
Maintaining Distributed Recursive Views Incrementally

Vivek Nigam
UPENN, USA

vnigam@math.upenn.edu

Limin Jia
CMU, USA

liminjia@cmu.edu
Boon Thau Loo

UPENN, USA
boonloo@cis.upenn.edu

Andre Scedrov
UPENN, USA

scedrov@math.upenn.edu

ABSTRACT
This paper proposes an algorithm to compute incrementally the
changes to distributed recursive database views in response to in-
sertions and deletions of base facts. Our algorithm uses a pipelined
semi-naïve (PSN) evaluation strategy introduced in declarative net-
working. Unlike prior work, our algorithm is formally proven to be
correct for recursive query computation in the presence of message
reordering in the system. Our proof proceeds in two stages. First,
we show that all the operations performed by our PSN algorithm
computes the same set of results as traditional centralized semi-
naïve evaluation. Second, we prove that our algorithm terminates,
even in the presence of cyclic derivations due to recursion.

1. INTRODUCTION
One of the most exciting developments in computer science in

the past years is the fact that computing has become increasingly
distributed. Both resources and computation no longer reside in a
single place. Resources can be stored in different machines possi-
bly around the world, and computation can be performed by dif-
ferent machines as well, e.g. cloud computing. Since machines
usually run asynchronously and under very different environments,
programming computer artifacts in such frameworks has become
increasingly difficult as programs have to be at the same time cor-
rect, readable, efficient and portable. There has therefore been a re-
cent return to declarative programming languages, based on Prolog
and Datalog, that allow one to write programs for distributed sys-
tems such as networks and multi-agent robotic systems, e.g. Net-
work Datalog (NDlog) [11], MELD [4], Netlog [7], DAHL [12],
Dedalus [3]. When programming in these declarative languages,
programmers usually do not need to specify how computation is
done, but rather what is to be computed; and therefore, declarative
programs tend to be more readable, portable, and orders of magni-
tude smaller than usual imperative implementations.

One of the key observations that these languages rely on is that
distributed systems, such as networking and multi-agent robotic
systems, deal at their core with maintaining distributed states by
allowing each node to compute locally and then propagate its local
states to other nodes (agents) in the system. For instance, in routing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

protocols, at each iteration each node computes locally its routing
tables based on information it has gained so far, then distributes
the table to its neighbors. We can think of these systems as dis-
tributed database views, where not only base facts are distributed,
but the rules are also distributed among different nodes in the net-
work. Computation in these systems can be regarded as computing
distributed database views.

Similarly to its centralized counterpart, one of the main chal-
lenges of implementing these distributed views is how to efficiently
and correctly update them when the base facts change. For in-
stance, in the network setting, when a new link in the network has
been established or an old link has been broken, one needs to up-
date the routing tables to reflect the changes in the base predicates.
It is often impractical to recompute each node’s state from-scratch
when changes occur, since that would require all nodes to exchange
their local states, including those that have been previously prop-
agated. For example, in the path-vector protocol used in Internet
routing, recomputation from-scratch would require all nodes to ex-
change all routing information, including those that have been pre-
viously propagated. A much better approach is to maintain dis-
tributed databases incrementally. That is, instead of reconstructing
the entire database, one only modifies previously derived tuples that
are affected by the changes of the base tuples, while the remaining
facts are left untouched.

Gupta et al. proposed an algorithm in their seminal paper [8] on
incrementally maintaining database views in a centralized setting,
called DRed (Delete and Rederive). DRed first deletes all tuples
that might be affected by the changes to base tuples, then rederives
tuples that are still derivable. As shown in [10], it turns out that
DRed is not practical in a distributed setting, due to high commu-
nication overhead incurred by rederivations of tuples.

This paper develops techniques for incrementally maintaining
recursive views in a distributed setting, while avoiding as much as
possible synchronization among agents (nodes). That is, no agent
is supposed to stop computing because some other agent has not
concluded its computation and we do not assume the existence of
any coordinator in the system. Synchronization requires extra com-
munication between nodes, which comes at a huge performance
penalty. In particular, we propose an asynchronous incremental
view maintenance algorithm, based on the pipelined semi-naïve
(PSN) evaluation strategy proposed by Loo et al. [11]. PSN relaxes
the traditional semi-naïve (SN) evaluation strategy by allowing an
agent to change its local state by following a local pipeline of up-
date messages. These messages specify the insertions and deletions
scheduled to be performed to the agents’s local state. When an up-
date is processed, new updates may be generated and those that
have to be processed by other agents of the system are transmitted
accordingly.

1

Most importantly, we formally prove the correctness for our PSN
algorithm, which is lacking from existing work on distributed view
maintenance. What makes the problem hard is the fact that we need
to show that, in a distributed, asynchronous setting, the view com-
puted by our algorithm is correct regardless of the order in which
updates are processed. Unlike prior PSN proposals [11, 10], our
PSN algorithm does not require that message channels are FIFO,
which is for many distributed systems an unrealistic assumption.

Furthermore, guaranteeing termination for distributed recursive
views also turns out to be tricky. In a centralized, synchronous
setting termination is usually guaranteed by discarding new deriva-
tions of previously derived tuples by using evaluation mechanisms
that use set-semantics, such as DRed. The use of set-semantics,
however, requires nodes to re-derive tuples that are deleted, affect-
ing performance in a distributed setting. When using multiset se-
mantics, on the other hand, one does not need to re-derive tuples,
since nodes keep track of all possible derivations for any tuple.
However, one can no longer easily guarantee termination, as tu-
ples might be supported by infinitely many derivations. Inspired
by [13], we add to tuples annotations containing the set of facts
(base and intermediate) that were used to derive it. We use this
annotation to detect cycles in derivations, which is enough to de-
tect when tuples are supported by infinitely many derivations, and
hence guarantee termination.

More concretely, this paper makes the following technical con-
tributions, after introducing some basic definitions in Section 2:

• We propose a new PSN-algorithm to maintain views incre-
mentally in a distributed setting (Section 3). This algorithm
only deals with distributed non-recursive views.

• We formally prove that PSN is correct (Section 4). Instead of
directly proving PSN maintains views correctly, we construct
our proofs in two steps. First, we define a synchronous algo-
rithm based on SN evaluation, and prove the synchronous SN
algorithm is correct. Then, we show that any PSN execution
computes the same result as the synchronous SN algorithm.

• We extend the basic algorithm by annotating each tuple with
information about its derivation to ensure the termination of
maintaining views for recursive programs (Section 5), and
prove its correctness.

Finally, we discuss related work in Section 6, and conclude with
some final remarks in Section 7.

2. PRELIMINARIES
In this section, we review the basic definitions of Datalog and

introduce the language Distributed Datalog (DDlog), which ex-
tends Datalog programs by allowing Datalog rules to be distributed
among different nodes. DDlog is the core sublanguage common
to many of the distributed Datalog languages, such as NDlog [11],
MELD [4], Netlog [7], and Dedalus [3].

2.1 Background: Datalog
A Datalog program consists of a (finite) set of logic rules and a

query. The query is a ground fact, that is, , that is, a fact containing
no variable symbols. A rule has the form h(~t) :- b1(~t1), . . . , bn(~tn),
where the commas are interpreted as conjunctions and the symbol
:- as reverse implication; h(~t) is an atomic predicate called the
head of the rule; b1(~t1), . . . , bn(~tn) is a sequence of atomic predi-
cates called the body; and the ~ts are vectors of variables and ground
terms. Semantically, the order of the elements in the body does not
matter, but it does have an impact on how programs are evaluated
(usually from left to right).

Any free variable in a Datalog rule is assumed to be universal
quantified. Moreover, we assume that all variables appearing in the
head of a rule also appear somewhere in its body. Following [17],
we assume a finite signature of predicate and constant symbols, but
no function symbols.

We say that a predicate p depends on q if there is a rule where
p appears in its head and q in its body. The dependency graph
of a program is the transitive closure of the dependency relation
using its rules. We say that a program is (non)recursive if there
are (no) cycles in its dependency graph. We classify the predicates
that do not depend on any predicates as base predicates, and the
remaining predicates as derived predicates. Consider the following
non-recursive Datalog program, p, s, and t are derived predicates
and u, q, and r are base predicates.
{p :- s,t,r; s :- q; t :- u; q :-; u :-}.
The (multi)set of all the ground atoms that are derivable from this

program, called view or state, is {s, t, q, u}. For this example,
each predicate is supported by only one derivation and therefore the
same view is obtained when using as intended semantics set seman-
tics or multiset semantics. If we added, however, the clause s :-

u to this program, then the view when using multiset semantics of
the resulting program would change to {s, s, t, q, u} where
s appears twice. This is because there are two different ways to de-
rive s: one by using q and another by using u. The view using set
semantics can, however, be easily derived from the view obtained
when using multiset semantics by simply eliminating the multiplic-
ity of the tuples in the view. Therefore, since the algorithms pro-
posed in this paper keep track of the multiplicity of tuples, they can
be used for either multiset or set-semantics. We discuss at the end
of this section, why we opt to use multiset-semantics.

2.2 Distributed Datalog
Location Specifiers.

To allow distributed computation, DDlog extends Datalog by
augmenting its syntax with the location operator @ [11], which
specifies the location of a tuple. For instance, consider the fol-
lowing DDlog program, which calculates the reachability relation
among nodes:
r1: reachable(@S,D) :- link(@S,D).
r2: reachable(@S,D) :- link(@S,Z), reachable(@Z,D).

The program takes as input link(@S,D) tuples, each of which
represents an edge from the node itself (S) to one of its neighbors
(D). The location operator, @ specifies where tuples are stored. For
example, link tuples are stored based on the value of the S at-
tribute.

Rules r1-r2 recursively derive reachable(@S,D) tuples, where
each tuple represents the fact that the node S is reachable from the
node D. Rule r1 computes one-hop reachability, given the neighbor
set of S stored in link(@S,D), while rule r2 computes transitive
reachability as follows: if there exists a link from S to Z, and Z

knows that the node D is reachable from Z, then S can also reach D.
In a distributed setting, initially, each node in the system stores

the link tuple that are relevant to its own state. For example, the
tuple reachable(@2,4) is stored at the node 2. To compute all
reachability relations, each node runs the exact same copy of the
program above concurrently. Newly derived tuples may need to be
sent to the corresponding nodes as specified by the @ operator.

Rule localization.
As illustrated by the rule r2, the predicates in the body of clauses

can have different location specifiers indicating that they are stored
on different nodes. To apply such a rule, predicates may need to be
gathered from several nodes, possible different from where the rule
resides. To have a clear defined semantics of the program, we apply

2

rule localization rewrite procedure as shown in [11] to make such
communication explicit. The rule localization rewrite procedure
transforms a program into an equivalent one where all elements in
the body of a rule are located at the same location, but the head of
the rule may reside at a different location than the body predicates.
This procedure improves performance by eliminating the need of
unnecessary communication among nodes, as a node only needs
the tuples locally stored to derive a new fact. For example, the rule
localization rewrite of clause r2 is the following two clauses:
r2-1: reachable(@S,D) :- link(@S,Z), aux(@S,Z,D).
r2-2: aux(@S,Z,D) :- reachable(@Z,D), link(@Z, S).

Here, the predicate aux is a new predicate: it does not appear in the
original alphabet of predicates. As specified in the rule r2-1, this
predicate is used to inform all neighbors, S, of node Z that the node
Z can reach node D. It is not hard to show, by induction on the height
of derivations, that this program is equivalent to the previous one in
the sense that a reachable tuple is derivable using one program if
and only if it is derivable using the other. For the rest of this paper,
we assume that such localization rewrite has been performed.

