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Abstract

This paper describes an assembly-language type system
capable of ensuring memory safety in the presence of both
heap and stack allocation. The type system uses linear logic
and a set of domain-specific predicates to specify invariants
about the shape of the store. Part of the model for our logic
is a tree of “stack tags” that tracks the evolution of the stack
over time. To demonstrate the expressiveness of the type
system, we define Micro-CLI, a simple imperative language
that captures the essence of stack allocation in the Common
Language Infrastructure. We show how to compile well-
typed Micro-CLI into well-typed assembly.

1 Introduction

The grand challenge for the proof-carrying code
paradigm is twofold: to develop an expressive logic for
easily specifying and proving properties of low-level pro-
grams, and to develop certifying-compiler technology that
automatically generates such proofs from the information
embedded in high-level programs. Over the last eight years,
tremendous progress has been made, but finding general-
purpose logics for specifying memory-management proper-
ties and developing certifying-compiler technology target-
ing them continues to be problematic.

In this paper, we develop a low-level memory model that
treats pointers to heap and stack locations uniformly in the
presence of aliased data structures. Our type system ex-
tends previous work on the development of typed assem-
bly languages [16, 15, 2] by using linear logic and domain-
specific predicates to specify preconditions for assembly
code. These preconditions describe the contents and shape
of the stack and heap, and provide a safe but flexible way to
allocate, deallocate, reference, and reuse data on the stack.
The typing discipline is powerful enough to represent gen-
eral stack pointers including pointers that might point into
the heap or into the stack.

Defining an expressive type system and testing it on
some ad hoc examples does not demonstrate that it is use-

ful for certifying compilation. It is equally necessary to
show that there is an algorithm for generating type-safe low-
level code from type-safe high-level code. To demonstrate
that our system does indeed form a foundation for certify-
ing compilation in the presence of complex and important
memory invariants, we define a high-level language called
Micro-CLI, which captures the stack-allocation features
found in the Common Language Infrastructure (CLI) [6, 9],
and we give a translation of well-typed Micro-CLI into
well-typed assembly code.

This is the first paper (1) to develop a unified low-level
memory model for the heap and the stack in the presence of
aliasing, and (2) to give an algorithm for a type-preserving
compilation from a language with both heap and stack allo-
cation to our typed assembly language. Previous work has
either developed type (or proof) systems that are too restric-
tive to handle important, realistic invariants such as those
present in the CLI, or it has not demonstrated any sort of
compiler strategy for generating stack-based proof-carrying
code.

1.1 Background and Related Work

Most earlier work on typed assembly language [15] and
proof-carrying code [4] allows reasoning about data al-
located in the current stack frame, but not much more.
STAL [15] allows pointers deep into the stack, supporting
a particular implementation of exceptions, but its type sys-
tem is not very polymorphic: STAL distinguishes between
stack and heap pointers and tracks the exact ordering of the
stack pointers into the stack. Consequently STAL does not
support general stack allocation.

The logic we develop in this paper unifies a number
of independent ideas in the literature. The first idea,
which appears in O’Hearn, Reynolds, and Yang’s separa-
tion logic [12, 17, 18, 19], is to use a substructural logic to
describe memory as a collection of disjoint pieces. Guaran-
teed disjointness allows us to write “strong update” rules—
in a type system, this means that the same piece of memory
(say, a stack slot) can have different types at different times.
In earlier work [2, 1], we attempted to use this idea alone
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to build a general system for assembly-level memory man-
agement. Unfortunately, while the logic is sound and quite
flexible, we were unable to use it as a target for certifying
compilation since we could not find a general translation for
the types of aliased data structures into the logic.

Closely related to the work on separation logic is earlier
work on alias types [20]. In alias types [20], the capabilities
of locations can be either linear (unaliased) or non-linear
(aliased any number of times); strong updates are allowed
only on linear capabilities; invariant updates are allowed on
non-linear capabilities. Alias types and separation logic are
incomparable in power as alias types include formulas for
aliased memory whereas separation logic contains implica-
tion, disjunction, and other connectives. This paper brings
the power of both together in a single system.

In concurrent work, Morrisett et al. [14] have extended
alias types in a different direction. They have studied
methods for temporarily breaking the invariant associated
with aliased data. Other research along the same line in-
cludes Foster et al.’s restrict primitive [8] and DeLine and
Fähndrich’s adoption and focus [7]. All of these efforts
are carried out in a high-level language and do not concern
themselves with presenting a uniform model of stack and
heap memory.

A third area of related work includes region-based mem-
ory management [21, 3, 5, 11]. In region systems, types are
tagged with the name of the region in which they are allo-
cated. The type system tracks the regions that are currently
live and disallows access to data structures that live in dead
regions. Our assembly language employs a variant of the
region idea by tagging descriptions of memory with version
numbers, and keeping track of the valid versions. We do not
allow programs to reason about memory using out-of-date
descriptions. A crucial difference between our system and
previous region-based systems is that we unify the idea of
regions with a low-level model of stack and heap allocation
and aliasing invariants. In order to do so, we use a more
elaborate structure, a tag tree, in our memory model to keep
track of the live “version numbers”.

The richest source-level type-safe memory management
system we are aware of is Grossman et al.’s Cyclone lan-
guage [11, 10]. Cyclone allows data to be allocated on the
stack. It uses a region-based type system including an out-
lives relation on regions. We can define this outlives rela-
tion within our logic, but we need to do more research to
determine if we can compile all aspects of Cyclone’s stack
allocation discipline into our assembly language.

2 Informal Development

In this section, we summarize the major technical com-
ponents that comprise our memory logic.

