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Abstract
The termad hoc datarefers to the billions of bytes of non-standard
and continuously evolving data spread across all computer systems.
Such data includes server logs, distributed system performance and
debugging data, telephone call records, financial data and online
repositories of scientific data.

This paper presentsPADS/D, a system that generates monitor-
ing, analysis and transformation tools for distributed ad hoc data
from declarative specifications. The generated tools include an
archiver, a database loading system, a statistical analyzer, an alert
system, an RSS feed generator, and debugging tools. In addition,
the system generates libraries for application developers, includ-
ing modules for parsing, printing, error management, data traversal
and transformation which developers can use to create theirown
application-specific tools. Advanced users can build new generic
tools applicable to any collection of data sources.

The PADS/D data description language allows data analysts to
specifywheretheir ad hoc data is located,howto obtain it,whento
get it (or give up trying), andwhatpreprocessing the system should
do when it arrives. As its name suggests,PADS/D is layered on top
of the PADS sublanguage, developed in previous research efforts,
for specifying theformatof the data sources. We illustrate the ex-
pressiveness ofPADS/D by giving descriptions for several different
distributed systems including CoMon, the monitoring system for
PlanetLab, and a monitoring system for a web hosting servicepro-
vided by AT&T. We define a formal semantics for the language, de-
scribe our implementation, and evaluate its performance. We show
our system is capable of scaling to distributed systems the size of
CoMon, the current monitor for Planetlab’s 800+ nodes.

1. Introduction
An ad hoc data sourceis any semistructured data source for which
useful data analysis and transformation tools are not readily avail-
able. The data that constitutes a single, abstract source often comes
from many different concrete, physical destinations distributed
across the Internet. It often becomes available over a rangeof times
and in several, evolving formats. Before users can extract the in-
formation they need from the data, it must be fetched, archived
locally for historical analysis, compressed, perhaps encrypted or
anonymized, and monitored for errors or deviations from thenorm.

Managing ad hoc data is a bane of the implementers of dis-
tributed systems. These systems may have hundreds or thousands
of heterogeneous, distributed components. Keeping these compo-
nents running smoothly is a continuous maintenance task of signifi-
cant complexity. Consequently, each component in a well-designed
distributed system produces a continuous stream of log filesthat
measure its performance and health. As an example, considerthe
data manipulated by CoMon [24], a system designed to monitor
the health, performance and security of PlanetLab [26]. Every five

minutes, CoMon attempts to contact each of 842 PlanetLab nodes
across 416 sites worldwide.When all is well, which it never is, each
node responds with an ASCII data file in mail-header format con-
taining information ranging from the kernel version to the uptime
to the memory usage to the ID of the user with the greatest CPU
utilization. CoMon archives this data in compressed form and pro-
cesses the information for display to PlanetLab users. CoMon is an
invaluable resource for PlanetLab users who need to monitorthe
health and performance of their applications or experiments.

Almost all distributed systems have (or should have) similar
monitoring infrastructure. Currently, the implementors of each new
distributed system usually have to build “one-off” monitoring tools,
which takes an enormous amount of time and expertise to do well.
A substantial part of the difficulty comes from the diversity, quality,
and quantity of data these systems must handle. Implementors
cannot ignore errors: they must properly handle network errors and
partial disconnects of the network. They cannot ignore performance
issues: data must be fetched before it vanishes from remote sites
and it must be archived efficiently in ways that do not burn-out hard
drives by causing them to overheat. In addition, new monitoring
systems also must interact with legacy devices, legacy software and
legacy data, preventing implementers from using robust off-the-
shelf data management tools built for standard formats likeXML.

Similar problems appear in the natural and social sciences,in-
cluding biology, physics and economics. For example, systems
such as BioPixie [7], Grifn [6] and Golem [27], built by computa-
tional biologists at Princeton, routinely obtain data froma number
of sources scattered across the net. Often, the data is archived and
later analyzed or mined for information about gene structure and
regulation. Figure 1 summarizes selected distributed ad hoc data
sources.

This paper describes a system that facilitates the creation, main-
tenance, and evolution of tools for processing ad hoc data from a
wide array of distributed data sources over varying periodsof time.
The system, calledPADS/D, is a domain-specific language in which
software developers describe key aspects of the data sources they
wish to monitor, including any of the following.

• Where the data is located. The data may be in a directory on the
current machine (perhaps written by another process), at some
remote location, or at a collection of locations.

• When to get the data. The data may need to be fetched just once
(right now!) or according to some schedule.

• How to obtain it. The data may be accessible through standard
protocols such ashttp or ftp or it may be created via a local
or remote computation.

• What preprocessingthe system should do when the data ar-
rives. The data may be compressed or encrypted; privacy con-
siderations may require the data be anonymized.



Name/Use Properties
CoMon [24] Multiple data sets

PlanetLab host Archiving every 5 minutes
monitoring From evolving set of 800+ nodes

CoBlitz [23] Multiple data sets
File transfer Archiving every 3 minutes
system monitoring From evolving set of 800+ nodes

CoralCDN [15] Single Format
Log files from Periodic archiving
CDN monitoring From evolving set of 250+ hosts

AT&T Arrakis Execute programs remotely to
Website host collect data
monitoring Varied fetch frequencies

AT&T Regulus Diverse data sources
Network monitoring Archiving for future analysis

Per minute, hour, and day fetches
AT&T Altair Thousands of data sources

Billing auditing Archiving and error analysis
GO DB [1] Multiple Formats

Gene function info. Uploads daily, weekly, monthly
BioGrid [28] XML and Tab-separated Formats

Curated gene and multiple data sets<= 50MB each
protein data Monthly data releases

NCBI [20] Links to multiple bioinformatics
Biotechnology info. datasets

Figure 1. Example distributed ad hoc data sources.

• What format the data source arrives in. The data may be in
ASCII, binary, or EBCDIC. It may be tab- or comma-separated,
or it may be in the kind of non-standard format thatPADS [12,
16] was designed to describe.

The PADS/D system then compiles these high-level specifica-
tions into a collection of programming libraries and end-to-end
tools for distributed systems monitoring. Our current toolsuite in-
cludes a number of useful artifacts, inspired by the needs wehave
observed in a variety of ad hoc monitoring systems:

• An archiver that collects distributed data on the specified
schedule, archives it, and maintains a “table of contents.”

• A printer that fetches, prints, and helps debug specifications.
• A performance monitor that measures fetch times and also

helps debug specifications.
• A RRD database loaderthat takes the data and extracts spec-

ified pieces to load into an RRD database [21]. The data is in-
dexed by its arrival time and supports time-based queries.

• An accumulator that maintains a statistical profile of the data
and its error characteristics.

• An alert system that generates alerts based on programmable
conditions.

• A selector that extracts and records specified subcomponents
of a larger data source.

• An RSS feed generatorthat wraps raw data in the appropriate
headers to create an RSS feed from diverse ad hoc data sources.

The system can generate all of these tools fromPADS/D de-
scriptions and declarative tool configuration specifications. Thus
for common tasks, users can manage distributed data sourcessim-
ply by writing high-level declarative specifications. It isquick and
it is easy. There are relatively few concepts to learn, no complex
interfaces and no tricky boilerplate to master to initialize the sys-
tem or thread together tool libraries. Because there is so little “pro-

gramming” involved, we refer to the act of writing simple specifi-
cations and using pre-defined tools as theoff-the-shelfmode of use.
However, to avoid sacrificing flexibility and to support extensibil-
ity, PADS/D supports two other modes of use.