Problems with Set-Semantics in Distributed Setting.
While maintaining a view, derived tuples might need to be deleted

from the view due to the deletion of base tuples. For instance, in the
reachability example above, if a link tuple is deleted, one might
need to delete some reachable tuples that are derived from it. In
traditional, centralized incremental maintenance algorithms, such
as DRed [8], one maintains a view by using set-semantics. That
is, one does not keep track of the number of supporting derivations
for any tuple. Then, whenever a tuple, p, is deleted, one eagerly
deletes all the tuples that are supported by a derivation that contains
p. Since some of the deleted tuples may be supported by alterna-
tive derivations that do not use p, DRed re-derives them in order to
maintain a correct view.

It turns out that re-deriving tuples in a distributed setting is ex-
pensive due to high communication overhead, as demonstrated in
[10]. A better approach is to use an evaluation algorithm that uses
multiset-semantics to keep track of the number of supporting deriva-
tions of any tuple. So, whenever a tuple is deleted, such algorithm
just needs to reduce its multiplicity by one, and whenever its mul-
tiplicity is zero, the tuple is deleted from the view.

However, guaranteeing termination when an algorithm uses mul-
tiset semantics is much harder, since tuples might be supported
by infinitely many derivations. For example, in the reachability
program above, if two nodes a and b are connected within a path
that contains a cycle, one can derive the fact reachable(a,b) in-
finitely many times due to the recursion in the program. Therefore,
if implemented in a naive way, an algorithm could easily diverge
when keeping track of all supporting derivations.

3. BASIC PSN ALGORITHM FOR NON RE-
CURSIVE PROGRAMS

We present our algorithm for distributed incremental view main-
tenance for non-recursive programs. We do not consider termina-
tion issues in the presence of recursive programs, which allows us
to focus on proving the correctness of pipelined execution in PSN
in the next section, before presenting an improved algorithm that
provably ensures termination of recursive programs in Section 5.

3.1 System Assumptions
This paper makes two main assumptions about the model of our

distributed system. The first assumption, following [11], is the
bursty model: once a burst of updates is generated, the system even-
tually quiesces (does not change) for a time long enough for all the

nodes to reach a fixed point. The second assumption is that mes-
sages are never lost during transmission, that is, a message eventu-
ally reaches its final destination. Here, we are not interested in the
mechanisms of how the transmission is done, but we assume that
any message is eventually received by the correct node specified by
the location specifier @. Notice that, differently from previous work
[10, 11], it is possible in our model that messages are reordered.
That is, we do not assume that a message that is sent before another
message has to necessarily arrive at its destination first1

The assumptions above are realistic for many systems, such as
in networking or systems involving robots. For instance, without
the bursty model, the links in a network could be changing con-
stantly. Due to network propagation delays, no routing protocol
would not be able to correctly update routing tables to correctly re-
flect the latest state of the network. Similarly, if the environment
where a robot is situated changes too quickly, then the robot’s inter-
nal knowledge of the world would not be useful for it to construct
a successful plan. The bursty model can be seen as a compromise
between completely synchronized models of communication, and
completely asynchronous models, where new updates can appear at
any moment. For the assumption that messages are never lost and
eventually received, there are existing protocols which acknowl-
edge when messages are received and have the source nodes resend
the messages in the event of acknowledgments timeouts, hence en-
forcing that messages are not lost.

3.2 Definitions
An update is represented as a pair 〈U, p〉, where U is either the

INS, denoting an insertion, or DEL, denoting a deletion, and p is a
ground fact. We call an update of the form 〈INS, p〉 and 〈DEL, p〉
an insertion update and deletion update, respectively.

We write U to denote a multiset of updates. For instance, the
following multiset of updates
U = {〈INS, p(@1, d)〉, 〈DEL, p(@2, a)〉, 〈DEL, p(@2, a)〉},
specifies that two copies of the fact p(@2, a) should be deleted

from node 2’s view, while one copy of the fact p(@1, d) should be
inserted into node 1’s view.

As mentioned in Section 2, we will use multiset semantics. We
use] as the multiset union operator, and \ as the multiset minus
operator. We write P to denote the multiset view for the predi-
cate p, and ∆P to denote the multiset of updates to predicate p.
We write P ν to denote the updated view of p based on ∆P . P ν

can be computed from P and ∆P by union P with all the tuples
inserted by ∆P and minus the tuples deleted by ∆P . For ease
of presentation, we use the predicate name pν in places where we
need to use the updated view. For instance, if the view of p is
the multiset {p(a), p(a), p(b), p(c)} and we use the multiset of up-
date U shown above, the resulting view (P ν) for pν is the multiset
{p(b), p(c), p(d)}.
Delta-Rules.

The main task of the algorithm is to compute which tuples can
be derived from the insertion updates and which tuples need to be
deleted due to the deletion updates, given a multiset of insertions
and deletions, U , to base tuples. The main idea is that we can
modify the rules in the corresponding program to do so. Consider,

1Message reordering manifests itself in several practical scenar-
ios. For instance, in addition to reordering of messages buffered
at the network layer, network measurements studies such as [15]
have shown that packets may traverse different Internet paths for
any two routers due to ISP policies, and in a highly disconnected
environment such as in Robotics [4], messages from a given source
to destination may traverse different paths due to available network
connectivity during the point of transmission of each message.

3

for example, the rule p :- b1, b2 whose body contains two ele-
ments. There are the following three possible cases one needs to
consider in order to compute the changes to the view of the predi-
cate p when using this rule: ∆p :- ∆b1, b2, ∆p :- b1, ∆b2, and
∆p :- ∆b1, ∆b2. The first two just takes into consideration the
changes to the predicates b1 and b2 alone, while the last rule uses
their combination. We call these rules delta-rules.

Following [1, 17], we can simplify the delta-rules above by using
the view of pν , as defined above. The delta-rules above are changed
to ∆p :- ∆b1, b2 and ∆p :- bν1 , ∆b2, where the second clause
encompasses all updates generated by changes to new updates in
both b1 and b2 as well as only changes to b2.

Generalizing the notion of delta-rules described above, for each
rule h(~t) :- b1(~t1), . . . , bn(~tn) in a program, we create the follow-
ing delta insertion and deletion rules, where 1 ≤ i ≤ n:
〈INS, h(~t)〉 :- bν1(~t1), . . . , bνi−1(~ti−1), ∆bi(~ti), bi+1(~ti+1), . . . , bn(~tn)

〈DEL, h(~t)〉 :- bν1(~t1), . . . , bνi−1(~ti−1), ∆bi(~ti), bi+1(~ti+1), . . . , bn(~tn)

The first rule applies when ∆bi is an insertion, and the second
one applies when ∆bi is a deletion.

As discussed in [8], we can prove following lemma stating that
derivation are indeed computed only once using these delta rules.

LEMMA 1 (UNIQUE DERIVATION). Given a multiset of up-
dates, each of which is supported by a unique derivation, firing the
delta-rules formalized as above generates each update supported
by a unique derivation only once.

PROOF. This follows from the way delta-rules are constructed.
Whenever there are more than one update inserting (respectively,
deleting) tuples appearing in the body of the same delta rule, only
the update whose tuple appears in the right-most (respectively, left-
most) position can fire that delta-rule.

3.3 PSN Algorithm
We propose Algorithm 1 for maintaining incrementally a dis-

tributed view given a DDlog program using an enhanced version of
the original pipelined evaluation strategy [11]. Since all tuples are
stored according to the @ operator, we can use a single multiset K
containing the union of views of all the nodes in the system. From
K one can figure out the specific node where the data is stored by
examining the attribute annotated by the @ operator. Similarly, we
use a single multiset of updates U containing the updates that are
in the system, but that have not yet been processed by any node.

Algorithm 1 starts with a multiset of updates U and the multi-
set K containing two copies of the view of all nodes in the system,
one marked with ν and another without ν. The execution of one
node of the system is specified by one iteration of the while-loop in
Algorithm 1. In line 2, one picks non-deterministically an update
from U which is processed next. However, one is only allowed to
pick a deletion update if the tuple being deleted is present in the
view K. This is specified by the operation removeElement(K).
This operation avoids tuples to have negative counts. Once an up-
date is picked, the ν table is updated according to the type of up-
date in lines 3–6. In lines 7–12, one uses the update picked to fire
delta-rules and to create new updates that are then inserted into the
multiset U (lines 13–15). This last step intuitively corresponds to a
node sending new messages to other nodes, even to itself. Finally
in remaining lines, one commits the changes to the view without ν
according to the update picked, making the table with ν and with-
out ν have the same elements again and ready for the execution of
the next iteration.

We can formally prove that Algorithm 1 always terminates on
non-recursive programs.

LEMMA 2. For non-recursive programs, PSN executions always
terminate.

Algorithm 1 Basic pipelined semi-naïve algorithm.

1: while U .size > 0 do
2: δ ← U .removeElement(K)

3: if δ is an insertion update 〈INS, p(~t)〉
4: P ν = P] {p(~t)}
5: if δ is a deletion update 〈DEL, p(~t)〉
6: P ν = P \ {p(~t)}
7: if δ is an insertion update 〈INS, b(~t)〉
8: execute all insertions delta-rules for b:
9: 〈INS, h〉 :- bν1 , . . . , bνi−1, ∆b, bi+1, . . . , bn

10: if δ is a deletion update 〈DEL, b(~t)〉
11: execute all deletion delta-rules for b:
12: 〈DEL, h〉 :- bν1 , . . . , bνi−1, ∆b, bi+1, . . . , bn
13: for all derived insertion (deletion) updates u do
14: U .insert(u)
15: end for
16: if δ is an insertion update 〈INS, p(~t)〉
17: P = P] {p(~t)}
18: if δ is a deletion update 〈DEL, p(~t)〉
19: P = P \ {p(~t)}
20: end while

PROOF. To show termination we rely on the fact that the de-
pendency graph for a non-recursive program contains no cycles,
that is, it is a directed acyclic graph. First, we order the predicate
names in the dependency graph in a sequence by using any of the
graph’s topological sorts S. Then given a set of U of updates at the
beginning of an iteration of the while-loop that remain to be pro-
cessed by Algorithm 1, we construct a state-tuple associated to U as
follows: for the ith position of the state-tuple, we count the num-
ber of updates inserting or deleting tuples whose predicate name
is the same as the predicate name appearing at the ith position of
S. We can show that after an iteration of Algorithm 1’s while-loop
the state-tuple reduces its value with respect to the lexicographical
ordering, which is well-founded since their are finitely many pred-
icate names in the program. After an iteration, an update of a tuple
whose predicate name appears at the ith position in S is replaced
by a set of updates of predicates that appear at the ith+m position,
where m > 0. Therefore, the value of the resulting state-tuple de-
creases. Moreover, since we are assuming a language with finitely
many symbols and we assume that Algorithm 1 starts with a finite
number of updates, it is not possible to create indefinitely many
different updates. Hence, Algorithm 1 terminates.