2.1 The Basic Setup

The first step in our development is to choose a simple
way to describe the contents of individual memory loca-
tions, regardless of whether they are on the heap or on the
stack. Since the type of the stack changes as the program
progresses, we must use per-program point types for the
stack. To unify stack and heap pointers into one framework,
we need per-program point types for the heap as well. The
general approach that we will use is to describe the whole
state of the machine with formulas in a substructural logic.

One crucial operator in these logics is the multiplicative
conjunction (“star” in the logic of bunched implications,
also called tensor in this paper). The formula F1 ⊗ F2 de-
scribes a state that can be partitioned into two disjoint parts,
one described by F1 and one described by F2. The formula
(` ⇒ τ ) describes a store consisting of a single location
` that contains a value of type τ ; it is also called a linear
capability for `. Before any dereference/assignment oper-
ation on location `, (` ⇒ τ ) must be proven, so that we
know that the location exists, and for dereference, what its
type is. If the state before an assignment to ` is described by
(` ⇒ τ1) ⊗F , then the state after the assignment is described
by (` ⇒ τ2) ⊗F where τ2 is the type of the value stored. We
can use this as the basis for a typing rule for store instruc-
tions, and this type of rule is usually called a strong-update
rule, as the old type τ1 is ignored and completely replaced
by τ2.

2.2 Aliasing of Heap Locations

Formulas involving (` ⇒ τ ) and ⊗ are very precise,
but inflexible. Consider a function that takes two inte-
ger pointers as arguments. It might be described with the
type ∀`1, `2.( (`1 ⇒ int) ⊗ (`2 ⇒ int) ) → · · ·. Now
if it is called with the same pointer, say `, for both pa-
rameters, then it must be called in a state described by
(` ⇒ int) ⊗ (` ⇒ int) . This formula is impossible to
satisfy as it requires partitioning memory into two disjoint
pieces that both have a location ` in their domain.

To solve this problem, we adapt the idea of non-linear ca-
pabilities from alias types [20] and L3 [14]. We add a new
predicate (frzn ` τ ), called a frozen or unrestricted capabil-
ity, which is similar to the linear capability that describes a
location ` of type τ . We partition the state into linear and
frozen memory. Linear capabilities describe locations in
the linear memory; frozen capabilities describe locations in
the frozen memory. The tensor operation partitions the lin-
ear memory between its subformulas, but shares the frozen
memory to both subformulas. Thus, (frzn ` τ ) ⊗ (frzn ` τ )

holds of a state whose frozen memory contains a loca-
tion ` of type τ . The function above can be given type
∀`1, `2.((frzn `1 int)⊗(frzn `2 int)) → · · · and be called with
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the same pointer for both arguments. To make unrestricted
capabilities safe, we must use an invariant update rule. This
rule allows a store to location ` in a state (frzn ` τ )⊗F if the
value being stored has type τ , but it does not allow the type
of ` to be changed. To get unrestricted capabilities, there is
a freezing operation that transfers a location from the linear
memory to the frozen memory, and it takes a state described
by (` ⇒ τ ) ⊗ F to one described by (frzn ` τ ) ⊗ F . Once
frozen a location stays frozen and its type cannot change for
the remainder of execution.

One technicality is worth noting. Unrestricted capabil-
ities can be duplicated and dropped and thus act like the
unrestricted formula ! F in linear logic. Since several of
our domain-specific predicates have similar properties, we
wrap all of these predicates in the unrestricted connective
( ! ). The duplication and weakening rules for unrestricted
formulas in linear logic take care of the duplicating and
dropping of these predicates. So the function above actu-
ally has type ∀`1, `2.( ! (frzn `1 int)⊗ ! (frzn `2 int)) → · · ·.

Using unrestricted capabilities and existential quantifica-
tion, we can express pointer types if we arrange all pointed-
to locations to be in the frozen memory. A pointer to τ is
expressed as ∃`.(S(`)⊗ ! (frzn ` τ )) where S(·) is the single-
ton type constructor. This type states both that the value is
some location and that the location contains a τ . Note that
in our logic, we use more expressive formulas than just ba-
sic types to describe values. Only formulas that do not refer
to linear memory can be used to describe values. We call
them pure formulas and denote them by G. In Section 3,
we will introduce the formal syntax of pure formulas.

2.3 Version Numbers for Stack Locations

Unfortunately the idea of unrestricted capabilities cannot
be applied to both stacks and heaps in a uniform way. The
problem is that freezing constrains the type of a location
for the remainder of execution, but stack frames, in gen-
eral, have shorter lifetimes than the rest of execution and
are reused. The mechanisms described so far do not allow
reuse of frozen memory.

Consider the operation of allocating an integer cell on
the top of the stack. This operation results in memory de-
scribed by (rsp ⇒ S(`)) ⊗ (` ⇒ int) ⊗ . . . where rsp is a
register holding the stack pointer. The top of the stack can
be frozen and then passed to a function. In this case, the
memory typing becomes (rsp ⇒ S(`))⊗ ! (frzn ` int) ⊗ . . ..
Now imagine that the function terminates and returns to its
caller. The caller would like to reuse the stack and put a dif-
ferent value into location `. However, the logic described so
far does not allow anything other than integers in ` for the
remainder of execution. We need the flexibility to freeze a
location for some amount of time, but later reuse it in any
way we desire. To achieve this discipline, we introduce a
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Figure 1. Example Memory Stack Tag Tree

sort of “version numbering” scheme for our locations that
is somewhat reminiscent of region-based type systems.

First, we assume a countably-infinite set of tags ranged
over by k. These tags name versions of locations. When a
location is used for the first time or is reused, a new tag is
chosen to name that use. The machine state includes a tag
tree that keeps track of all these tags. This tag tree is only
used for typing purposes and can be erased in forming an
underlying untyped machine state.

