
Asserting Memory Shape using Linear Logic

Frances Spalding Limin Jia

Department of Computer Science, Princeton University
35 Olden Street, Princeton, NJ 08544

{frances, ljia}@cs.princeton.edu

ABSTRACT
Contracts and assertions are accepted as an important method
for improving software reliability. However, existing systems
do not provide clean ways to describe conditions based on
memory shape. We present a method for elegantly specify-
ing memory shape invariants using specifications in linear
logic and then dynamically verifying these specifications us-
ing the linear logic programming language LolliMon.

1. INTRODUCTION
The recent research on separation logic by O’Hearn,

Reynolds, Yang, et al. [18, 11, 19] has made significant progress
in the static verification of the correctness of pointer pro-
grams. One of the basic ideas of separation logic is to use
the multiplicative connective ∗ to describe the disjointness
of two separate pieces of memory. Separation logic can de-
scribe aliasing and shape invariants of the program store
elegantly when compared with conventional logic. For ex-
ample, if we wish to use a conventional logic to state that
the heap can be divided into two pieces and one piece can
be described by F1 and one by F2, then we would need
to say F1 ∧ F2 ∧ (S1 ∩ S2 = ∅) where S1 and S2 are
the sets of program locations that F1 and F2 respectively
depend upon. As the number of disjoint memory chunks in-
creases, the separation logic formula remains relatively sim-
ple: F1 ∗ F2 ∗ F3 ∗ F4 represents four separate pieces of the
store. On the other hand, the related classical formula be-
comes increasingly complex:

F1 ∧ F2 ∧ F3 ∧ F4

∧(S1 ∩ S2 = ∅) ∧ (S1 ∩ S3 = ∅) ∧ (S1 ∩ S4 = ∅)
∧(S2 ∩ S3 = ∅) ∧ (S2 ∩ S4 = ∅) ∧ (S3 ∩ S4 = ∅)

The end result is that while in theory it is possible to rea-
son about memory in conventional classical logic, in practice
invariants concerning unaliased data structures can quickly
grow to an unmanageable size.

Separation logic has already been used to prove the cor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

rectness of programs that manipulate complex recursive data
structures. One of the most impressive results is Birkedal
et al. ’s proof of the correctness of a copying garbage collec-
tor [5].

However, like most static verification methods, perform-
ing verification using separation logic requires the entire pro-
gram. Such a verification process is rather heavy-weight and
it does not allow statically verified code to be linked with
untrusted code because the statically checked invariants are
not guaranteed to hold at the trusted/untrusted boundary.
Furthermore, automated proving tools for first-order sepa-
ration logic are nonexistent, although developing such tools
is an active area of research. Without the help of a theorem
prover or logic programming engine to discharge proof obli-
gations, verification using first order separation logic has to
be done by hand, which is too heavy-weight for ordinary pro-
grammers to incorporate into their everyday programming
or debugging.

On the other hand, people have studied dynamic contracts
and assertions since the late 1960s [6, 9]. Contracts and as-
sertions are language constructs that provide runtime checks
to ensure that a specified property of the program holds, and
thus can help greatly in the debugging process. Many cur-
rent languages include these features, including Eiffel [16]
and Java [1].

In this paper we look into exploiting the powerful connec-
tives of substructural logic to develop a dynamic contract
system for memory. We allow programmers to insert dy-
namic assertions about the invariants of complex recursive
data structures. For instance, a programmer writing a linked
list library can insert an assertion at the end of the delete
function to check that the resulting list does not violate the
invariants of a linked list. Assertions such as this can be
tremendously useful in debugging programs that manipulate
complex data structures. Instead of defining such checking
functions in native code, we propose to define the invariants
in a declarative linear logic programming language, and then
utilize a linear logic programming engine such as Lolli [10]
or LolliMon [14] to check the assertions.

The advantage of using a logic programming language as
an assertion language is that the assertions are expressed at
a high-level of abstraction and have a formal semantics. The
assertions in our system are at a much higher level than a
“roll your own” function that a programmer might write in
native code to check invariants about memory shape. In ad-
dition, such a function normally has to keep track of the set
of locations that have been traversed in order to check dis-
jointness properties of data structures. By using linear logic,

the logic engine infrastructure takes care of this relatively
complex task automatically.

In our previous work [2, 12] we have already shown how to
use intuitionistic linear logic to describe the program store.
We chose linear logic instead of separation logic because the
multiplicative connectives in linear logic have similiar prop-
erties as the multiplicative connectives in separation logic,
and there are existing implementations of linear logic pro-
gramming languages [10, 14] that we can use.

Finally, dynamic and static checking are complementary
to each other. We hope to be able to integrate our dynamic
verification system with static analysis.

There are two main contributions of our work.

• We have built an interpreter for MiniC, a language
that is essentially a subset of C extended with a logical
assertion language. The MiniC interpreter interfaces
with a linear logic programming engine to dynamically
check assertions about the shape invariants of the pro-
gram heap.

• We have shown how to dynamically verify the shape of
many commonly used recursive data structures includ-
ing single linked lists, circular lists, doubly linked lists,
trees, and other more complicated data structures such
as red-black trees and b-trees.

The rest of the paper is organized as follows. In Section 2
we first briefly review the syntax and the store semantics
of linear logic, then give an overview of our MiniC system
by explaining two examples. In Section 3 we introduce an
indexed memory model for our logic and prove the soundness
of assertions. In Section 4 we provide implementation details
of the MiniC Language and how it interfaces with LolliMon.
In Section 5 we discuss how to represent data structures that
include aliasing. In Section 6 we explore example code for
red-black trees. And finally, in Section 7 we discuss related
and future work.

2. OVERVIEW
In this section we first review the basics of linear logic.

Then we will go over an example program about structs
to illustrate the components of a program in our system.
Next we briefly introduce LolliMon and we finish the struct
example. Lastly, we show how to verify singly linked lists in
our system.

2.1 Linear Logic
We use intuitionistic linear logic to describe the program

store. The syntactic constructs of linear logic are listed be-
low. We use ` to denote memory locations, and v to denote
values. Memory locations and values are both infinite sub-
sets of integers. We treat each memory word as one unit,
so we write (`+1) for the address immediately after `. The
basic predicates include (lin ` v), arithmetic predicates PA,
and user defined predicates P . The connectives include both
the multiplicative and additive linear connectives as well as
the unrestricted modality !.

Formulas F : : = P | PA | (lin ` v) | 1 | F1 ⊗ F2

| F1 (F2 | > | F1 & F2 | 0 | F1 ⊕ F2

|!F | ∃x.F | ∀x.F

Predicate (lin ` v) describes a memory that contains only
one location ` with the contents v. The multiplicative con-
nective ⊗ (similar to * in separation logic) separates the

memory into two disjoint pieces. For example, there is no
memory that satisfies formula (lin ` 3) ⊗ (lin ` 3), because
that would require the same location ` to be in two disjoint
pieces of memory. The connective 1 is the unit of the multi-
plicative conjunction and it describes empty memories. For-
mula F1 (F2 describes memories whose union with mem-
ories described by F1 satisfy F2. Formula F1&F2 describes
memories that satisfy both F1 and F2. The connective >
is the unit of the additive conjunction and it describes all
memories. Formula F1 ⊕ F2 descirbes memories that satisfy
either F1 or F2. Connective 0 is the falsehood and no mem-
ory satisfies it. The semantics of the unrestricted modality
! force F to be valid with empty memory. Arithmetic pred-
icates PA include equality and less than relationship over
integer expressions. For example, (x = 2) ⊕ (2 < x) is true
if x is greater than or equal to two.