An Example Execution.
We illustrate an execution of Algorithm 1 with a simple example

adapted from [8], which specifies two and three hop reachability:
hop(@X,Y) :- link(@X,Z), link(@Z,Y)

tri_hop(@X,Y) :- hop(@X,Z), link(@Z,Y)
Here only the predicate link is a base tuple. Furthermore, as-

sume that the view is as given below, where we elide the predicate
names and the @ symbols. For example, the tuples link(@a,b)

and hop(@a,c) are in the view.
Link = {(a,b),(a,d),(d,c),(b,c),(c,h),(f,g)}

Hop = {(a,c),(a,c),(d,h),(b,h)}

Tri_hop = {(a,h),(a,h)}
Notice that in the view above some tuples appear with multi-

plicity greater than one, that is, there are more than one derivation
supporting such tuples. Assume that there is the following changes
to the set of base tuples link:
U = {〈INS,link(d,f)〉, 〈INS,link(a,f)〉, 〈DEL,link(a,b)〉}

Algorithm 1 first picks an update non-deterministically, for in-
stance, the update u = 〈INS, link(d,f)〉, which causes an inser-

4

tion of the tuple link(d,f) to the table marked with ν. Then,
it uses u to propagate new updates by firing rules, which in this
case creates a single insertion update: 〈INS, hop(d,g)〉. Finally,
one commits the change due to the update u in the table without ν.
Hence the new set of updates and the new view of the link table are
as follows:
U = {〈INS,hop(d,g)〉, 〈INS,link(a,f)〉, 〈DEL,link(a,b)〉}
Link = {(a,b),(a,d),(d,c),(b,c),(c,h),(f,g),(d,f)}

Asynchronous Execution.
As we mentioned earlier, Algorithm 1 sequentializes the execu-

tion of all nodes: in each iteration of the outermost while loop,
one node picks an update in its queue, fires all the delta-rules and
commits the changes to the view, while other nodes are idle. How-
ever this is only for the convenience of constructing the proofs of
correctness. In a real implementation, nodes run Algorithm 1 con-
currently. Because of the non-deterministic pick of an update in
line 2 and rule localization, we can show that any concurrent exe-
cution of Algorithm 1 yields the same view as some synchronized
run over all nodes. More specifically, rule localization ensures that
all the predicates needed for firing a delta-rule reside in the local
database. Furthermore, each iteration of Algorithm 1 only consid-
ers one update at a time. New updates received from other nodes
will be queued up for consideration after the completion of the cur-
rent iteration. In other words, when two nodes execute one iteration
of Algorithm 1 concurrently, each node only access its local state.
Therefore, the interleaving of one iteration of Algorithm 1 by two
nodes produces the same result as a sequentialized run of the two
iterations.

In contrast to the algorithms in the literature, one does not pro-
cess all the updates involving link tuples before processing hop or
tri_hop tuples. In fact, in the next iteration of Algorithm 1, one
is allowed to pick the update 〈INS, hop(d,g)〉 although there are
insertions and deletions of link tuples still to be processed. This
asynchronous behavior makes the correctness proof for Algorithm
1 much harder. In the synchronized algorithms proposed in the lit-
erature one could rely on the following invariant: in an iteration one
only processes updates that insert or delete tuples that are supported
by derivations of some particular height. This is no longer the case
for Algorithm 1 and therefore, we need to proceed our correctness
proofs differently in the next section.

4. CORRECTNESS OF BASIC PSN
To prove its correctness, we first formally define the operational

semantics of Algorithm 1 in terms of state transitions. The correct-
ness proof relates the distributed PSN algorithm (Algorithm 1) to
a synchronous SN algorithm (Algorithm 2), whose correctness is
easier to show. After proving that Algorithm 2 is correct, we prove
the correctness of Algorithm 1 by showing that an execution using
PSN can be transformed into an execution using SN.

4.1 Operational Semantics for Algorithm 1
Algorithm 1 consists of three key operations: pick, fire and

commit. We call them basic commands, and an informal descrip-
tion are given below:

pick – One picks non-deterministically one update, u, that is not
a deletion of a tuple that is not (yet) in the view, from the multiset of
updates U . If u is an insertion of predicate p, pν is inserted into the
updated view P ν ; otherwise if it is a deletion update, pν is deleted
from P ν . This basic command is used in lines 2–6 in Algorithm 1.

fire – This command is used to execute all the delta-rules that
contain ∆p in their body, where 〈U, p(~t)〉 has already been selected
by the pick command. After a rule is fired, the derived updates

from firing this rule are added to the multiset U of updates. This
basic command is used in lines 7–15 in Algorithm 1.

commit – Finally, after an update u has already been both picked
and used to fire delta-rules, one commits the change to the view
caused by u: if u is an insertion update of a tuple p, p is inserted
into the viewP ; otherwise, if it is a deletion update of p, p is deleted
from the view P . This basic command is used in lines 16–19 in
Algorithm 1.

We formalize the operational semantics of Algorithm 1 in terms
of state transitions. A state s is a tuple 〈K,U ,P, E〉, where K is a
multiset of facts, and U ,P and E are all multisets of updates. More
specifically, at each iteration of the execution, K is a snapshot of
the views of derivable predicates, and it contains both the view (P)
and the updated view (P ν). The multiset U contains all the updates
that are yet to be picked for processing; P contains the updates that
have been picked and are scheduled to fire delta-rules; and finally E
contains the updates that have been already used to fire delta-rules,
but are not used to update the view yet. At the end of the execution,
U , P and E should be empty signaling that all updates have been
processed, and all the views P inK are the final view of the system.

The transition rules specifying the operational semantics for the
basic commands are shown in Figure 1. The semantics of the pick
command is specified by pickI , when the update is an insertion,
and pickD , when the update is a deletion. The pick command
moves, an update 〈U, p(~t)〉 from U to P , and updates the view
in K: pν(~t) is inserted into K if U is INS, otherwise it is deleted
from K if U is DEL. Note that the rule pickD only applies when
the predicate to be deleted actually exists in K. Because messages
may be re-ordered, it could happen that a deletion update message
for predicate p arrives before p is derived based on some insertion
updates. In an implementation, if such an update happens to be
picked, we simply put it back to the update queue, and pick another
update.

The rule fire specifies the semantics of command fire, where we
make use of the function firRules. This function takes an update,
〈U, p(~t)〉, the current view, K, and the set of rules, R, as input
and returns the multiset of all updates, F , generated from firing all
delta-rules that contain ∆p in their body. The multiset F is then
added to the multiset U of updates to be processed later.

Finally, the last two rules, commitI and commitD , specify the
operation of committing the changes to the view. Similar to the
rules for pick, they either insert into or delete from the updated
view P a fact p(~t).

A computation run using a program R is a valid sequence of
applications of these transition rules defined in Figure 1. We call
the first state of a computation run the initial state and its last state
the resulting state.

DEFINITION 3 (COMPLETE-ITERATION). A computation run
is a complete-iteration if it can be partitioned into a sequence of
transitions using the pick commands (pickI and pickD), followed
by a sequence of transitions using the fire command, and finally a
sequence of transitions using the commit command, such that the
multiset of updates, T , used by the sequence of pickI and pickD
transitions is the same those used by the sequence of fire and those
used by commit transitions.

DEFINITION 4 (PSN-ITERATION). A complete iteration is a
PSN-iteration if the multiset of updates used by the pick commands
contains only one update.

DEFINITION 5 (PSN EXECUTION). We call a computation run
a PSN execution if it can be partitioned into a sequence of PSN-
iterations, and in the last state U , P and E are empty.

5

〈INS, p(~t)〉 ∈ U

〈K,U,P, E〉 −→R 〈K] {pν(~t)},U \ {〈INS, p(~t)〉},P] {〈INS, p(~t)〉}, E〉
[pickI]

〈INS, p(~t)〉 ∈ E

〈K,U,P, E〉 −→R 〈K] {p(~t)},U,P, E \ {〈INS, p(~t)〉}〉
[commitI]

〈DEL, p(~t)〉 ∈ U and pν(~t) ∈ K

〈K,U,P, E〉 −→R 〈K \ {pν(~t)},U \ {〈DEL, p(~t)〉},P] {〈DEL, p(~t)〉}, E〉
[pickD]

〈DEL, p(~t)〉 ∈ E

〈K,U,P, E〉 −→R 〈K \ {p(~t)},U,P, E \ {〈DEL, p(~t)〉}〉
[commitD]

u ∈ P and F = firRules(u,K,R)

〈K,U,P, E〉 −→R 〈K,U] F,P \ {u}, E] {u}〉
[fire]

Figure 1: Operational Semantics for Basic Commands

Algorithm 2 Basic semi-naïve algorithm (multiset semantics).

1: while U .size > 0 do
2: for all insertion updates u = 〈INS, h(~t)〉 in U do
3: Ih.insert(h(~t))
4: end for
5: for all deletion updates u = 〈DEL, h(~t)〉 in U do
6: Dh.insert(h(~t))
7: end for
8: for all predicates p do
9: P ν ← (P] Ip) \Dp

10: end for
11: while U .size > 0 do
12: δ ← U .removeElement(K)

13: if δ is an insertion update 〈INS, b(~t)〉
14: execute all insertions delta-rules for b:
15: 〈INS, h〉 :- bν1 , . . . , bνi−1, ∆b, bi+1, . . . , bn

16: if δ is a deletion update 〈DEL, b(~t)〉
17: execute all deletion delta-rules for b:
18: 〈DEL, h〉 :- bν1 , . . . , bνi−1, ∆b, bi+1, . . . , bn
19: for all derived insertion (deletion) updates u do
20: Uν .insert(u)
21: end for
22: end while
23: U ← Uν .flush
24: for all predicates p do
25: P ← (P] Ip) \Dp; Ip ← ∅;Dp ← ∅
26: end for
27: end while

A PSN-iteration corresponds to an iteration of the outermost loop
of Algorithm 1, as one picks only one update from U (lines 2–6),
fires delta-rules using this update (lines 7–15), and then commits
the change to the view (lines 16–19).

4.2 Correctness of an SN Evaluation
We define an incremental view maintenance algorithm based on

synchronous SN evaluation. This algorithm itself is not practical
for any real implementation because of high synchronization costs
between nodes. We only use it as an intermediary step to prove the
correctness of Algorithm 1.

4.2.1 A Synchronous SN Algorithm
We define a synchronous SN algorithm as shown in Algorithm 2

The main difference between Algorithm 1 and Algorithm 2 is that
in Algorithm 2, all nodes are synchronized at the end of each iter-
ation. In each iteration, each nodes process all available updates,
and propagate generated new updates to each other. Then, nodes
need to synchronize with one another so that no node is allowed to
start the execution of the next iteration if there are some nodes that
have not finished processing all the updates in its local queue in the
current iteration or have not received all the updates generated by
other nodes in the current iteration. On the other hand, Algorithm 1
allows each node to pick and process any one update available at

the time of the pick.
Interestingly, the operational semantics for Algorithm 2 can also

be defined in terms of the three basic commands: pick, fire, and
commit. One picks (lines 2–10) all the updates from the multiset
of updates U , uses them to fire delta-rules (lines 11–22) creating
new updates, which are inserted in U (line 23), and then commits
the changes to the view (lines 24–26). Algorithm 2 enforces that all
updates that are created at ith iteration are necessarily processed in
the ith + 1 iteration.

DEFINITION 6 (SN-ITERATION). A complete-iteration is an
SN-iteration if the multiset of updates used by the pick commands
contains all updates in the initial state U .

DEFINITION 7 (SN EXECUTION). We call a computation run
a SN execution if it can be partitioned into a sequence of SN-
iterations, and in the last state U , P and E are empty.

An SN-iteration corresponds exactly to an iteration of the outer-
most loop in Algorithm 2.

