualize the GPU 2D/3D processing engine.

Code Base Minimization. We use the SLOCCount
tool to measure the code base of our trusted-display service.

10We count registers using the same functional clustering as
in Intel’s documentation. This differs slightly from Tian et
al.’s count [46], which lists registers individually.

11XMHF with fine-grained DMA protection takes 24551
Source Lines of Code (SLoC) [56]

Table 4: Code base size of trusted display service.
(a) Micro-hypervisor

Modules SLoC

XMHF11 +
TrustVisor

28943

CPU
Instruction
Emulator

1090

Fast
Communication

Channel
144

Trapper 66
Total 30243

(b) GPU code in TDK

Modules SLoC

Screen Overlay 177
Access Mediation 2865
Access Emulation 1571

Utility Code 973
Total 5586

Table 5: Access mediation overhead of TDK.
GPU Configu-

ration Registers
GPU Page

Tables
GPU

Commands

2.61 µs 2.69 µs 8.86 µs

As shown in Table 4(a), the TD add-on modules (i.e., trap-
per, CPU instruction emulator, fast communication chan-
nel) add a total of 1300 SLOC, which is minuscule num-
ber compared to existing code bases of similar functionality.
For example, CPU instruction emulator contributes most of
this code, and yet it is an order of magnitude smaller than
the code base of general purpose CPU instruction emulation
tools; e.g., diStorm3.312 has 11141 SLOC. To implement this
emulator we stripped the CPU instruction emulator of the
Xen hypervisor (i.e., 4159 SLoC of Xen-4.5.0) of unneces-
sary code and shrank its size by 73.80%; i.e., from 4159 to
1090 SLOC. Were we to use diStorm3.3 instead, we would
have bloated our micro-hypervisor’s code size by over 38%
(11141/(30,243-1,090)) and undoubtedly invalidated the ex-
isting formal assurances of XMHF.

Table 4(b) shows the code size of the TDK. The access me-
diation code for the GPU uses most of the code base since
it contains both the mediation mechanism (1741 SLoC) and
policy (1124 SLoC). A large portion of the code in these
modules (i.e., 2227 SLoC) can be reused across different
GPUs, including all the utility code and helper functions
of other modules in the TDK. In particular, supporting dif-
ferent GPUs of the same vendor only requires minimal code
modification because the GPU object changes are incremen-
tal; e.g., IronLake specific code in TDK takes only 178 SLoC.

In contrast, the code size of full GPU virtualization ap-
proaches [46, 45] is much larger. It contains a Xen hypervisor
of 263K SLOC [56] and a privileged root domain that has
over 10M SLOC.

5.2 Performance on micro-benchmarks
In this section, we measure the performance overhead of

commodity OS/Apps and SecApps during a trusted-display
session. Specifically, we measure the overhead of the access
mediation and access emulation components of the TDK to
evaluate their impact on untrusted commodity OS/Apps.
We also evaluate the overhead added by screen overlays to
SecApps. Finally, we illustrate the overhead incurred by the
TD add-on component of the trusted-display service.

12https://code.google.com/p/distorm/

Table 6: Overhead of GPU address space separation.
Initialization Run-time

GGTT
Shadowing

Modify
GGTT’

Apply
Invariants

Page Table
Switch13

40.25 ms 0.04 µs 0.10 µs 11.60 µs

Access mediation. The run-time overhead of access me-
diation is small, though its magnitude varies for different
GPU objects. The mediation of access to GPU configu-
ration registers, GPU page tables, and GPU data adds a
modest performance penalty to commodity OS/Apps dur-
ing SecApp run-time. As shown in Table 5, the TDK spends
2.61 µs on mediating access to a GPU configuration regis-
ter, and 2.69 µs on mediating access to a new GPU page
table mapping, on average. However, the TDK does not
spend any time on GPU data mediation on the fly, because
the sensitive GPU data has been remapped by TD add-on.
On average, access mediation for GPU commands takes 8.86
µs. We note that GPU commands mediation overhead may
vary; e.g. mediation of the GPU batch-buffer start command
may require access verification for the entire GPU command
batch buffer. However, in most cases, batch-buffer media-
tion by TDK code is unnecessary since the GPU hardware
protection mechanisms can be used instead.

