
Continuous Tamper-proof Logging
Using TPM 2.0

Arunesh Sinha1, Limin Jia1, Paul England2, and Jacob R. Lorch2

1 Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
{aruneshs,liminjia}@cmu.edu

2 Microsoft Research, Redmond, Washington, USA
{pengland,lorch}@microsoft.com

Abstract. Auditing system logs is an important means of ensuring sys-
tems’ security in situations where run-time security mechanisms are not
sufficient to completely prevent potentially malicious activities. A fun-
damental requirement for reliable auditing is the integrity of the log
entries. This paper presents an infrastructure for secure logging that is
capable of detecting the tampering of logs by powerful adversaries re-
siding on the device where logs are generated. We rely on novel features
of trusted hardware (TPM) to ensure the continuity of the logging in-
frastructure across power cycles without help from a remote server. Our
infrastructure also addresses practical concerns including how to handle
high-frequency log updates, how to conserve disk space for storing logs,
and how to efficiently verify an arbitrary subset of the log. Importantly,
we formally state the tamper-proofness guarantee of our infrastructure
and verify that our basic secure logging protocol provides the desired
guarantee. To demonstrate that our infrastructure is practical, we im-
plement a prototype and evaluate its performance.

1 Introduction

Run-time security mechanisms often are not sufficient to completely prevent ma-
licious activities. Under such circumstances, auditing system logs is an important
means of ensuring systems’ security. A fundamental requirement for reliable au-
diting is the integrity of log entries. Adversaries may benefit significantly from
tampering with log entries; for instance, malware may erase log entries recording
its installation or presence in order to avoid detection and subsequent removal
by anti-malware software. Or, an authorized insider may view private customer
data in violation of company policy, then remove evidence of his malfeasance
from the access log so that audits do not detect it.

There has been much work on developing tamper-proof logging protocols [1–
5]. These protocols aim to attest to the integrity of logs as well as detect tam-
pering of logs by the adversary. Some provide tamper-proofness by online com-
mitments of current log state [3]; others store logs in secure memory [4]. Some
use the TPM monotonic counter to attest to the integrity of every log entry [2];
others use hash chain based approach [1]. However, these schemes do not meet

the stringent requirements for tamper-proof logging in today’s computing envi-
ronment. Next we explain these requirements through a realistic scenario.

Consider a scenario, where the organization, by means of auditing, aims to en-
force policies such as, “confidential documents stored on company-owned devices
must never be transferred to an external USB storage device.” The organization
mandates that all employee devices, such as laptops and iPads, run an appli-
cation that monitors actions relevant to the policy. The logging infrastructure
needs to protect audit logs on these devices. Since many of these devices are
often offline, the first requirement is that the integrity of the audit log is not
dependent on continuous connectivity to a central server. Adding a log entry
should not require connection to a server. Further, the device could power off,
then restart with no connectivity to the network (e.g., the device is turned on
during flight). Consequently, a second requirement is that the logging infrastruc-
ture needs to preserve its continuity across power cycles without contacting a
remote server.

It is difficult to segregate security-relevant events from security-irrelevant
ones. The logging process is often required to capture a large variety of events
from many processes (e.g., OS, browser). Therefore, a third requirement is that
logging should be fast enough to support high-frequency log updates. Finally,
devices have only limited disk space. The last requirement is that the logging
infrastructure should work with limited disk space for storing logs.

All aforementioned schemes lack at least one of the features required for our
application: they lack support for either offline tamper-proofness [3, 5]; or large
logs on the order of gigabytes [4]; or continuous logging across power cycles [1, 6];
or high frequency logging [1, 2, 4, 7, 8]. In this paper, we present a logging infras-
tructure that satisfies all of these requirements. The security guarantee of our
logging infrastructure is based on a forward integrity adversary model [9], where
the adversary can obtain administrative privileges and take complete control of
the system. Our infrastructure ensures that the adversary’s actions leading up to
the action of compromising the machine will be logged and cannot be tampered
with, and therefore, can be detected.

Our logging infrastructure is mainly composed of two entities: a logger and
a verifier. Initially, the logger and the verifier share a secret key. As the system
executes, the logger generates a new key for every new log entry, and uses the
key to compute the HMAC of the log entry in order to attest to the log entry’s
integrity. The key sequence is generated as a hash chain; the initial key is known
only to the logger and verifier, similarly to the scheme by Schneier et al. [1]. At
any given time point, only the key on top of the chain is used; older keys are
deleted from memory. When an adversary takes control of the system, it cannot
find old keys in memory. The hash-chained key sequence ensures that, without
knowledge of the initial key, old keys cannot be derived from the key currently
stored in memory. Thus, the adversary cannot produce valid HMACs for earlier
log entries.

To allow high-frequency logging, our hash chain is constructed in software,
instead of the PCR registers in the TPM. This greatly reduces the time required

to append a log entry. Furthermore, we develop mechanisms that allow trun-
cation of the log after verification and allow a verifier to efficiently verify any
subset of the log. As a result, our infrastructure works with limited disk space.

One of the main novelties of our infrastructure, compared to Schneier et
al. [1], lies in leveraging TPM 2.0 features to maintain the continuity and secrecy
of the key chain across a power cycle. Specifically, we use the ability to seal data
to values of a TPM monotonic counter, which TPM1.2 does not allow. At system
shutdown, we create a blob by sealing the last key before powering off to the value
of a TPM monotonic counter. Upon device restarts, the logger can recover the
key by unsealing the blob. Our creation of use once and discard blobs for logging
is a novel use of TPM 2.0’s sealing to a monotonic counter feature.

In addition to the design and prototype implementation of our infrastructure,
we formally verify the tamper-proofness property of the basic protocol, which
we consider as one of our key contributions. We believe this is the first formal
proof of security for a logging protocol. The analysis brings out a number of
assumptions that the system must satisfy to ensure tamper-proofness.