4.2.2 Proof of Correctness

Definitions.
We use the following notation throughout the rest of this section:

given a multiset of updates U , we write U t to denote the multiset
of tuples in U . Given a program P , let V be the view of a program
P given the set of base facts E, and let V ν be the view of P given
the set of facts E] It \ Dt, where I and D are, respectively, a
multiset of insertion and deletion updates of base facts. We assume
that Dt ⊆ E] It.

We write ∆ to denote the multiset of insertion and deletion up-
dates of tuples such that V ν is the same multiset resulting from
applying the insertions and deletions in ∆ to V . We write ∆[i] to
denote the multiset of insertion and deletion updates of tuples in
∆ such that 〈U, p(~t)〉 ∈ ∆[i] if and only if p(~t) is supported by
a derivation of height i. In an execution of Algorithm 2, we use
U [i] to denote the multiset of updates at the beginning of the ith

iteration, and U [i, j] to denote the multiset resulting from union of
all multisets U [k] such that i ≤ k ≤ j.

Since Algorithm 2 uses multiset semantics, we need to be careful
with the multiplicity of tuples as these need also to be maintained
correct. In our proofs, we keep track of the multiplicity of tuples
by distinguishing between different occurrences of the same tuple
in the following form: we label different occurrences of the same
base tuple with different natural numbers and label each occurrence
of the same derived tuple with the derivation supporting it. For
instance, consider the program from Section 2.1:
{p :- s,t,r; s :- q; s :- u; t :- u; q :-; u :-}.

The view for this program is the multiset of annotated tuples
V = {sΞ1 , sΞ2 , tΞ3 , q1, u1}. The the two occurrences of s are
distinguished by using the derivations trees Ξ1 and Ξ2. The former
is a derivation tree with a single leaf q1 and the latter is a derivation

6

tree also with a single leaf but with the base tuple u1. If we, for
example, delete the base tuple u1, then the resulting view changes
to V ν = {sΞ1 , q1}, where the difference set is

∆ = {〈DEL, u1〉, 〈DEL, sΞ2〉, 〈DEL, tΞ3〉},
∆[0] = {〈DEL, u1〉}, and ∆[1] = {〈DEL, sΞ2〉, 〈DEL, tΞ3〉}.

We elide these annotations whenever they are clear from the con-
text.

Before proving the correctness of Algorithm 2, we formally de-
fine correctness, which is similar to the definition of eventual con-
sistency used by Loo et al. [11] in defining the correctness of declar-
ative networking protocols.

DEFINITION 8 (CORRECTNESS). We say that an algorithm
correctly maintains the view if it takes as input, a program P , the
view V based on base facts E, a multiset of insertion updates I
and a multiset of deletion updates D, such that Dt ⊆ E] It; and
the resulting view when the algorithm finishes is the same as V ν ,
which is the view of P given the set of facts E] It \Dt.

Algorithm 2 computes a multiset of updates U that are applied to
the view V . Ideally, we want to show that the multiset of updates
computed by Algorithm 2 is the same as ∆, which is the difference
between the initial V and the desired final result V ν . The correct-
ness proof of Algorithm 2 is composed of two parts: (1) all the
updates generated by Algorithm 2 are in ∆ (Algorithm 2 is sound);
and (2) Algorithm 2 generates all the updates in ∆ (Algorithm 2 is
complete).

Soundness of Synchronous SN.
We first show that Algorithm 2 does not perform more updates

to the view than what’s specified in ∆. Given a terminating ex-
ecution of Algorithm 2, let’s assume that the execution consists
of n iterations. Intuitively, the soundness statement would require
that U [0, n] ⊆ ∆. However, this is not true. Consider the fol-
lowing program with two clauses: p :- q, r and q :- s. As-
sume that the original view V is {s, q} and that one provides the
updates {〈INS, r〉, 〈DEL, s〉}. Then the view V ν = {r}, ∆ =
{〈INS, r〉, 〈DEL, s〉, 〈DEL, q〉}. After the first iteration of Algo-
rithm 2, the resulting set of new updatesU [1] = {〈INS, p〉, 〈DEL, q〉}.
The update 〈INS, p〉 is not in ∆ but in U [1]. Notice that 〈INS, p〉 is
supported by a proof that uses the base fact r, which is inserted;
and the fact q, which is supported by a proof that uses a deleted
fact s. The deletion of s needs some more iterations to “catch up”
and correct the unsound insertion of p.

We classify an update u as conflicting if it is supported by a proof
containing a base fact that was inserted (in It) and another fact that
was deleted (in Dt). In the example above, 〈INS, p〉 is a conflicting
updated because it is supported by r, which is inserted and s, which
is deleted. One key observation is that Algorithm 2 may compute
more updates than those in ∆. These extra updates are all con-
flicting updates. We need to show that the effects of all conflicting
updates eventually cancel each other out.

The following lemma formalizes the intuition that updates that
are needed to change V to V ν are all non-conflicting updates.

LEMMA 9. All updates in ∆ are non-conflicting.
PROOF. Consider by contradiction that an insertion update u ∈

∆ of the tuple p is conflicting. Then p is supported by a tuple q that
is deleted from the view V . This is a contradiction because then p
is no longer derivable in V ν ; and therefore, the insertion, u, of p
could not have been in ∆.

Similarly, assume that a deletion update u ∈ ∆ of the tuple p is
conflicting. Then p is supported by a tuple q that is inserted to V .
Again, we have a contradiction, since then p could not have been
in V ; and hence u could not have been in ∆.

The following lemma states that the non-conflicting updates (up-
dates that are supported only by insertion updates or only by dele-
tion updates) generated at each iteration by the algorithm, are nec-
essary to change V to V ν .

LEMMA 10 (SOUNDNESS OF NON-CONFLICTING UPDATES).
Let bU be the multiset of non-conflicting updates in a multiset of up-
dates U . Then for any iteration i, the multiset bU [i] ⊆ ∆.

PROOF. We proceed by induction on the number of iterations i.
For the base case, we have bU [0] = I]D = ∆[0] ⊆ ∆.
For the inductive case, consider i = j + 1 and the inductive hy-
pothesis bU [k] ⊆ ∆ for all k ≤ j. Assume that u = 〈INS, pΞ〉 ∈bU [j + 1], and it is computed by using a delta-rule of the rule p

:- b1, . . . , bn and the tuples or the insertion of tuples of the form
bΞ1
1 , . . . , bΞnn . Since u is non-conflicting, all smaller derivations

Ξis are also non-conflicting. Hence from the inductive hypothe-
sis, all the insertions used by Ξis, including any insertion of bΞjj ,
belong to ∆. Hence the tuples bΞ1

1 , . . . , bΞnn belong to V ν , and
therefore by using the same rule above, there is an insertion of the
tuple pΞ in V ν , that is 〈INS, pΞ〉 ∈ ∆. The case for deletion fol-
lows similarly.

Now, we turn our attention to the conflicting updates. We write ū
to denote the complement update of u. If u is an insertion (respec-
tively, deletion) update of a tuple p, then ū is a deletion (respec-
tively, insertion) update of the same tuple p. We show that conflict-
ing updates always exist in complementary pairs; and moreover,
the insertion update is always generated at an iteration that is no
later than the complementary deletion update.

LEMMA 11 (PAIRING OF CONFLICTING UPDATES). For any
conflicting update u ∈ U [i], there is exactly one update ū ∈ U [j],
for some j, that is supported by the same derivation. If u is an in-
sertion update then i ≤ j, and if u is a deletion update then i ≥ j.

PROOF. Let us first prove that conflicting insertion updates are
computed first. Given a conflicting deletion update 〈DEL, p〉 that is
generated at iteration i, it must be the case that a delta-rule 〈DEL, p〉
:- bν1 , . . . , bνm−1, ∆bm, bm+1, . . . bn is fired. By the definition of
conflicting updates, one of the tuples bi in the body is supported by
a tuple that must be inserted. Since the body of the rule above can
only be satisfied when bi is inserted, the insertion of bi must have
been necessarily picked before or at the iteration i, firing another
delta-rule similar to the rule above. Hence, the insertion update for
the tuple p is created before or at iteration i.

Next we show that for any conflicting insertion update, a com-
plementary deletion update is generated at the same or in a later
iteration. Given an insertion update u ∈ U [i]. Let m be the mini-
mal height among all the subtrees of the derivation supporting the
tuple in u that contain a tuple, bi, that is deleted. In exactly m it-
erations, the corresponding deletion delta-rule is going to be fired
using the deletion update for bi, generating a deletion update ūwith
a tuple with same supporting proof.

Completeness of Synchronous SN.
Now we prove that all the updates in ∆ are generated by Algo-

rithm 2. The following lemma states that all updates in ∆ that are
supported by a derivation of height i has already been computed by
Algorithm 2 at an iteration that is no later than i.

LEMMA 12 (COMPLETENESS). For any i, ∆[i] ⊆ U [0, i].

7

PROOF. By induction on the height of proofs.
Base case i = 0: ∆[0] = I]D = U [0] = U [0, 0].
Inductive case i = j+1: By induction hypothesis, we know that all
∆[k], where k < j + 1, have been computed. Now, we show that
all updates in ∆[j + 1] are contained in U [0, j + 1]. Assume that
〈INS, pΞ〉 ∈ ∆[j + 1] and assume that pΞ is supported in the view
V ν by using rule p :- b1, . . . , bn called r and tuples bΞ1

1 , . . . , bΞnn
also in V ν . We now show that a delta-rule of r is fired before
the jth + 1 iteration. Since pΞ /∈ V , it means that some bΞii s
do not belong to V , but belong V ν (hence the insertion update).
Since the insertion of Ξ is a derivation of height j + 1, the Ξis
are derivations of height at most j. Hence, from the inductive hy-
pothesis, it is the case that the insertions of the bΞii s have been
previously derived and in the worst case the delta-rule for r is fired
at the iteration j. However, in order to fire a delta-rule of r, we
also need to make sure that Algorithm 2 does not delete any of the
bΞii s. Since 〈INS, pΞ〉 is in ∆, it follows from Lemma 9 that Ξ is
non-conflicting. So, no tuple bΞii s is supported by a tuple that is
deleted and hence indeed none of the bΞii s are deleted by Algo-
rithm 2. Therefore, 〈INS, pΞ〉 ∈ U [0, j + 1]. The case for deletion
updates is similar.

Notice that in the proof, we use invariants that relate the deriva-
tion height of the tuples to the iteration number of the while loop.
This would not have been possible for Algorithm 1.

Correctness of Synchronous SN.
Combining the soundness and completeness result, we can fi-

nally show the correctness of Algorithm 2.

THEOREM 13 (CORRECTNESS OF SN). Given a non-recursive
DDlog program P , a multiset of base tuples, E, a multiset of up-
dates insertion updates I and deletion updates D to base tuples,
such that Dt ⊆ E] It, Algorithm 2 correctly maintains the view
of the database when it terminates.

PROOF. Because P is non-recursive, we know that both V and
V ν is finite; and therefore, ∆ is also finite.

By the definition of the transition rules, given a complete run
of Algorithm 2, the final view V1 computed by Algorithm 2 is
V]U tI [0, n] \ U tD[0, n], where n is the number of iterations of the
execution, UI denotes the insertions updates in U , and UD denotes
the deletion updates in U .

Let bU denotes the non-conflicting updates in U . By Lemma 10,bU [0, n] ⊆ ∆. By Lemma 12, ∆ ⊆ U [0, n]. By Lemma 9, ∆ ⊆bU [0, n]. Therefore, ∆ = bU [0, n]. By Lemma 11, V] U tI [0, n] \
U tD[0, n] = V] bU tI [0, n] \ bU tD[0, n]. Since V ν = V]∆t

I \∆t
D ,

we can conclude that V1 = V ν .