2.2 Example: Structs
The sample program pair.minic in Figure 1 is written

in our prototype system, MiniC, whose syntax is a subset
of ANSI-C extended with syntax for defining clauses and
asserting formulas in LolliMon. The LolliMon declarations
in double brackets at the very beginning of the program
are user-defined clauses for predicates describing memory
shapes of concern. We delay explaining them until after the
next sub-section, and focus on the C program for now. In
the main function, the programmer allocates a struct of type
pair tp, then calls the copy function, which is defined in a
different source file written by another programmer. From
the comments, we know that copy is supposed to perform
deep copying. However, the programmer writing the main
function did not write the copy function, so he wants to
check that upon return, the specifications in the comments
are met.

The last statement in the main function is the assert state-
ment. The linear logic formula in the double brackets of the
assert statement describes the desired shape of the memory.

2.3 LolliMon
We use LolliMon [14], a monadic concurrent linear logic

programming language, as our assertion language. LolliMon
extends the linear logic programming language Lolli [10]
with synchronous monads. We have not used the monads in
our examples, so we will omit them here.

In LolliMon, we can define clauses consisting of a head and
a body just as we would in Prolog. Goal formulas can be
queried over the set of defined clauses. The syntax for writ-
ing clauses and queries in LolliMon differs from the formal
linear logic syntax in that we write “,” in place of “⊗” and
“;” in place of “⊕”. Other operators are immediately recog-
nizable in their textual form. Following the style of Prolog,
we write clauses as inverted implication: Head o- Body.
If the body of the clause is unrestricted, we use the un-
restrictive implication <= in place of the linear implication
o-1. LolliMon also provides the built-in predicate is, which
evaluates its integer arguments and then checks that they
are equal, the built-in list operator ::, and the term nil for
the empty list. Below is a sample program in LolliMon.

1Formula F1 ⇒ F2 is equivalent to !F1 (F2.

[[
struct L nil.
struct L (V::Y) o-

Lin L V, L1 is L + 1, struct L1 Y.
]]

struct pair tp { int x; int y;};

/* copy is a deep copy function that takes
* a pointer to a pair tp struct, copies
* the contents into a newly allocated
* struct and returns the pointer of the
* new struct */
extern struct pair tp *copy(struct pair tp *x);

int main(){
struct pair tp *pair2;
struct pair tp *pair1

= malloc(sizeof(struct pair tp));
pair1->x = 100;
pair1->y = 200;
pair2 = copy(pair1);

/* pair2 and pair1 should refer to
* different locations with the same data */
assert([[struct $pair1 (X::Y::nil),

struct $pair2 (X::Y::nil)]]);
}

Figure 1: pair.minic

1 struct L nil.
2 struct L (V::Y) o-
3 Lin L V, L1 is L + 1, struct L1 Y.

5 #linear lin 10 100, lin 11 200.
6 #linear lin 20 100, lin 21 200.

8 #query 1 1 1 (struct 10 (X::Y::nil),
9 struct 20 (X::Y::nil)).

We defined two clauses for predicate struct in lines 1 through
3. Predicate struct L X means that X is the list of values
stored in the memory chunk starting from address L. The
first clause handles the base case where there are no more
elements in the list. In the second clause, the memory start-
ing from address L points to the list of elements V :: Y if L
points to the first element (lin L V) and the next location
L+1 is a struct that has the rest of the elements (struct L1
Y)2. On line 5, we define a linear clause that states that loca-
tion 10 contains integer 100 and location 11 contains integer
200. Line 6 similarly declares that location 20 contains 100
and location 21 contains 200. The keyword #linear en-
forces that the clause must be used exactly once in proving
the goal. Lines 8 and 9 contain the query to be solved.
The first three parameters indicate the number of expected
solutions, the maximum number of solutions, and the num-
ber of attempts that should be made to try to prove this

2Notice that locations are treated at a high level of abstrac-
tion. Adjacent fields in a struct or array are offset by 1.

query. The last argument is the formula we are attempting
to prove.

In this case, the queried formula asks if there exist two
disjoint pieces of memory and some data X and Y such that
the first piece of memory starts from location 10 and con-
tains two elements X and Y, and the second piece of memory
starts from location 20 and contains the same pair of values
X and Y. This query succeeds because it uses each of the
linear resources exactly once and the logical variable X is
unified with 100 and Y with 200.

2.4 Example: Structs, Continued
As we saw in the sample MiniC code pair.minic, pro-

grammers define clauses that specify the shape and other
invariants of their data structures at the very beginning of
the program. They can then insert assertions based on these
definitions at any point in the code. Intuitively, at run time
when an assert is seen, the definitions of the clauses together
with the formula describing the program memory are given
as the logical context to the LolliMon engine, and the for-
mula to be asserted is sent to the engine as the query formula
to be executed against the context. If the query is proved
by the logic engine, the program will continue running; if it
fails, the program will be aborted.

Now we continue the example of program pair.minic in
Figure 1. Assume the copy function has the implementation
below:

/* copy is a deep copy function that takes
* a pointer to a pair tp struct, copies
* the contents into a newly allocated
* struct and returns the pointer of the
* new struct */
struct pair tp *copy(struct pair tp *p){
struct pair tp *dup

= malloc(sizeof(struct pair tp));
dup->x = p->x;
dup->y = p->y;
return dup;

};

When the assert in main is reached, the heap of this pro-
gram contains two structs pair1 and pair2. pair1 is allo-
cated by the main function, and pair2 is allocated by the
copy function. Assuming pair1 is allocated at location L1
and pair1 is allocated at location L2, then the formula de-
scribing the heap is

(lin L1 100), (lin L1 + 1 200),
(lin L2 100), (lin L2 + 1 200)

After the variable names are replaced by the values they
are bound to, the assert formula becomes

struct L1 (X :: Y :: nil), struct L2 (X :: Y :: nil)

The above formula is checked against the clauses defined
in the first three lines of pair.minic and the formula de-
scribing the heap. Assuming that L1 is 10 and L2 is 20,
then the logic program invoked to check the assertion in
this MiniC program is exactly the program in the previous
subsection, so the assertion passes.

Suppose on the other hand that the copy function is er-
roneously implemented as follows:

/* copy is a deep copy function that takes
* a pointer to a pair tp struct, copies
* the contents into a newly allocated
* struct and returns the pointer of the
* new struct */
struct pair tp *copy(struct pair tp *p){

return p;
};

When the assert is reached, the heap of this program has
only one struct pair1 and pair2 is an alias of pair1. The
assertion is expanded to

struct L1 (X :: Y :: nil), struct L1 (X :: Y :: nil)

And the formula describing the current heap is

(lin L1 100), (lin L1+1 200).