The rest of the paper is organized as follows. We define the adversary model
and review TPM 2.0 features in Section 2. Our logging protocols are presented
in Sections 3 and 4. Section 5 details the verification steps of the basic protocol.
We describe our prototype implementation and evaluation results in Section 6.
Section 7 discusses related work.

Due to space constraints, we omit details of several definitions and verification
steps, which can be found in our companion technical report [10].

2 Overview

Review of TPM2.0 We list features of TPM2.0 that are key to ensuring tam-
perproofness property of our protocols [11].

NV memory TPM 2.0 allows for a larger non-volatile memory than TPM 1.2.
Its expected size is more than a megabyte.

Monotonic NV counter Any memory slot in NV memory can be tagged as
a monotonic counter, which can only be incremented; it starts with a value
greater than the maximum of all counters that ever existed in this TPM.

Enhanced authorizations TPM 2.0 provides enhanced authorization by defin-
ing authorization policies, which can be the conjunctions and disjunctions of
basic policies. Basic policies include checking whether an NV memory loca-
tion stores a specified value and whether a PCR contains a specified value.
These authorization policies can be used to implement data sealing.

Power failure counter TPM 2.0 has a special 32-bit NV monotonic counter
resetCount that can be modified by the TPM only. This counter is incre-
mented on a power failure, and thus provides a count of the number of power
failures.

Adversary model We consider an adversary that controls processes that reside on
the same machine as the logging process. We assume that the adversary never

controls the hardware, i.e., she cannot snoop on electrical signals, or conduct
side-channel attacks by observing physical signals like power consumption. We
distinguish between two phases of a system that runs our logging infrastructure.
These two phases are separated by the event that the adversary takes control
of the machine by gaining root privilege. We assume that in the first phase, the
adversary does not have root privileges.

3 The Basic Protocol (Protocol A)

In this section, we present our basic protocol (Protocol A), and provide informal
arguments for its tamper-proofness.

3.1 Protocol Description

Protocol A specifies the behavior of four entities: the logger, the verifier, the
TPM, and the OS. We call each entity a role in the protocol. We explain the log-
ger program, as it is the most complex component and uses novel TPM features.
We briefly discuss the verifier program and omit the OS and TPM.

Logger The logger uses a sequence of keys (key(0), key(1),...key(n)) to produce
HMACs of the log data, which arrives sequentially. We annotate each key with
the index i of its position in the sequence. The key sequence is a hash chain
starting with secret key(0), which is a secret shared between the logger and
verifier. The nth key is the hash of the n−1th key: key(n) = hash(key(n− 1)).

The logger has four phases: startup, logging, shutdown, and verification.

Startup At machine startup, a sealed key object (sealed blob containing the key)
is stored in a designated location sKeyLoc on the hard disk. This blob is sealed
to the current value of the monotonic TPM counter. Initially, the first sealed key
object for key(0) is set up by the administrator. Subsequent sealed key objects
are stored by the logger during shutdown.

The logger first acquires locks on its memory locations, the disk location
sKeyLoc storing the sealed key object, and the disk location fileLoc storing the
log. These locks prevent any attacker without root privileges from reading from
and writing to these locations. They are implemented using mechanisms such
as process memory isolation and access control in the file system. On a system
restart, these locks are released. Next, the logger unseals the sealed key object
to obtain the current key and then increments the TPM counter. At this point,
the sealed key object can no longer be unsealed.

Logging After startup, the logger, upon receiving new log data, (1) produces an
HMAC of the data using the current key key(k), (2) writes the log data and
HMAC to disk, (3) generates key(k + 1) by computing the hash of the old key
key(k), and (4) irretrievably erases the old key from the RAM.

The logger does not use the hash chain feature that TPM offers via PCRs.
Instead, it computes the hash in software, which vastly improves the logger’s
performance, because hashing in memory is much faster than using PCRs.

Shutdown Upon receiving a shutdown notification, the logger finishes processing
the queue of logs, and then seals the current key to the current monotonic TPM
counter value and writes the sealed key object to disk. This phase ensures that
when the machine starts up again, there is a sealed key object stored on disk.
Protocol A requires the shutdown module of the OS to guarantee that the logger
is able to finish its shutdown phase before the machine is powered off.
Verification The verification phase is triggered by a verification request from

an external verifier; a nonce is sent with such a request. Upon receiving such a
request, the logger sends back the log entries (log data and HMACs) stored on
disk, and the HMAC of the nonce using the current key.

Verifier The verifier initiates the verification phase by sending a nonce along
with the verification request to the logger. Upon receiving log entries containing
both log data and its HMAC and the HMAC of the nonce using the last key, the
verifier checks the HMAC of each log entry and the HMAC of the nonce. The
verifier has the initial shared secret and can generate all the keys.

3.2 Informal Argument for Tamper-proofness

We explain informally why Protocol A satisfies the tamper-proofness property.
Formal analysis of Protocol A is presented in Section 5.

We refer to keys that have smaller indices than the current key used by the
logger as old keys. The following two properties hold: (1) an attacker cannot
learn the old keys and (2) without the old keys, the attacker cannot tamper
with the logs generated prior to the attacker gaining root privilege, i.e., modify
entries, remove entries, and truncate the log.

Property (1) holds both before and after the attacker gains root privilege. Be-
fore the attacker gains root privilege, the memory and disk locations are properly
protected. When the attacker gains root privilege, it has access to all memory
and disk locations. However, old keys are not present in the machine’s memory
as the logger erases these keys upon generation of the next key. The sealed key
objects of these old keys cannot be used to extract keys, because these sealed key
objects are sealed to past values of the NV monotonic counter of the TPM and
there is no way to decrement the counter value. In particular, if the adversary
deletes the monotonic counter (by means of his root privilege), then any new
monotonic counter will start with the maximum value of all counters that ever
existed on the TPM. Finally, the keys form a hash chain, and, therefore, there is
no way to generate the old keys directly from the current key. (2) follows directly
from (1) and the property of HMACs: without the correct key, an attacker can-
not generate valid HMACs that pass the verification. Tamper-proofness follows
from (1) and (2).