4.3 Relating SN and PSN executions
Our final goal is to prove the correctness of PSN. With the cor-

rectness result of Algorithm 2 in hand, now we are left to prove that
Algorithm 1 computes the same result as Algorithm 2. At a high-
level we would like to show that given any PSN execution, we can
transform it into an SN execution without changing the final re-
sult of the execution. This transformation requires two operations:
one is to permute two PSN-iterations so that a PSN execution can
be transformed into one where the updates are picked in the same
order as in an SN execution; the other is to merge several PSN-
iterations into one SN-iteration. We need to show that both of these
operations do not affect the final view of the execution.

Definitions.
We write s sn−→ (U)s′ and s

psn−→ (U)s′ to denote, respectively,
an execution from state s to s′ using an SN iteration and an PSN it-

eration. We annotate the updates used in the iterations in the paren-
thesis after the arrow. We write s a

=⇒ s′ to denote an execution
from s to s′ using multiple SN iterations, when a is sn; or PSN it-
erations, when a is psn. We write s =⇒ s′ to denote an execution
from s to s′ using multiple complete iterations. We write σ1 σ2

if the existence of execution σ1 implies the existence of execution
σ2. We write σ1 ! σ2 when σ1 σ2 and σ2 σ1.

Permuting PSN-iterations.
The following lemma states that permuting two PSN-iterations

that are both insertion (deletion) updates leaves the final state un-
changed.

LEMMA 14 (PERMUTATION – SAME KIND).
Given an initial state s,
s

psn−→ ({〈U, r1〉})s1
psn−→ ({〈U, r2〉})s′

!
s

psn−→ ({〈U, r2〉})s2
psn−→ ({〈U, r1〉})s′ ,whereU ∈ {INS, DEL}.

PROOF. We show the case where U = INS for the direction,
the other cases are similar. We need to show that the updates gen-
erated are the same no matter which insertion update is fired first.

Let’s assume that the initial state s = 〈K,U , ∅, ∅〉.
Let F1 = firRules(〈INS, r1〉,K] {rν1},R),

F2 = firRules(〈INS, r2〉,K] {r1, r
ν
1 , r

ν
2},R).

Let F ′2 = firRules(〈INS, r2〉,K] {rν2},R),
F ′1 = firRules(〈INS, r1〉,K] {r2, r

ν
2 , r

ν
1},R).

In the first execution sequence, F1 contains updates generated
by firing delta-rules that contain ∆r1 in the body using the initial
views with rν1 inserted, and F2 contains updates generated by firing
delta-rules that contain ∆r2 in the body using the views where r1

is already inserted into the view.
In the second execution sequence, F ′2 contains updates generated

by firing delta-rules that contain ∆r2 in the body using the initial
views with rν2 inserted, and F ′1 contains updates generated by firing
delta-rules that contain ∆r1 in the body from the state where r2 is
already inserted into the view.

We need to show that F1] F2 = F ′1] F ′2.
Based on the definition of firRule, it is not hard to see that F ′1

is a superset of F1 because in the second execution sequence, r2 is
already inserted into the view before firing update to r1. Similarly,
F2 is a superset of F ′2. Let us assume that F ′1 = F1] F ′′1 , and
F2 = F ′2] F ′′2 . We just need to show that F ′′1 = F ′′2 .

All updates in F ′′1 are fired by rules that have ∆r1 and either
r2 or rν2 in the body. Without loss of generality, any update u =
〈INS, q〉 ∈ F ′′1 is created by firing delta-rules of the following two
forms: u :- · · · , rν2 , · · · , ∆r1, · · · or u :- · · · , ∆r1, · · · r2 · · · .

If it is the first case, then a corresponding delta-rule
u :- · · · , ∆r2, · · · , r1, · · · will be fired when 〈INS, r2〉 is picked;

and therefore, 〈INS, q〉 ∈ F ′′2 .
For the second case, a corresponding delta-rule
u :- · · · , rν1 , · · ·∆r2 · · · will be fired; and therefore 〈INS, q〉 ∈

F ′′2 also. Consequently, F ′′1 ⊆ F ′′2 . We can use similar reasoning to
show that F ′′2 ⊆ F ′′1 . Combining the above two, F ′′2 = F ′′1 . There-
fore F1] F2 = F ′1] F ′2. Finally, we can conclude that permuting
two insertion updates leaves the final state unchanged.

However, permuting a PSN-iteration that picks a deletion update
over a PSN-iteration that picks an insertion update might gener-
ate new updates. Consider a program consisting of the rule p :-

r1, r2 and assume that r2 is in the view. Furthermore, assume the
updates {〈INS, r1〉, 〈DEL, r2〉}. If the deletion update is picked be-
fore the insertion update, no delta-rule is fired. However, if we pick
the insertion rule first, then the rule above is fired twice, once prop-
agating an insertion of p and the other propagating a deletion of p.

8

However, the new updates are necessarily conflicting updates. This
is formalized by the statement below. It is proved in a similar way
as Lemma 14. The detailed proof can be found in the Appendix A.
The side condition that r1 6= r2 captures the semantics of the pick
command in that deletion updates are only picked in the tuples to
be deleted are already in the view.

LEMMA 15 (PERMUTATION – DIFFERENT KIND). Given and
initial state s

s
psn−→ (〈INS, r1〉)s1

psn−→ (〈DEL, r2〉)〈K′,U ′]∆, ∅, ∅〉
!

s
psn−→ (〈DEL, r2〉)s2

psn−→ (〈INS, r1〉)〈K′,U ′, ∅, ∅〉,
where r1 6= r2 and ∆ is a (possibly empty) multiset containing

pairs of complementary conflicting updates.

From PSN iterations to an SN iteration and back.
The second operation we need for transforming a PSN execution

into an SN execution is merging a PSN-iteration with a complete-
iteration to form a bigger complete-iteration.

Similarly to the case when permuting PSN-iterations of different
kinds, merging PSN iterations may change the set of conflicting
updates. For example, consider a program consisting of a single
rule p :- r,q, the initial view {q}, and the multiset of updates
{〈INS, r〉, 〈DEL, q〉}. If both updates are picked in a complete-
iteration, then an insertion update, 〈INS, p〉, is created by firing
the delta-rule 〈INS, p〉 :- ∆r,q and using the insertion update
〈INS, r〉. Similarly a deletion update 〈DEL, p〉 is created by firing
the delta-rule 〈DEL, p〉 :- rν,∆q and the deletion update 〈DEL, q〉.
However, if we break the complete-iteration into two PSN-iteration,
the first picking the deletion update and the second picking the in-
sertion update, then no delta-rule is fired. We prove the following:

LEMMA 16 (MERGING ITERATIONS). Let U be a multiset of
updates such that the multiset {u}]H ⊆ U and let s = 〈K,U , ∅, ∅〉
be an initial state.

s =⇒ ({u}] H)〈K′,U ′] F1, ∅, ∅〉
!

s =⇒ (H)〈K2,U ′]{u}]F ′1, ∅, ∅〉
psn−→ (u)〈K′,U ′]F2, ∅, ∅〉

Where F1 and F2 only differs in pairs of complementary con-
flicting updates.

The proofs can be found in Appendix A. Lemma 16 actually
give us for free, the ability to break a complete SN iteration into
several PSN iterations.

Dealing with Conflicting Update Pairs.
Next, we prove that conflicting updates do not interfere with the

final view when using PSN executions. Intuitively, all updates gen-
erated by firing delta-rules for conflicting updates are also conflict-
ing updates. Furthermore, a pair of complementary conflicting up-
dates generates pairs of complement conflicting updates. Conse-
quently, a PSN execution that contains a pair of complement con-
flicting updates in its initial state can be transformed into another
PSN execution that does not contain these updates and that the fi-
nal states of the two executions are the same. The following lemma
precisely states that. Detailed proofs can be found in Appendix A.

LEMMA 17. Let ∆ = {〈INS, p〉, 〈DEL, p〉} be a multiset con-
taining a pair of complementary conflicting updates, then
〈K,U , ∅, ∅〉 psn

=⇒ s ! 〈K,U]∆, ∅, ∅〉 psn
=⇒ s.

Note that its proof relies on the termination arguments for PSN
algorithm for non-recursive programs. For recursive programs, it is
possible that a pair of complementary conflicting updates will gen-
erate infinite number of complementary conflicting updates; and
therefore the transformation process may never terminate.

Correctness of Basic PSN.
Finally, using the operations above we can prove the following

theorem, which establishes that PSN is sound and complete with
respect to SN.

THEOREM 18 (CORRECTNESS OF PSN W.R.T. SN). Let s =
〈K,U , ∅, ∅〉 be an initial state. Then for non-recursive programs:

s
psn

=⇒ 〈K, ∅, ∅, ∅〉! s sn
=⇒ 〈K, ∅, ∅, ∅〉.

PROOF. Given a PSN execution, we construct an SN execution
by induction as follows: we use the first operation (Lemmas 14 and
15) to permute to the left all the PSN-iterations that pick one el-
ement in the initial state’s U set. The resulting execution has all
PSN-iterations in the same order as the first SN-iteration of an SN
execution. After each permutation, we either generate new conflict-
ing updates, or suppressed the generation of conflicting updates that
is in the original execution. We apply Lemma 17 to transform the
rest of the execution into a valid PSN execution, but leave the final
state unchanged.

Next, we merge these PSN-iterations into an SN-iteration by ap-
plying the second operation (Lemma 16). Again, we need to apply
Lemma 17 to transform the rest of the execution to account for the
difference in conflicting updates.

We repeat the above process with the PSN sub-execution. This
process will eventually terminate because there is a finite number
of updates (conflicting and non-conflicting), with each iteration of
the process, the sub-execution has fewer updates to generate.

For the converse direction, given an SN execution, we apply
Lemma 16 repeatedly to split SN-iterations and obtain a PSN exe-
cution. Again we might need to apply the transformation described
in Lemma 17 in order to construct valid executions.

The above theorem states that the same derived tuples that are
created by SN are also created by PSN and vice-versa. Hence, from
Theorem 13, PSN is correct.

COROLLARY 19 (CORRECTNESS OF BASIC PSN). Given a non-
recursive DDlog programP , a multiset of base tuples,E, a multiset
of updates insertion updates I and deletion updates D to base tu-
ples, such that Dt ⊆ E] It, then Algorithm 1 correctly maintains
the view of the database.

Discussion.
The framework of using three basic commands: pick, fire, and

commit to describe PSN and SN algorithms can be used for speci-
fying and proving formal properties about other SN-like algorithms.
For instance, one can easily generalize the proof above to prove the
correctness of algorithms where nodes pick multiple updates per it-
eration instead of just one update, as in PSN-iterations; or the com-
plete multiset of updates available, as in SN-iteration. That is, we
can transform an execution with arbitrary complete iterations into
an SN execution and vice-versa. One first breaks the complete-
iterations into PSN-iterations, obtaining a PSN execution. Then
the proof follows in exactly the same way as before. This means
that when implementing such systems, a node can pick all appli-
cable updates that are in its buffer and process them in one single
iteration, instead of picking them one by one, and the resulting al-
gorithm is still correct.

5. EXTENDED PSN ALGORITHM FOR RE-
CURSIVE PROGRAMS

Algorithm 1 and Algorithm 2 use multiset-semantics. As a con-
sequence, termination is not guaranteed, when they are used to
maintain views of recursive programs. Consider the following re-
cursive program.

