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Abstract

In this appendix, we derive the likelihood function for the estimation in our paper in the

Journal of Industrial Economics, titled above.



Derivation of the likelihood function

The two equations we wish to estimate are equation 1, an ordered-probit entry equation,

and equation 2, a linked demand equation which has both selection bias and endogeneity of

the market structure dummies.

Y λ + X (δX + αX) + W (δW + αW − γW )

+ δN − αN − γN − ln N + εS + εd + εV − εF > 0

(1)

ln QN = Y λ + XδX + WδW + δN + εQ (2)

Because νQ, νΠ, and η are mutually independent, εΠ and εQ are independent once we

condition on η. Consider now the contribution (conditional on η) to the likelihood function

of a market with N = 0:

P {N = 0|η} =P {Y λ + XµX + WµW + εΠ < µ1|η}

P {N = 0|η} =P {Y λ + XµX + WµW + νΠ + rη < µ1|η}

P {N = 0|η} =Φ (µ1 − Y λ − XµX − WµW − rη)

The contribution (conditional on η) to the likelihood function of a market with N = n

is:
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P {N = n|η} f (lnQ|η) = P {µn < Y λ + XµX + WµW + νΠ + rη < µn+1|η} f (lnQ|η)

=

 Φ (µn+1 − Y λ − XµX − WµW − rη)

− Φ (µn − Y λ − XµX − WµW − rη)

 1
σνQ

φ

(
lnQ − Y λ − XδX − WδW − δN − η

σνQ

)

Finally, the contribution (conditional on η) to the likelihood function of a market with

N = n, where n is the “top” category in the ordered probit, is:

P {N = n|η}f (lnQ|η) = P {µn < Y λ + XµX + WµW + νΠ + rη|η} f (lnQ|η)

= (1 − Φ (µn − Y λ − XµX − WµW − rη))
1

σνQ

φ

(
lnQ − Y λ − XδX − WδW − δN − η

σνQ

)

Now let us turn to η. Let η be distributed with a distribution function F (η; β) which

depends on parameters β. Then the contribution of an observation with N = n where n is

neither zero nor the top category would be:

∫
η

P {N = n|η} f (lnQ|η) dF (η;β) =


η

 Φ (µn+1 − Y λ − XµX − WµW − rη)

− Φ (µn − Y λ − XµX − WµW − rη)

 1
σνQ

φ

(
lnQ − Y λ − XδX − WδW − δN − η

σνQ

)
dF (η;β)

To arrive at the unconditional contribution to the likelihood function, we must integrate

over η. Rather than assuming a particular functional form for the distribution of η, we
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choose to approximate this distribution using a discrete factor approximation (Heckman and

Singer, 1984; Mroz and Guilkey, 1992). This entails using a multinomial distribution for η

with K points of support:

η =



β1 with probability p1

β2 with probability p2

β3 with probability p3

...
...

...

βK with probability pK

The use of this distribution with K points of support introduces 2K additional parame-

ters, the K βs and the K ps. Accounting for the fact that probabilities must sum to one

and the mean of η must be zero, there are 2(K − 1) additional parameters.

At last, the unconditional contribution to the likelihood function of an observation with

N = n where n is neither zero nor the top category is:

∫
P {N = n|η} f (lnQ|η) dF (η;β) =

K∑
k=1

pk

 Φ (µn+1 − Y λ − XµX − WµW − rβk)

− Φ (µn − Y λ − XµX − WµW − rβk)

 1
σνQ

φ

(
lnQ − Y λ − XδX − WδW − δN − βk

σνQ

)

The contributions for observations with N = 0 and with N equal to the top category in

the ordered probit may be derived similarly. It is this likelihood function which we take to

the data. It remains to choose a K, and we follow the prior literature in that we increase K

until the likelihood function no longer rises appreciably with further increases in K. In our
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case, raising K from six to seven resulted in the likelihood function rising by approximately

0.05, so we set K equal to seven.
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