4 Enhanced Protocol (Protocol B)

The basic protocol (Protocol A) has the tamper-proofness property, but is not
very practical. Enhanced protocol (Protocol B) uses additional mechanisms to

satisfy the following practical requirements. (1) Hard disk space is limited, and,
thus, logs need to be periodically truncated. (2) Power failures may not per-
mit the logger’s shutdown phase to complete, leading to the loss of the current
key. The protocol needs to be able to recover from power failures. (3) For effi-
cient and modular enforcement of several policies, the protocol needs to support
verification of an arbitrary subset of the log independently.

4.1 New Mechanisms

Branched key chain The enhanced protocol evolves keys in a branched man-
ner. Keys are divided into epochs. The initial keys of each epoch form a hash
chain staring from key(0). The initial key for epoch k is computed as: key(k) =
hash(key(k−1) | ′′epoch′′). There is a fixed maximum number (E) of keys within
an epoch. These keys form another hash chain indexed by the epoch num-
ber and a sub-epoch number. The ith sub-epoch key in epoch k (key(k, i)) is
hash(key(k, i− 1) | ′′subepoch′′). Here, key(k, 0) = key(k).

Mapping between keys and log entries To increase the flexibility of the
verification and relieve the verifier from the burden of deriving key indices for
checking HMACs, we incorporate key index information into the log data. Each
log entry now includes the log data, the epoch and sub-epoch indices of the key
producing the HMAC, and an HMAC of the log data and the key indices.

4.2 Protocol Description

Logger The logger in Protocol B cycles through the same phases as in Protocol
A. To maintain the branched key chain, the logger starts a new epoch either when
the previous epoch is completed or at startup. We first describe the sub-routine
that is invoked when a new epoch starts. For brevity, we omit the argument of
the location of the NV counter from seal and unseal, as this protocol uses only
a fixed monotonic counter. The pseudo code is shown in Figure 1.

New epoch In this sub-routine, the sealed object from location sKeyLoc is un-
sealed to obtain the current epoch key. Then, the next epoch key is computed and
sealed to the next TPM counter value. Finally, the TPM counter is incremented
and the epoch and sub-epoch counters are set appropriately.

A power failure that occurs in the middle of the new epoch routine could
create a discrepancy between the TPM monotonic counter value and the value
that the sealed blob on disk is sealed to. If the power failure occurs right after
the instruction that writes the sealed blob to disk and before the TPM counter
is incremented, the TPM counter value will be one step behind the value that
the sealed blob is sealed to. The startup phase handles this situation.

Startup Similarly to Protocol A, the logger locks critical locations in memory
and on disk (and releases them on a restart). Next, it invokes the new epoch
sub-routine. Depending on whether the previous power-off is a clean shutdown
or a power failure, the sealed blob stored on the hard disk at startup is sealed to

NewEpoch Sub-routine

epochkey ← unseal(data in sKeyLoc)
if unseal fails then

return fail ;

nextepochkey ←
hash(epochkey | “epoch”)
n← read TPM counter
sKeyLoc← seal(nextepochkey, n + 1)
increment TPM counter
key← epochkey
epoch← n; subepoch← 0

Startup Phase

lock all required memory locations
start newepoch phase
if failure, increment TPM counter
start newepoch phase
if successful, notify the OS

Logging Phase

while no shutdown notification do
data← get log data
logentry← (data|epoch|subepoch,
hmac(data|epoch|subepoch, key))
increment subepoch
key← hash(key | “subepoch′′)
write logentry to disk
if subepoch = E then

start newepoch phase

start shutdown phase

Shutdown Phase
wait for log producer to stop
while message queue is not empty do

process data as in logging phase

finaldata← hash(key | shutdown)
process finaldata as in logging phase

Fig. 1. Programs for Protocol B, not including the verifier stage

either the current value of the monotonic TPM counter or that value incremented
by one. If the new epoch sub-routine fails to unseal the key, then TPM counter
is incremented and the new epoch sub-routine is called again.

Logging The logger computes keys in the branched key chain. It computes a new
sub-epoch key for each new log entry until the maximum sub-epoch number is
reached. At this point, a new epoch key is computed by invoking the new epoch
sub-routine. For each log entry, the logger places the epoch and sub-epoch indices
in the log to build an explicit mapping between log entries and keys.

Shutdown In the shutdown phase, all remaining log entries are processed. Unlike
protocol A, the logger does not create a sealed blob for the current key, as this
has been done inside each new epoch sub-routine during logging. Instead, it
writes a special log entry hash(key | shutdown) to disk indicating the completion
of a clean shutdown. The absence of such an entry at machine startup is the
evidence of a power failure.

Verification The verification phase of the logger is the same as protocol A, ex-
cept for the deletion of logs after each successful verification and attestation of
the resetCount value in TPM. The verifier sends a ticket containing encrypted
information about how many epochs have been verified. The logger stores this
ticket on disk and sends this ticket back to the verifier along with log entries in
response to the next verification request.