9

p(@1) :- a(@0) q(@2) :- p(@1) p(@1) :- q(@2)

Notice that p and q form a cycle in the dependency graph. Any
insertion of the fact p(@1) will trigger an insertion of q(@2) and
vice versa. Given an insertion of fact a(@0), neither Algorithm 1
nor Algorithm 2 will terminate because the propagation of inser-
tion updates of q(@2) and p(@1) will not terminate. Recursively
defined tuples could have infinite number of derivations because of
cycles in the dependency graph. In other words, in the multiset-
semantics, such tuples have infinite count. Neither Algorithm 1 nor
Algorithm 2 have the ability to detect cycles.

One way to detect such cycles is proposed in [13] in a centralized
setting. The main idea is to remember for any fact p, the set of facts,
S, called derivation set, that contains all the facts that are used to
derive p. While maintaining the view, one checks whether a newly
derived tuple p appears in the set of facts supporting it. If this is
the case, then there is a cycle, and p has infinite count. Whenever a
tuple with infinite count is detected, we store it in a second set, H,
called infinite count set. Future updates of p are not propagated to
avoid non-termination.

The same idea is applicable to the distributed setting. We for-
malize this by attaching the derivation and infinite count sets, S
and H, to facts both in views and updates. A fact is now of the
form (p,S,H), where p is a predicate, S is the derivation set of
p, containing all the facts used to derive p, and H is a subset of
S containing all the recursive tuples that belong to a cycle in the
derivation and therefore cause p to have an infinite count. Tuples
have infinite count when they have a non-empty infinite count set.
In the example above, the view of the nodes would be:
{(a,∅), (p,{a},∅), (q,{p,a},∅), (p,{a,p,q},{p}),. . .}

where we elide the (@X) symbols. Notice that the fact p in
(p,{a,p,q},{p}), also appears in the set supporting it. This
means that p appears in a the cycle of a cyclic derivation; there-
fore, p is in the setH.

In order to maintain correctly the view, we adapt the transition
rules accordingly. A summary of the rules are shown in Figure 2.
Each pick rule in Figure 1 is divided into two rules. Once an update
u = 〈U, (p,S,H)〉 is picked from the multiset of updates by using
either the transition rule pickI and pickD , one needs to first check
whether the tuple is supported by a derivation tree that has a cycle.
That is, one needs to check if p ∈ S. If so, then p is added to the set
H; otherwise H remain unchanged. Notice that the updated view
of p in K uses the updated H set. The commit rule is the same as
before, except for the new presentation of facts.

The major changes in the operational semantics are in the fire
rule, where the derivation set and the infinite count set need to be
computed, when a delta-rule is fired and the propagation of up-
dates to tuples with infinite count need to be avoided. Given an
update 〈U, (bi,Si,Hi)〉 inserting or deleting a tuple, in addition
to computing all updates that are propagated from this update, we
also construct the corresponding derivation and infinite count sets,
S and H as follows. Assume that the update 〈U, p〉 is propagated
using a delta-rule with body bν1 , . . . , bνi ,∆bi, bi+1, . . . , bn and the
facts (bi,Si,Hi) where 1 ≤ i ≤ n, then the derivation set for p
is Sp = {b1, . . . , bn} ∪ S1 ∪ · · · ∪ Sn and the infinite count set
Hp = H1∪· · ·∪Hn. In order to avoid divergence, we also need to
make sure that an update of a tuple with infinite count is not resend.
To do so, we only add the update 〈U, (p,Sp,Hp)〉 to the multiset
of updates U if p /∈ Hp. That is, it is not part of cycle that has been
already computed.

Returning to the previous example, when the update inserting tu-
ple p(@1) arrives for the second time at node 1, this update would
contain the derivation set S = {a(@0),p(@1),q(@2)}. Since
p(@1)∈ S, node 1 detects the cycle in the derivation and adds the

tuple p(@1) to the infinite count set H. As q(@2) is not in H,
the insertion update of q(@2) is sent to node 2. However, when
this update is processed, creating a new insertion of p(@1), this
new insertion is not sent back to 1 because p(@1) is in the infinite
count set, which means that it is part of a cycle that has already
been computed. Therefore, computation terminates. In fact, we
can guarantee the termination of PSN using the derivation set and
infinite count set on any recursive program, which is stated as fol-
lows.

THEOREM 20 (FINITENESS OF PSN THAT DETECTS CYCLES).
Let S be an initial state andR be a DDlog program. Then all PSN
executions usingR and from S have finite length.

PROOF. Since we are assuming finite signature with no function
symbols, there is a finite number N of facts in a system. We use
a tuple with N elements, called state tuple, described next and the
lexicographical ordering among them to show termination. Given
a state of the system, the ith element of the state tuple contains
the the number of updates 〈U, (p,S,H)〉 ∈ U , such that i = |S|,
where |S| is the number of elements in S. This ordering is clearly
well founded. It is easy to show by induction on the length of
runs that there cannot be any update whose associated derivation set
S has more than N elements, since whenever a cycle is detected,
an update is not resend. Only when the set of updates is empty,
U = ∅, can the least state tuple be reached. For any update message
u = 〈U, (p,S,H)〉, we denote |u| as the number of elements in the
multiset S.

We show that the value of the state tuple reduces with respect to
the lexicographical ordering after any PSN-iteration. After a PSN-
iteration, there are two possible ways that the multiset of updates
U is changed. The first case is when the picked update, u, does
not contain a cycle. Then whenever a rule is fired, an update, u′, is
propagated such that the |u| < |u′| since at least the tuple in u is
inserted into the derivation set of u′. Then the update u′ is inserted
in the set U , while the update u is removed from it. Therefore, the
value of the ith element in the state tuple, where i = |u|, is reduced
by one, while all the values of the elements appearing before are
untouched. The second case is when the update propagated is in
the set H of tuples with infinite count. In this case, the update is
not propagated and the total number of elements in U is reduced
by one. Therefore, the value of the state tuple associated to the
resulting state is also reduced.

COROLLARY 21. The PSN algorithm that detects cycles always
terminates.

Correctness for PSN that Detects Cycles.
Finally, we need to prove that the PSN algorithm that detects

cycles maintains views correctly in the presence of recursive pro-
grams. The proofs follow the same steps as the proof for the cor-
rectness of the basic PSN algorithm in Section 4. First, we extend
the basic SN algorithm (Algorithm 2) to deal with annotations for
derivation and infinite count sets by using the new transition rules
in Figure 2. Then, we prove that the extended SN algorithm is cor-
rect. Next, we relate PSN executions to SN executions.

However we need to revisit the definition of correctness. We
have shown in the beginning of this section that the multiset se-
mantics for recursive programs include tuples with infinite counts.
That means that the view V and V ν could be infinite, which implies
that the updates that have to be computed (∆) could be infinite as
well. The definition for correctness only makes sense when ∆ is
finite, since no terminating programs can compute infinite set of
updates. What the cycle-detection mechanism really does is to rep-
resent the infinite number of derivations for a recursive tuple by

10

〈INS, (p(~t),S,H)〉 ∈ U and p(~t) ∈ S and H′ = H∪ {p(~t)}

〈K,U,P, E〉 −→R 〈K] {(pν(~t),S,H′)},U \ {〈INS, (p(~t),S,H)〉},P] {〈INS, (p(~t),S,H′)〉}, E〉
[pick1

I]

〈INS, (p(~t),S,H)〉 ∈ U and p(~t) /∈ S

〈K,U,P, E〉 −→R 〈K] {(pν(~t),S,H)},U \ {〈INS, (p(~t),S,H)〉},P] {〈INS, (p(~t),S,H)〉}, E〉
[pick2

I]

〈DEL, (p(~t),S,H)〉 ∈ U and p(~t) ∈ S and H′ = H∪ {p(~t)}

〈K,U,P, E〉 −→R 〈K \ {(pν(~t),S,H′)},U \ {〈DEL, (p(~t),S,H)〉},P] {〈DEL, (p(~t),S,H′)〉}, E〉
[pick1

D]

〈DEL, (p(~t),S,H)〉 ∈ U and p(~t) /∈ S

〈K,U,P, E〉 −→R 〈K \ {(pν(~t),S,H)},U \ {〈DEL, (p(~t),S,H)〉},P] {〈DEL, (p(~t),S,H)〉}, E〉
[pick2

D]

u ∈ P and F = firRules(u,K,R)

〈K,U,P, E〉 −→R 〈K,U] F,P \ {u}, E] {u}〉
[fire]

〈INS, (p(~t),S,H)〉 ∈ E

〈K,U,P, E〉 −→R 〈K] {(p(~t),S,H)},U,P, E \ {〈INS, (p(~t),S,H)〉}〉
[commitI]

〈DEL, (p(~t),S,H)〉 ∈ E

〈K,U,P, E〉 −→R 〈K \ {(p(~t),S,H)},U,P, E \ {〈DEL, (p(~t),S,H)〉}〉
[commitD]

Figure 2: Operational semantics for the basic commands that detect cycles

one derivation that contains only one cycle. We revise the defini-
tion for correctness accordingly to reflect the fact that the standard
resulting view V ν that we compare against is a finite multiset view
where a tuple that would have had infinite number of derivations
in traditional fixed-point semantics now has a finite number of rep-
resentative derivations. For instance, in a centralized setting, the
semi-naïve evaluation algorithm described in [13] computes such a
finite (multiset) view for recursive programs.

Then in the proof of correctness of SN executions, we add a new
case when tuples with infinite counts are derived, that is, when they
are supported by a derivation with a single cycle. This is indeed the
case for any SN execution as the new fire rule does not propagate
new updates when such updates are processed.

Finally, the proofs that relate a PSN execution to an SN execution
remain almost the same except that we have to consider attaching
annotations to tuples and updates; and that the termination argu-
ment for PSN is different. The transformations used in that proof
continue to be valid when using the transition systems in Figure 2.

COROLLARY 22 (CORRECTNESS OF PSN). Given any DDlog
program P , a multiset of base tuples, E, a multiset of updates in-
sertion updates I and deletion updates D to base tuples, such that
Dt ⊆ E] It, then the PSN algorithm that detects cycles correctly
maintains the view of the database.

6. RELATED WORK
Earlier works on incremental view maintenance focus on Data-

log programs in a centralized setting ([8, 6] to list a few). Whereas,
our work focuses on designing efficient algorithms for maintain-
ing views incrementally in a distributed setting. Compared to the
traditional DRed algorithm proposed in [8], our algorithm uses
multiset-semantics, while DRed uses set-semantics. As previously
discussed, the use of set-semantics requires DRed to re-deriving
tuples, a step which involves high communication overhead and
makes the use of DRed impractical in a distributed setting. Since
DRed is meant to work in a centralized setting, so it is a syn-
chronous algorithm, where updates created in one iteration are nec-
essarily processed in the following iteration. It is not clear to us
whether DRed can be adapted to a distributed setting that we con-
sider here to produce correct results and at the same time efficient.

In recent years, there has been several works tackling the prob-
lem of evaluating Datalog-like programs, and maintaining views in

a distributed setting. Our work is based on the original proposal of
PSN evaluation [11]. We extended the original proposal in several
ways. First, Loo et al. considered only linear recursive terminating
Datalog programs. We consider the complete Datalog language
including non-linear recursive programs. Second, we relaxed the
assumptions in the original proposal: instead of assuming that the
transmission channels are FIFO, we do not make any assumption
about the order in which updates are processed. The most impor-
tant improvement is that the PSN algorithm proposed in this paper
is proven to terminate and maintain views correctly. As pointed out
in our previous work [14], the PSN algorithm as presented in [11]
may produce unsound results and the use of the count algorithm [8]
leads to non-termination.