In this case the assertion will fail because there are not
enough linear resources to prove that there are two disjoint
structs.

2.5 Example: Linked Lists
Here we show how to define predicates to describe the in-

variants of non-circular singly linked lists. Predicate (llist L)
means the memory chunk starting from location L is a singly
linked list. A location L is a list if either it is null (0) or it
contains data Head and the value, Tail, in the next location
is also a list.

llist L o− (L is 0);
(struct L (Head :: Tail :: nil),
llist Tail).

In the MiniC program llist.minic in Figure 2, the Lol-
liMon definitions are between line 1 and 9. In addition to
the above clause definition, the LolliMon definitions list pro-
gram also includes the type declaration of the llist predi-
cate (line 2) and the mode declaration (line 4), which says
whether each parameter is an input or an output. Following
the LolliMon definitions are the MiniC definitions to declare
a list node structure, struct node tp (line 11–15).

The memory in Figure 3 contains a linked list. The main
function first constructs a list matching the one in Figure 3
(line 20–29). Assume that list3 is allocated at location `3,
list2 at `2, and list1 at `1. The programmer then asserts
at line 32 that list1 is a linked list ([[llist $list1]]).
The assertion formula becomes (llist `1) after replacing
the variable with its value. Since `1 is not 0, the logic en-
gine continues to solve the subgoal on line 7 and 8. The
linear resources corresponding to memory m1 are used to
determine that Head is 1 and Tail is `2. The logic engine
then attempts to prove that `2 is a list using the remainder
of the memory m2] m3. This in turn is reduced to proving
that `3 is a list using m3. The base case is reached when
proving that 0 is a list using no memory. Since all subgoals
are solved, the assertion passes.

On line 35, the main function changes the last element in
the list to point to the first, resulting in a circular list. The
second assert, at line 38, begins much like the first. However,
when the subgoal of proving `3 is a list is reached, the logic
engine tries to use the resources corresponding to m3 to
prove that `3 is a list. The next step would be to prove that
`1 is a list using no linear resource. Unlike the first assert,

/* an llist is a non-circular linked list */
1 [[
2 llist: int -> o.

4 #mode llist +L.

6 llist L :- (L is 0);
7 (struct L (Head::Tail::nil),
8 llist Tail).
9]]

11 struct node tp {
12 int data;
13 struct node tp* next;
14 };
15 typedef struct node tp* list tp;

17 int main() {
18 list tp list1, list2, list3;

20 /* build a list of length 3 */
21 list3 = malloc(sizeof(struct node tp));
22 list3->data = 3;
23 list3->next = 0;
24 list2 = malloc(sizeof(struct node tp));
25 list2->data = 2;
26 list2->next = list3;
27 list1 = malloc(sizeof(struct node tp));
28 list1->data = 1;
29 list1->next = list2;

31 /* check the list is well-formed */
32 assert([[llist $list1]]);

34 /* make the list circular */
35 list3->next = list1;

37 /* this assert fails */
38 assert([[llist $list1]]);

40 return 0;
41 }

Figure 2: A simple MiniC program llist.minic.

where we can prove that 0 is a list without using any linear
resources, proving that `1 is a list requires us to consume
the memory m1. However, this resource has already been
used at the very beginning of the proof, so this assertion
is unable to succeed and the MiniC interpreter throws an
Assert Failed exception.

The actual output from running llist.minic is shown in
Figure 4. Each time an assertion is encountered, the line
number and formula to be queried are printed. The next
line contains the actually query with the program variables
substituted with the actual values. If the assertion fails, the
stack and heap are printed to aid in debugging. The value
of m(2u) seen in the example heap is the tag created by the
malloc function specifying that the next two locations are
allocated (in use).

Figure 3: Example memory containing a linked list.

% ./runMiniC tests/llist.minic

Checking assertion 32.4 - 32.28:
[[llist $list1]]

Looking for 1 solutions to query: llist 1025
Attempt 1, Solution 1 with []
Success.
Time consumed 0.02

Checking assertion 38.4 - 38.28:
[[llist $list1]]

Looking for 1 solutions to query: llist 1025
Failed to find 1 solutions within 1 attempts.
Time consumed 0.03 seconds.

Stack:
0x0000: 0x0407
0x0001: 0x0404
0x0002: 0x0401

Heap:
0x0400: m(2u) 0x0401: 3 0x0402: 0x0407
0x0403: m(2u) 0x0404: 2 0x0405: 0x0401
0x0406: m(2u) 0x0407: 1 0x0408: 0x0404

Assertion [[llist $list1]] Failed
at Position 38.4 - 38.28

Figure 4: The output from running llist.minic.

3. MEMORY SEMANTICS OF LINEAR LOGIC
In this section, we first explain the formal syntax of recur-

sively defined predicates, and then we introduce an indexed
semantics of the intuitionistic linear logic with recursive def-
initions. Next we present our formal result, the theorems of
the soundness of assertions. Since LolliMon is a fragment
of intuitionistic linear logic, all the soundness results of this
section carry over to LolliMon.

3.1 Recursive Definitions
In the list example in the previous section, the body of

the clause defining predicate llist contains the predicate
llist itself. We use I to denote the definition of a recursive
predicate, and Is to denote the list of such clauses.

Pred def I : : = ∀x1....∀xm.(F (P x1 . . . xn)
Pred defs Is : : = · | I, Is

Each definition I corresponds to a clause definition in
LolliMon with the free logical variables universally quan-
tified. Predicate (P x1 . . . xn) corresponds to the head of a
clause and F corresponds to the body of the clause. We also
call the body formula F an unrolling of the head predicate
(P x1 . . . xn). For example, below is the clause definition for
llist in Section 2.5 given in the form of I:

∀l. ∀head. ∀tail. ((l = 0)
⊕(struct l head :: tail :: nil ⊗ (llist tail)))
(llist l

3.2 An Indexed Memory Model for Linear
Logic

In order to relate assertion formulas to memory shape, we
define an indexed memory semantics for linear logic. The
memory semantics of the multipicative and additive connec-
tives of linear logic is very similar to those of the separation
logic [19]. The indexing scheme is inspired by the indexed
semantics model for recursive types developed by Appel et
al. [4] and the indexed memory model in recent work by Mor-
risett et al. [17]. A memory m maps locations ` to values v.
We write dom(m) to denote the set of locations in the do-
main of memory m and m(`) to denote the value stored in
location `. We use m1#m2 to denote that two memories m1

and m2 have disjoint domains. Lastly m1] m2 is the union
of m1 and m2 if m1#m2, otherwise it is undefined.

The indexed semantic judgments are inductively defined
over the index n and the structure of the formula. Judgment
m �n

Is F states that given the set of predicate definitions
Is, memory m can be described by formula F with n steps
of approximation. The semantics of formulas is given in
Figure 5.

The semantics for most of the linear logic connectives and
predicate (lin ` v) and PA are straightforward and they are
not affected by the indexing scheme. In those cases, the
index number n is just carried around in the semantic judg-
ments.