We also measured the performance of GPU address-space
separation and GPU command protection since they are
important components of the access-mediation mechanism.
Table 6 shows the overhead of GPU address space separa-
tion added to untrusted OS/Apps. GGTT shadowing incurs
the overwhelming portion of the overhead since it needs to
parse every mapping in GGTT and construct the mapping in
GGTT’. Fortunately, this overhead is incurred only at TDK
initialization, and subsequent SecApps display operations
do not require GGTT shadowing. In contrast, the run-time
overhead incurred by untrusted OS/Apps is small, as shown
in Table 6. For GPU command protection, the TDK im-
plementation uses the GPU privilege protection mechanism
and takes 0.07 µs on the average to de-privilege a single
GPU batch buffer.

Access emulation. Similar to access mediation, TDK’s
access emulation has a small runtime overhead, which varies
for different GPU objects. For example, TDK’s overhead for
emulating access to GPU page tables is 0.24 µs, on average.
We do not measure access emulation costs of GPU data,
GPU commands, nor GPU configuration registers. The rea-
son for this is that GPU data accesses are not intercepted
by TDK or TD add-on and their access emulation is done
by memory remapping. Although the overhead of GPU
command-access and configuration-register emulation varies
widely with the types of objects and functions used, accesses
to these objects are either infrequent or cause a small over-
head.

Screen overlay. As anticipated, our experiments con-
firm that hardware overlays have much better performance
than software overlays. Our test SecApp uses a 100 * 100
display area size with a screen resolution of 1200 * 800. Soft-
ware overlays take 4.10 ms to process a display request of
this SecApp. In contrast, hardware overlays take only 0.03

13We evaluate Haswell GPUs instead, because Intel’s open
source GPU drivers support local page tables on GPUs
newer than IronLake [2]

Table 7: TD add-on overhead.

Trapper
CPU Instruction

Emulator
Fast Commun-
ication Channel

11.79 µs 5.43 µs 3.60 µs

ms, which decreases the overhead of handling a display re-
quest in software by 99.27%. Software overlays decrease
CPU performance for SecApps as the screen resolution in-
creases. For example, software overlays takes 42.59 ms on
displays with 4096 * 2160 resolution, which are becoming in-
creasingly popular. Such an overhead would cause excessive
frame rate drops at 60Hz or higher display refresh cycles,
which would result in visually choppy display images. We
note that the overhead of software overlays increases when
performed in GPU memory due to the reading and writing
of frame buffers by the CPU.

TD Add-on. The TD add-on component takes 20.82 µs
to trap and operate on a single sensitive GPU object access
by untrusted OS/Apps. Table 7 illustrates the overhead
breakdown.

First, the trapper takes 11.79 µs, on average, to inter-
cept an MMIO access to GPU object and resume untrusted
OS/Apps execution. (Note that this measurement does not
include the PIO access interception.) This overhead is large
due to the round-trip context switch between the mHV and
untrusted OS/Apps. However, new hardware architectures
make the trapper’s overhead negligible.

Second, the CPU instruction emulator takes 5.43 µs, on
the average, to parse the trapped CPU instruction due to
accessing sensitive GPU objects from untrusted OS/Apps.
However, this emulation overhead is well amortized since
native GPU drivers [2, 6, 4] tend to use a single unified
function for configuration updates of each type of GPU ob-
jects. Thus, the CPU instruction emulator can cache the
emulation result for future use.

Third, our evaluation results show that the fast communi-
cation channels are much more efficient than switching be-
tween untrusted OS and TDK. In our implementation, the
fast channel takes 3.60 µs for the communication round-trip
between mHV and TDK when they run on different cores.
In contrast, when the mHV needs to switch to TDK and
back on the same core, the overhead is 722.42 µs. As a re-
sult, fast communication channels on multi-core systems can
reduce the communication overhead by 99.50%.

5.3 Performance on macro-benchmarks
We use Linux GPU benchmarks to evaluate the perfor-

mance impact of the trusted-display service on commod-
ity OS/Apps software. Specifically, we use 3D benchmarks
from Phoronix Test Suite [5], including OpenArena, Urban-
Terror, and Nexuiz. We also use Cairo-perf-trace [1] 2D
benchmarks, including firefox-scrolling (”Firefox”), gnome-
system-monitor (”Gnome”), and midori-zoomed (”Midori”).
However, we did not run LightsMark in 3D benchmark or
firefox-asteroids in 2D benchmark as in previous studies [46],
because these workloads have not been available to us.