Verifier Differently from protocol A, the verifier starts by asking for the value
of resetCount to determine if there was a power failure. The verifier additionally
generates a ticket attesting to the successful verification up to a check point for

Verification Phase
attest to resetCount.
nonce← recv from verifier
fhmac← hmac(nonce, key)
log← read whole log
tct← read ticket
send (fhm, log, tct) to verifier
recv. (st, tct, del) from verifier
if st = 1 then

save tct to disk
delete epochs till del

Verifier Program

ask for attestation of resetCount
powfail← current resetCount 6= old resetCount
nonce, r ← generate nonces
send nonce to logger
(fhm, log, encV (n|r′))← recv from logger
check r′ is nonce used in last ticket, halt if not
epochkey← hashn(sharedsecret|“epoch′′)
logavailable ← true; idx ← 0
while logavailable do

key← epochkey; n← n + 1
for j: 0 to E-1 do

if no more log entries then
logavailable ← false; break

verifyhmac(log(idx)data, log(idx)mac, key)
if log entry data is “shutdown” then

break
idx← idx + 1; key← hash(key|“subepoch′′)

epochkey← hash(epochkey|“epoch′′)

verifyhmac(nonce, fhm, key)
if all verifyhmac pass and not powfail then

send (1, encV (n− 1|r), n− 1) to logger

Fig. 2. Verification stage programs for Protocol B

the logger. The verifier, after verification till epoch k (the last verified epoch),
sends a ticket to the logger stating that the verification till epoch k is successful.
The ticket is an encryption: encV (k | r), where k is the last verified epoch, r is
a nonce known only to the verifier and V is the public key of the verifier. The
ticket is sent to the verifier in the next verification phase along with log entries
from epoch k + 1. The verifier uses the information from the ticket sent by the
logger to jump to the appropriate epoch key to start the verification.

The verifier’s pseudo code is shown in Figure 2. The verifier, upon receiving
the log and the ticket, decrypts the ticket to obtain the epoch index. If the ticket
is valid, the verifier computes the sub-epoch key and begins verification. In the
end, the verifier generates a new ticket and sends it to the logger. It is also easy
to modify the verifier to verify any subset of the log by making use of the epoch
and subepoch indices contained in each log entry.

4.3 Improvements to the Logging Infrastructure

We highlight how the extensions to the protocol address the practical concerns
that we summarized at the beginning of this section.

Rolling logs Using the ticket, the logger can delete logs up to a verification
check point. Instead of sending the entire log starting from the first log entry,

the logger only needs to send the ticket for the first k epochs and the log starting
from the k+1 epoch. To further lower the requirement of disk space for storing
the HMACs of logs, it is possible to store a hash of all HMACs in an epoch after
the completion of the epoch, instead of storing each HMAC.

Recovery from power failure A power failure may prevent the logger from
completing the shutdown phase and storing the current key to disk. As a result,
the logger in Protocol A has no way of deriving the valid key at the next startup
without help from a remote server. The branched key chain used in Protocol B
offers a means to recover from such a loss. Dividing the keys into epochs allows
the logger to periodically store the sealed blob of the next epoch key to disk
without sacrificing performance. Upon rebooting after a power failure, the logger
simply increments the TPM counter to retrieve the key from disk.

Portions of the log buffered in memory that are not written to disk due to a
power failure are lost. However, a power failure can be detected by the verifier
by checking the value of TPM’s resetCount counter.

Modular log analysis With the epoch and sub-epoch indices stored with each
log entry, the verifier can request the logger to send portions of the log entries
that it wants to verify. One application is enforcing multiple policies on the same
system modularly. Each policy analysis can select relevant portions of the log
and perform the verification independently; as the verifier can compute the keys
based on the epoch and subepoch information contained in each log entry.

4.4 Design Choices and Limitations

Power attacks One limitation of our infrastructure is that we cannot distin-
guish genuine power failures from adversarial system crashes. An attacker can
hide malicious activities before the power failure because log entries buffered in
memory are lost. Existing logging schemes that use volatile memory for buffering
logs [1] or even work in verifiable computation [12] suffer from the same prob-
lem. Our choice of using volatile memory for log buffering is driven by the desire
to accommodate high-frequency logging. Accesses to non-volatile memory (hard
disk or TPM) are slow; thus, it is not feasible to use them to process each log
entry. Additional hardware support could mitigate this problem.

Tradeoffs between performance and security guarantees Disk write op-
erations are expensive, and, therefore, the bigger the size of the buffered log
entry blocks, the more efficient the logger program becomes. However, in case of
a power failure, the logger loses the log entries buffered in memory, which may
record adversary actions. Consequently, the security guarantee becomes weaker
as the block size increases. This problem is mitigated in protocol B by allowing
offline recovery from a power failure and detection of the power failure.

Another tradeoff lies in our decision to hash keys in RAM instead of the TPM
to accommodate high-frequency log updates. A potential issue is that non-root
processes may coerce a root process to write the memory to disk, e.g., by stressing

the system memory, and thus leak the keys. Special precaution need to be taken
to protect memory regions that store the keys, which we leave for future work.

Suggested hardware features to defend against power attacks One way
to prevent power attacks is to rely on hardware support to allow for a clean
shutdown in spite of a power failure. One possibility is to provide a “fast” memory
interface for NV memory of the TPM with assured write on a power failure. The
logger uses the NV memory as a buffer instead of the RAM. The logger always
maintains an entry composed of a string “power failure” and its HMAC using the
current key. This last log entry is never written to disk, except after recovering
from a power failure when the TPM NV memory content is flushed to disk.
An attacker cannot generate the last entry on its own, so tampering with entries
stored in the TPM NV memory can be detected. This scheme requires the logger
to compute an additional HMAC for every log entry. However, software HMAC
is very fast and is unlikely to be a performance bottleneck.

5 Verification

We augment the modeling language and program logic from an existing work [13,
14] and formally prove that Protocol A satisfies the tamper-proofness property.
Protocol B uses similar techniques to ensure tamper-proofness, so the verification
results of Protocol A can be straightforwardly extended to Protocol B.