One interesting case is the semantics of a recursively de-
fined predicate such as the struct and llist predicates we
have shown in the previous examples. Intuitively, the in-
dex n can be seen as the number of unrolling steps of the
recursively defined predicates. When the index is 0, mean-
ing we do not unroll the predicate at all and cannot ex-
amine the definition, all memories satisfy the predicate. A
memory m satisfies the predicate (P t1...tn) at the nth un-
rolling, when m satisfies the clause body at the (n − 1)th

unrolling. A predicate unrolls to F [t1/x1]...[tn/xn] when
(∀x1....∀xm.(F (P x1...xn)) ∈ Is.

Now we use the semantics of a list predicate (llist′ `) to
illustrate the idea of indexing. This definition is a simpli-
fied version of the definition of llist where the definition
of struct is expanded and the data field is dropped. The
definition of llist ′ is given below:

∀l. ∀x.((l = 0) ⊕ (lin l x ⊗ (llist′ x))) (llist′ l

We use Sn to represent the set of memories that satis-

m �n
Is F

• n = 0, m �n
Is F for all memory m.

• n ≥ 1,

– m �n
Is (lin ` v) iff dom(m) = ` and m(`) = v

– · �Is PA iff PA is true

– m �n
Is P t1...tn iff (∀x1....∀xm.(F (

P x1...xn)) ∈ Is, and m �n−1
Is F [t1/x1]...[tn/xn]

– m �n
Is >

– m �n
Is 1 iff dom(m) = ∅

– 6 ∃m.m �n
Is 0

– m �n
Is F1 & F2 iff m �n

Is F1 and m �n
Is F2

– m �n
Is F1 (F2 iff for all m′ and m#m′, and

for all j, 0 ≤ j ≤ n such that m′ �j
Is F1 implies

m] m′ �j
Is F2

– m �n
Is F1 ⊗ F2 iff there exists m1 and m2 such

that m = m1] m2 and m1 �n
Is F1 and m2 �n

Is F2

– m �n
Is!F iff dom(m) = ∅ and · �Is F

– m �n
Is F1 ⊕ F2 iff either m �n

Is F1 or m �n
Is F2

– m �n
Is ∀x : K.F ′ iff for all a ∈ K m �n

Is F ′[a/x]

– m �n
Is ∃x : K.F ′ iff there exists a ∈ K such that

m �n
Is F ′[a/x]

Figure 5: Semantics of Formulas

fies (llist′ `) at the nth approximation (Sn = {m|m �n
Is

llist′ `}).

• S0 = The set of all memory
• S1 = The set of all memory
• S2 = {m| m = ∅ or

m = (` 7→ v)] m0 where m0 ∈ S1}
• S3 = {m| m = ∅ or

m = (` 7→ 0) or
m = (` 7→ `1)] (`1 7→ v)] m0

where m0 ∈ S1}
• S4 = {m| m = ∅ or

m = (` 7→ 0) or
m = (` 7→ `1)] (`1 7→ 0) or
m = (` 7→ `1)] (`1 7→ `2)] (`2 7→ v)] m0

where m0 ∈ S1}

When the index n is 0, we have the least precise idea of
what the memories that satisfy llist’ ` look like, so set S0

is the set of all memories. At one step of approximation, set
S1 contains memories that satisfy the unrolling of (llist’
`) at 0th approximation, so S1 is also the set of all memories.
We can see that set S2 contains the exact memories that
satisfy lists of length 0; set S3 contains the exact memories
that satisfy lists of length 0 and 1; set S4 contains the exact
memories that satisfy lists of length 0, 1, and 2; so on and
so forth. As the index grows bigger, the set of memories
that satisfy the formula becomes smaller, and the semantics
judgment becomes more precise. As the index n approaches
positive infinity, we reach the greatest fixed point.

Another case worth discussing is the semantics judgment

of linear implication m �n
Is F1 (F2. Because F1 is on the

negative positioin, we have to define the semantics so that
for all approximation steps up to n, the union of m and any
memory m′, that satisfies F1, satisfies F2.

The following lemma states that the nth approximation
is always more precise than any j steps of approximation
where j is strictly less than n. This lemma is crucial in the
soundness proofs in Section 3.4.

Lemma 1 (Downward Closure)
For all n ≥ 1, if m �n

Is F then for all j, 0 ≤ j < n, m �j
Is F .

Proof. By induction on the index n and the structure
of G.

3.3 Soundness of Logical Deduction
The sequent calculus of linear logic is of the form: Γ;∆ −→

F . Context Γ contains unrestricted resources, and context
∆ contains linear resources. The unrestricted resources can
be used any number of times to prove F , and each of the
linear resources must be used exactly once. The sequent
calculus rules are provided for reference in Appendix A.

The actual logical deduction rules for LolliMon are more
complicated than those of linear logic due to the addition
of monads. However, LolliMon is sound with regard to the
sequent calculus rules in Appendix A. Therefore, in order
to show the soundness of the LolliMon logical deductions
with regard to our memory model, we only need to prove
the soundness of the sequent calculus rules for intuitionistic
linear logic with regard to the model.

First, we define the semantics of logical contexts. We
write !Γ to represent the resulting formula after wrapping
each formula in Γ in the unrestricted modality ! and then
tensoring these together. The notation

N
∆ stands for the

formula resulting from tensoring together each formula in
∆.

!(·) = 1 !(Γ, F) =!F⊗!ΓN
(·) = 1

N
(∆, F) = F ⊗ (

N
∆)

A memory m is described by the unrestricted context Γ
and the linear context ∆ if m is described by the formula
resulting from wrapping each formula in Γ with ! and then
tensoring these together along with the contents of ∆:

m �n
Is Γ;∆ def= m �n

Is !Γ ⊗
N

∆

We proved that if memory m is described by contexts Γ
and ∆, then m is also described by the logical consequence
of Γ and ∆.

Theorem 2 (Soundness of Logical Deduction)
If Γ;∆ −→ F and for all n ≥ 0, m �n

Is Γ;∆ implies m �n
Is F .

Proof. By induction on the structure of Γ;∆ −→ F .

3.4 Soundness of Assertions
Our main technical result is a proof that if an assertion of

formula F succeeds, then the current memory state can be
described by F .

When an assertion is reached, the user-defined inductive
definitions Is are dumped into the unrestricted context Γ.
The formulas describing each allocated location in the cur-
rent program heap are dumped into the linear context ∆.

We use the notation Locs(m) to represent the set of formulas
created by encoding each live heap location ` that contains
value v into its describing formula (lin ` v).

We first show (Lemma 3) that the recursive definitions Is
are valid with an empty memory.

Lemma 3
For all n ≥ 1, · �n

Is!Is

Proof. By the semantics of P t1...tn, (, ∀,
and Lemma 1.

Next we show the correctness of the encoding of memory
m by Locs(m). In other words, memory m can be described
by the tensoring of all predicates in Locs(m).

Lemma 4
For all n ≥ 0, m �n

Is
N

(Locs(m))

Proof. By the semantics of (lin ` v) and ⊗.