Similar to our approach, Liu et al. in [10] propose a PSN algo-
rithm that attaches annotations to tuples with provenance informa-
tion [5] to track duplicate derivations and avoid non-termination
due to cycles in recursive programs. However, Liu et al. only track
the base tuples used in the derivation. While our derivation set con-
tains all facts (including base and intermediate derived) used for
each derivation. Using only base tuples, it is not possible, without
assuming that the transmission channels used are FIFO, to differ-
entiate an update that is the result of computing a cyclic derivation
from the remaining updates. When messages are processed out of
order, the algorithm proposed in [10] yields unsound results. We
show such an example in Appendix B. Finally, the algorithm is
only experimentally evaluated but not formally proven correct.

In contrast to our approach, where we annotate tuples with the
set of facts used to derive them, MELD [4] simply attaches to tu-
ples the height of the derivation supporting them. They are able
to make many optimizations to the way in which updates are pro-
cessed. For instance, they do allow nodes to pick a deletion update
of a tuple that is supported by a derivation of a height greater than
the derivation of the same tuple appearing in the view. However,
simply attaching the height of derivations to tuples is not enough to
detect cycles in derivations and therefore it is not enough to avoid
divergence by itself. They address this problem by enforcing the
synchronization among nodes, that is, not allowing nodes to com-
pute until they receive the response from other nodes during dele-
tion. As expected, performance can be greatly affected since an
unbounded number of nodes might need to be synchronized at the
same time due to cascading tuples. We believe that their work can

11

directly leverage the results in this paper.
In an attempt to generalize Loo et al.’s work [11], Dedalus [3]

relaxes the set of assumptions above by no longer assuming that
messages always reach their destination. The main difficulty when
considering message loss is that the semantics does not relate well
with any semantics in the Datalog literature. Depending on whether
a message is lost or not, the final views computed by their evalua-
tion algorithms can be considerably different. Therefore, it is not
clear what is the notion of correctness in such systems. We be-
lieve that probabilistic models where messages are lost with certain
probability can be used, and we leave this for future work.

Adjiman et al. in [2] use classical propositional logic to specify
knowledge bases of agents in a peer-to-peer setting. They prove
correct a distributed algorithm that computes the consequences of
inserting a literal, that is, an atom or its negation, to a node (or
peer). Since they use resolution in their algorithm, they are able
to deduce not only the atomic formulas that are derivable when an
insertion is made, but propositional formulas in general. While they
are mainly interested in finding the consequences resulting from
inserting a formula, we are interested in efficiently maintaining a
set of consequences that was previously derived. It is not clear how
their approach can be used to update consequence when a sequence
of insertions and deletions are made to the knowledge base.

7. CONCLUSIONS AND FUTURE WORK
This paper presents techniques for incrementally updating views

for distributed recursive Datalog programs in the presence of inser-
tions and deletions of base tuples. Our PSN algorithm improves
upon existing techniques in the following ways. First, it is more
bandwidth efficient than DRed [8], since it avoids unnecessary dele-
tions and rederivations. Second, unlike its predecessors [11, 10]
the algorithm presented in this paper maintains views correctly for
general recursive programs, even in the presence of message re-
ordering. By annotating tuples with information about its deriva-
tion, our algorithm can detect cycles in recursive programs. Most
importantly, we prove that our PSN algorithm terminates and that
it maintains views correctly.

Besides the correctness of the algorithm itself, our ultimate goal
is to prove interesting properties about the programs that use dis-
tributed Datalog. The correctness results in this paper allow one
to first formally verify high-level properties of programs prior to
actual deployment by relying on the well established semantics for
centralized Datalog, then using our result that the semantics for
Distributed Datalog and centralized Datalog coincide, the verified
properties carry-over to the distributed deployment.

In particular, our research group is interested in formal verifi-
cation of implementations of networking protocols prior to actual
deployment in declarative network setting [18, 19]. In order to do
so, we need to extend this work to include additional language fea-
tures present in declarative networking including function symbols
and aggregates. Datalog programs with arbitrary functions symbols
may not terminate. We are investigating if we can extend exist-
ing analysis techniques [9] developed for centralized Datalog with
function symbols to determine when DDlog programs with func-
tion symbols terminate. It turns out that it is not an easy task to
develop efficient and correct algorithms that maintain views incre-
mentally in the present of aggregate functions. We are looking into
adapting existing work, such as [16] in incremental view mainte-
nance in a centralized setting to fit our needs.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and
L. Simon. Distributed reasoning in a peer-to-peer setting:
application to the semantic web. J. Artif. Int. Res.,
25(1):269–314, 2006.

[3] P. Alvaro, W. Marczak, N. Conway, J. M. Hellerstein,
D. Maier, and R. C. Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS
Department, University of California, Berkeley, Dec 2009.

[4] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry,
and P. Pillai. Meld: A declarative approach to programming
ensembles. In IROS, pages 2794–2800. IEEE, 2007.

[5] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, pages 31–40, 2007.

[6] T. Griffin and L. Libkin. Incremental maintenance of views
with duplicates. SIGMOD Rec., 24(2):328–339, 1995.

[7] S. Grumbach and F. Wang. Netlog, a rule-based language for
distributed programming. In PADL, pages 88–103, 2010.

[8] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In P. Buneman and
S. Jajodia, editors, Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data,
Washington, D.C., May 26-28, 1993, pages 157–166. ACM
Press, 1993.

[9] R. Krishnamurthy, R. Ramakrishnan, and O. Shmueli. A
framework for testing safety and effective computability. J.
Comput. Syst. Sci., 52(1):100–124, 1996.

[10] M. Liu, N. E. Taylor, W. Zhou, Z. G. Ives, and B. T. Loo.
Recursive computation of regions and connectivity in
networks. In ICDE, pages 1108–1119, 2009.

[11] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative Networking: Language, Execution and
Optimization. In SIGMOD, 2006.

[12] N. P. Lopes, J. A. Navarro, A. Rybalchenko, and A. Singh.
Applying prolog to develop distributed systems. In ICLP,
2010.

[13] I. S. Mumick and O. Shmueli. Finiteness properties of
database queries. In Australian Database Conference, pages
274–288, 1993.

[14] V. Nigam, L. Jia, A. Wang, B. T. Loo, and A. Scedrov. An
operational semantics for network datalog. In LAM’10, 2010.

[15] V. Paxson. End-to-end routing behavior in the internet. In
SIGCOMM ’96: Conference proceedings on Applications,
technologies, architectures, and protocols for computer
communications, pages 25–38, New York, NY, USA, 1996.
ACM.

[16] R. Ramakrishnan, K. A. Ross, D. Srivastava, and
S. Sudarshan. Efficient incremental evaluation of queries
with aggregation. In SLP, pages 204–218, 1994.

[17] R. Ramakrishnan and J. D. Ullman. A Survey of Research on
Deductive Database Systems. Journal of Logic
Programming, 23(2):125–149, 1993.

[18] A. Wang, P. Basu, B. T. Loo, and O. Sokolsky. Declarative
network verification. In 11th International Symposium on
Practical Aspects of Declarative Languages (PADL), 2009.

[19] A. Wang, L. Jia, C. Liu, B. T. Loo, O. Sokolsky, and P. Basu.
Formally Verifiable Networking. In ACM SIGCOMM
HotNets-VIII, 2009.

12

APPENDIX
A. PROOFS FOR LEMMAS RELATED TO

CORRECTNESS
Proof of Lemma 15.

PROOF. We show the direction. The reasoning is symmetric
for the reverse transformation. Let

F1 = firRules(〈INS, r1〉,K] {rν1},R),
F2 = firRules(〈DEL, r2〉,K] {r1, r

ν
1} \ {rν2},R),

F ′2 = firRules(〈DEL, r2〉,K \ {rν2},R),
F ′1 = firRules(〈INS, r1〉,K \ {r2, r

ν
2}] {rν1},R).

In the first execution sequence, F1 contains all insertion updates
created from the initial view by firing insertion delta-rules that con-
tain ∆r1 in their body. Similarly, F2 contains all the deletion up-
dates created by firing deletion delta-rules that contain ∆r2 in their
body, with r1 inserted into the initial view.

In the second execution sequence, on the other hand, F ′2 contains
all the deletion updates created from the initial view by firing dele-
tion delta-rules that contain ∆r2 in their body. F ′1 contains all the
insertion delta-rules that contain ∆r1 in their body, with r2 deleted
from the view.

We would like to show that F1] F2 = F ′1] F ′2]∆, where ∆
is a multiset of pairs of complementary conflicting updates.

The multiset F1 is clearly a superset of F ′1 since the latter is
obtained by executing rules when r2 is deleted from the initial view.
Similarly, F2 is a superset of F ′2 since the former is obtained by
executing rules when r1 is inserted into the view.

Let F1 = F ′1] ∆1 and F2 = F ′2] ∆2. We need to show that
∆1] ∆2 contains a multiset of pairs of complementary conflict-
ing updates. More specifically, we can show that for any insertion
updates in u ∈ ∆1 there its complementary updates ū ∈ ∆2.

Updates that are in ∆1 are generated by firing delta-rules that
contain 〈INS, r1〉 and either r2 or rν2 in the body. Updates that are
in ∆2 are generated by firing delta-rules that contain 〈DEL, r2〉 and
either r1 or rν1 in the body. Next we show that there is one-to-one
mapping between the delta-rules that generate an update u in ∆1

and the delta-rules that generate an update ū in ∆2.
Any insertion update u in ∆1 is necessarily fired by rules of the

following two forms:
u :- · · · , rν2 , · · · , ∆r1, · · · , which we call a1

and u :- · · · , ∆r1, · · · r2 · · · , which we call a2.
Any deletion update u in ∆2 is necessarily fired by rules of the

following two forms:
u :- · · · , rν1 , · · · , ∆r2, · · · , which we call b1
and u :- · · · , ∆r2, · · · r1 · · · , which we call b2.
Notice that there is a one-to-one mapping between a1 and b2,

and a one-to-one mapping between a2 and b1. In other words, in
the first execution sequence, a1 is fired when 〈INS, r1〉 is picked,
and b2 is fired when 〈DEL, r2〉 is picked. Furthermore, a1 and b2
generates a pair of complementary conflicting updates, and so do
a2 and b1.

Therefore, F1]F2 = F ′1]F ′2]∆1]∆2, and ∆1]∆2 contains
pairs of complementary conflicting updates.

Proof of Lemma 16
PROOF. We only show the case when u is an insertion, and the

second case can be proved similarly. Let u = 〈INS, p〉. By exam-
ining the two execution sequences, we know that

F1 =
U
u0∈H]{u} firRules(u0,K]HtνI] {pν} \ HtνD ,R),

F ′1 =
U
u0∈H firRules(u0,K]HtνI \ HtνD ,R),

F ′2 = firRules(u,K]HtνI]HtI] {pν} \ HtνD]HtD),R),
F2 = F ′1] F ′2

where we write HtνI (HtνD respectively) to denote the multiset

that contains pν if and only if 〈INS, p〉 (〈DEL, p〉 respectively) is
in H. We write HtI (HtD respectively) to denote the multiset that
contains p if and only if 〈INS, p〉 (〈DEL, p〉 respectively) is inH.