System modeling We assume the system has a set of principals P and there
is a partial order on the principals: we write X̂ � Ŷ if Ŷ is more privileged than
X̂, i.e., can access all the resources that X̂ can. We write r̂oot to denote the root
and t̂pm to denote TPM. (P,�) is an access control lattice, where the maximal
elements are r̂oot and t̂pm.

The system is modeled as several components, which we call threads, running
concurrently. Each thread is owned by a principal. Threads share several common
data structures, which include storage (RAM and disk) and read and write locks
on storage. The logger, verifier, OS, and TPM are encoded using our modeling
language. Other threads (including adversary) in the system are modeled as
arbitrary programs interacting with the rest of the system. Their behavior is
constrained by our adversary model, which is specified by predicates stating
a principal’s knowledge based on what it has learned so far. For instance, a
principal can compute the HMAC of d using key k if it has both the data and
the key. This resembles Dolev-Yao’s network adversary.

The behavior of the system is captured by the set of traces generated by all
possible interleaving executions of the threads. The security property is specified
as a first-order logic formula that holds on every trace of the system.

Predicates We define the predicates used in the verification. Action predicates,
summarized below, describe the semantics of actions such as read and write,

with @ u denoting the time u when the predicate holds.

Read(i, l,m)@u : thread i reads m from location l
Write(i, l,m)@u : thread i writes m to location l
Hmac(i, d, l,m)@u : thread i produces m = hmac(d, k)

where key k is stored in location l
VerifyHmac(i,m, d, k)@u : thread i verifies m = hmac(d, k)

Other key predicates used in the verification are shown below.

Mem(l,m)@u : location l has value m
CanRead(i, l)@u : i can read location l
IsReadLocked(i, l)@u : thread i holds the read lock of l

HT(i, X̂, e)@u : thread i owned by X̂ runs expression e
Has(i, s)@u : thread i knows s

Owner(i, K̂) : principal K̂ owns thread i
Contains(m,m′, S)@u : m′ can be derived from m using S
MayDerive(e, e′, S) : e′ can be derived from e using S

The Contains(m,m′, S) predicate is true when the term m′ can be extracted
from m using elements of the set S; for instance, m is an encryption of m′ using a
key k and S contains the key k. It is defined with respect to an inductively-defined
predicate MayDerive. One example rule is that MayDerive(e, hash(e), S) is true
without any premises: from a term e, its hash can always be computed. Predicate
Has(i, s) is true if thread i has the plain text of s. It is defined using Contains: i
has s if there exists a term m that contains s, and thread i receives m or reads
m from the storage. These predicates state the assumptions that cryptographic
functions are correct and thus capture the adversary’s capabilities.

Axioms about actions Our proof also uses sound axioms specifying the se-
mantics of actions. We show the axioms for generating and verifying HMACs
below. Axiom A1 states that on successful verification, it is the case that some-
one must have produced the HMAC with a key stored in location l. Axiom A2

states that if a thread j computes a HMAC using a key key based on location l,
it must be the case that j can read l. Similar to the Has predicate, these axioms
also state assumptions about the correctness of cryptographic functions.

A1 ∀i,mac, d, key, u. VerifyHmac(i,mac, d, key) @ u ⊃
∃j, l, u′.(u′ < u) ∧ Hmac(j, d, l,mac) @ u′ ∧ Mem(l, key) @ u′

A2 ∀j,mac, d, key, u. Hmac(j, d, l,mac) @ u ⊃ CanRead(j, l) @ u

System assumptions System assumptions are specified as axioms as well. We
define three axioms for this: one specifies the capability of the forward-integrity
adversary, one specifies an assumption about the processes running during the
logger’s startup phase, and one specifies the effect of the access control lattice.
We write ua to denote the time when the adversary gains root privilege.

The following axiom specifies that before time ua, processes owned by r̂oot
are well-behaved and do not interfere with the logger. Predicate RW(i, L)@u is

true if thread i reads from or writes to any location in the set L at time u.
The axiom states that processes owned by r̂oot do not access any of the storage
locations owned by the logger (specified as LoggerLoc), and only threads running
with the privilege of the OS can access locations shared between the OS and the
logger (specified as LoggerOSLoc).

Aadv = ∀u ≤ ua. NoAdv(u)

NoAdv(u) = ∀i. Owner(i, r̂oot) @ u ⊃ (∀L. LoggerLoc(L) ⊃ ¬RW(i, L) @ u)

∧
(
∀L.LoggerOSLoc(L) ∧ RW(i, L) @ u ⊃ HT(i, r̂oot, OS) @ u

)
Axiom ANR states that before the machine is compromised, after any reset,

no thread reads and unseals the sealed key before the logger increments the TPM
counter. Predicate Early(u) is true if u is a time point between a reset and the
logger incrementing the TPM counter and there are no other resets or counter
incrementing operations between them.

ANR = ∀u, i,m. Early(u) ∧ (u ≤ ua) ∧ ¬HT(i, L̂, LOGGER) @ u
⊃ ¬Read(i,M.disk.sKeyLoc,m) @ u

This may seem to be a strong assumption; however, verifying that it holds on a
real system is feasible. We discuss this further at the end of this section.

The protection provided by the access-control lattice to guard sensitive oper-
ations is captured using axioms similar to the one shown below, which specifies
the effects of the lattice on memory read accesses.

ARDLattice = ∀i, j, u, l, I,K. IsReadLocked(i, l) @ u ∧ Owner(i, I) ∧ I ≺ K ∧
Owner(j,K) ⊃ CanRead(j, l) @ u

If a location l is locked by a thread i owned by principal I, then any thread
j owned by a principal K higher than I on the access control lattice can read l.