Finally, we show that if an assertion succeeds, then the
current memory m can be described by the asserted for-
mula. We have proven that the current memory can be
described by of the unrestricted context built using the re-
cursive predicates and the restricted context built by dump-
ing the current memory locations. Therefore, we can invoke
the soundness of logical deduction theorem (Theorem 2) and
conclude that the current memory can be described by the
asserted formula.

Theorem 5 (Soundness of Assertions)
For all n ≥ 1, if Is; Locs(m) −→ F then m �n

Is F .

Proof. By Lemma 3, Lemma 4, and Theorem 2.

4. IMPLEMENTATION
The MiniC system consists of a simple lexer, parser, and

interpreter for a subset of C and an interface to the im-
plementation of the logic programming language LolliMon.
When the interpreter encounters an assertion, LolliMon is
called to verify the assertion.

4.1 The MiniC Language
The MiniC language is a subset of C including basic con-

trol flow constructs, pointers, structs, unions, and enums
with the addition of inductive definitions and assert state-
ments in LolliMon.

A MiniC program begins with a set of clause definitions
in LolliMon. These definitions are enclosed in double square
brackets. The implementation automatically includes some
basic predicates such as lin and struct. (As we saw in
Section 2.2, the struct L V predicate describes a flat layout
of the list of values V in the memory starting from address
L.)

Next there is a sequence of top level declarations that can
include global variables, struct and union definitions, type
definitions, function declarations, and enumerations. The
final piece of every MiniC program is a main function.

An assert statement takes the formula to be asserted in
double square brackets. Program variables may be included
in the formula by prefacing them with a dollar sign.

The MiniC interpreter is written in OCaml. It is com-
pletely standard, except for the interpretation of assert state-
ments. When an assert is reached, it calls the logic engine

LolliMon with three pieces of information: the user-defined
definitions from the top of the program, the current state
of the heap, and the formula that needs to be checked. If
LolliMon succeeds in proving the formula from the provided
resources, the interpreter simply continues. If not, the in-
terpreter halts with an Assertion Failed exception.

4.2 The Logic Engine
We use LolliMon [14] as the logic programming language

to check assertions in MiniC programs. The backward-
chaining operational semantics of LolliMon give a natural in-
terpretation of the logical connectives as goal-directed search
instructions3.

Because linear logic requires that the fomulas in the linear
context have to be used exactly one, the resource manage-
ment for a linear logic programming language can be quite
complicated. The resource management of LolliMon imple-
ments the Tag Frame Fast System [15]. Each formula in
the context is assigned a special tag to indicate the usage of
this formula. The linear logical context is globally available
throughout the proof, and only the tags of the formulas are
marked when they are used in the proof. The Tag Frame
Fast System manage to make most context manipulating op-
erations take constant time, except the pick rule. The pick
rule requires going through the context linearly to choose a
formula to use in order to prove the goal predicate. Next
we will explain how we modified the implementation of Lol-
liMon to achieve reasonable performance while verifying the
shape of data structures.
Heap Context and Mode Analysis When LolliMon is
called to prove an assertion, the logical context contains the
programmer defined clauses and the logical encoding of the
program heap. Naively, we can traverse the heap and dump
out all the contents into the logical context before we start
the proof. However, such an approach will never work in
practice. For one thing, we are doubling the memory re-
quirements to use any assertion, even one that is related to
only a single location in the program’s heap. For another,
the performance of LolliMon will suffer from a large pro-
gram heap. As we mentioned earlier, LolliMon uses the Tag
Frame Fast system, a very efficient system to deal with lin-
ear resources, but the rule for picking a certain formula in
the context to prove the goal still takes time that is linear
to the number of formulas in the context. This means that
the larger the program heap, the larger the logical context,
and the worse the performance.

Fortunately, it is not necessary to dump the formulas de-
scribing the heap into the context. Since the formulas de-
scribing memory locations are all of the form (lin ` v) where
` is the address of the location and v is its contents, we
can use a hash table with the addresses of the locations as
keys to manage the formula tags. To determine the value
stored in a location, we will simply look it up in the pro-
gram’s native heap. The context for the memory contents
therefore consists of the program heap itself plus the hash
table. This hash table speeds up the proof search in two
ways. One, it takes amortized constant time to look up the
predicate (lin ` v) in the context. Two, it separates the heap
formulas from the rest of the formulas in the context, and
therefore greatly decrease the time needed to pick a formula

3LolliMon also gives forward-chaining semantics to the syn-
chronous connectives. However, we have not used this fea-
ture in our examples so far.

in the context. Furthermore, we exploit the tagging system
so that we only need to create bindings for locations that
have directly been used in proving the goal in the hash ta-
ble. Consequently, the memory overhead of the hash table
for tags is linear to the size of the data structure that is of
interest to the assertion,

In order for this optimization to be correct, we assume
that we never put (lin ` v) in negative positions, which means
that we do not add new (lin ` v) predicates into the context
as the proof search goes. If we added new bindings during
the proof, it would not be sound to only refer to the heap
when determining the contents of a location. We also must
enforce that whenever we attempt to prove goal (lin ` v),
term ` is ground (already known). Otherwise, the hash table
is of no use. These assumptions so far have not restricted
the examples that we can check. Intuitively, we want to look
up the contents of specific memory locations, but we never
need to ask the question of which location contains a specific
value.

The first assumption can be easily checked by syntacti-
cally traversing the structure of the goal and the clauses.
The second assumption can be checked using LolliMon’s
mode analysis. The basic idea of mode analysis is to declare
the input and output modes for the arguments of each pred-
icate. The arguments with input mode have to be ground
before proving the predicate, and the arguments with output
mode have to be ground when the predicate is proved. Mode
analysis in logic programming languages checks the informa-
tion flow of each clause definition to determine if this defi-
nition obeys the modes declaration. Because we would like
to make sure that the first argument of the (lin ` v) predi-
cate is always ground when we try to prove it, we declare its
mode as #mode lin +L -V. We declare the modes of other
predicates similarly. Finally, we check that the formula to
be asserted is also well-moded. Mode analysis guarantees
us that predicate (lin ` v) will always have a ground term `
when it needs to be proven.

5. EXPRESSING ALIASING
All the examples we have shown up to this point do not

have aliased data structures. Although linear logic is ex-
tremely well-suited for reasoning about disjoint memory lo-
cations, it can also express invariants involving aliasing. In
this section, we show how to deal with aliasing by explain-
ing two example linear logic programs for verifying the shape
invariants of circular lists and DAGs.

5.1 Example: Circular Linked Lists
The logic program defining list predicate llist in Sec-

tion 2.5 only succeeds on non-circular lists (as intended). It
fails on circular lists because each list node has to be visited
exactly once. To check for circularity, the first node in the
list need to be visited again when the tail node is reached.

We can explicitly define circular linked lists by modifying
the definition of llist slightly. The trick is to pass the
address of the head node of the list as an argument to the
circular list predicate. The program succeeds immediately
when a node contains a pointer pointing back to the head
node is reached, without attempting to follow that pointer.
The logic program for circular lists is given below:

clistnode L T o- struct L (I1::T::nil);
(struct L (I2::X::nil),

clistnode X T).
clist L o- L is 0; clistnode L L.