These tags form a tree due to the LIFO nature of the
stack. In the current work, heap cells are not versioned in
the same way that stack cells are, and we assign the special
tag H to all heap locations. The bottom (in the sense of the
stacking discipline, often the highest address) of the stack
goes through a sequence of versions that we can think of
as the ordered children of H . The second to bottom loca-
tion goes through a sequence of versions that exist entirely
within the lifetime of the first version of the bottom of the
stack, then a sequence of versions that exist entirely within
the lifetime of the second version of the bottom of the stack,
and so on. We can think of these versions as the ordered
children of the respective version of the bottom of the stack.
In this way, the versions of locations that make up the stack
during program execution form a tree. The right-most spine
of the tree contains the tags of the current versions of loca-
tions. In addition, one of these tags is marked as the current
top of the stack. When the stack is popped, this marker is
moved to its parent. When the stack is pushed, a fresh tag is
selected and is added to the tag tree as the last child of the
current top of the stack, and it becomes the current top of the
stack. Figure 1 displays the transformation of the tag tree
and stack during a sequence of push and pop operations. A
stack pop occurs between Figure 1(a) and Figure 1(b). A
stack push occurs between Figure 1(b) and Figure 1(c).

Second, unrestricted and linear capabilities include both
a tag and a location. For example, ! (frzn k.` τ ) says
that version k of location ` is frozen at type τ ; similarly,
(k.` ⇒ τ ) holds if location ` currently has version k and
holds a value of type τ . A formula can include unrestricted
capabilities with old tags; these formulas describe previous
states of the location but not the current one.

Third, a frozen capability can be used to load from or
store into a location only if the tag is the current version of
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the location. Even though unrestricted capabilities with old
tags still exist in the formula, they cannot be used to access
the locations.

Fourth, our logic includes formulas to reason about
which tags are current. In particular, we have the two for-
mulas first(k) and !(k2=k1+n). The formula first(k) holds
if the current top of the stack in the tag tree is k. The for-
mula !(k2=k1+n) holds if k2 appears in the tree as the n-th
ancestor of k1. Together, first(k1) and !(k2=k1+n) mean
that k2 is on the right spine of the tag tree and therefore that
it is a current tag.

Using these predicates and existential quantifica-
tion, we are able to describe data structures that
point deep into the stack. For example, if location
k.` contains location k1.`1 which is deeper in the
stack, and k1.`1 contains an integer, then formula
(frzn k.` (∃xk∃x`∃n.S(xk .x`)⊗!(xk=k+n)⊗ ! (frzn xk .x` int)))

describes location k.`, where k1.`1 and some natural num-
ber are the witnesses of the existential package.

To summarize, we have a logic that describes memories
and tag trees. This logic includes linear logic to express sep-
aration and aliasing of memory parts, linear location types,
frozen location types, and currency of tags.

Comments The tree appears to be a fairly heavyweight
component in the memory model. We retain the complete
tree structure in our model, even though parts of the tree
are dead, because it facilitates the proof of certain mono-
tonicity properties of our logic. More specifically, once a
formula that relates tags such as !(k2=k1+n) are satisfied
by a particular model, we can prove that they are satisfied
by all future models that may be generated as the program
executes. Without the tree structure to describe the relation-
ships between past tags, it would be more difficult to obtain
this critical property.

The “tags” resemble the region names in the Capability
Calculus [5]. Each stack location can be treated as a region
containing only that location. We might be able to solve
part of the problem by using some of the techniques in the
Capability Calculus. However, our work focuses on devel-
oping a logic which provides a unified description of heap
and stack locations in a low-level memory model. The Ca-
pability Calculus does not have such view of the memory
model.

3 A Formal Memory Model

In this section we formalize the logic that was informally
described in Section 2. After introducing all the syntactic
constructs, we will focus on the semantics of the logic. The
semantic judgments give meanings to formulas in terms of
memory layout and typing information, which is important
to specify the memory safety policy of assembly programs.

Section 4 will use this logic as the basis for a type system
for assembly language. At the end of this section, we will
give an example to show how various semantic judgments
are used to decide if a memory satisfies a certain formula.
The complete rules for logical deduction and formula equiv-
alence are given in the companion technical report [13].

3.1 Syntax

The syntactic constructs in our logic are given below; i

ranges over integers, iω over integer and infinity (written
∞), ` over locations, sk over tags for stack locations, and
k over stack tags and the heap tag (written H). We use
xi to range over integer variables, xiω over infinite integer
variables, x` over location variables, xk over tag variables,
xt over type variables, and xf over formula variables. We
consider all syntactic constructs equivalent up to alpha con-
version.

Int Expr ei ::= xi | i | ei1 + ei2 | −ei
Infinite Int Expr eiω ::= xiω | iω | eiω1 + eiω2 | −eiω
Location Expr e` ::= x` | ` | e` + ei
Tags ek ::= xk | H | sk
General Loc g ::= ek.e` | r
Types τ ::= xt | S(ei) | S(ek.e`) | (F ) → 0
Bindings b ::= xi :I | xiω:Iω | x`:L | xk :TG

| xt :T | xf :F
Predicates P ::= τ | (g ⇒ G) | ek2=ek1+eiω

| first(ek) | frzn ek.e` G
| eiω ≥ 0
| more

←(e`) | more
→(e`)

Pure Formula G ::= τ | 1 | G1 ⊗ G2 | G1 ( G2

| G1 ⊕ G2 | G1 & G2 |
! F | ∃b.G

Formula F ::= xf | P | 1 | F1 ⊗ F2 | F1 ( F2

| > | F1 & F2 | 0 | F1 ⊕ F2

| ! F | ∃b.F

We assume that locations come with an operation ` + i

that intuitively returns the location i locations away from `.
Infinity is used in ek2=ek1+eiω to express the difference in
levels between a stack tag and the heap tag. In particular,
H=sk+∞ holds for any stack tag sk in the tag tree.