The second mode is for thesingle-minded implementer, who
needs to build a new application for aspecificcollection of dis-
tributed data sources. Such users need more than the built-in set of
tools, and consequently the system provides support for creating
new tools by automatically generating libraries for fetching data,
for parsing and printing, for performing type-safe data traversal,
and for stream processing using classic functional programming
paradigms such asmap, fold anditerate . These generated li-
braries make it straightforward to create custom tools specific to
particular data sources. However, there is a steeper learning curve
in this mode than in off-the-shelf mode because a variety of in-
terfaces must be learned. The average functional programmer may
find these interfaces relatively intuitive, but the computational sci-
entist who is not interested in functional programming may prefer
to stick with off-the-shelf uses.

The third mode is for thegeneric programmer. Generic pro-
grammers may observe that they (or their colleagues) need toper-
form some task over and over again on different data sets. Rather
than writing a program specific to a particular data set, theyuse a
separate set of interfaces supplied by thePADS/D system to write a
single generic program to complete the task. For example, the RRD
database loader is generic because it is possible to load data from
any specified source into the RRD tool without additional “pro-
gramming.” The generic programming mode is the most difficult
to use as it involves learning a relatively complex set of interfaces
for encoding Generalized Algebraic Datatypes (GADTs) [32]and
Higher-Order Abstract Syntax (HOAS). These complexities are re-
quired to encode the dependent features ofPADS/D and to com-
pensate for the lack of built-in generic programming support in
OCAML . Still the reward for building generic tools is very high:
as more and more such tools are built, the life of the off-the-shelf
user becomes easier and easier. We have already built eight useful
generic tools ourselves and will continue to build more as demand
requires.

Contributions. The paper makes the following contributions:

• It outlines the design of a language for specifying the spatial,
temporal and auxiliary properties of distributed ad hoc data
sources. We are aware of no other research effort that has
attempted to design, implement or analyze such a language.

• It provides a mechanism for the automatic generation of eight
different data processing tools from high-level specifications.

• It supports three modes of use: off-the-shelf, single-minded
implementer and generic programmer, thereby optimizing both
flexibility and ease-of-use.

• It provides a formal denotational semantics for the language.
• It reports on the implementation experience and performance.

Outline. In the remainder of the paper, we describe the two ex-
amples we will use throughout the paper (Section 2), show howto
describe these data sources inPADS/D (Section 3), describe the gen-
erated tool infrastructure and its different modes of use (Section 4),
define a denotational semantics for the language (Section 5), dis-
cuss the implementation and evaluate its performance (Section 6),
describe related work (Section 7), and conclude (Section 8).

2. Running Examples
The CoMon [24] system, developed at Princeton, monitors the
health and status of PlanetLab [26] by attempting to fetch data
from each of PlanetLab’s 800+ nodes every 5 minutes. This data



let sites =
[

"http://pl1.csl.utoronto.ca:3121";
"http://plab1-c703.uibk.ac.at:3121";
"http://planet-lab1.cs.princeton.edu:3121"

]
feed simple_comon =
base {|

sources = all sites;
schedule = every 5 min, starting now,

timeout 60.0 sec;
format = Comon_format.Source;

|}

Figure 2. simple comon.fml : Simple CoMon feed.

feed comon_1 =
base {|

sources = any sites;
schedule = every 1 min, lasting 2 hours;
format = Comon_format.Source;

|}

Figure 3. sites.fml : Code fragment for data from one of many
sites.

ranges from the node uptime to memory usage to kernel version.
CoMon displays the data to users in tabular form and allows them
to perform a number of simple queries to find, for instance, lightly
loaded nodes, nodes with drifting clocks or nodes with little re-
maining disk space. CoMon also monitors nodes for various sorts
of problems and generates reports of deviant machines or user pro-
grams. Finally, the data is archived so PlanetLab users can perform
their own custom analyses of historical data.

AT&T provides a web hosting service. The infrastructure for
this service includes a variety of hardware components suchas
routers, firewalls, load balancing machines, actual web servers,
and databases, replicated and geographically distributed. Hence, a
given web site may be distributed across a variety of machines run-
ning a variety of operating systems in a variety of locations. When
a customer signs up for AT&T’s hosting service, part of the con-
tract specifies what kinds of monitoring AT&T will provide for the
site. The Arrakis infrastructure provides this monitoringservice. It
tracks a variety of resources using a wide array of measures,includ-
ing network bandwidth, packet loss, cpu utilization, disk utilization,
memory usage, load averages,etc.For each machine in the hosting
service and for each such resource, the monitoring system archives
the values at regular intervals and issues alerts when the values ex-
ceed resource- and contract-specific levels. The archive isused to
track long-term behavior of the service, allowing engineers to de-
termine when more resources need to be provisioned, for example,
adding cpus, memory, or disk space. It also allows engineersto un-
derstand the “normal” behavior for a particular site such asdaily or
seasonal cycles for a particular site.

3. PADS/D: An Informal Introduction
ThePADS/D language allows users to describe streams of data and
meta-data that we refer to asfeeds. To introduce the central features
of the language, we work through a series of examples drawn from
the CoMon and Arrakis monitoring systems.

3.1 CoMon Feeds

Figure 2 presents our first attempt to define a simple CoMon statis-
tics feed. This description specifies thesimple_comon feed us-
ing thebase feed constructor. Thesources field indicates that

data for the feed comes from all of the locations listed insites .
Theschedulefield specifies that relevant data is available from
each source every five minutes, starting immediately. When trying
to fetch such data, the system may occasionally fail, eitherbecause
a remote machine is down or because of network problems. To
manage such errors, the schedule specifies that the system should
try to collect the data from each source for 60 seconds. If thedata
does not arrive within that window, the system should give up. Fi-
nally, theformatfield indicates that the fetched data conforms to
the PADS/ML [16] description namedSource defined in the file
comon_format .

In contrast to thesimple_comon feed, which returns data
from all sites, thecomon_1 feed defined in Figure 3 uses theany
constructor in thesourcesfield to return only a single value per
time slice: that of the first site to supply a complete set of data. This
feature is particularly useful when monitoring the behavior of repli-
cated systems, such as those using state machine replication, con-
sensus protocols, or even loosely-coupled ones such as Distributed
Hash Tables (DHTs) [4]. In these systems, the same data will be
available from any of the functioning nodes, so receiving results
from the first available node is sufficient. These kinds of monitoring
systems are useful in the face of partial network unreachability or
machine failure. Specifying this behavior at the language level pro-
vides a simpler implementation than network-centric approaches
such as anycast [25].

The schedule forcomon_1 indicates the system should fetch
data every minute for two hours, using thelasting field to
indicate the duration of the feed. It omits thestarting and
timeout specifications, causing the system to use default settings
for the start time and the timeout window.

Thesimple_comon example hard-codes the set of locations
from which to gather performance data. In reality, the CoMon
system has an Internet-addressable configuration file that contains
a list of hosts to be queried, one per non-comment line. This list is
periodically updated to reflect the set of active nodes in PlanetLab.

Figure 4 specifies a version of thecomon feed that depends
upon this configuration information. To do so, the description
includes an auxiliary feednodes that describes the configura-
tion information: it is available from theconfig_location , it
should be fetched every two minutes, and its format is described
by thePADS/ML descriptionsource given in the filenodelist ,
which appears in Figure 5. ThisPADS/ML description specifies that
source is a list of new-line terminated records, each contain-
ing anodeitem . In turn, anodeitem is either a’#’ character
followed by a comment string, which should be tagged with the
Commentconstructor, or a host name, which should be tagged as
Data . The description also defines a helper functionis_node ,
which returns true if the data item in question is a host name rather
than a comment. Given this specification, thenodes feed logi-
cally yields a list of host names and comments every two minutes.
In fact, because of the possibility of errors, the feed actually deliv-
ers alist option every two minutes:Some if the list is populated
with data,None if the data was unavailable at the given time-slice.