Predicate clistnode L T means that the memory start-
ing at location L is a list that eventually points to location T,
which is the address of the head node of the list. Predicate
clist L is the top-level predicate meaning that the memory
starting from L is a circular linked list, and it checks that L
is either a NULL pointer or that it is a list that eventually
points back to itself.

For data structures that contain a small amount of spe-
cific aliasing, such as circular lists we can write predicates
to carry the specific aliased locations around and make the
program succeed immediately when these locations are en-
countered. In this way, we still visit each location exactly
once.

5.2 Example: Directed Acyclic Graphs
A directed acyclic graph, or DAG, may contain aliased

subgraphs. The trick from circular lists won’t work here,
because we don’t have enough information about where the
aliasing may occur. Instead we can use the & and top con-
nectives to allow more flexibility for sharing between data
structures.

Before going into the details of DAGs, we show a small
example of how to use & and top in case of may aliasing.
Recall that a memory is described by F1 & F2 when it is
described by both F1 and F2, and that every memory can be
described by top. Now we want to describe a memory that
has two locations that may be aliased. Formula (lin L1 V1,
lin L2 V2) can only describe memories that has exactly two
unaliased locations. Here, we can use the following formula
to describe this may-alias situation.

(lin L1 V1, top) & (lin L2 V2, top)

If the memory contains only one location `, then it can
be described by both the sub-formulas connected by &. The
tensor divides the memory into one part that ` points to and
the other part that is the empty memory; ` is the witness for
both L1 and L2 and top is satisfied by the empty memory.
In the case where the memory contains two locations ` and
`′, the first sub-formula is satisfied by using ` as the wit-
ness for L1 and letting top consume the rest of the memory
containing location `′; similarly, the second sub-formula is
satisfied by using `′ as the witness for L2 and letting top
consume the rest of the memory containing location `.

When a DAG has no sharing between subgraphs, it be-
comes a tree. Let’s look at the definition of tree first, and
then we will create the definition of a DAG by modifying
the definition of a tree using the idea of sharing.

tree L o- (L is 0);
(struct L (Data::Left::Right::nil),
tree Left, tree Right).

The above tree definition states that each tree node con-
tains data and a pointer to its right child and a pointer to
its left child; that both of the children are trees; and that
the tree node, the left subtree, and the right subtree are
pair-wise disjoint.

We can modify the tree definition to describe a DAG by
changing the tensor between the two subtrees to the additive

conjunction & so that they can be aliased. The definition of
DAG is given below:

dag L :- (L is 0);
(struct L (Data::Left::Right::nil),
((dag Left, top) & (dag Right, top))).

The DAG definition still requires that the root node is dis-
joint from both subgraphs (so that there can be no cycles),
but allows the two subgraphs to be aliased.

This definition may require a node to be checked multi-
ple times. For example, consider the case where the DAG
contains four nodes: A points to B and C, and both B and C
point to D. In this case, proving dag A requires proving dag
B and dag C using the same set of locations. Both of these
subgoals will involve proving dag D. A node will be checked
once for each unique path from the root of the dag to that
node. However, the definition is still guaranteed to termi-
nate since each use of the definition consumes the locations
for one node.

6. EXTENDED EXAMPLE:
RED-BLACK TREES

In this section, we will explore a longer example of red-
black trees. Red black trees are balanced binary search trees
that enforce various properties in order to guarantee basic
operations take O(lg n) time. In this example, we not only
check the shape of the data structure, but also check other
properties such as the partial ordering of the data carried at
each node.

6.1 Expressing Red-Black Tree Invariants
Since red-black trees are binary search trees, the data at

a left child is less than the data at the parent, and the data
at the right child is greater than that at the parent.

The checkData predicate checks the relationship between
the data D of the current node and the data Pd of the parent
node. To do this it takes a flag Rc that states whether this
node is a right child. If the node is a left child (Rc is 0), then
the data must be less than or equal to that of the parent.
If it is a right child (Rc is 1), then the data must be greater
than or equal to the parent’s data. In the special case of the
root, which has no restriction on the data, Rc is set to 2.

checkData D Pd Rc o-
(Rc is 0, (D = Pd; Pd > D));
(Rc is 1, (D = Pd; D > Pd));
(Rc is 2).

A red node is a node that contains four elements: the color
red (represented by 1), data, a pointer to a left child, and a
pointer to a right child. It is a binary search tree node, so
its data must be appropriately related to that of its parent.
In a red-black tree, no red node may have a red parent, so
both the left and right children must be black nodes. The
black height of the two subtrees must be equal. The rnode
predicate takes a location L, the parent data Pd, the flag Rc,
and if L is a well-formed red node, returns the black height
Bh.

rnode L Pd Rc Bh o-
(struct L (1::Data::Left::Right::nil),
checkData Data Pd Rc,
bnode Left Data 0 Bh,
bnode Right Data 1 Bh).

All leaves in a red-black tree are black. A black node may
be null (with black height of zero), or it may be an internal
node, in which case it contains the same four elements as
a red node, except that the color is black (represented by
0). Again, its data is correctly related to the parent’s data.
Black nodes may have either red children or black children,
as long as they have the same black height. The black height
of an internal black node is one greater than that of its
children. The bnode predicate takes a location L, the parent
data Pd, the flag Rc, and if L is a well-formed black node,
returns the black height Bh.

bnode L Pd Rc Bh o-
(L is 0, Bh is 0);
(struct L (0::Data::Left::Right::nil),
checkData Data Pd Rc,
rbnode Left Data 0 Bh2,
rbnode Right Data 1 Bh2,
Bh is Bh2 + 1).

The rbnode predicate states that a node is red or black
by checking that it is either a red node or it is a black node.

rbnode L Pd Rc Bh o-
(bnode L Pd Rc Bh); (rnode L Pd Rc Bh).

The rbtree node takes a location L and determines if it
is the root of a red-black tree. The root of a red black tree
must be black and has no restrictions on its data.

rbtree L o − bnode L 0 2 Bh.

In addition to these predicates, the definition of red-black
tree invariants must also contain the type and mode for each
predicate. For example

rnode: int -> int -> int -> int -> o.
#mode rnode +L +Pd +Rc -Bh.

6.2 A Red-Black Tree implementation
We took an implementation of red-black trees from The

Object Oriented Programming Web (http://www.oopweb.com)
and ported it to MiniC. Porting required the following changes.
Type variables were changed to end in “ tp”. Stack allo-
cated structs were moved to the heap. printf was replaced
with the simpler MiniC function print that takes a sin-
gle expression. Variable declaration and initialization were
broken down into two separate statements. Single line state-
ment blocks were enclosed in curly braces.

We modified the LolliMon definitions given in the previous
section to match this C implementation. We changed the
ordering of the values in the struct and extended it to include
a parent pointer and a key in order to correspond to the
struct type declaration in the implementation. Instead of
using null pointers to represent leaves, the implementation
creates one node called sentinel to be used as a universal nil
node. We modified the definition of our node predicates to
take the address of this sentinel node as an extra argument.
We pass in the location of the sentinel node as a second
argument to the predicate rbtree. It determines that the
sentinel is black, and then passes its address into each of the
other predicates. The bnode predicate succeeds immediately
when the address passed in is that of the sentinel, without
attempting to check its structure.

bnode L N Pd Rc Bh o-
(L is N, Bh is 0);
(...as above...).

nilnode N o-
struct N (Left::Right::Parent::0

::Key::Data::nil).

rbtree Root Nilnode o-
nilnode Nilnode,
bnode Root Nilnode 0 2 Bh.