Let’s further rewrite F1 to be F ′′1] F ′′2
where F ′′1 =

U
u0∈H firRules(u0,K]HtνI]{pν}\HtνD ,R), and

F ′′2 = firRules(u,K]HtνI] {pν} \ HtνD ,R).
F ′′1 is a superset of F ′1. Let F ′′1 = F ′1]∆I]∆D .
Any update 〈INS, r1〉 ∈ ∆I is generated by a delta-rule that

contains pν and an insertion update 〈INS, q〉 ∈ H in the body:
〈INS, r1〉 :- · · · , pν , · · · , 〈INS, q〉, · · · , which we call a1.
Any update 〈DEL, r′1〉 ∈ ∆D is generated by a delta-rule that

contains pν and a deletion update 〈DEL, q〉 ∈ H in the body:
〈DEL, r′1〉 :- · · · , pν , · · · , 〈DEL, q〉, · · · , which we call a2.
The relation between F ′′2 and F ′2 is more complicated. What we

can show is the following F ′′2]∆′I = F ′2]∆′′I where ∆′I = ∆I ,
and ∆′′I contains all the complimentary updates to the ones in ∆D ,
nothing else.

We would like to show that there is a one-to-one mapping be-
tween the delta-rules that are fired to generate ∆I in the bigger
complete iteration (the first execution sequence), and the delta-rules
that are fired to generate ∆′I in the PSN iteration (the second part
of the second execution sequence).

The only updates that are in F ′2, but not in F ′′2 are due to HtI .
Therefore, all insertion updates in ∆′I are generated by firing delta-
rules that contain u and q, where 〈INS, q〉 ∈ H, in the body:
〈INS, r1〉 :- · · · , u, · · · , q, · · · , which we call b1.
By the definition of delta-rules, there is one-to-one mapping be-

tween a1 and b1. Consequently, ∆I = ∆′I .
We also need to show that there is a one-to-one mapping between

the delta-rules that are fired to generate ∆′′I , and the delta-rules that
are fired to generate ∆D .

The only updates that are in F ′′2 , but not in F ′2 are due to HtD ,
which is deleted from the view before the PSN iteration. Therefore,
all insertion updates in ∆′′I are generated by firing delta-rules that
contain u and q, where 〈DEL, q〉 ∈ H, in the body:
〈INS, r1〉 :- · · · , u, · · · , q, · · · , which we call b2.
By the definition of delta-rules, there is one-to-one mapping be-

tween a2 and b2. Consequently, ∆′′I contains all the complemen-
tary updates to those ones that are in ∆D , which we denote by ∆̄D .

Finally, we obtain the following: F ′′1 = F ′1] (∆I] ∆D) and
F ′′2]∆I = F ′2] ∆̄D . We know the following by union both sides
of the above equations: F ′′1]F ′′2]∆I = F ′1] (∆I]∆D)]F ′2]
∆̄D . We can conclude thatF1 = F2]∆D]∆̄D . Therefore, F1 and
F2 only differs in pairs of complementary conflicting updates.

Proof of Lemma 17.

PROOF. Assume that uIc = 〈INS, p〉 and uDc = 〈DEL, p〉
We first show that for any insertion update, u, created by firing

delta-rules that contains 〈INS, p〉 in the body, there is exactly one
deletion update ū that is created at an iteration no later than the one
where uDc is picked.

Let’s assume that u is created by firing the following delta-rule:
u :- b1, . . . , bn, 〈INS, p〉, bn+1, . . . , bn+m.
The update ū can be created either by a deletion update for bi

which is picked before uDc ; or by the time uDc is processed none
of the predicates (bi) in the body has been deleted, in which case ū
will be generated by firing the following delta-rule.

ū :- b1, . . . , bn, 〈DEL, p〉, bn+1, . . . , bn+m.
This means that only pairs of complementary conflicting updates

are propagated by the insertion and deletion of p. Using the same
reasoning above, these pairs of conflicting updates created will also
cause the propagation of conflicting pairs of updates only. For the
rest of the proof, we call all these updates as p-propagated updates.

13

Then, in this subexecution, we use Lemma 15 to permute dele-
tion updates to the right of insertion updates eagerly. In the process,
new conflicting updates are generated, which will be dealt later. Fi-
nally, we use Lemma 14 to permute insertion updates (respectively,
deletion updates), so that the propagated updates are picked last and
in the same order. That is, if the propagated insertion update u1 is
picked before the propagated insertion update u2, then the deletion
update ū1 is picked before ū2.

Next, we define ID executions. A PSN execution is an ID execu-
tion if it has the following form:

s0
psn

=⇒ (UI)s1
psn

=⇒ (UP)s2
psn

=⇒ (UD)s3
psn

=⇒ (U ′P)s4,
where for all u ∈ UI , u is a non-p-propagated insertion update,

for all u ∈ UP , u is a p-propagated insertion update, and for all u ∈
UD , u is a non-p-propagated deletion update, and for all u ∈ U ′P , u
is a p-propagated deletion update. Furthermore, for all u ∈ UP then
ū ∈ U2 and vice-versa. We denote an ID execution as s ID

=⇒ s′.
We show that any PSN execution can be transformed into a se-

quence of two consecutive ID executions. The first ID execution is
formed by using repeatedly using Lemma 15 to permute deletion
updates to the right of insertion updates. In the process, new con-
flicting updates are generated, which will be used to form the sec-
ond ID execution. In the end, we obtain a PSN-execution where all
insertion updates are picked before deletion updates. Now we use
Lemma 14 to permute insertion updates (respectively, deletion up-
dates), so that the p-propagated updates are picked after all the non
p-propagated updates are picked. This is possible because by its
definition, non p-propagated updates cannot be generated by firing
a delta-rule that uses p-propagated updates. Now we have obtained
our first ID execution. This is not a complete PSN run because in
the first step, we have generated new pairs of complementary con-
flicting updates.

Next, we construct the second ID execution by complete the exe-
cution of the program. We eagerly pick non-p-propagated insertion
updates until only none is left, then we pick all p-propagated in-
sertion updates. After that, we pick non-p-propagated deletion up-
dates; then, we finish by picking all p-propagated deletion updates.

Now we have obtained a complete run of PSN, of the following
form: 〈K1,U1, ∅, ∅〉

ID
=⇒ 〈K2,U2, ∅, ∅〉

ID
=⇒ 〈K3, ∅, ∅, ∅〉, where

the view in K2 is the same as the original PSN execution, which is
guaranteed by Lemma 15 and Lemma 14.

Next we show that we can prune an ID execution to contain only
non-p-propagated updates without changing the final view.

Given an ID execution,
〈K,U , ∅, ∅〉

psn
=⇒ (UI)〈K] U tI ,U \ UI] FI , ∅, ∅〉

psn
=⇒ (UP)〈K] U tI] U tP ,U \ UI] FI \ UP] FP , ∅, ∅〉

psn
=⇒ (UD)〈K] U tI] U tP \ U tD,

U \ UI] FI \ UP] FP \ UD] FD, ∅, ∅〉
psn

=⇒ (U ′P)〈K] U tI] U tP \ U tD \ U ′tP ,
U \ UI] FI \ UP] FP \ UD] FD \ U ′P] F ′P , ∅, ∅〉

Let U ′ contain all the non-p-propagated updates in U , and we
generate a PSN execution that only pick non-p-propagated updates
as follows.
〈K,U ′, ∅, ∅〉

psn
=⇒ (UI)〈K] U tI ,U ′ \ UI] FI , ∅, ∅〉

psn
=⇒ (UD)〈K] U tI \ U tD,U ′ \ UI] FI \ UD] F ′D, ∅, ∅〉

Compared with the original ID execution, we have the following
invariants.

First, K] U tI] U tP \ U tD \ U ′tP = K] U tI \ U tD because U ′P
contains the complement of UP .

Second, U ′ \ UI] FI \ UD] F ′D contains only the non-p-
propagated updates in U \UI]FI \UP]FP \UD]FD \U ′P]F ′P .

This is because the only updates that contain non-p-propagated up-
dates are U ′, FI and F ′D; and FD ⊇ F ′D .

We perform the above rewriting separately to both ID executions
in 〈K1,U1, ∅, ∅〉

ID
=⇒ 〈K2,U2, ∅, ∅〉

ID
=⇒ 〈K3, ∅, ∅, ∅〉.

We obtain the following: 〈K1,U ′1, ∅, ∅〉
ID

=⇒ 〈K2,U ′2, ∅, ∅〉
and 〈K2,U ′′2 , ∅, ∅〉

ID
=⇒ 〈K3, ∅, ∅, ∅〉.

The invariants tell us that U ′1 contains all non-p-propagated up-
dates in U1 and nothing else, and both U ′2 and U ′′2 contains all the
non-p-propagated updates in U2 and nothing else. Therefore, we
know that U1 = U ′1] {〈INS, p〉, 〈DEL, p〉}, and U ′2 = U ′′2 . Finally,
we obtain the valid PSN execution sequence: 〈K1,U ′1, ∅, ∅〉

ID
=⇒

〈K2,U ′2, ∅, ∅〉
ID

=⇒ 〈K3, ∅, ∅, ∅〉.

B. PROBLEMS OF PREVIOUS WORK IN
AN ASYNCHRONOUS SETTING

The main problem with the algorithm in [10] is that they do not
store enough information in the annotation of tuples to be able to
differentiate between when an update is due to a cyclic proof and
when an update arrived out-of-order. In particular, they annotate
tuples with provenance polynomials [5] constructed using only the
base tuples used to derive tuple and not the intermediate derived
tuples. For instance, consider the same DDlog program used in
Section 5 to illustrate that our PSN algorithm that detects cycles
terminates:

p(@1) :- a(@0)
q(@2) :- p(@1)
p(@1) :- q(@2)

The view in their setting for this program when a is true is (a,{a}),
(p,{a}), (q,{a}) where we elide the (@X) symbols. All tuples
are derived by only using the base tuple a and therefore their anno-
tations consist only of the monomial a. Clearly, using annotations
containing just base tuples is not enough to detect cycles in deriva-
tions. For instance, an update inserting (p,{a}) could be derived
due to the a derivation with no cycles or due to a cyclic derivation
obtained by using the last two rules of program.

In order to avoid divergence, one would need to discard the lat-
ter type of updates, as in our PSN algorithm. They are able to
detect such updates but only when one assumes that all transmis-
sion channels are FIFO, that is, when messages are not reordered
and guarantee termination by discarding updates. To illustrate how
their algorithm works, consider again the program above and the
same view. Assume that there is a deletion of a, that is, the ex-
istence of the deletion update 〈DEL, (a,{a})〉. When this update
is processed, node 1 creates 〈DEL, (p,{a})〉, which on the other
hand is processed by node 2, creating the update 〈DEL, (q,{a})〉.
Finally, node 2 processes the latter, creating again the deletion up-
date 〈DEL, (p,{a})〉. When this update is received by node 1,
the tuple (p,{a}) is not in the view, since it was deleted by the
first deletion update. Therefore, node 1 can safely conclude, under
the assumption of FIFO channels, that the latter update is due to a
cyclic derivation. Hence it just discards it.

It is easy to show that discarding eagerly such deletion updates
yields unsound results when one relaxes the assumption of FIFO
channels. Consider the same program above, but two conflict-
ing updates: 〈DEL, (a,{a})〉 and 〈INS, (a,{a})〉. If the dele-
tion update is processed first by node 0, it will be discarded since
the tuple (a,{a}) is not present in its view. The insertion up-
date on the other hand would be processed, generating eventually
new insertion updates for all the tuples in the program. Hence,
the final view obtained by their algorithm is (a,{a}), (p,{a}),

(q,{a}), whereas the correct view is the empty set.

14