A general location is either a tagged location ek.e` or a
register r. Basic types τ consist of type variables, singleton
types, and codes type (F ) → 0. As we explained briefly in
the previous section, a syntactic category of pure formulas
includes all the formulas that can be used to describe a
value. A pure formula G can be a basic type, or 1, or an
unrestricted formula ! F , or it can be constructed using con-
nectives: ⊗, (, &, ⊕, ∃b from pure sub-formulas.

Models in our logic are pairs of a memory m and a tag
tree t. The semantic judgments define which memory and
tag tree pairs satisfy a formula. To precisely define the se-
mantic judgments, we define a number of auxiliary judg-
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ments that are connected by contexts. The syntax for all
these constructs is defined below.

A store value is an integer, a tagged location, or a code
location c. A tag tree t is a quadruple (H, T, sk, fst) con-
sisting of the heap tag H , the tree proper T , the stack tag of
the top of the stack sk, and a witness fst for the predicate
first(k) to indicate whether the top of the stack is known.
A tree T consists of a root stack tag and an ordered list of
subtrees. The code context Ψ maps each code label c to
its type; the frozen memory type context Π maps a frozen
location k.` to the describing formula G of the value that
location ` contains at version number k.

Store Value sv ::= i | k.` | c
Memory m ∈ Loc ∪ Reg ⇀ Sval
Tree T ::= (sk; T1, T2 · · · , Tn)
Hasfirst fst ::= absent | present
Tag Tree t ::= (H,T, sk, fst)

Code Contexts Ψ ::= · | Ψ, c : (F ) → 0
Frozen Memory Typing Π ::= · | Π, k.` : F

Operations on Memories To specify the semantics of our
logic, we need some notation and operations on various
components of our model.

• g denotes the untagged location: r = r and ek.e` = e`.

• m(g) denotes the store value stored at location g.

• m [ g := sv ] denotes a memory m′ in which g maps to sv but
is otherwise the same as m.

• m1 ]m2 denotes the union of disjoint memories. It is unde-
fined if the memories are not disjoint.

Operations on Trees A tag tree t = (H, T, sk, fst) is well
formed (wf(t)) if sk is on the right spine of T . The live tags
of a tag tree t = (H, T, sk, fst) (Live (t)) are the right spine
of T up to sk, and also H .

Operation newFirst(t, k) adds k as the last child of the
current stack top and makes k the stack top. Operation
delFirst(t) moves the stack top up one level.

The semantics of tensor (⊗) is to disjointly partition the
linear parts of the model between the sub-formulas. The
linear parts of the model are the linear memory and the stack
top. To formalize this partitioning, we overload the merge
operators(]) to merge two disjoint tag trees.

fst ] absent
def
= fst absent ] fst

def
= fst

(H,T, sk, fst
1
) ] (H,T, sk, fst

2
)

def
= (H,T, sk, fst

1
] fst

2
)

Abbreviations We define the following commonly used
abbreviations.

int
def
= ∃xi :I.S(xi)

ns
def
= ∃xf :F.xf

ek1 outlives ek2

def
= ∃xiω:Iω. ek1=ek2+xiω ⊗ ! (xiω ≥ 0)

live (ek)
def
= ∃xk :TG. first(xk)⊗ ! ( ek outlives xk )

3.2 Semantics

There are six semantic judgments:

m, t �
Ψ F at p overall model m, t satisfy F

Πold; t �
Ψ m : Π frozen memory m has type Π

Πold; Π; m; t �
Ψ F at p linear state satisfies F

�
Ψ sv : τ store value sv has type τ

F1 �
Ψ F2 F2 is a semantic consequence F1

F1 ≡ F2 F1 and F2 are equivalent

The place p at the end of the first and third judgment is
either root ∗ or a location g—the latter is used to specify the
semantics of (g ⇒ G) .

Context Πold contains all the frozen type bindings of
stack locations that were popped off. Each judgment and
its rules are explained in the following sections.

Overall Judgment A model satisfies a formula if it can be
split into a frozen part and a linear part such that the frozen
part satisfies the frozen judgment, the linear part satisfies
the linear judgment, and the two judgments are connected
by the same contexts.

(m, t) �
Ψ F at p overall

iff exists m1, m2, t1, t2, Π, Πold

such that m = m1 ] m2, t = t1 ] t2,
Πold; Π; m1; t1 �

Ψ F at p,
Πold; t2 �

Ψ m2 : Π, and ∀k.` ∈ dom(Πold ∪ Π) :

k ∈ Live (t) iff k.` ∈ dom(Π)

Context Πold contains the typing information of all the
frozen locations that were popped off the stack and Π con-
tains typing information about all the live frozen locations.
It is necessary that for any tagged location k.` that belongs
to the domain of Π, the version number k is current.

Frozen Judgment The second judgment checks that a
frozen memory has a given frozen-memory typing.

(Πold; t) �
Ψ m : Π iff for all k.` ∈ dom(Π)

Πold; Π; ` → m(`); t �
Ψ Π(k.`) at k.`

The two frozen-memory typing contexts are recursively
used to check that a frozen memory has a given frozen-
memory typing. For each location k.` in the domain of Π,
the piece of memory it points to should linearly satisfy the
formula given by the frozen-memory typing.

Linear Judgment The main semantic judgment is the lin-
ear satisfaction judgment. It is defined in Figure 2. The set
of pure formulas G is a subset of the set of formulas F , so
the semantic judgments of G are also defined in Figure 2, if
we substitute G for F .
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• Πold; Π; m; t �
Ψ τ at p iff p 6= ∗ and t.fst = absent, and

dom(m) = p and m(p) = sv, �
Ψ sv : τ .