The main function in our implementation builds a red-
black tree using a series of inserts, finds, and deletes. After
each sequence of operations, it checks that the root variable
still points to a red-black tree with sentinel variable as its
nil node.

node tp sentinel;
node tp root;
...
assert([[rbtree $root $sentinel, top]]);

A subset of the code is available in Appendix B.

6.3 Finding Errors using Assertions
We did not find any errors in this implementation. How-

ever, we can introduce errors and show how they could be
caught immediately using assertions.

When inserting a new node, the node is originally colored
red. Then the function insertFixup checks to see if this has
violated the invariant that no red node has a red parent. If
so, a rotation is performed. Suppose we accidentally forget
to call insertFixup and the new red node happen to be
inserted under another red node, then the assertion that the
current tree is a red black tree will fail because the rnode
predicate requires its two children to be both black nodes,
which cannot be proven by the current condition.

Our red-black tree invariants do not specifically deal with
the parent pointers. However, parent pointers are used when
determining which rotation to perform. A mistake in setting
a parent pointer will not cause an assertion failure immedi-
ately, but will likely do so after an insert or delete causes a
rotation in that part of the tree. Or if we chose, we could
modify the invariants to ensure that the parent pointers are
correctly aligned.

7. RELATED AND FUTURE WORK
In this section we discuss related work and future work.

7.1 Related Work
There has been a lot of research done in static shape

analysis. Static analysis does not have runtime overhead.
However, because of the lack of runtime information, static
analysis usually leads to conservative and less precise results
or requires many anotations or manual proofs. Among this
work, Reynolds, O’Hearn et. al. developed separation logic
[19] as an assertion language for verifying the correctness of
pointer programs. Our idea of using a sub-structural logic
to describe memory come directly from their work. The rea-
sons why we chose to use intuitionistic linear logic instead of
separation logic are that we do not need the bunched con-
text to verify our examples and there is no theorem prover or

logic programming language for first-order separation logic
to automatically discharge proof obligations.

Purify [7] is a tool that dynamically detects memory ac-
cess errors and memory leaks. It traps every memory access
calls in the program and use object code insertion technique
to augment the programs with the dynamic checking logic.
SWAT [8] is another tool that dynamically checks memory
leaks. It uses a profiling infrastructure to monitor memory
access operations and detect memory leaks, a simple uni-
form memory safety policy. Both of these works focus on
dynamically detecting memory access errors and memory
leaks, whereas our work mainly focus on dynamically check-
ing complex programmer specified invariants about memory
shapes.

Lastly, we use LolliMon [14] to prove the validity of the
formula to be asserted. We modified the implementation of
LolliMon by treating the linear context of clauses that are
directly translated from the memory state as a hash table.

7.2 Future Work
In future work, we plan to design an assertion language

that is easy for programmers to master. Right now, in order
to use our system, a programmer must define clauses and
write assertions in the syntax of LolliMon. Even though
the logic programming language is declarative and relatively
easy to learn, it still requires an added learning curve for pro-
grammers unfamiliar with logic programming. The goal of
the assertion language design is to keep the declarative fea-
ture and at the same time bring the syntax of the assertion
language closer to the syntax of defining data structures in
the native language, so that the programmers have an easier
time specifying invariants.

In this paper, we only implement a prototype system to
check the feasibility of our basic idea of checking the invari-
ants of recursive data structures dynamically using a linear
logic programming language. A lot of work remains to make
this system real. Ideally, we would like to deploy our sys-
tem for ANSI C. The questions to be solved include how to
link the runtime system of C with the logic engine, how the
performance will scale to large data structures, and how to
optimize the logic engine.

We have looked into statically verifying properties of the
programs using linear logic [3, 12, 13]. In the long term, we
hope to explore how to interface the dynamic system with
the static verification system.

Acknowledgments.We would like to thank David Walker
for meaningful discussions and constructive comments. This
research was supported in part by ARDA Grant no. NBCHC-
030106, National Science Foundation grants CCR-0238328
and CCR-0208601 and an Alfred P. Sloan Fellowship. This
work does not necessarily reflect the opinions or policy of
the federal government or Sloan foundation and no official
endorsement should be inferred.

8. REFERENCES
[1] Programming with assertions.

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html.
[2] A. Ahmed, L. Jia, and D. Walker. Reasoning about

hierarchical storage. In IEEE Symposium on Logic in
Computer Science, pages 33–44, Ottawa, Canada,
June 2003.

[3] A. Ahmed and D. Walker. The logical approach to
stack typing. In ACM SIGPLAN Workshop on Types
in Language Design and Implementation, New
Orleans, Jan. 2003.

[4] A. W. Appel and D. A. McAllester. An indexed model
of recursive types for foundational proof-carrying
code. Programming Languages and Systems,
23(5):657–683, 2001.

[5] L. Birkedal, N. Torp-Smith, and J. Reynolds. Local
reasoning about a copying garbage collector. In ACM
Symposium on Principles of Programming Languages,
pages 220–231, Venice, Italy, Jan. 2004.

[6] R. W. Floyd. Assigning meanings to programs. In
J. T. Schwartz, editor, Mathematical Aspects of
Computer Science, volume 19 of Proceedings of
Symposia in Applied Mathematics, pages 19–32,
Providence, Rhode Island, 1967. American
Mathematical Society.

[7] R. Hastings and B. Joyce. Fast detection of memory
leaks and access errors. In Proceedings of the Winter
’92 USENIX conference, pages 125–136. USENIX
Association, 1992.

[8] M. Hauswirth and T. M. Chilimbi. Low-overhead
memory leak detection using adaptive statistical
profiling. In ASPLOS, pages 156–164, 2004.

[9] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576–580 and 583, October 1969.

[10] J. S. Hodas and D. Miller. Logic programming in a
fragment of intuitionistic linear logic. In Papers
presented at the IEEE symposium on Logic in
computer science, pages 327–365, Orlando, FL, USA,
1994. Academic Press, Inc.

[11] S. Ishtiaq and P. O’Hearn. BI as an assertion language
for mutable data structures. In Twenty-Eighth ACM
Symposium on Principles of Programming Languages,
pages 14–26, London, UK, Jan. 2001.

[12] L. Jia, F. Spalding, D. Walker, and N. Glew.
Certifying compilation for a language with stack
allocation. In P. Panangaden, editor, Proceedings of
the Twentieth Annual IEEE Symp. on Logic in
Computer Science, LICS 2005, pages 407–416. IEEE
Computer Society Press, June 2005.

[13] L. Jia and D. Walker. ILC: A foundation for
automated reasoning about pointer programs.
Technical Report TR-738-05, Department of
Computer Science, University of Princeton, 2005.

