
An Operational Semantics for Network Datalog

Vivek Nigam1, Limin Jia2, Anduo Wang1,
Boon Thau Loo1, and Andre Scedrov1

1 University of Pennsylvania, Philadelphia, USA
{vnigam,scedrov}@math.upenn.edu, {anduo,boonloo}@seas.upenn.edu

2 Carnegie-Mellon University, Pittsburg, USA
liminjia@cmu.edu

Abstract. Network Datalog (NDlog) is a recursive query language that extends Datalog by allowing
programs to be distributed in a network. In our initial efforts to formally specify NDlog’s operational se-
mantics, we have found several problems with the current evaluation algorithm used, including unsound
results, unintended multiple derivations of the same table entry, and divergence. In this paper, we make
a first step towards correcting these problems by formally specifying a new operational semantics for
NDlog and proving its correctness for the fragment of non-recursive programs. Our formalization uses
linear logic with subexponentials. We also argue that if termination is guaranteed, then the results also
extend to recursive programs. Finally, we identify a number of potential implementation improvements
to NDlog.

1 Introduction

Declarative networking [10–13] is based on the observation that network protocols deal at their core with
using basic information locally available, e.g., neighbor tables, to compute and maintain distributed states,
e.g., routes. In this framework, network protocols are specified using a declarative logic-based recursive query
language called Network Datalog (NDlog), which can be seen as a distributed variant of Datalog [20]. In prior
work, it has been shown that traditional routing protocols can be specified in a few lines of declarative
code [13], and complex protocols such as Chord distributed hash table [22] in orders of magnitude less
code [12] compared to traditional imperative implementations. This compact and high-level specifications
enable rapid prototype development, ease of customization, optimizability, and the potentiality for protocol
verification. When executed, these declarative networks result in efficient implementations, as demonstrated
in open-source implementations [19, 21].

An inherent feature in networking is the change of local states due to usually small and incremental
changes in the network topology. For example, a node might need to change its local routing tables whenever
a preferred connection becomes available or when it is no longer available. Reconstructing a node’s local
state from scratch whenever there is a change in topology is impractical, as it would incur unnecessarily high
communication overhead. For instance, in the path-vector protocol used in Internet routing, recomputation
from-scratch would require all nodes to exchange all routing information, including those that have been
previously propagated.

Therefore in declarative networking, nodes maintain their local states incrementally as new route messages
are received from their neighbors. In literature, there are well known techniques for maintaining databases
incrementally [8], in the form of materialized views, based in the traditional semi-näıve (SN) [3] evaluation
strategy for Datalog programs. In order to accommodate these techniques to a distributed setting, Loo et
al. in [10] proposed a pipelined semi-näıve (PSN) evaluation strategy for NDlog programs. PSN relaxes SN
by allowing a node to change its local state by following a local pipeline of update messages, specifying the
insertions and deletions scheduled to be performed to its local state.

Due to the complexity of combining incremental database view maintenance with data and rule distri-
bution, until now, there is no formal specification of PSN nor a correctness proof. As PSN allows each node
to compute its local fixed point and disregard global update ordering, PSN does not necessarily preserve the

semantics of the centralized SN algorithm. However, in a distributed setting, centralized SN evaluation is
not practical. Therefore, studying the correctness properties of a distributed SN evaluation is crucial to the
correctness of declarative networking.

In this paper, we aim to give formal treatment of the operational semantics of PSN and prove its cor-
rectness. In the process, we identify several problems with PSN, namely, that it can yield unsound results;
it can diverge; and it can compute the same derivation multiple times. In order to address these deficiencies,
we present a new evaluation algorithm for NDlog called PSNν and prove its correctness for the fragment of
non-recursive programs. We formalize both PSNν and SN algorithms as the search for proofs of the same
linear logic [7] theory extended with subexponentials [18]. Then, we show that a PSNν execution for a dis-
tributed NDlog program derives the same facts as an SN execution for a centralized Datalog program. This
property is proved by relating the linear logic proofs specifying PSNν computation-runs with the proofs
specifying SN computation-runs. We also argue that the same reasoning is applicable to proving correctness
of PSNν for recursive programs provided that PSNν terminates in the presence of messages inserting and
deleting the same tuple. Finally, we identify several potential implementation improvements by using PSNν .

The rest of the paper is organized as follows. In Section 2, we review the basics of NDlog and of a simple
SN algorithm used to maintain states incrementally in a centralized setting. Then, in Section 3 we review
the PSN algorithm, explain the problems of PSN, and informally introduce PSNν . Then, in Section 4, we
sketch our encodings of SN and PSNν in linear logic and in Section 5 we show our main correctness results.
Finally in Section 6, we comment on related work and conclude with final remarks in Section 7.

2 Preliminaries

In this section, we review the language Network Datalog (NDlog) [10], which extends Datalog programs by
allowing one to distribute Datalog rules in a network. Moreover, we also review an algorithm that maintains
views incrementally in a centralized setting. This algorithm based on the semi näıve evaluation strategy
will be later used as the basis for showing correctness of the distributed algorithm that we propose later in
Section 3.