• Πold; Π; m; t �
Ψ (g ⇒ G) at p, iff dom(m) = g, if g =

k.` then k ∈ Live (t), and Πold; Π;m; t �
Ψ G at g.

• Πold; Π; m; t �
Ψ k2=k1+iω at p iff dom(m) = ∅, t.fst =

absent, and one of the following holds: iω = n ≥ 0 and k2

is the nth ancestor of k1 in tree t; iω = −n < 0 and k1 is
the nth ancestor of k2 in tree t; iω = +∞ and k2 = H; or
iω = −∞ and k1 = H .

• Πold; Π; m; t �
Ψ first(k) at p iff dom(m) = ∅, and t =

(H,T, k, present).

• Πold; Π; m; t �
Ψ frzn k.` G at p iff dom(m) = ∅, t.fst =

absent, (Πold ∪ Π)(k.`) = G′, and G ≡ G′.

• Πold; Π; m; t �
Ψ eiω ≥ 0 at p iff eiω ≥ 0.

• Πold; Π; m; t �
Ψ

more
←(`)at p iff t.fst = absent, and

dom(m) = {` − n|n ∈ Nat}.

• Πold; Π; m; t �
Ψ

more
→(`)at p iff t.fst = absent, and

dom(m) = {` + n|n ∈ Nat}.

• Πold; Π; m; t �
Ψ 1 at p iff t.fst = absent, and dom(m) = ∅

• Πold; Π; m; t �
Ψ F1 ⊗ F2 at p iff m = m1 ] m2, t =

t1] t2, Πold; Π; m1; t1 �
Ψ F1 at p, and Πold; Π; m2; t2 �

Ψ

F2 at p.

• Πold; Π; m; t �
Ψ F1 ( F2 at p iff t.fst = absent, for all

memory m′, tree t′ and t′.fst = absent, Πold; Π; m′; t′ �
Ψ

F1 at p implies Πold; Π;m ] m′; t ] t′ �Ψ F2 at p.

• Πold; Π; m; t �
Ψ >at p, it is true for all memory models.

• Πold; Π; m; t �
Ψ F1 & F2 at p iff Πold; Π; m; t �

Ψ F1 at p,
and Πold; Π;m; t �

Ψ F2 at p.

• Πold; Π; m; t �
Ψ 0 at p, no memory satisfies 0.

• Πold; Π; m; t �
Ψ F1 ⊕F2 at p iff Πold; Π; m; t �

Ψ F1 at p,
or Πold; Π; m; t �

Ψ F2 at p.

• Πold; Π; m; t �
Ψ ! F at p iff t.fst = absent, and dom(m) =

∅, and Πold; Π; m; t �
Ψ F at p.

• Πold; Π; m; t �
Ψ ∃x:K.F ′ at p iff there exists some a ∈ K

such that Πold; Π; m; t �
Ψ F [a/x] at p.

Figure 2. The Semantics of Formulas

The interesting clauses are the ones for our domain-
specific predicates. Predicate τ holds at p if the memory
contains only one location p and its content has type τ .
Predicate (g ⇒ G) holds if memory contains only loca-
tion g, g is live, and G holds at g. Predicate k2=k1+iω

holds if the two tags are related by iω number of levels,
positive means that k2 is the ancestor, negative means that
k1 is the ancestor, and ∞ means the ancestor is H . Predi-
cate first(k) holds if fst is present and the stack top is k in
the tag tree; note that the other base predicates require fst
to be absent. Predicate (frzn k.` G) holds if one of the two
frozen-memory contexts maps k.` to a formula equivalent

to G. Predicates more
←(`) and more

→(`) describe the con-
tinuous unallocated space; they require the linear memory
to contain the locations at and below (respectively above) `.
Note that the base predicates, which describe the properties
of the tag tree, require the linear memory to be empty. The
other connectives are those of linear logic, and the seman-
tics are standard except that tensor uses the merge opera-
tors defined in the previous section on the linear parts of the
model.

Semantics for Types Types have the expected semantics:

�
Ψ i : S(i)

int
�

Ψ k.` : S(k.`)
loc

Ψ(c) = (F ′) → 0 F �
Ψ F ′

�
Ψ c : (F ) → 0

code

Semantic Entailment F1 �
Ψ F2 iff for all m and t,

(m, t) �
Ψ F1 at p overall implies (m, t) �

Ψ F2 at p overall.

Equivalence Equivalence of formulas, F1 ≡ F2, is reflex-
ive, symmetric, transitive, congruent, and includes some
rules for our domain-specific predicates. The most im-
portant domain specific rule involves the relationship be-
tween the heap tag H and the stack tags. Intuitively,
if we know that xk outlives H , then xk must be H it-
self. Therefore if tag xk is a free variable in F1 and F2,
and F1[H/xk ] ≡ F2[H/xk ] then F1[H/xk ] is equivalent to
∃xk :TG.F2⊗ !(xk outlives H).

k19

k17

k5

k3

k10

first

l7

l6

l5

. 

. 

.

k15

l101

l100

. 

. 