Our evaluation uses three settings that are designed to dis-
tinguish the overhead caused by the underlying mHV from
that caused by the trusted display service. These settings
are: Ubuntu 12.04 with no security component added
(“native”), mHV running without the trusted-display service
(”TD off”), and a SecApp using the trusted-display service

72.73%

47.82%

79.86%

40.80%

66.54%
74.24%

49.74%

91.83%

41.43%

82.61%

40%

60%

80%

100%
N

at
iv

e
Pe

rfo
rm

an
ce

TD off TD_on

14.70%
14.94%

0%

20%

OpenArena UrbanTerror Nexuiz Firefox Midori Gnome

%
 o

f N

Figure 5: Performance of the trusted display service
on 2D and 3D benchmarks.

running on the top of mHV (”TD on”). The native setting
does not load any of out trusted code; i.e., neither the mHV
nor trusted-display service code. In the TD off setting, both
the mHV and TD add-on code are loaded, but the TD add-
on code is never invoked because the TDK is not loaded.
Thus, whatever performance overhead arises in the TD off
setting it is overwhelmingly caused by the security services
of the unoptimized mHV. The TD on setting measures the
overhead of the trusted-display service over and above that
of mHV, and hence is of primary interest.

Figure 5 shows that the TD on setting achieves an av-
erage 53.74% of native performance, while TD off achieves
59.13%. Thus, the trusted-display service is responsible for
only 10% of the overhead whereas the unoptimized mHV is
largely responsible for the rest. We believe that the perfor-
mance of the mHV (i.e., XMHF) can be improved signifi-
cantly with a modest engineering effort; e.g., mapping large
pages instead of small pages in the nested page table for
CPU physical memory access control, and hence decreasing
the page-walking overhead and frequency of nested page ta-
ble use. We also believe that new hardware architectures,
such as Intel’s SGX, will make the hypervisor overhead neg-
ligible.

Furthermore, the data of Figure 6 show that most frame
jitter is caused by the unoptimized mHV, and the trusted-
display service does not increase the amount of frame jitter.
We obtained these data by measuring the frame latencies
of the OpenArena workload using the tools provided by the
Phoronix Test Suite. These data show that the frame la-
tencies of TD on and TD off settings are similar, whereas
those of the native and TD off settings are different. Specif-
ically, the standard deviations are 6.62, 14.69, 14.49 for Fig-
ure 6(a), Figure 6(b), Figure 6(c), respectively.

6. RELATED WORK

6.1 Trusted Display
GPU isolation. Several previous approaches provide
trusted display services using security kernels. For exam-
ple, Nitpicker [17], EWS [42] and Trusted X [15] support a
trusted windowing system. Glider [41] could also be used to
provide a trusted display service since it isolates GPU ob-
jects in the security kernel. However, these approaches are
unsuitable for unmodified commodity OSes, because security
kernels are object-code incompatible with native commod-
ity OSes. Past research efforts to restructure commodity
OSes to support high-assurance security kernels have failed
to meet stringent marketplace requirements of timely avail-

ability and maintenance [30, 19]. In contrast, our system
does not require any modification of widely available com-
modity OSes.

Other approaches provide trusted display by exclusively
assigning GPU to SecApp. Recent work [48, 51] uses the de-
vice pass-through feature of modern chipsets [8, 24] for this
assignment. Other work [33, 11] isolates the GPU with a
system’s TCB. Recent implementations of trusted path [55,
56] also isolate communication channels from SecApps to
GPU hardware. However, once assigned to a SecApp, the
GPU cannot be accessed by untrusted commodity OS/App
code until the device is re-assigned to that code. Thus,
a commodity OS/App cannot display its content during
SecApp’s exclusive use of the trusted display, unless the
OS/App trusts SecApps unconditionally. Our system solves
this problem by allowing untrusted OS/Apps and SecApps
to use GPU display function at the same time. As a re-
sult, commodity OS/Apps do not need to rely on external
SecApps for display services.

GPU virtualization. GPU virtualization can provide
trusted-display services by running SecApps in a privileged
domain and untrusted OS/Apps in an unprivileged domain.
The privileged domain can emulate the GPU display func-
tion in software [44, 28] for the untrusted OS/Apps. How-
ever, other GPU functions, such as image-processing emu-
lation, are extremely difficult to implement in software and
take advantage of this setup due to their inherent complex-
ity [46, 13]. As a result, GPU emulation cannot provide all
GPU functions to the untrusted OS/Apps, and hence this
approach is incompatible with commodity software. Smow-
ton [43] paravirtualizes the user-level graphics software stack
to provide added GPU functions to untrusted OS/Apps. Un-
fortunately, this type of approach requires graphics software
stack modification inside untrusted OS/Apps, and hence is
incompatible with commodity OS software.