Using thenodes specification, we define thecomon feed as
a dependentfeed: eachnodelist in the nodes feed defines a
collection of sources for thecomon feed. Thecomon sources
specification processes thenodelist to manage errors and strip
out comment fields. The code that handles this processing illus-
trates that thePADS/D domain-specific language is embedded in
OCAML . We use OCAML terms where necessary to specify simple
transformations. In particular, thecurrent function checks if the
nodelist is None, signaling a fetching error, in which case it
uses the most recently cached list of nodes instead. Thesource
specification filters out comment fields, and then converts the host
names to URLs with the required port using the auxiliary function



(* Ocaml helper values and functions *)
let config_location =

["http://summer.cs.princeton.edu/status/ \
tabulator.cgi?table=slices/ \
table_princeton_comon&format=nameonly"]

let makeURL (Nodelist.Data x) =
"http://" ˆ x ˆ ":3121"

let old_locs = ref []
let current list_opt =
match list_opt with

Some l -> old_locs := l; l
| None -> !old_locs

(* Feed of nodes to query *)
feed nodes =
base {|

sources = all config_location;
schedule = every 2 min;
format = Nodelist.Source;

|}

(* Dependent CoMon feed of node statistics *)
feed comon =
foreach nodelist in nodes
create

base {|
sources = all (List.map makeURL

(List.filter Nodelist.is_node
(current nodelist)));

schedule = once, timeout 60.0 sec;
format = Comon_format.Source;

|}

Figure 4. comon.fml : Uses feed of node locations to drive data
collection.

ptype nodeitem =
Comment of ’#’ * pstring_SE(peor)

| Data of pstring_SE(peor)

let is_node item =
match item with
Data _ -> true
| _ -> false

ptype source =
nodeitem precord plist (No_sep, No_term)

Figure 5. nodelist.pml : PADS/ML description for CoMon
configuration files, which contain one host name per non-
commented line.

makeURL. Theschedule for this CoMon feed isonce (with a
timeout of sixty seconds) because we want to collect the datafor
each host in a givenhostlist just once. Theforeach ...
create construct merges the resulting data from each machine
into a single feed. As before, the format of data fetched fromeach
node matches the descriptionComon_format.Source .

With this specification, we expect to get data from all the active
machines listed in the configuration file every two minutes. We
further expect the system to notices changes in the configuration
file within two minutes.

The previous examples all showcased feeds that contained a
single type of data.PADS/D also provides a datatype mechanism
that allows us to construct compound feeds containing data of
different sorts. As an example where such a construct is useful, the

CoMon system includes a number of administrative data sources.
One example is a collection of node profiles, collecting the domain
name, IP address, physical location,etc., for each node in the
cluster. A second example is a list of authentication information for
logging into the machines. These two data sources have different
formats, locations, and update schedules, but system administrators
want to keep a combined archive of the administrative information
present in these sources. Ifsites_mime is a feed description of
the profile information andsites_keyscan_mime is a feed of
authentication information, then the declaration

feed sites =
Locale of sites_mime

| Keyscan of sites_keyscan_mime

creates a feed with elements drawn from each of the two feeds.
The constructorsLocale and Keyscan tag each item in the
compound feed to indicate its source.

3.2 Arrakis Example

We now shift to an example drawn from AT&T’s Arrakis project.
Like the earlier CoMon example, thestats feed in Figure 6
monitors a collection of machines described in a configuration file.
Before we discuss thestats feed itself, we first explain some
auxiliary feeds that we use in the definition of thestats feed.

The raw_hostLists description has the same form as the
nodes feed we saw earlier, except it draws the data from a local
file once a day. We use afeed comprehensionto define a clean
version of the feed,host_lists . In the comprehension, the
built-in predicateis_good verifies that no errors occurred in
fetching the current list of machineshl , as would be expected for
a local file. The functionget_hosts takeshl and uses the built-
in functionget_good to unwrap the payload data from the error
infrastructure, an operation that is guaranteed to succeedbecause
of theis_good guard. The functionget_hosts then selects the
host name entries and unwraps them to produce a list of unadorned
host names.

We next define a feed generatorgen_stats that yields an
integrated feed of performance statistics for each supplied host.
In more detail, when given a hosth, gen_stats creates a five
minute schedule with a one minute timeout. It then uses this sched-
ule to describe a compound feed, which pairs two base feeds: the
first uses the Unix commandping to collect network statistics
about the route toh while the second performs a remote shell in-
vocation usingssh to gather statistics about how long the machine
has been up. Both of these feeds use theproc constructor in the
sourcesfield to compute the data on the fly, rather than reading
it from a file. The argument toproc is a string that the system
executes in a freshly constructed shell. The pairing constructor for
feeds takes a pair of feeds and returns a feed of pairs, with elements
sharing the same scheduled fetch-time being paired. This semantics
conveniently produces a compound feed that for each host returns
a pair of its ping and uptime statistics, grouping together the in-
formation for each host. Of course, the full Arrakis monitoring ap-
plication uses many more tools than just ping and uptime to probe
remote machines; the full feed description has many more branches
than this simplified version.

Finally, we define the feedstats . The most interesting piece
of this declaration is thelist feed comprehension, given in square
brackets, that we use to generate a feed of lists. Given a hostlist
hl , the right-hand side of the comprehension considers each host
h from hl in turn. The left-hand side of the comprehension uses
thegen_stats feed generator to construct a feed of the statistics
for h. The list feed comprehension then takes this collection of
statistics feeds and converts them into a single feed, whereeach
entry is a list of the statistics for the machines inhl at a particular



let config_locations =
[("file:///arrakis/config/machine_list")];

feed raw_hostLists =
base {|
sources = all config_locations;
schedule = every 24 hours;
format = Hosts.Source; |}

let get_host (Hosts.Data h) = h
let get_hosts hl =

List.map get_host
(List.filter Hosts.is_node (get_good hl))

feed host_lists =
{| get_hosts hl | hl <- raw_hostLists,

is_good hl |}

feed gen_stats (h) =
let s = every 5 mins, timeout 1 min in
(
base {|

sources = proc ("ping -c 1 " ˆ h);
format = Ping.Source;
schedule = s; |},

base {|
sources = proc ("ssh " ˆ h ˆ " uptime");
format = Uptime.Source;
schedule = s; |}

)

feed stats =
foreach hl in host_lists update

[ gen_stats h | h <- hl ]

Figure 6. arrakis.fml : Simplified version of Arrakis feed.

scheduled fetch-time. We call each such entry asnapshotof the
system. The resulting feed makes it easy for down-stream users to
perform actions over snapshots, relieving them of the burden of
having to implement their own multi-way synchronization.

Given the list feed comprehension, theforeach...update
construct generates a feed of snapshots from the feed of hostlists.
Whenever a new host list arrives, theforeach...updatecon-
struct terminates the snapshot feed from the old host list and starts
generating a new snapshot feed from the new host list.

Note the difference between theforeach...createcon-
struct from the CoMon example and theforeach...update
construct. The create form generates a collection of feeds and
merges their contents into a single all-inclusive feed. Theupdate
form generates a collection of feeds and produces a single feed by
concatenating the collection, stopping one feed as soon as the next
is generated. We have found the create form to be useful when the
actual arrival times of the argument feed are regular because the
regularity means we can give a finite schedule for the dependent
feed. In contrast, the update form is useful when the argument feed
is irregular and we must give an infinite schedule for the depen-
dent feed to ensure we get the desired values. We define precise
semantics for the create and update forms in Section 5.