.
4

3

k10.l6

H.l100

H.l100

stack heapT

Figure 3. Example Memory

Example For this example, we consider just memory and
not the registers. The memory m in Figure 3 consists of a
linear part m1 which contains all the unallocated locations;
a frozen part m2 which contains the five locations shown in
the figure (dom(m2) = {`7, `6, `5, `100, `101}). It satisfies the
following formula:

F = more
←(`4) ⊗ more

→(`102) ⊗ first(k17)
⊗ !(k3=k5+1)⊗ !(k10=k15+1)⊗ !(k3=k10+1)
⊗ !(k10=k17+1)⊗ !(k17=k19+1)
⊗ ! (frzn k3.`7 F4)⊗ ! (frzn k10.`6 int)
⊗ ! (frzn k17.`5 F5)
⊗ ! (frzn H.`100 int)⊗ ! (frzn H.`101 F4)
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where F4 = ∃x`:L.S(H.x`)⊗ ! (frzn H.x` int)
F5 = ∃xk :TG.∃x`:L.S(xk .x`)

⊗ ! (frzn xk .x` int)⊗ ! ( xk outlives k17)

The overall semantic judgment is:
m, (H, T, k17, present) �

Ψ F at ∗ overall. To check
this judgment is valid, we must show:

1. Πold; Π; m1; (H,T, k17, present) �
Ψ F at ∗

2. Πold; (H,T, k17, absent) �
Ψ m2 : Π

where
Πold = (k5.`6:F1), (k15.`5:F2), (k19.`4:F3)
Π = (k3.`7:F4), (k10.`6:int), (k17.`5:F5),

(H.`100:int), (H.`101:F4)
The first judgment is the linear semantic judgment. The

tensor operators distribute the unallocated stack space to
more

←(`4), the unallocated heap space to more
→(`102), the

stack top to first(k17) , and empty linear state to the remain-
ing formulas. Each of the predicates is easily verified.

The second judgment type checks the frozen memory.
We need to verify that for each location ` in Π, Π(`) de-
scribes the piece of memory that ` points to. For ex-
ample, for location k3.`7 we need to verify the follow-
ing judgment: Πold; Π; `7 7→ H.`100; (H,T, k17, absent) �

Ψ

F4 at k3.`7, which is true with `100 as the witness of the ex-
istential.

4 Assembly Language

In this section, we use the memory logic that we formal-
ized in Section 3 as the basis for the type system of a simple
assembly language. The type system is powerful enough to
specify sound strong and invariant updates of both stack and
heap locations. The expressiveness of our typed assembly
language exceeds the previous TAL systems because they
cannot deal with general stack allocation.

4.1 Syntax

The language is very similar to previous TALs. The
novel parts are the inclusion of tag trees in machine states
and the two instructions stackgrow and stackcut . These
two instructions only update the tag tree and are erased in
forming an underlying untyped machine code. They tell the
type system to increase or decrease the stack by one loca-
tion. Any stack pointer register that tracks the top of the
stack must be adjusted by a separate instruction. The syn-
tax of our assembly language is:

Operands v ::= sv | r
Instructions ι ::= add rd, rs, v | sub rd, rs, v

| mov rd, v | bz r, v | ld rd, rs

| st rd, rs | stackgrow | stackcut
Blocks B ::= halt | jmp v | ι; B
Code Regions C ::= · | C, c 7→ B
Machine States Σ ::= (C,m, t, B)

The operational semantics for our language is standard
and is similar to those in previous papers. The semantics
of the two stack instructions is to apply the newFirst and
delFirst operations to the tag tree.

4.2 Typing Rules

The type system consists of the following judgments:

Θ ‖ Γ; ∆ `Ψ F Logical rules
Θ ‖ F `Ψ v : τ Operand v has type τ
Θ ‖ F `Ψ ι : F ′ The precondition of instruction ι is F ,

and the postcondition is F ′

Θ ‖ F `Ψ B ok Block B is type checked with the context F
` C : Ψ Coderegion C has type Ψ
`Ψ Σ ok The abstract machine state Σ is well-formed.

We use Θ to contain the free variables, Γ as the unre-
stricted context, and ∆ as the linear context. Figure 4 shows
some of the more interesting rules, which we describe in
the following sections.1 The complete rules are listed in the
companion technical report [13].

The notation (F [ g := G ])Θ denotes the result of “up-
dating” formula F at location g by G. More precisely,
(F [ g := G ])Θ = F1 ⊗ (g ⇒ G) iff Θ ‖ · ; F ` F1 ⊗ (g ⇒ G′)

where all the free variables are in Θ.

Instruction Typing The typing judgments for instruc-
tions resemble Hoare logic. The formula on the left hand
side of the turnstile describes the precondition of the in-
struction, and the formula on the right hand side describes
the memory state after the execution of the instruction.

There are two sets of typing rules of load and store in-
structions. The first set of rules requires linear capabilities
for the locations that we load from and store into. The rule
for ld checks that the source register holds a location, looks
up the describing formula for this location, and updates the
destination register to be described by this formula. The st
instruction checks that the destination register holds a loca-
tion, gets the describing formula of the source register, and
updates the location’s describing formula. Note that the up-
date formulas use linear typing of the register or location
and just replace the old type with the new one—a strong
update rule.

The second set of typing rules requires unrestricted capa-
bilities for the locations we operate on. The rule for ld-inv
checks that the tag ek is live to make sure that the unre-
stricted capability is valid. The rule for st-inv checks that
the destination register holds a location ek.e`, and the de-
scribing formula of the source register is the same as the de-
scribing formula of location ek.e`, given by the unrestricted

1For simplicity, we omit the code context Ψ from the typing judgments.
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Operand Typing Θ ‖ F `Ψ v : τ

Θ ‖ F `Ψ
i : S(i)

int
Θ ‖ F `Ψ k.` : S(k.`)

loc
Ψ(c) = (F ′)→ 0 · ‖ · ; u : F ` F ′

Θ ‖ F `Ψ c : (F )→ 0
code

Θ ‖ · ; F ` (r ⇒ τ) ⊗>

Θ ‖ F `Ψ r : τ
reg

Instruction Typing Θ ‖ F `Ψ ι : F ′

Θ ‖ F ` rs : S(ek.e`) Θ ‖ ·; F ` (ek.e` ⇒ G) ⊗>

Θ ‖ F ` ld rd, rs : F [ rd := G ]
(ld)