[14] P. López, F. Pfenning, J. Polakow, and K. Watkins.
Monadic concurrent linear logic programming. In
PPDP ’05: Proceedings of the 7th ACM SIGPLAN
international conference on Principles and practice of
declarative programming, pages 35–46, New York, NY,
USA, 2005. ACM Press.

[15] P. López and J. Polakow. Implementing efficient
resource management for linear logic programming. In
LPAR, pages 528–543, 2004.

[16] B. Meyer. Eiffel: programming for reusability and
extendibility. SIGPLAN Not., 22(2):85–94, 1987.

[17] G. Morrisett, A. Ahmed, and M. Fluet. L3: A linear
language with locations. In Seventh International
Conference on Typed Lambda Calculi and
Applications, 2005.

[18] P. O’Hearn, J. Reynolds, and H. Yang. Local
reasoning about programs that alter data structures.
In Computer Science Logic, number 2142 in LNCS,
pages 1–19, Paris, 2001.

[19] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proceedings of the 17th
Annual IEEE Symposium on Logic in Computer
Science, pages 55–74. IEEE Computer Society, 2002.

APPENDIX

A. SEQUENT CALCULUS FOR
INTUITIONISTIC LINEAR LOGIC

Γ;∆ −→ F

Γ; F −→ F
L-Init

Γ, F ;∆, F −→ F ′

Γ, F ;∆ −→ F ′ Copy

Γ;∆1 −→ F1 Γ;∆2 −→ F2

Γ;∆1, ∆2 −→ F1 ⊗ F2
⊗R

Γ;∆, F1, F2 −→ F

Γ;∆, F1 ⊗ F2 −→ F
⊗L

Γ;∆, F1 −→ F2

Γ;∆ −→ F1 (F2
(R

Γ;∆ −→ F1 Γ;∆′, F2 −→ F

Γ;∆, ∆′, F1 (F2 −→ F
(L

Γ; · −→ 1 1R
Γ;∆ −→ F

Γ;∆,1 −→ F
1L

Γ;∆ −→ F1 Γ;∆ −→ F2

Γ;∆ −→ F1 & F2
&R

Γ;∆, F1 −→ F

Γ;∆, F1 & F2 −→ F
&L1

Γ;∆, F2 −→ F

Γ;∆, F1 & F2 −→ F
&L2

Γ;∆ −→ > >R

Γ;∆ −→ F1

Γ;∆ −→ F1 ⊕ F2
⊕R1

Γ;∆ −→ F2

Γ;∆ −→ F1 ⊕ F2
⊕R2

Γ;∆, F1 −→ F Γ;∆, F2 −→ F

Γ;∆, F1 ⊕ F2 −→ F
⊕L

Γ;∆,0 −→ F
0L

Γ;∆ −→ F [t/x]
Γ;∆ −→ ∃x.F

∃R
Γ;∆, F [a/x] −→ F ′

Γ;∆, ∃x.F −→ F ′ ∃L

Γ;∆ −→ F [a/x]
Γ;∆ −→ ∀x.F

∀R
Γ;∆, F [t/x] −→ F ′

Γ;∆, ∀x.F −→ F ′ ∀L

Γ; · −→ F

Γ; · −→!F !R
Γ; F ;∆ −→ F ′

Γ;∆, !F −→ F ′ !L

B. REDBLACKTREE.MINIC
Below we include partial code for the MiniC implemen-

tation of red-black trees 4. The delete function includes an
assertion to verify that deleting a node has not violated the
red-black tree invariants defined at the beginning of the pro-
gram.

/* -----------------------------------
* Red-Black Tree invariants specified
* as LolliMon predicates
* ----------------------------------- */

[[
checkData: int -> int -> int -> o.

4based on code from http://oopweb.com/Algorithms
/Documents/Sman/Volume/s rbt.txt

bnode: int -> int -> int -> int -> int -> o.
rnode: int -> int -> int -> int -> int -> o.
rbnode: int -> int -> int -> int -> int -> o.
rbtree: int -> int -> o.
nilnode: int -> o.

#mode checkData +X +Y +Z.
#mode rnode +L +N +P +G -B.
#mode bnode +L +N +P +G -B.
#mode rbnode +L +N +P +G -B.
#mode rbtree +L +N.
#mode nilnode +L.

checkData D Pd Rc o-
(Rc is 0, (D = Pd; Pd > D));
(Rc is 1, (D = Pd; D > Pd));
(Rc is 2).

rnode L N Pd Rc Bh o-
(struct L (Left::Right::Parent

::1::Key::Data::nil),
checkData Data Pd Rc,
bnode Left N Data 0 Bh,
bnode Right N Data 1 Bh).

bnode L N Pd Rc Bh o-
(L is N, Bh is 0);
(struct L (Left::Right::Parent

::0::Key::Data::nil),
checkData Data Pd Rc,
rbnode Left N Data 0 Bh2,
rbnode Right N Data 1 Bh2,
Bh is Bh2 + 1).

rbnode L N Pd Rc Bh o-
(bnode L N Pd Rc Bh);
(rnode L N Pd Rc Bh).

nilnode N o-
struct N (Left::Right::Parent

::0::Key::Data::nil).

rbtree Root Nilnode o-
nilnode Nilnode,
bnode Root Nilnode 0 2 Bh.

]]

/* -----------------------------------
* Declaration of node type
* ----------------------------------- */

/* Red-Black tree description */
enum nodecolor_tp {BLACK, RED};

/* node type */
struct nodeTag_tp {

struct nodeTag_tp *left;
struct nodeTag_tp *right;
struct nodeTag_tp *parent;
nodecolor_tp color;
key_tp key;
rec_tp rec;

};
typedef struct nodeTag_tp node_tp;

/* -----------------------------------
* Global variables: sentinel and root
* ----------------------------------- */

/* all leafs are sentinels */

node_tp *sentinel;

/* root of Red-Black tree */
node_tp *root;

/* -----------------------------------
* Function Declarations
* (code ommitted)
* ----------------------------------- */

void rotateLeft(node_tp *x) {...}
void rotateRight(node_tp *x) {...}
status_tp find(key_tp key, rec_tp *rec) {...}
void insertFixup(node_tp *x) {...}
status_tp insert(key_tp key, rec_tp *rec) {...}
void deleteFixup(node_tp *x) {...}

/* delete node z from tree */
status_tp delete(key_tp key) {

node_tp *y;
...code ommitted...
free(y);

/* assert that delete maintains the invariants */
assert([[rbtree $root $sentinel, top]]);

return STATUS_OK;
}

/* -----------------------------------
* Main Function
* ----------------------------------- */

int main () {

rec_tp *rec;
status_tp status;
int i;

/* build sentinel (nil) node */
sentinel = malloc(sizeof(node_tp));
sentinel->left = sentinel;
sentinel->right = sentinel;
sentinel->color = BLACK;
sentinel->key = 0;
sentinel->rec = 0;

/* allocate record */
rec = malloc(sizeof(rec_tp));

/* assign initial value of root */
root = sentinel;

/* fill in with keys 0 through 14 */
i = 0;
while (i < 15) {

rec->stuff = i + 20;
status = insert(i,rec);
i = i + 1;

}

/* delete nodes */
status = delete(3);

}