4. PADS/D: Working with Feeds
4.1 The “Off the Shelf” User

ThePADS/D system provides a suite of “off-the-shelf” tools to help
users cope with standard data administration needs. After writing
a PADS/D description, users can customize these tools by writing
simpleconfiguration files, such as shown in Figure 7. Each con-
figuration file includes a feed declaration header and a sequence

feed comon.fml/comon

tool feedaccum
{

minalert = true;
maxalert = true;
lesssig = 3;
moresig = 3;
slicesize = 10;
slicefile = "slice.acc";
totalfile = "total.acc";

}

tool rss
{

title = "CoMon Memory RSS";
link = "http://www.comon.org/memory-rss.xml";
desc = "CoMon Memory Usage Information";
path = "<top>.[?].Mem_info";

}

Figure 7. comon.tc : Example tool configuration file.

=================================================== ===
Summary of network transmission errors
=================================================== ===
ErrCode: 1 ErrMsg: Misc HTTP error Count: 12
ErrCode: 5 ErrMsg: Bad message Count: 27
ErrCode: 6 ErrMsg: No reply Count: 2

=================================================== ===
Top 10 locations with most network errors
=================================================== ===
Loc: http://planetlab01.cnds.unibe.ch:3121 Count: 2
Loc: http://pepper.planetlab.cs.umd.edu:3121 Count: 2
Loc: http://planetlab3.cs.uchicago.edu:3121 Count: 2
... omitted ...

Figure 8. comon.acc : Fragment of accumulator output.

path :: =
"<top>"

| path.ID (field/variant name)
| path.INT (branch number (from 1) of a tuple)
| path.[?] (any one element of array/table)
| path.[*] (all elements of array/table)
| path.[INT] (nth element of array (from 0))
| path.[Key] (a table entry indexed by the Key)

Figure 9. Selector path language.

of tool specifications. The header specifies the path to the feed de-
scription file (comon.fml ) and the name of the feed to be created
(comon). Each tool specification starts with the keywordtool fol-
lowed by the name of the tool (e.g., feedaccum andrss ). The
body of each tool specification lists name-value pairs, where val-
ues are OCAML expressions. Some attributes are optional, and the
compiler fills in a default value for every omitted attribute. PADS/D
compiles a configuration file into an OCAML program that creates
and archives the specified feed, configures the specified tools, and
applies them to the feed in parallel. In the following paragraphs, we
describe the tools we have implemented.

Archiver. The archiver saves the data fetched by a feed in
the local file system, organizing it according to the structure of
the feed, with one directory per base feed. It places a catalog in
each directory documenting the source of the data, its scheduled
arrival time and the actual arrival time. The archiver will optionally
compress files.

Printer. The printer outputs the contents of a feed. If configured
to print to a single file, the tool concatenates successive items with a



specified separator. If configured to print to multiple files,it outputs
the contents of each base feed into a separate file.

Profiler. The profiler monitors performance, reporting through-
put, average network latency and average system latencies over a
period of time. Users can specify in the configuration when topro-
file and for how long. We used this tool to produce some of the
experimental results in Section 6.4.

Accumulator.The accumulator maintains statistical profiles for
feeds, including their error characteristics. For numericdata, the
accumulator keeps aggregates such as averages, max/min values
and standard deviations. For other data (e.g., strings, URLs and
IP addresses), it keeps the frequency of the topN most common
values. For all data, it tracks error rates, the most common error
values and their sources. The user can configure the accumulator to
profile entire feeds at once, or incrementally. The latter isuseful for
infinite feeds, because it allows users to continuously monitor feeds
and compare their current behavior with historical statistics. The
accumulator can output either plain text or XML. Figure 8 shows
portions of accumulator output for the CoMon example.

Alerter. The alerter allows users to register boolean functions
which generate notifications when they evaluate to false on feed
items. The tool appends these notifications to a file, which can be
piped into other tools. The system provides a library of common
alerters such as exceeding max/min thresholds or deviatingfrom
the norm (i.e., trigger an alert when a selected value strays more
than k standard deviations from its historical value). Users can
supply their own conditions by giving arbitrary OCAML predicates
in the configuration file.

Database loader.This tool allows users to load numerical data
from a feed into a Round Robin Database (RRD) [21]. Users
specify a function to transform feed items into numeric values and
RDD parameters such as data source type and sampling rate. RRD
indexes the data by arrival time. It periodically discards old data
to make space for new. The tool supports time-indexed queries and
displays historical data as graphs.

Selector.The selector allows users to choose subcomponents
of feed elements using path expressions. It returns a feed ofthe
selected subcomponents, which may then be fed into other tools.
Figure 9 shows the path expression language, partly inspired by
XPATH [8].

RSS feed generator.The RSS feed generator converts aPADS/D
feed to an RSS feed. Users specify the title, link (source), descrip-
tion, update schedule and contents of the RSS feed. Content speci-
fications are written in the path expression language.

4.2 The Single-Minded Implementer

In addition to the off-the-shelf tools,PADS/D includes an API for
manipulating generated feeds. The API provides users with afeed
abstraction representing a potentially infinite series of elements.
This abstraction is related to that of a lazy list, but extends it with
support for data timing and provenance information. Therefore,
we model the feed API on the list APIs of functional languages
but provide two levels of abstraction. One level allows users to
manipulate feeds like any lazy list of data elements (ignoring where
they come from), while the other exposes the metadata as well.

For example, consider PlanetLab users looking for a desirable
set of nodes on which to run their experiments. They can use the
API generated from the CoMon description to monitor PlanetLab
for a few minutes to find the least loaded nodes. Figure 10 shows
an OCAML code fragment that collects the nodes with the low-
est average loads over 10 minutes and then prints them. We omit
the details for maintaining the table of top values, as it is orthogo-
nal to our discussion. First, we useFeed.split_every to split
the feed when 600 seconds (10 minutes) have elapsed. Then, we
useFeed.map to project the load data from the CoMon elements.

let (sample, _) = Feed.split_every 600. comon in
let select_load = function

Some {Comon_format.Source.
loads = (_, load::_)} -> Some load

| None -> None in
let loads = Feed.map select_load sample in
let load_tbl = Feed.fold update empty_tbl loads
in print_top 10 load_tbl

Figure 10. Code fragment finding least loaded PlanetLab nodes.

let update_m tbl adata =
let meta = Feed.get_meta adata in
let data = Feed.get_contents adata in
match meta, data with

(h, Some basemeta), Some load ->
let location = Meta.get_link basemeta in
update tbl (location, data)

| _ -> tbl (* no change to tbl *) in
let load_tbl = Feed.fold_m update_m empty_tbl loads
in print_top_with_loc 10 load_tbl

Figure 11. Revised code fragment involving provenance metadata.

Finally, we useFeed.fold to collect the data into a table. Func-
tion update adds an entry to the table, andempty_tbl is the
initially empty table. After filling the table,print_top 10 pro-
cesses each node’s loads and prints the ten lowest average loads.

However, this solution is not enough – the CoMon data format
does not include the node location in the data, so the code in Fig-
ure 10 cannot report the names of the nodes with the lowest av-
erage loads. In such situations, provenance metadata is essential.
We therefore replace the last two lines of Figure 10 with the code
in Figure 11, to exploit metadata. First, we sketch anupdate_m
(update with meta) function that uses metadata to associatea lo-
cation with every load in the table. It relies on theMeta module,
which we provide to facilitate management of metadata from the
feed. Next, we show a call to the lower-level fold,fold_m (fold
with meta), which passes the data with its metadata to the folding
function. Last, the callprint_top_with_loc 10 prints the
ten lowest average loads with their locations.

It should be clear from these examples that the single-minded
implementer has a number of new interfaces to master relative to
the off-the-shelf user, but gains a correspondingly higherdegree of
flexibility and can still write relatively concise programs.