Verification goal We define an auxiliary predicate LastLogIdx(k, u, uend) to
state that before time uend, the last log entry the logger writes is indexed by
k, and written at time u. We write γ to denote the context containing all the
axioms introduced so far. The main result of our verification is a derivation of
the following judgment:

γ `∀k, k′, ub, ue, ul, ur, uw, i, j, log, n, fhm. HT(i, V̂ , VERIFIER) on [ub, ue] ∧
(ub < uc < ur < uv < ue) ∧ Send(i,VERIFY)@ub ∧ New(i,nonce)@uc ∧
Recv(i, (log[n], n, fhm)) @ ur ∧ VerifyHmac(i, fhm,nonce, key(n+ 1))@uv ∧(
(ur ≤ ua) ⊃ LastLogIdx(k, ul, ur)

)
∧
(
(ur > ua) ⊃ LastLogIdx(k, ul, ua)

)
∧

(1 ≤ k′ ≤ k) ∧ (ul ≥ uw) ∧ Write(j,fileloc(k′), v) @ uw
∧ HT(j, L̂, LOGGER) @ uw ⊃ data(v) = data(log(k′))

It says that if the verifier completes successfully then for the log data received
by the verifier at time ur, the received data at index k′ is the same as the log
data v that was written to disk by the logger at index k′, conditional on the
assumption that k′ was written to disk by the logger before time min(ur, ua). In

other words, the log entries written before the adversary took control at time ua
will not pass verification if they are tampered with. The formula to the right of
the ` is the formal definition of the tamper-proofness property.

Derivation steps The proof of the tamper-proofness property relies on the
following four invariants. Predicate keyOwnerIn(u) states that at time u only the
logger, TPM, and verifier have the key. keyMemIn(u) states that at time u the
only locations that may have the key reside in the memory owned by the logger,
or the memory shared between the logger and the TPM, or the disk location
that contains the sealed key object. Predicate oldKeyAdv(u, ua) states that at
time u, no thread other than the logger, TPM, or verifier has an old key (key
used before time ua). Finally, predicate oldKeyNotInMem(u, ua) states that at
time u, no memory location contains an old key (key used before time ua).

1. ∀u.u ≤ ua ⊃ keyOwnerIn(u) 3. ∀u.u > ua ⊃ oldKeyAdv(u, ua)
2. ∀u.u ≤ ua ⊃ keyMemIn(u) 4. ∀u.u > ua ⊃ oldKeyNotInMem(u, ua)

The proofs of these invariants use transfinite induction on time; given the
invariants hold before time u, we prove that they hold at u. In particular, we
use the program logic to reason about the protocol roles to show that these
invariants are maintained when programs belonging to these roles execute in an
adversarial environment.

From (1) and (2), we can prove that the adversary does not have access to
any valid keys generated before time ua at any time prior to ua. (3) and (4)
imply that, after ua, the adversary cannot obtain keys that were generated prior
to time ua. From the above, we can conclude that at no time does the adversary
possess keys used by the logger prior to time ua. Then, it can be shown that
the adversary cannot produce valid log entries generated before time ua, which
is the desired tamper-proofness property.

Design decisions based on verification One important system assumption
that the tamper-proofness property depends on is ANR: at any time (before
the adversary gets root access) between the machine startup and the logger
startup, no process should read the sealed blob on disk. The fact that the logger
starts soon after machine startup after a reset makes the number of running
threads during that period of time small. The remote attestation feature of the
TPM can be used to check that ANR holds by verifying the code that runs on
system reset. This assumption leads to important design decisions of the logger.
For example, to satisfy this assumption, the logger cannot be implemented as
a user-level application. It would be extremely difficult to ensure the tamper-
proofness property of such a design, because the logger may not be the first user
application to start and other user applications starting before the logger cannot
be trusted.

Several axioms (e.g., ARDLattice) capture the requirements of access-control
lattice. For these axioms to be sound in reality, we need to ensure that the
implemented access control mechanisms are correct and cannot be compromised
by threads not owned by r̂oot. For instance, we use process isolation to protect
logger-owned memory locations.

Block Total Disk
size time (ms) time (ms)

512 5,135 2,513
256 6,675 4,056
128 11,074 8,320
64 15,882 12,997
32 29,148 25,505
16 53,306 49,168

Table 1. Time to log 100,000 entries
with varying block size.

Log size #log entries Verif.
time (s)

175MB 1,211,168 27
390MB 2,684,760 61
736MB 5,075,958 116
1.48GB 10,198,014 234

Table 2. Time (in seconds) to verify
logs in a serial manner

6 Implementation and Evaluation

Implementation We implement a prototype logger and verifier based on Pro-
tocol B. Our logger application is a user-level Windows service that uses the
ETW logging framework of Windows 7 to receive events from applications and
log them. Our implementation relies on the assumption that services in Win-
dows are trusted (see the discussion in Section 5). However, we need not trust
any user-level application because services start before these applications. We
use keys and HMACs of 256 bits and use SHA256 to produce keys. A 64-bit NV
memory location is designated as the monotonic counter that keys are sealed to.

We used a 2.8GHz quad core machine with 6GB of RAM. We use a TPM
2.0 simulator that opens two network ports to receive binary TPM commands
and return appropriate responses after processing those commands. The TPM
simulator is built from the TPM 2.0 specs and models all TPM 2.0 functionality.
We also use a C# TPM library that offers an easy interface to the TPM.

The most significant challenge that we faced in the implementation was that
high-level languages that use garbage collectors do not usually provide language
support for secure erasure of memory objects, because the memory manager
(garbage collector) moves objects around. Though C# offers pinning of memory
that can be used to securely erase memory, the use of C# libraries that do
not pin memory makes securely erasing keys extremely difficult. However, the
tamper-proofness property requires secure erasure of the memory objects that
store the keys. Hence, we implement an intermediate layer in C such that the
current key always lives in the memory of the C process. This C process uses
the TPM library to interact with the TPM. Also, to avoid unexpected behavior
due to compiler optimizations we used SecureZeroMemory, which is a guaranteed
way of setting memory in Microsoft’s version of C.