Full GPU virtualization approaches [46, 45] expose all
GPU objects to unprivileged VMs access, and hence al-
low untrusted OS/Apps to use unmodified GPU drivers.
However, these approaches share all GPU functions between
privileged domain and unprivileged domain, and hence re-
quire complex mediation and provide only low assurance.
Existing full GPU virtualization approaches are subject to
GPU address space isolation attacks, and hence are inade-
quate for trusted-display services. Furthermore, full GPU
virtualization requires extensive emulation of accesses to a
large number of GPU objects, in order to retain compatibil-
ity with the VMs that share the GPU. Our system solves the
problem by sharing only the GPU display function between
the untrusted OS/Apps and the SecApps. Thus, it needs
to mediate only accesses to GPU objects that affect trusted
display’s security. Hence it needs to emulate accesses to a
much smaller set of GPU objects, which helps minimize the
trusted code base for high assurance system development.

Special devices. High-bandwidth digital content pro-
tection (HDCP) [31, 40] employs cryptographic methods
to protect display content transmitted from GPU to physi-
cal monitor. HDCP requires encryption/decryption circuits,
and hence hardware modification of both GPUs and phys-
ical monitors. Similarly, Hoekstra et al. [21] also require
crypto support in GPU to provide trusted display. Intel
Identity Protection Technology with Protection Transaction
Display is also reported to rely on special CPU and GPU
features [22]. In contrast, our system does not require any

40

60

80

100

120

0

20

1
12
6

25
1

37
6

50
1

62
6

75
1

87
6

10
01

11
26

12
51

13
76

15
01

16
26

17
51

18
76

20
01

21
26

22
51

23
76

25
01

26
26

27
51

28
76

30
01

31
26

32
51

(a) Native

120

80

100

40

60

0

20

9 7 5 3 9 7 5 3 9 7 5 3 9 7 5 3 9 7 5 3 9 71
10
9

21
7

32
5

43
3

54
1

64
9

75
7

86
5

97
3

10
81

11
89

12
97

14
05

15
13

16
21

17
29

18
37

19
45

20
53

21
61

22
69

23
77

24
85

25
93

27
01

28
09

29
17

(b) TD off

120

80

100

40

60

0

20

1 7 3 9 5 1 7 3 9 5 1 7 3 9 5 1 7 3 9 5 1 7 3 9 5 1 7 31
10
7

21
3

31
9

42
5

53
1

63
7

74
3

84
9

95
5

10
61

11
67

12
73

13
79

14
85

15
91

16
97

18
03

19
09

20
15

21
21

22
27

23
33

24
39

25
45

26
51

27
57

28
63

(c) TD on

Figure 6: Latency evaluation of OpenArena. The vertical axis represents latency in milliseconds and the
horizonal axis represents frame index.

modification of existing commodity hardware. It could also
use HDCP to defend against certain hardware attacks; e.g.,
malicious physical monitors.

Other cryptography-based approaches [52, 36] decode con-
cealed display images via optical methods; e.g., by placing a
transparency, which serves as the secret key, over concealed
images to decode them. These approaches are similar in
spirit to the use of one time pads, and hence need physical
monitor modification for efficient, frequent re-keying. Other
systems [38] add decryption circuitry to displays, and hence
also require commodity hardware modification, which fails
to satisfy our design goals.

6.2 GPU Data Leakage
Recent research [12, 29] shows that GPU data leakage may

occur because security-sensitive applications may not zero
their freed GPU data memory in a timely manner. Thus,
malicious applications can probe GPU data of other appli-
cations by using native GPU drivers (including user-level
libraries) on commodity GPU. Other recent work [34] also
focuses on GPU data leakage in virtualized environments
and shows that the untrusted OS can manipulate GPU con-
figuration registers to leak GPU data. An early instance
of the data leakage problem [46] shows that full GPU vir-
tualization approaches could solve the problem in principle
by mediating access to GPU data, configuration registers,
commands and page tables. Nevertheless the GPU address
space separation attack of Section 2 shows that malicious
GPU instructions can still break GPU data confidentiality
and authenticity of full GPU virtualization. Our system
prevents these attacks since the GSK mediates accesses to
sensitive GPU objects and emulates unsafe accesses.