4.3 The Generic Programmer

Occasionally, users might want to develop functions that can ma-
nipulateany feed. Often, such functions can be written as para-
metric in the type of the feed element, much like the feed library
functions discussed above. However, the behavior of many feed
functions depends on the structure of the feed and its elements.
Such functions can be viewed asinterpretationsof feed descrip-
tions. To support their development, we provide a frameworkfor
writing feed interpreters.

Two core examples of feed interpretations are the feed cre-
ator and the feed accumulator. The behavior of these tools de-
pends essentially on the structure of the feed. Functions like
these require as input a runtime representation of the feed,com-
plete with the details of the feed description that they repre-
sent. The obvious choice for representing feed descriptions in
OCAML is a datatype. However, standard OCAML datatypes are
not sufficiently typeful to express the types of many genericfeed
functions. For example, the feed creation function has the type:
feed_create : ’a prefeed -> ’a feed where the type
’a prefeed is an AST of a feed description and feed ele-
ments have type’a . This limitation of datatypes has been widely



(host-language base types)
b ::= bool | string | loc | time | sched

(host-language types)
τ ::= b | τ option | τ1 ∗ τ2 | τ1 + τ2 | τ list | τ1 → τ2

(host-language values)
v ::=

false | true booleans
| w | ℓ | t | s strings, locations, times, schedules
| None | Some v optional values
| (v1, v2) pairs
| inl v | inr v sum values
| [v1, . . . , vn] list values
| λx:τ.e function values

(host-language expressions)
e ::=

x variables
| v data values
| None | Some e option expressions
| ... more typed lambda expressions

Figure 12. Host Language Syntax.

discussed in the literature, and various solutions have been pro-
posed [11, 31, 32, 34]. We have chosen to represent our AST
using a variant of the Mogensen-Scott encoding [18, 30] which
exploits higher-order abstract syntax to encode variable binding in
feed descriptions. This implementation strategy exploitsOCAML ’s
module system to type the encodings inFω. Our earlier work on
PADS/ML [11] exploited a similar strategy, but there we only sought
to encode the OCAML type of the data, not the entirePADS/ML de-
scription, which is where higher-order abstract syntax becomes
useful.

The result of our work is that developers can interpret feed-
description representations by case analysis on their structure,
while still achieving the desired static guarantees. Moreover, we
have successfully used this framework to developall of the tools
presented in this paper, including the feed creator. The compiler
only infers appropriate type declarations from feed descriptions
and compiles the feed syntax into our representations. However,
as one might expect, interfaces using higher-order abstract syntax
and Mogensen-Scott encodings are one step more complex than
those involving the more familiar maps and folds. Consequently,
the learning curve for the generic programmer is one step steeper
than the curve for the single-minded implementor, and two (or
perhaps ten) steps steeper than the curve for the off-the-shelf user.

5. PADS/D Semantics
Developing a formal semantics forPADS/D has been an integral
part of our language design process. We have used the semantics
to communicate our ideas precisely and to explore the nuances of
design decisions. Furthermore, the semantics provides users with a
tool to reason about the feeds resulting fromPADS/D descriptions,
including subtleties related to synchronization, timeouts and errors.

To express locations, schedules, and constraints, the feedcalcu-
lus depends upon ahost language, which we take to be the simply-
typed lambda calculus. Figure 12 presents its syntax, whichin-
cludes a collection of constants to simplify the semantics:strings
(w), locations (ℓ), times (t), and schedules (s). We assume times
may be added and compared and we let∞ represent a time later
than all others. We treat schedules as sets of times and use the nota-

(feed types)
σ ::= τ | τ option | σ1 ∗ σ2 | σ1 + σ2 | σ list

(core feed spec)
C ::=
{ src = e1; source specification
sched = e2; schedule specification
win = e3; time-out window specification
pp = e4; pre-processor
format = e5; } format specification

(feed specs)
F ::=

all C all sources
| any C one of multiple sources
| ∅ empty feed
| [e1 | x ∈ e2] computed feed
| {|e | x← F |} feed comprehension
| filter F with e filter feed
| let x = e1 in F2 let feed
| F1 ∪ F2 union feed
| F1 + F2 sum feed
| (F1, F2) synchronous pair
| x:F1 ∗ F2 dependent continuous pair
| x:F1 ∗∗F2 dependent local pair
| foreach∗ x in F1 for eachx create continuousF2

create F2

| foreach∗∗ x in F1 for eachx update localF2

update F2

| [F | x← e] list comprehension feed

Figure 13. Feed Language Syntax.

tion t ∈ s to refer to a timet drawn from the sets. We use a similar
notation to refer to elements of a list. The host language also in-
cludes standard structured types such as options, pairs, sums, lists
and functions. We omit the typing annotations from lambda expres-
sions when they can be reconstructed from the context.

5.1 Feed Syntax and Typing

The abstract syntax for our feed calculus and its typing rules appear
in Figures 13 and 14, respectively. The feed typing judgmenthas
the formΓ ⊢ F : σ feed, which means that in contextΓ mapping
variables to host language typesτ , feedF produces a sequence of
values of typeσ. As shown in Figure 13, we defineσ in terms of
host language types, stratified to facilitate the proof of semantic
soundness. Feed typing depends upon a standard judgment for
simply typing lambda calculus expressions:Γ ⊢ e : τ . We discuss
the syntax and typing for each construct in turn.

Core feeds express the underlying structure of base feeds, de-
scribing the data sources (src), schedule (sched), window (win),
preprocessing function (pp), and file format (format). The source
field may contain pseudo-locations that model theproc form found
in the implementation. Instead of expressing time-out conditions in
the schedule as we did in the source language, the calculus requires
such conditions be specified in the window field, which slightly
simplifies the semantics. The preprocessor and the format parser
both map values with option type to option type, where the value
None indicates a networking or data formatting error. (For the sake
of simplicity, we do not model the variety of error codes thatthe
implementation supports.) Consequently, if the format intuitively
describes values of typeτ , the feed will return a sequence of values
of typeτ option, allowing for the possibility of errors. The typing



for core feeds reflects our choice to have their semantics be apair
of the underlying schedule and the actual feed elements.

The feedall C selects all the data from the core feedC, while
any C selects a representative good value for each time in the
schedule forC. It inserts aNone if no such value exists.

The empty feed (∅) contains no elements and has polymorphic
type a là the empty list. The computed feed ([e1 | x ∈ e2]) allows
programmers to generate a feed with schedulee2 and elements
(λx.e1) t, wheret is drawn from the schedule. Likewise, the feed
comprehension ({|e | x ← F |}) creates a feed with elements
(λx.e) v whenv is an element ofF . The feedfilter F with e
eliminates elementsv from F when e v is false. Let feeds
let x = e1 in F2 provide a convenient mechanism for binding
intermediate values. The union feed merges two feeds with the
same type into a single feed. In contrast, the sum feed takes two
feeds with (possibly) different types and injects the elements of
each feed into a sum before merging the results into a single feed.

The calculus also contains three different pair constructors, each
providing a different way to combine elements from the subcom-
ponent feeds. The first pair, written(F1, F2), is asynchronous pair.
Elements ofF1 are paired with elements ofF2 that arescheduled
at exactly the same time, regardless of when those elements actu-
ally arrive. Synchronous pairs are most useful when the underlying
subcomponent feeds share the same schedule, as in the Arrakis ex-
ample from Section 3. Synchronous pairs lack a dependent variant,
however, because in our domain it is not sensible to schedulethe
acquisition of an element that depends upon another elementsched-
uled at the same time. To express dependencies, we use two forms
of dependent pair,continuousandlocal. In the continuous variant,
each elementx of F1 is paired with all elements of the feedF2 that
depend onx. In the local variant, each elementx of F1 is paired
with all elements of the feedF2 until the next elementy of F1 is
scheduled. The denotational semantics, presented in the next sub-
section, makes this idea precise. Local pairing enables a paradigm
in which programmers define an infinite feedF2 that gets truncated
and regenerated whenever a new element inF1 is scheduled.