Θ ‖ F ` rd : S(ek.e`) Θ ‖ ·; F ` (rs ⇒ G) ⊗>

Θ ‖ F ` st rd, rs : F [ ek.e` := G ]
(st)

Θ ‖ F ` rs : S(ek.e`) Θ ‖ ·; F ` frzn ek.e` G⊗> Θ ‖ ·; F ` live (ek) ⊗>

Θ ‖ F ` ld rd, rs : F [ rd := G ]
(ld-inv)

Θ ‖ F ` rd : S(ek.e`) Θ ‖ ·; F ` (rs ⇒ G) ⊗> Θ ‖ ·; F ` frzn ek.e` G⊗> Θ ‖ ·; F ` live (ek) ⊗>

Θ ‖ F ` st rd, rs : F
(st-inv)

Θ ‖ F ` rs : S(ek.e`) Θ ‖ F ` v : S(i) Θ ‖ ·; F ` !(ek′=ek+i) ⊗>

Θ ‖ F ` add rd, rs, v : F [ rd := S(ek′ .(e` + i)) ]
(addr-add)

Θ ‖ · ; F ` F ′ ⊗ more
←(e`)⊗ first(ek)

Θ ‖ F ` stackgrow : F ′ ⊗ more
←(e`− 1)⊗ (∃xk:TG. first(xk)⊗ !(ek=xk+1) ⊗ (xk.e`⇒ ns) )

(stackgrow)

Θ ‖ · ; F ` more
←(e`− 1)⊗ first(ek)⊗ !(ek′=ek+1) ⊗ ( (ek.e` ⇒ G)⊕ ! (frzn ek.e` G))⊗ F ′

Θ ‖ F ` stackcut : more
←(e`)⊗ first(ek′)⊗ !(ek′=ek+1) ⊗ F ′

(stackcut)

Block Typing Θ ‖ F `Ψ B ok

Θ ‖ F ` v : (F ′)→ 0 Θ ‖ · ; u:F ` F ′

Θ ‖ F ` jmp v ok
(b-jmp)

Θ ‖ F ` ι :F ′ Θ ‖ F ′ ` B ok

Θ ‖ F ` ι; B ok
(b-instr)

Θ ‖ F ` rsp :S(ek.e`) Θ ‖ ·; F ` (ek.e` ⇒ int) ⊗>

Θ ‖ F ` halt ok
(b-halt)

Θ ‖ ! (frzn ek.e` G)⊗ F ` B ok

Θ ‖ (ek.e` ⇒ G) ⊗ F ` B ok
(b-freeze)

Figure 4. Selected Static Semantics Rules

capability (frzn ek.e` G), and the tag associated with the un-
restricted capability is live. The postcondition is the same as
the precondition, since we update the location with a value
that has the same describing formula —an invariant update.

We give separate typing rules for address add/sub opera-
tions because they involve determining the correct tags for
the new addresses.

The two stack instructions stackgrow and stackcut

change the shape of the formula to reflect the changes to
the tag tree due to stack allocation and deallocation respec-
tively. The stackgrow instruction takes one location out
of more

←(e`) and results in more
←(e`− 1) ⊗ (xk .e` ⇒ ns) .

A fresh tag xk is chosen (the existential achieves the fresh-
ness), and is declared the new stack top first(xk) and a di-
rect child of the old stack top !(ek=xk+1) . The stackcut
instruction determines the stack top’s tag first(ek) and
its parent’s tag !(ek′=ek+1) , and returns the stack top to
the unallocated stack taking more

←(e` − 1) ⊗ ( (ek.e` ⇒

G)⊕ ! (frzn ek.e` G)) to more
←(e`). It also makes the parent

tag the new stack top first(ek′) .

Block & State Typing There are standard typing rules for
instructions, halt, and jmp, as well as type manipulation

rules including growing the heap (for heap allocation) and
freezing locations. The rule b-freeze deals with the process
of converting a linear capability, to an unrestricted capabil-
ity. A machine state (C, m, t, B) is well formed if there is
a Ψ and F such that C has type Ψ, m and t satisfy F , B is
well formed under F , and the tag tree is well formed.

Theorem 1 (Type Safety)
If `Ψ (C, m, t,B) ok then:

1. Either B = halt and m(rsp) = k.` and m(`) = sv and
�

Ψ sv : int or exists Σ such that (C, m, t, B) 7−→ Σ.

2. If (C, m, t, B) 7−→ Σ then ` Σ ok.

5 Translation

To show how our logic can be used in a certifying com-
pilation framework, in this section we sketch the translation
from a simple language with stack and heap allocation to
our assembly language. The full details of translation are
available in the companion technical report [13].