7. DISCUSSION
Direct GPU Access by SecApps. This paper pro-
poses a trusted display design that can be used by the vast
majority of SecApps, and has few basic GPU requirements.
Most SecApps can render their display content on the CPU
and then submit it to the trusted display kernel for output.
To support SecApps that require GPU commands and in-
structions, we suggest the use of either GPU pass-through
mechanisms [48, 51], or GPUs that have added hardware
isolation features [37]. Full GPU virtualization [46, 45] does
not provide sufficient security for SecApps that require di-
rect GPU access.

Recommendations for GPU Hardware Enhancement.
Separating sensitive and insensitive GPU registers and mem-
ory into different aligned pages would help reduce the trap-
and-mediate overhead in commodity OSes and improve OS’s
run-time performance. GPU hardware overlays [23] provide

dedicated memory buffers inside the GPU for programs to
enable independent rendering of images and videos on top
of the main display screen. Our system – and other trusted
display solutions – could leverage these features to further
reduce the size of the trusted code base. The address-space
separation attacks described in Section 2.2, which are en-
abled by inadvertent side-effects of a GPU optimization,
should serve as a warning to GPU designers that serious se-
curity analyses are required when introducing new features
that are intended to enhance performance in GPUs.

Uniprocessor Support. On uniprocessor platforms, our
trusted display service pauses the untrusted OS/Apps when
executing the SecApp. This simplifies the design of GPU
isolation since SecApps cannot run concurrently with un-
trusted commodity software.

8. CONCLUSION
Modern commodity GPUs have increasingly rich functions

and higher performance, and yet lack adequate hardware iso-
lation mechanisms for trusted display. Worse yet, full GPU
virtualization techniques intended to optimize performance
violate the existing rudimentary isolation mechanisms and
expose user output to significant vulnerabilities. We design
and implement a trusted display service that is compati-
ble with commodity hardware, applications, OSes and GPU
drivers, has a trusted code base that is orders of magnitude
smaller than previous systems, and preserves relatively high
OS graphics performance. Our design also helps identify key
areas where added hardware protection mechanisms would
enhance GPU object and resource isolation.

Acknowledgment
We are grateful to Yueqiang Cheng, Kun Tian, Yusuke Suzuki,
the members of intel-gfx, radeon, nouveau IRC channels,
and the CCS reviewers for their useful comments and sugges-
tions. This research was supported in part by CMU CyLab
under the National Science Foundation grant CCF-0424422
to the Berkeley TRUST STC. The views and conclusions
contained in this paper are solely those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of any sponsoring institution,
the U.S. government or any other entity.

9. REFERENCES
[1] Cairo-perf-trace. http://www.cairographics.org/.

[2] Intel graphics driver.
https://01.org/linuxgraphics/.

[3] Lima graphics driver for ARM Mali GPUs.
http://limadriver.org/.

[4] Nouveau graphics driver.
http://nouveau.freedesktop.org/.

[5] Phoronix Test Suite.
http://www.phoronix-test-suite.com/.

[6] Radeon graphics driver.
http://www.x.org/wiki/radeon/.

[7] AMD. AMD Radeon documentation.
http://www.x.org/wiki/RadeonFeature/#index10h2.

[8] AMD. AMD I/O virtualization technology (IOMMU)
specification. AMD Pub. no. 34434 rev. 1.26, 2009.

[9] AMD. AMD 64 Architecture Programmer’s Manual:
Volume 2: System Programming. Pub. no. 24593 rev.
3.23, 2013.

[10] ARM. Open source Mali-200/300/400/450 GPU
kernel device drivers. http://malideveloper.arm.
com/develop-for-mali/drivers/

open-source-mali-gpus-linux-kernel-device-drivers.

[11] Y. Cheng and X. Ding. Virtualization based password
protection against malware in untrusted operating
systems. In Proceedings of the 5th International
Conference on Trust and Trustworthy Computing,
TRUST’12, pages 201–218, Berlin, Heidelberg, 2012.
Springer-Verlag.

[12] R. Di Pietro, F. Lombardi, and A. Villani. CUDA
leaks: information leakage in GPU architectures.
arXiv preprint arXiv:1305.7383, 2013.