The final elements of the calculus include theforeach feeds
and the list comprehension feed. Intuitively, aforeach is identical
to a dependent pair in which the first element of the pair is omitted
from the data representation. Consequently, there are two forms of
foreach – one for each form of dependent pair. The notation∗
or ∗∗ serves as a syntactic mnemonic for the connection. The list
comprehension feed generates a feed of lists where each element of
the list is scheduled at the same time. It is akin to the synchronous
pair operation.

5.2 Feed Semantics

We give the semantics of our formal feed language in a denotational
style. The principal semantic functions areC[[C]]

E U
andF [[F ]]

E U
,

defining core feeds and feeds, respectively. In these definitions,E
is anenvironmentmapping variables to values andU is auniverse
mapping pairs of schedule time and location to arrival time and a
string option representing the actual data. Intuitively, the universe
models the network. WhenU(t1, ℓ) = (t2, Some w), the interpre-
tation is that if the run-time system requests data from location ℓ
at timet1 then string dataw will be returned at timet2. The time
t2 must be later thant1. WhenU(t1, ℓ) = (∞, None), networking
errors have made locationℓ unreachable.

The semantic functions yield a set of metadata/data pairs, where
the metadata is coded as follows.

m ::= (t, ℓ) base metadata
| (t, (m1, m2)) pair metadata
| (t,inl m) sum metadata
| (t,inr m) sum metadata
| (t, [m1, . . . , mk]) list metadata

Γ ⊢ e1 : loc list Γ ⊢ e2 : sched Γ ⊢ e3 : time
Γ ⊢ e4 : string option→ string option

Γ ⊢ e5 : string option→ τ option

Γ ⊢ {src =e1; sched =e2; win =e3;
pp =e4; format =e5; } : sched ∗ (τ option feed)

(t-core)

Γ ⊢ C : sched ∗ (σ feed)

Γ ⊢ all C : σ feed
(t-all)

Γ ⊢ C : sched ∗ (σ feed)

Γ ⊢ any C : σ feed
(t-any)

Γ ⊢ ∅ : σ feed
(t-empty)

Γ ⊢ e2 : sched Γ, x:time ⊢ e1 : τ

Γ ⊢ [e1 | x ∈ e2] : τ feed
(t-compute)

Γ ⊢ F : σ feed Γ, x:σ ⊢ e : τ

Γ ⊢ {|e | x← F |} : τ feed
(t-comph)

Γ ⊢ F : σ feed Γ ⊢ e : σ → bool

Γ ⊢ filter F with e : σ feed
(t-filter)

Γ ⊢ e1 : τ1 Γ, x:τ1 ⊢ F2 : σ2 feed

Γ ⊢ let x = e1 in F2 : σ2 feed
(t-let)

Γ ⊢ F1 : σ feed Γ ⊢ F2 : σ feed

Γ ⊢ F1 ∪ F2 : σ feed
(t-union)

Γ ⊢ F1 : σ1 feed Γ ⊢ F2 : σ2 feed

Γ ⊢ F1 + F2 : σ1 + σ2 feed
(t-sum)

Γ ⊢ F1 : σ1 feed Γ ⊢ F2 : σ2 feed

Γ ⊢ (F1, F2) : σ1 ∗ σ2 feed
(t-synch-pair)

Γ ⊢ F1 : σ1 feed Γ, x:σ1 ⊢ F2 : σ2 feed

Γ ⊢ x:F1 ∗ F2 : σ1 ∗ σ2 feed
(t-cont-pair)

Γ ⊢ F1 : σ1 feed Γ, x:σ1 ⊢ F2 : σ2 feed

Γ ⊢ x:F1 ∗∗ F2 : σ1 ∗ σ2 feed
(t-local-pair)

Γ ⊢ F1 : σ1 feed Γ, x:σ1 ⊢ F2 : σ2 feed

Γ ⊢ foreach∗ x in F1 create F2 : σ2 feed
(t-foreachcont)

Γ ⊢ F1 : σ1 feed Γ, x:σ1 ⊢ F2 : σ2 feed

Γ ⊢ foreach∗∗ x in F1 update F2 : σ2 feed
(t-foreachlocal)

Γ ⊢ e : τ list Γ, x:τ ⊢ F : σ feed

Γ ⊢ [F | x← e] : σ list feed
(t-listf)

Figure 14. Feed Language Typing.



C[[{src =esrc; = (S, {((t, ℓ),E [[ef (U ′(ℓ, t))]]
E
)) | t ∈ S andℓ ∈ E [[esrc]]E})

sched =esched; where
win =ewin; S = E [[esched]]E
pp =epp; timeout = λ(xt, (xat, xs)).if xat ≤ xt + E [[ewin]]

E
then xs else None

format =ef ; }]]E U U ′ = λ(xℓ, xt).E [[epp]]E (timeout (xt, U(xℓ, xt)))

F [[all C]]U E = A where(S,A) = C[[C]]U E

F [[any C]]
U E

= {it | t ∈ S}
where (S, A) = C[[C]]

E U

At = {(m, Some v) | (m, Some v) ∈ A andm.t = t}

it =



select one(At) if |At| > 0
((t,nowhere), None) if |At| = 0

F [[∅]]
E U

= { }

F [[[e1 | x ∈ e2]]]E U
= {((t, nowhere), E [[(λx.e1) t]]

E
) | t ∈ E [[e2]]E}

F [[{|e | x← F |}]]
E U

= {((m.t, nowhere), E [[(λx.e) v]]
E
) | (m, v) ∈ F [[F ]]

E U
}

F [[filter F with e]]
E U

= {(m, v) | (m,v) ∈ F [[F ]]
E U

andE [[e v]]
E

= true}

F [[let x = e1 in F2]]E U
= F [[F2]](E,x 7→E[[e1]]

E
) U

F [[F1 ∪ F2]]E U
= F [[F1]]E U

S

F [[F2]]E U

F [[F1 + F2]]E U
= {((m.t, inl m),inl v) | (m, v) ∈ F [[F1]]E U

}
S

{((m.t, inr m), inr v) | (m,v) ∈ F [[F2]]E U
}

F [[(F1, F2)]]E U
= {((m1.t, (m1, m2)), (v1, v2)) | (m1, v1) ∈ F [[F1]]E U

and(m2, v2) ∈ F [[F2]]E U
andm1.t = m2.t}

F [[x:F1 ∗ F2]]E U
= {(m2.t, (m1, m2)), (v1, v2)) | (m1, v1) ∈ F [[F1]]E U

and
(m2, v2) ∈ F [[F2]](E,x 7→v1) U

andm2.t > m1.t}

F [[x:F1 ∗∗F2]]E U
= {(m2.t, (m1, m2)), (v1, v2)) | (m1, v1) ∈ F [[F1]]E U

and
(m2, v2) ∈ F [[F2]](E,x 7→v1) U

andm2.t > m1.t

((m′
1, v

′
1) ∈ F [[F1]]E U

implies(m′
1.t ≤ m1.t or m′

1.t > m2.t))}

F [[foreach∗ x in F1 = {(m2, v2) | (t, (m1, m2)), (v1, v2)) ∈ F [[x:F1 ∗ F2]]E U
}

create F2]]E U

F [[foreach∗∗ x in F1 = {(m2, v2) | (t, (m1, m2)), (v1, v2)) ∈ F [[x:F1 ∗∗F2]]E U
}

update F2]]E U

F [[[F | x← e]]]
E U

= {((t, [m1, . . . , mk]), [v1, . . . , vk]) | ∃t.∀i : 1 . . . k.(mi, vi) ∈ F [[F ]]
E[x 7→zi] U

andmi.t = t}
where [z1, . . . , zk] = E [[e]]

E

Figure 15. Feed Language Semantics.