Our implementation relies on the process memory isolation provided by the
operating system to implement locks on volatile memory to prevent an attacker
from gaining access to the key during startup phase. We rely on user privilege
access control to implement locks on disk.

The prototype system was stable across clean shutdowns and power failures.

Evaluation Table 1 shows the logger’s log-processing time given different block
sizes. As the block size grows, the processing time decreases, and so does the
percentage of disk time over the total processing time. This shows that the
bigger the block size, the more efficient the logging process. However, the system
becomes less secure as block size increases; the attacker has a better chance of
hiding its activities in buffered logs that will be discarded after a power failure.

Our storage overhead for HMACs for approximately 32 million log entries is 1
GB. If we store hashes of HMACs in an epoch, then with an E value (sub-epoch
number) of 1000, the storage overhead of 32 billion log entries is 1 GB. Thus,
the storage overhead of the HMACs is not a bottleneck. Further, with periodic
verification, log entries can be removed frequently.

Table 2 shows the evaluation results of the verifier’s performance. Verification
is reasonably fast, even with simple sequential verification. We expect a huge
speed up if the verification process is parallelized using pre-computed keys.

7 Related Work

Secure logging schemes Auditing has been studied extensively; for example,
in the context of detecting misconfiguration in access control policies [15, 16],
and in the context of holding agents accountable for their actions [17]. Security
guarantees provided by these systems are based on the assumption that logs are
tamper-proof.

Most closely related to our approach is work by Kelsey and Schneier [1, 18].
They also use a hash chain of keys to ensure the integrity and confidentiality of
logs. Our main improvement over theirs is that we support continuous logging
across machine restarts, which they do not. Our protocol allows truncation of
logs after verification. As we only care about integrity of log entries, our scheme
is much simpler than theirs, and therefore allows for faster log appending op-
erations. They additionally study variants of untrusted verifier, which we do
not consider. It is straightforward to extend our protocol using the ideas intro-
duced by Kelsey and Schneier to lift the assumption that the verifier is trusted.
Follow-up work [19, 20] does not tackle the issues we address in this paper, and
instead, focuses on making the encrypted log searchable [19] or implementing the
scheme [20]. Recent work addresses the issue of log deletion required by law [6]
and uses similar scheme as [1, 18], but does not work across system restarts and
lacks formal verification.

Monotonic counters have been used to ensure the tamper-proofness of logs [2,
8, 7]. They use the monotonic counter inside the attestation of each log entry,
whereas we use a software-based hash chain of keys to generate attestations for
log entries and only use the counter on system startup/shutdown to ensure the
continuity and secrecy of the keys. More concretely, we seal the current key to the
counter value using the TPM. The sealed blob is unrecoverable after the counter
increments. Thus, we create use and discard blobs, which is a novel use of the
monotonic counter. Because we do not use the TPM in normal logging activities,
our log appending operation is much faster than that in prior work. In the best

case, our scheme appends approximately 20, 000 log entries per second using a
Intel 2.8GHz processor with 6GB RAM (Table 1), much faster than prior similar
schemes [3, 2, 20, 1, 8, 7]. The best of these schemes can process 1750 entries per
second using Intel Core 2 Duo 2.4GHz CPU with 4GB of RAM [3]. A2M, another
work on secure logging that precedes TrInc, stores logs in trusted memory [4].
Due to the limited size of trusted memory, this scheme is not practical to be
used to protect logs on the order of gigabytes, which our work aims to support.

There has been much work on designing efficient data structures for storing
logs along with auxiliary information (such as a hash tree) to provide guarantees
of tamper-proofness [21–23, 3, 5]. For instance, the work by Crossby et al. [3]
provides a dynamic history tree data structure to store the log and capture
the history of log insertions through commitments. These structures require
publishing the updated state of the auxiliary data structure quite frequently;
e.g., after each log addition. However, in our scenario, external communication
may not be feasible given the high bandwidth requirement of logs generated at
high frequency. While these schemes are effectively online schemes, our scheme
provides the forward integrity guarantee in an offline manner, even if the verifier
does not verify before the adversary takes control. Also, our infrastructure is
able to append logs at much faster rate due to the simplicity of our approach.

Other schemes that use trusted hardware TPMs have been used exten-
sively to design schemes that guarantee some form of trust in computing devices,
in spite of malicious software running on the device [24, 25, 12]. We use the TPM
to protect a key by producing a sealed object of the key that can only be un-
sealed when the TPM’s monotonic counter has a specific value. Incrementing
the counter makes the object unsealable by this TPM in the future.

Due to practical constraints, such as size, power consumption and cost, the
TPM is limited in its functionality, e.g., small non-volatile memory that degrades
with about 100,000 writes. An ideal hardware solution for tamper-proof logging
is trusted secure hardware that stores the whole log itself, guaranteeing not only
detection of tampering but also recovery of the tampered logs. Other hardware
like iButtons [26] has been used in secure logging [20] that implements the scheme
of Kelsey and Schneier [1]. While they provide many of the guarantees that our
scheme can, they do not address the issue of auditing across power cycles, and
their implementation is slow in appending log entries (∼1 second for an append).

The challenge of distinguishing power failures from malicious power attacks
that we face is also encountered in another work using the TPM for secure code
execution [12]. A trusted power source or a fail-safe power failure mechanism is
needed to allow TPMs to shutdown cleanly in case of a power failure.