[13] M. Dowty and J. Sugerman. Gpu virtualization on
vmware’s hosted i/o architecture. SIGOPS Oper. Syst.
Rev., 43(3):73–82, July 2009.

[14] J. Epstein, C. Inc, J. McHugh, H. Orman, R. Pascale,
A. Marmor-Squires, B. Danner, C. R. Martin,
M. Branstad, G. Benson, and D. Rothnie. A high
assurance window system prototype. Journal of
Computer Security, 2(2):159–190, 1993.

[15] J. Epstein, J. McHugh, R. Pascale, H. Orman,
G. Benson, C. Martin, A. Marmor-Squires, B. Danner,
and M. Branstad. A prototype b3 trusted x window
system. In Computer Security Applications
Conference, 1991. Proceedings., Seventh Annual, pages
44–55, Dec 1991.

[16] K. Fatahalian and M. Houston. A closer look at
GPUs. Commun. ACM, 51(10):50–57, Oct. 2008.

[17] N. Feske and C. Helmuth. A nitpicker’s guide to a
minimal-complexity secure GUI. In Proc. Annual
Computer Security Applications Conference, 2005.

[18] M. Gasser. Building a secure computer system. In Van
Nostrand Reinhold, New York, 1988.

[19] V. D. Gligor. Security limitations of virtualization and
how to overcome them. In Proc. International
Workshop on Security Protocols, Cambridge
University, 2010.

[20] B. Hoanca and K. J. Mock. Screen oriented technique
for reducing the incidence of shoulder surfing. In
Security and Management, pages 334–340, 2005.

[21] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo. Using innovative instructions to create
trustworthy software solutions. In Proc. International
Workshop on Hardware and Architectural Support for
Security and Privacy, 2013.

[22] Intel. Deeper levels of security with intel(r) identity
protection technology.

http://ipt.intel.com/Libraries/Documents/

Deeper_Levels_of_Security_with_Intel%C2%AE_

Identity_Protection_Technology.pdf.

[23] Intel. Intel processor graphics programmer’s reference
manual. https://01.org/linuxgraphics/
documentation/driver-documentation-prms.

[24] Intel. Intel virtualization technology for directed I/O
architecture specification. Intel Pub. no. D51397-006
rev. 2.2, 2013.

[25] Intel Corporation. Intel 64 and IA-32 architectures
software developer’s manual: Volume 3: System
programming guide. Pub. no. 253668-048US, 2013.

[26] S. Kato. Implementing open-source CUDA runtime. In
Proc. of the 54the Programming Symposium, 2013.

[27] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: formal verification of an OS kernel.
In Proc. ACM Symposium on Operating Systems
Principles, 2009.

[28] I. T. Lab. Qubes OS. https://qubes-os.org/.

[29] S. Lee, Y. Kim, J. Kim, and J. Kim. Stealing
webpages rendered on your browser by exploiting
GPU vulnerabilities. In 2014 IEEE Symposium on
Security and Privacy, SP 2014, Berkeley, CA, USA,
May 18-21, 2014, pages 19–33, 2014.

[30] S. Lipner, T. Jaeger, and M. E. Zurko. Lessons from
VAX/SVS for high assurance VM systems. IEEE
Security and Privacy, 10(6):26–35, 2012.

[31] D. C. P. LLC. High-bandwidth digital content
protection system.
www.digital-cp.com/files/static_page_files/

8006F925-129D-4C12-C87899B5A76EF5C3/HDCP_

Specification%20Rev1_3.pdf.

[32] D. Luebke. CUDA: Scalable parallel programming for
high-performance scientific computing. In Biomedical
Imaging: From Nano to Macro, 2008. ISBI 2008. 5th
IEEE International Symposium on, pages 836–838,
May 2008.

[33] L. Martignoni, P. Poosankam, M. Zaharia, J. Han,
S. McCamant, D. Song, V. Paxson, A. Perrig,
S. Shenker, and I. Stoica. Cloud terminal: Secure
access to sensitive applications from untrusted
systems. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, USENIX
ATC’12, pages 14–14, Berkeley, CA, USA, 2012.
USENIX Association.

[34] C. Maurice, C. Neumann, O. Heen, and A. Francillon.
Confidentiality issues on a GPU in a virtualized
environment. In N. Christin and R. Safavi-Naini,
editors, Financial Cryptography and Data Security -
18th International Conference, FC 2014, Christ
Church, Barbados, March 3-7, 2014, Revised Selected
Papers, volume 8437 of Lecture Notes in Computer
Science, pages 119–135. Springer, 2014.