Since every metadata item contains a top-level timet, that time
can be used to serialize the set of items as a stream, and our
implementation does just that. Items scheduled at the same time
may appear in any order in the implementation’s serialized stream.
To refer to the top-level time in any metadata itemm, we writem.t.

Figure 15 presents the semantic definitions forC andF , using
conventional set-theoretic notations. The semantics depends upon
a semantics for the simply-typed host language, writtenE [[e]]E ,
whose definition we omit. We assume that given environmentE
with type Γ and expressione with type τ in Γ, E [[e]]E = v and
⊢ v : τ .

The meaning of core feedC is a pair consisting of the meaning
of the schedule ofC (written S) and the set of metadata/data pairs
for the feed. To calculate this data, thetimeout function checks
whether the item arrival timexat is within the window (E [[ewin]]

E
)

of the scheduled time (xt ∈ S), returningNone if not. Otherwise,
timeout returns its data argument (xs), which may beNone
because of other networking errors. Using thetimeout function,
we define an alternate universeU ′ that retrieves data from the
outside world, checks for a timeout, and applies the preprocessor
(E [[epp]]E) before returning. The feed data is then pairs of base
metadata(t, ℓ) with data defined byE [[ef (U ′(ℓ, t))]]

E
whereef

is thePADS-generated parser.
The semantics of both theall C and theany C feeds first

computes the meaning(S, A) of the core feedC. The all feed
simply returns the data componentA. Theany feed returns a set
with one element for each timet in the scheduleS. If the data
A contains at least one good value at timet, the any feed picks
an arbitrary member of this set, using the functionselect one.
Otherwise, the feed adds error value((t,nowhere), None) for t.



The meaning of the empty feed is the empty set. Computed
feeds yield one value per time in the given schedule. The dummy
location (nowhere) in the computed feed metadata indicates the
value had no physical source. Feed comprehensions also use the
dummy location. The filter feed and feed comprehensions together
model the full power of the feed comprehensions found in our
implementation. The semantics forlet , union and sum feeds are
all straightforward. The union feed is simply the set-theorectic
union of its constituent feeds. The sum feed injects the elements
of its constituent feeds into a sum and likewise takes their union.

We must take more care when defining the semantics of pairs.
The synchronous pair(F1, F2) is formed by finding all elements
of F1 at a given time (including erroneous elements) and all ele-
ments ofF2 at that time (again including erroneous elements) and
generating their Cartesian product. Notice that if the schedules do
not intersect, a synchronous pair will empty. The scheduledtime of
the composite item is the same as the scheduled times of the two
underlying feeds.

The elements of the continuous dependent pair (x:F1 ∗ F2)
are calculated by first determining the elements ofF1. For each
elementv in F1, we calculate the elements ofF2 by bindingx to
v in F2’s definition. The elements of the composite feed include
all elementsx of F1 paired with the corresponding elements of
F2 scheduled later thanx. As with synchronous pairs, we pair the
metadata from the constituent feeds in the composite feed. Unlike
synchronous pairs, the two elements of the pair do not share a
schedule time. We adopt the later time (i.e.,the time of the element
from F2) as the schedule time for the composite feed element.

Continuous and local dependent pairs differ in that local depen-
dent pairs suppress further data dependent upon itemv1 from F1

when the next itemv′
1 from feedF1 arrives. In the semantics, the

existence of another element(m′
1, v

′
1) in F1 after(m1, v1) implies

that the schedule time for the item under consideration inF2 (v2)
must fall between the schedule times forv1 andv′

1 (otherwisev2 is
not included in the final composite feed).

The semantics for the two variants offoreach are defined in
terms of the two variants of dependent pairs, simply dropping the
first component of each item in the pair feed in both cases. The
semantics of the list comprehension feed extends the semantics of
synchronous pairs to lists: each list in the resulting feed contains
the elements of the generated list with the same scheduled time.

We have proven a soundness theorem for the semantics: the
values contained in each feed are pairs of meta-data and datavalues
with the appropriate type. More specifically, if the feed typing rules
give feedF typeσ feed, then its data has typeσ and its meta data
has typemeta(σ) wheremeta(σ) is defined as follows.

meta(τ ) = time ∗ loc
meta(τ option) = time ∗ loc
meta(σ1 ∗ σ2) = time ∗ (meta(σ1) ∗meta(σ2))
meta(σ1 + σ2) = time ∗ (meta(σ1) + meta(σ2))
meta(σ list) = time ∗ (meta(σ) list)

Theorem 1 (Semantic Soundness)
If Γ ⊢ F : σ feed and for all x in dom(Γ), ⊢ E(x) : Γ(x)
and⊢ U : time ∗ loc → time ∗ (string option) then for all
(m, v) ∈ F [[F ]]E U , ⊢ (m, v) : meta(σ) ∗ σ.

The proof follows by induction on the structure ofF .

6. PADS/D Implementation and Evaluation
ThePADS/D implementation has three parts: the compiler, the run-
time system, and the built-in tools library. We describe these parts
in turn and evaluate the overall system performance and design.

let simple_comon =
{ frep = fun ff ->

ff. all
{Combinators. format = Comon_format.Source.parse;
print = Comon_format.Source.print;
format_rep = Comon_format.Source.tyrep;
incremental = false;
header_format = None;
locations = sites;
schedule =

Schedule. every (Time.now (), 10.,
Schedule.default_duration, 60.);

has_records = Comon_format.__PML__has_records;
pp = None}}

Figure 16. Code fragment of compiled simplecomon feed

6.1 The Compiler

ThePADS/D compiler consists oftcc , the tool configuration com-
piler for .tc files, andfmlc , the compiler for feed declarations (.fml
files). Both compilers convert their sources into OCAML code,
which is then compiled and linked to the runtime libraries. We im-
plemented both tools withCamlp4 , the OCAML preprocessor.

The fmlc compiler performs code generation in two steps.
First, the code generator emits the type declarations for each feed.
Second, it generates representations for each feed description. The
compiler constructs these representations by extracting elements
from the concurrently generatedPADS/ML libraries and using poly-
morphic combinators to build structured descriptions. Figure 16
shows a fragment of the compiled code for the simple CoMon feed
in Figure 2.

6.2 The Runtime System

We implement eachPADS/D feed as a lazy list of feed items.
Following the semantics in Section 5, a feed item is a metadata/data
pair, although the meta-data in the implementation is richer, adding
data arrival times and more detailed error information.

ThePADS/D runtime system is a multi-threaded concurrent sys-
tem that follows the master-worker implementation strategy. Each
worker thread either fetches data from a specified location and
parses the data into an internal representation (therep), or synthe-
sizes its data by calling a generator function. Using error condi-
tions, location, scheduled time and arrival time, the worker gener-
ates the appropriate metadata, pairs it with the rep and pushes the
feed item onto a queue. The master thread pops the feed item from
the queue on demand,i.e., when the user program requests the data.
The worker thread iseager, which guarantees that all data will be
fetched and archived, but the master thread islazy, which allows
application programs to process only relevant data.

We used theOcamlnet 2 library [29] to implement the fetch-
ing engine. It batches concurrent fetch requests into groups of 200,
a size which balances maximizing throughput with avoiding over-
whelming the operating system with too many open sockets.