The key features we want to capture are the stack-
allocation operations of CLI [6, 9]. CLI includes the con-
cepts of references and managed pointers. Managed point-
ers can point to local variables on the stack and also to fields
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qualifiers q ::= S | H
types τ ::= int | τ ∗q
value v ::= n | x
program p ::= fd . . . fd rb
function decls fd ::= τ f(τ x, . . . , τ x) rb
return block rb ::= {ld; . . . ; ld; ss; return v}
local decls ld ::= τ x = v | τ x = newq v
statement list ss ::= · | s; ss
statement s ::= if v then ss else ss | x = v

| x = v1 + v2 | x = v1 − v2

| x = f(v, . . . , v) | x = ! v
| v1 := v2

Figure 5. The syntax of Micro-CLI

of objects in the heap, but they cannot (in verifiable code)
be returned from methods nor stored into fields of objects.
These restrictions make sure that a managed pointer out-
lives its target thus prevent dereferencing dangling pointers.
References always point to objects in the heap and their use
is unrestricted. We abstract CLI into Micro-CLI, a simple
imperative language with integers and pointers. A value of
type τ ∗S is a pointer to a location on the stack or in the
heap; and it is restricted in similar ways to managed point-
ers. We also disallow updating a stack pointer if it points
to another stack pointer since such update may create dan-
gling pointers. A value of type τ ∗H is a pointer only into
the heap. Type τ ∗H corresponds to references in CLI and
is a subtype of τ ∗S . Figure 5 shows the syntax for this lan-
guage. The declaration τ ∗S x = newS v allocates a new
cell on the stack with initial value v of type τ and binds the
address of the cell to x; τ ∗H x = newH v is similar but
allocates on the heap.

The translation of programs to code regions and an initial
block is straightforward. The interesting part is how Micro-
CLI types are translated into our memory logic, and how the
logic rules are used to verify the safety of the instructions.
We discuss only the type translation as it contains the key
invariants.

The type translation, shown in Figure 6, has the form
[[τ ]]τ ek where τ is the type to translate and ek is the tag of
the stack location where the value resides (in the translation,
we put all local variables on the stack). The tag ek is used
only in the translation of stack pointers to state the tag of
the location pointed to is valid.

The translation of pointer types combines a singleton lo-
cation type with an unrestricted capability to indicate the
type of the contents of the location. Heap pointers use
H to tag the location, stack pointers use an existentially
quantified tag and a predicate ! ( xk outlives ekc) to state the
validity of the tag, and also to specify the restriction that
the contents of a stack pointer always “outlives” the stack

pointer itself. Note that the rule we described in the formula
equivalence section makes S(H.x`)⊗ !(frzn H.x`F ) equiv-
alent to ∃xk :TG.S(xk .x`)⊗ ! ( xk outlives H)⊗ !(frzn xk .x`F )

witnessing the subtyping of heap pointers as stack pointers.
The translation of function types is more complicated.

Note that polymorphism is expressed as existentials on the
left of → 0. All functions are polymorphic in the locations
of the top of the stack and allocation frontier, the tags of var-
ious stack locations, and the caller’s store, which includes
its stack, heap, and tag information. The return address is
polymorphic in newly allocated heap space and the tag of
the stack location used to pass the return value. The precon-
dition has a part for memory including the stack and heap,
a part for the registers, a statement of the tag for the top of
the stack, and the relationships between the various stack
tags of relevance. The postcondition is similar but reflects
the state at return rather than call. The calling convention
is: arguments are pushed onto the stack left to right, the
callee pops arguments, the result is pushed onto the stack,
the stack pointer is in rsp, the return address is in rra, and the
frontier pointer is in ralloc.

We prove that our translation is type preserving by prov-
ing that the translation of a well typed source program is
also well typed.

Theorem 2 (Type Preservation of the Translation)
If [[p]] = (C, Ψ, B) then there exists an initial memory m

and initial tag tree t such that `Ψ (C, m, t, B) ok

6 Conclusion

In this paper we have presented a general logic with
domain-specific predicates that is powerful enough to ex-
press general heap and stack allocation. We have demon-
strated this expressiveness by defining a translation from a
language that abstracts the important stack allocation fea-
tures of CLI to our assembly language.

The choice of a tag tree matches well with a stack. We
plan to investigate if it generalizes to other schemes that are
not LIFO. The combination of unrestricted capabilities with
versioning and a validity scheme for the versions seems
promising as a general logic for memory management.
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[[int]]τ = int
(trans-int)

[[τ ]]τ H = G

[[τ ∗H ]]τ = ∃x`:L.(S(H.x`)⊗ !(frzn H.x` G))
(trans-τ ∗H )

[[τ ]]τ xk = G

[[τ ∗S ]]τ ekc = ∃xk:TG, x`:L. (S(xk .x`)⊗ !(xk outlives ekc)⊗ !(frzn xk.x` G))
(trans-τ ∗S )

[[τ1]]τ xka1 = G1 . . . [[τn]]τ xkan = Gn [[τ ]]τ xkret = Gret

[[τ1 ∗ . . . ∗ τn → τ ]]τ =
(∃ x`:L, x`′:L, xk:TG, xka1:TG, . . . , xkan:TG, store:F.

more
←(x`)⊗ (xkan.x`+1⇒ Gn) ⊗ . . .⊗ (xka1.x`+n⇒ G1) ⊗ more

→(x`′)⊗ (ralloc ⇒ S(H.x`′-1)) ⊗ store
⊗ (r1 ⇒ ns) ⊗ (r2 ⇒ ns) ⊗ (rfp ⇒ ns) ⊗ (rsp ⇒ S(xkan.x`+1))
⊗ (rra ⇒ (∃ x`′′:L, FH:F, xkret:TG.

more
←(x`+n-1)⊗ (xkret.x`+n⇒ Fret) ⊗ more

→(x`′′)⊗ (ralloc ⇒ S(H.x`′′-1)) ⊗ FH ⊗ store
⊗ (r1 ⇒ ns) ⊗ (r2 ⇒ ns) ⊗ (rfp ⇒ ns) ⊗ (rra ⇒ ns) ⊗ (rsp ⇒ S(xkret.x`+n))
⊗ first(xkret)⊗ !(xk=xkret+1) )→ 0 )

⊗ first(xkan)⊗ !(xkan-1=xkan+1) ⊗ . . .⊗ !(xka1=xka2+1)⊗ !(xk=xka1+1) )→ 0

(trans-fun)

Figure 6. Type Translation
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