[35] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient TCB
reduction and attestation. In Proc. IEEE Symposium
on Security and Privacy, 2010.

[36] M. Naor and A. Shamir. Visual cryptography. In
Advances in Cryptology–EUROCRYPT’94, pages
1–12. Springer, 1995.

[37] Nvidia. Virtual GPU technology.
http://www.nvidia.com/object/virtual-gpus.html.

[38] P. Oikonomakos, J. Fournier, and S. Moore.
Implementing cryptography on TFT technology for
secure display applications. In Smart Card Research
and Advanced Applications, pages 32–47. Springer,
2006.

[39] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
and J. Phillips. GPU computing. Proceedings of the
IEEE, 96(5):879–899, May 2008.

[40] X. Ruan. Platform Embedded Security Technology
Revealed: Safeguarding the Future of Computing with
Intel Embedded Security and Management Engine.
Apress, Berkely, CA, USA, 1st edition, 2014.

[41] A. A. Sani, L. Zhong, and D. S. Wallach. Glider: A
GPU library driver for improved system security.
CoRR, abs/1411.3777, 2014.

[42] J. S. Shapiro, J. Vanderburgh, E. Northup, and
D. Chizmadia. Design of the EROS trusted window
system. In Proceedings of the 13th Conference on
USENIX Security Symposium - Volume 13, SSYM’04,
pages 12–12, Berkeley, CA, USA, 2004. USENIX
Association.

[43] C. Smowton. Secure 3D graphics for virtual machines.
In Proceedings of the Second European Workshop on
System Security, EUROSEC ’09, pages 36–43, New
York, NY, USA, 2009. ACM.

[44] U. Steinberg and B. Kauer. NOVA: a
microhypervisor-based secure virtualization
architecture. In Proc. European Conference on
Computer Systems, 2010.

[45] Y. Suzuki, S. Kato, H. Yamada, and K. Kono.
GPUvm: Why not virtualizing GPUs at the
hypervisor? In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), pages 109–120,
Philadelphia, PA, June 2014. USENIX Association.

[46] K. Tian, Y. Dong, and D. Cowperthwaite. A full GPU
virtualization solution with mediated pass-through. In
2014 USENIX Annual Technical Conference (USENIX
ATC 14), pages 121–132, Philadelphia, PA, June 2014.
USENIX Association.

[47] A. Vasudevan, S. Chaki, L. Jia, J. McCune,
J. Newsome, and A. Datta. Design, implementation
and verification of an extensible and modular
hypervisor framework. In Proc. IEEE Symposium on
Security and Privacy, 2013.

[48] VMWare. Graphics acceleration in view virtual
desktops.
http://www.vmware.com/files/pdf/techpaper/

vmware-horizon-view-graphics-acceleration-deployment.

pdf.

[49] Wikipedia. Screen tearing.
http://en.wikipedia.org/wiki/Screen_tearing.

[50] N. Wilt. The CUDA Handbook: A Comprehensive
Guide to GPU Programming. Pearson Education,
2013.

[51] Xen. Xen VGA passthrough fetched on 2015-01-19).
http://wiki.xen.org/wiki/Xen_VGA_Passthrough.

[52] H. Yamamoto, Y. Hayasaki, and N. Nishida. Secure
information display with limited viewing zone by use
of multi-color visual cryptography. Optics express,
12(7):1258–1270, 2004.

[53] M. Yu, C. Zhang, Z. Qi, J. Yao, Y. Wang, and
H. Guan. VGRIS: Virtualized gpu resource isolation
and scheduling in cloud gaming. In Proceedings of the
22nd International Symposium on High-performance
Parallel and Distributed Computing, HPDC ’13, pages
203–214, New York, NY, USA, 2013. ACM.

[54] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation -
Volume 7, OSDI ’06, pages 19–19, Berkeley, CA, USA,
2006. USENIX Association.

[55] Z. Zhou, V. D. Gligor, J. Newsome, and J. M.
McCune. Building verifiable trusted path on
commodity x86 computers. In Proc. IEEE Symposium
on Security and Privacy, 2012.

[56] Z. Zhou, M. Yu, and V. Gligor. Dancing with giants:
Wimpy kernels for on-demand isolated I/O. In
Security and Privacy (SP), 2014 IEEE Symposium on,
pages 308–323, May 2014.