Formal verification of system software Formally verifying the security guar-
antees of critical system software has become increasingly important. Several
projects have demonstrated the value of formal verification (e.g., [27, 14, 28]) .
The high-level goal of our work is the same. A model of an adversary against
forward integrity was proposed by Bellare et al. [9], which is the same adversary
model in our formal verification. As far as we know, we are the first to formally
specify the two-phase adversary model and the forward integrity property in

logic. Another semi-formal model proposed by Crossby et al. focuses on specify-
ing integrity as prefix consistency of a log and its extension [3], which essentially
requires online commitment of log entries. Therefore, that model is not relevant
to our logging scenarios. Ma et al. provide a cryptographic style definition of the
security properties of a hash chain [29, 30], much like Bellare et al. [9] However,
unlike our analysis, they cannot verify security properties of logging protocols,
as they lack the logic/language framework to reason about protocols.

Our verification technique is based on the compositional reasoning principles
developed by Garg et al. [13] We additionally allow dynamic forking of new
threads and resetting the machine, which are essential in modeling and reasoning
about the behavior of protocols across machine resets and power failures.

8 Conclusion

Our secure logging protocols use new TPM features to guarantee forward in-
tegrity of logs in an offline setting and address practical issues such as limited
disk space, high-frequency log updates, and unexpected power failures. As future
work, we are interested in investigating how to select log block sizes for opti-
mal balance between the strength of the security guarantees and performance.
One promising direction is to include an adaptive block size choice module that
takes into consideration the costs of security and performance. Another issue we
want to explore is the scheduling priority for the logger process, so that other
processes are not able to exhaust machine resources with the aim of preventing
logging and causing a system crash.

Acknowledgment This work was supported in part by the AFOSR MURI on
Science of Cybersecurity and NSF CNS-1018061. Part of this work was done
while Arunesh Sinha was an intern at Microsoft Research, Redmond.

References

1. Schneier, B., Kelsey, J.: Cryptographic support for secure logs on untrusted ma-
chines. In: USENIX Security. (1998)

2. Levin, D., Douceur, J.R., Lorch, J.R., Moscibroda, T.: Trinc: Small trusted hard-
ware for large distributed systems. In: NSDI. (2009)

3. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper evident logging.
In: USENIX Security. (2009)

4. Chun, B.G., Maniatis, P., Shenker, S., Kubiatowicz, J.: Attested append-only
memory: Making adversaries stick to their word. ACM SIGOPS Operating Systems
Review 41(6) (2007) 189–204

5. Snodgrass, R.T., Yao, S.S., Collberg, C.: Tamper detection in audit logs. In:
VLDB. (2004)

6. Von Eye, F., Schmitz, D., Hommel, W.: A framework for secure logging with
privacy protection and integrity. In: ICIMP. (2014)

7. Sarmenta, L.F.G., van Dijk, M., O’Donnell, C.W., Rhodes, J., Devadas, S.: Virtual
monotonic counters and count-limited objects using a TPM without a trusted OS.
In: ACM STC. (2006)

8. Van Dijk, M., Rhodes, J., Sarmenta, L.F.G., Devadas, S.: Offline untrusted storage
with immediate detection of forking and replay attacks. In: ACM STC. (2007)

9. Bellare, M., Yee, B.: Forward integrity for secure audit logs. Technical report,
University of California at San Diego (1997)

10. Sinha, A., Jia, L., England, P., Lorch, J.: Continuous tamper-proof logging using
TPM 2.0. Technical Report CMU-CyLab-13-008, Carngie Mellon University (2013)

11. TrustedComputingGroup: TPM library specification. http://www.

trustedcomputinggroup.org/resources/tpm_library_specification

12. Parno, B., Lorch, J.R., Douceur, J.R., Mickens, J.W., McCune, J.M.: Memoir:
Practical state continuity for protected modules. In: IEEE S&P. (2011)

13. Garg, D., Franklin, J., Kaynar, D.K., Datta, A.: Compositional system security
with interface-confined adversaries. In: MFPS. (2010)

14. Datta, A., Franklin, J., Garg, D., Kaynar, D.K.: A logic of secure systems and its
application to trusted computing. In: IEEE S&P. (2009)

15. Vaughan, J.A., Jia, L., Mazurak, K., Zdancewic, S.: Evidence-based audit. In:
CSF. (2008)

16. Bauer, L., Garriss, S., Reiter, M.K.: Detecting and resolving policy misconfigu-
rations in access-control systems. ACM Transactions on Information and System
Security 14(1) (May 2011)

17. Feigenbaum, J., Jaggard, A.D., Wright, R.N.: Towards a formal model of account-
ability. In: NSPW. (2011)

18. Kelsey, J., Schneier, B.: Minimizing bandwidth for remote access to cryptograph-
ically protected audit logs. In: RAID. (1999)

19. Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and
searchable audit log. In: NDSS. (2004)

20. Chong, C.N., Peng, Z.: Secure audit logging with tamper-resistant hardware. In:
IFIP SEC. (2003)

21. Naor, M., Nissim, K.: Certificate revocation and certificate update. In: USENIX
Security. (1998)

22. Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated
dictionary with skip lists and commutative hashing. In: DISCEX. (2001)

23. Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.: A
general model for authenticated data structures. Algorithmica 39(1) (2004) 21–41

24. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An
execution infrastructure for TCB minimization. ACM SIGOPS Operating Systems
Review 42(4) (2008) 315–328

25. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping trust in commodity computers.
In: IEEE S&P. (2010)

26. MaximIntegrated: What is an iButton device? http://www.maximintegrated.

com/products/ibutton/ibuttons/

27. Jang, D., Tatlock, Z., Lerner, S.: Establishing browser security guarantees through
formal shim verification. In: USENIX Security. (2012)

28. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: formal verification of an OS kernel. In: SOSP. (2009)

29. Ma, D., Tsudik, G.: Forward-secure sequential aggregate authentication. In: IEEE
S&P. (2007)

30. Ma, D., Tsudik, G.: A new approach to secure logging. Trans. Storage 5(1) (March
2009) 2:1–2:21