6.3 Tools Library

As explained in Section 4, we implemented thePADS/D off-the-
shelf tool suite using our generic tool framework. Some tools de-
pend upon auxiliary tools. For instance, the feed selector calls a
data selector built under thePADS/ML generic tools framework
[11] for base feeds. Other tools depend upon external libraries.
For instance, thefeed2rrd tool requires the RRD round-robin
database [21] and thefeed2rss tool uses the XML-Light pack-
age [19] for parsing and printing.
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Figure 17. Average throughput and latencies per node

6.4 Experiments

To assess performance, we measure the average network latency to
fetch a data item, the average system latency to return a dataitem
after receiving it from the network and the throughput of thesystem
using the CoMon feed description in Figure 4. The throughput
measures the average number of items fetched per second.

All the experiments were conducted on a Mac Powerbook G4
computer with a 1.67GHz CPU and 2GB memory running Mac OS
X 10.4. In each experiment, we randomly selected 16 subsets of
PlanetLab nodes, with increasing size from 50 to 800 in increments
of 50. For each set, we applied the profiler tool for the CoMon
feed twice, one without archiving and one with it, to measurethe
throughput and latencies as the system fetched from these node
lists. We repeated the experiment ten times and calculated the
average values.

Figure 17 shows the average throughput and the average net-
work and system latencies. Generally, the throughput hits peaks at
multiples of 200 since the system supports up to 200 concurrent
fetches. An anomaly occurred at 400 nodes, as a number of nodes
were unreachable because of DNS failures. Note that while network
latency increases with the number of nodes, system latency remains
almost constant and relatively low, showing that thePADS/D run-
time system adds little overhead to the inevitable network fetching
cost. Also note that the network latency is almost linear in the num-
ber of nodes. The experiments show that the system can fetch from
800 nodes and archive the resulting data in under 40 seconds,well
under the 5 minute turnaround time currently supported by CoMon.
Taken together, these results suggest thatPADS/D is capable of sup-
porting PlanetLab-scale monitoring applications.

6.5 Language or Library

Our feed language is a veneer on OCAML built with theCamlp4
preprocessor. A natural question is whether the system would be
better implemented as a library rather than a language extension.
For the reasons described in the following paragraphs, we chose to
present our work as a language.

Automatic elimination of boilerplate code.The compiler elim-
inates boilerplate code by (a) generating both type declarations and
values from descriptions (particularly record types and datatypes),
something that cannot be done in a library, (b) packaging defini-
tions in modules for name-space management and functor usage,
(c) automatically filling in defaults for values omitted from config-
uration files, and (d) generating complete, stand-alone executables
from declarative descriptions and configurations.

Syntax and simplicity of coding style.The underlying interfaces
areveryhigher-order, which, without surface sugar, would force a
complex coding style on the off-the-shelf user. For instance, almost
every line of a description would be translated to an increasingly
nested combinator application, and every variable bindingwould
induce a use of higher-order abstract syntax.

Generic programming.OCAML (and most other potential host
languages) has no direct support for the generic programming
needed to implement the tool suite. After considerable study, the
most effective way we have found to provide the required generic
programming interface involves judicious use of unsafe casts under
the covers. By generating type representations using the compiler,
we guarantee these casts cannot go wrong.

Integration with PADS. CorePADS [12, 13, 14, 16] has had suc-
cess as a language extension on top of C as well as OCAML . Its pur-
pose is to describe and document properties of ad hoc data sources
as well as to facilitate generation of local, single-sourcetools. Ex-
tending such descriptions to include source location, availability
and access mode helps complete the documentation in a singlecen-
tralized specification and through a uniform notation. It gives off-
the-shelf users everything they need in a single language. Forcing
a division of the specification into part library/part language would
ruin its cohesiveness, particularly in the context of dependent feeds
where there is tight interplay between access mode, location, sched-
ule and format.

Though we believe our current design is well motivated, we also
believe the ideas presented here can transcend their current imple-
mentation. By defining a compact feed calculus with a precisese-
mantics, we allow the possibility for others to embed our abstrac-
tions directly in a language such as Haskell that provides superior
support for generic programming.

7. Related Work
Because of space considerations, we survey only the most closely
related work.

Systems monitoring. One early and widely-used protocol for sys-
tem monitoring is SNMP, the simple network management proto-
col [5], which is supported by commercial tools such as HP’s Open-
View [2] and free tools such as MRTG [22]. It provides an open
protocol format, where vendors supply management information
bases (MIBs) that provide a hierarchical description of thehard-
ware’s monitoring information. By separating the data description
into the MIB, SNMP can be more concise than XML, but it has
poor support for ad hoc data, and it is more difficult to updatewith
new data types or even changes to the data format.

For Grid or cluster environments, two popular monitoring tools
are Ganglia [17] and Nagios [3]. Ganglia focuses more on continu-
ous monitoring of usage information and consolidates information
provided by OS tools like vmstat, iostat, uptime,etc. Nagios fo-
cuses more on availability information, and logs (or delivers) fail-
ure and recovery events. Ganglia uses raw data in XDR for its na-
tive fields and XML-encapsulated fields for extensions. Nagios has
no standard data format, but instead gathers all data by periodi-
cally executing user-specified commands described in a configura-
tion file. The commands use standardized return values to express



status and are typically restricted to no more than 4KB of monitor-
ing data.

What distinguishesPADS/D from systems like SNMP or Gan-
glia is the ability to automatically parse and monitor virtually any
kind of ad hoc data, from node-level information like that col-
lected by Ganglia or SNMP, all the way down to application-level
or even protocol-level data. These areas are the ones that are not
well served by today’s general-purpose monitoring systems. More-
over, the ability to use the same data description to automatically
build parsers, in situ tools, and monitoring systems directly from
declarative descriptions represents an ease of use not available in
other systems.

Functional Programming. The implementation ofPADS/D de-
pends upon a tremendous body of past research in both functional
stream processing and generic programming. Rather than compet-
ing with these technologies,PADS/D builds upon them and makes
them highly accessible to off-the-shelf users in an important new
domain – that of distributed ad hoc data processing.

Reactive Functional Programming. FRP [9] shares a tenuous re-
lationship to work onPADS/D in that both technologies arise from
the need to perform processing on a schedule over time-indexed
values. However, FRP focuses on the definition and implementa-
tion of continuoustime-varying values. So far, we have not found
use for such values in our domain, only for discrete time-indexed
sequences of events.

Web Mashups. Web Mashup languages such as MashMaker [10]
and Yahoo Pipes [33] allow naive web programmers to extract data
from web sites and RSS feeds and recombine them, often using
conventional functional programming paradigms such as mapand
filter. The focus is on end-user programming with relativelysmall
amounts of data that can be displayed to a user in a web browser.
Errors are generally ignored as completeness or absolute correct-
ness of information is not critical in the domains of interest. Unlike
PADS/D, which allows users to write rich descriptions expressing
the location, format, schedule and access mode of the data, Ya-
hoo Pipes, for instance, acquires data through a fixed collection of
black boxes. For this reason,PADS/D and mashup languages have
the potential to be complementary technologies, withPADS/D de-
scriptions serving to define new ad hoc data sources for mashups.
In fact, this idea motivated the design and implementation of the
PADS/D ad hoc-to-RSS conversion tool.

8. Conclusions
The explosive growth of the Internet has made monitoring andman-
aging data systems distributed across wide-area networks increas-
ingly important. The possibility of partial failure and theneed to
synchronize makes such code tedious and difficult to write cor-
rectly, particularly for data experts whose skills are in domains
other than networking. In this paper, we describe thePADS/D sys-
tem, which allows users to declaratively specify their datasystems
and then generate a wide-variety of tools for manipulating the data:
from stand-alone tools, to simple libraries for writing their own
analyses, to generic libraries for building new generic tools. We
precisely specify the meaning of our language via a sound denota-
tional semantics and show via experimentation that the system has
acceptable performance overheads.
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