2.1 Background: Datalog
We first review some standard definitions of Datalog, following [20]. A Datalog program consists of a (finite)
set of logic rules and a query. A rule has the form h(t) :- b1(t1), . . . , bn(tn), where the commas are interpreted
as conjunctions and the symbol :- as implication; h(t) is an atom called the head of the rule; b1(t1), . . . , bn(tn)

is a sequence of atoms and function relations called the body; and the ts are vectors of variables and ground
terms. We asume the universal quantification of any free variable in a Datalog rule. Function relations are
simple operations such as boolean, or arithmetic (e.g., X1 < X2), or list manipulations operations (e.g.,
f concat(S,P2)). Semantically the order of the elements in the body does not matter, but it does have an
impact on how programs are evaluated (usually from left to right). The query is a ground atom. We say that
a predicate p depends on q if there is a rule where p appears in its head and q in its body. The dependency
graph of a program is the transitive closure of the dependency relation using its rules. We say that a program
is (non)recursive if there are (no) cycles in its dependency graph. As a technical convenience, we assume that
if predicates have different arities, then they have different names1. We classify the predicates that do not
depend on any predicates as base predicates, and the remaining predicates as derived predicates. Consider
the following non-recursive Datalog program where p, s, and t are a derived predicates and u, q, and r are
base predicates: {p :- s, t, r; s :- q; t :- u; q :-; u :-}. The set of all the ground atoms that are
derivable from this program, called view or state, is the multiset {s, t, q, u}.

Datalog’s predicates (atoms) correspond to tuples in databases, and logical conjunction is equivalent to
a join operation in database. For the rest of the paper, these terms are used interchangeably.

2.2 Network Datalog by Example
To illustrate NDlog program, we provide an example based on a simplified version of the path-vector protocol,
a standard routing protocol used for paths between any two nodes in the network. This protocol is used
1 One can easily rewrite predicate names and distinguish them by using their arities.

2

as a basis for Internet routing today, where different autonomous systems (or Internet Service Providers)
exchange routes using this protocol.
r1 path(@S,D,P,C) :- link(@S,D,C), P=f_init(S,D).
r2 path(@S,D,P,C) :- link(@S,Z,C1), path(@Z,D,P2,C2), C=C1+C2,

P=f_concat(S,P2), f_inPath(P2,S)=false.

The program takes as input link(@S,D,C) tuples, where each tuple represents an edge from the node itself (S)
to one of its neighbors (D) of cost C. NDlog supports a location specifier in each predicate, expressed with “@”
symbol followed by an attribute. This attribute is used to denote the source location of each corresponding
tuple. For example, link tuples are stored based on the value of the S attribute.

Rules r1-r2 recursively derive path(@S,D,P,C) tuples, where each tuple represents the fact that there is
a path P from S to D with cost C. Rule r1 computes one-hop reachability, given the neighbor set of S stored
in link(@S,D,C). Rule r2 computes transitive reachability as follows: if there exists a link from S to Z with
cost C1, and Z knows a path P2 to D with cost C2, then S can reach D via the path f concatPath(S,P2) with
cost C1+C2. Rules r1-r2 utilize two list manipulation functions: P= f init(S,D) initializes a path vector with
two nodes S and D, while f concatPath(S,P2) prepends S to path vector P2. To prevent computing paths with
cycles, rule r2 uses the function f inPath which returns true if S is in the path vector P.

To implement the path-vector protocol in the network, each node runs the exact same copy of the above
program, but only stores tuples relevant to its own state. What is interesting about this program is that
predicates in the body of rule r2 have different location specifiers indicating that they are stored on a different
node. To improve performance and eliminate unnecessary communication, we use a rule localization [10]
rewrite procedure that transforms a program into an equivalent one where all elements in the body of a rule
have the same location, but the head of the rule may reside at a different location than the body predicates.
We call a rule non-local when the rule head and body have different location specifiers. We use the convention
that a non-local rule resides in the same location as its body predicates, and that when the rule is fired, that
is, all of its body elements are true, then the derived head predicate will be sent to the appropriate location
as specified. For the rest of this paper, we assume that the localization rewrite has been performed.

2.3 Maintaining Views Incrementally

Given a datalog program and a set of base tuples or facts, one derives all possible facts that can be derived
from the logic program by using bottom-up evaluation algorithms [20]. For instance, the view of the path
example above would consist of all possible paths in the network. However, consider now that there is a
change on set of base facts, for instance, when a new link in the network has been established or an old link
has been broken. In this case, one would need to update the view of the database in order to accommodate
the changes in the base predicates. One way of doing so is to forget all derived tuples and rederive the new
view from scratch. Since the changes to base predicates do not necessarily affect the derivations of all facts in
the original view of the database, starting from scrath might involve repeating unecessarily the same work. A
better way is to maintain a view incrementally, where one only takes into account the facts that are affected
by the changes to the base predicates, while the rest of the facts remain untouched.

Algorithm 1 is such an algorithm based on the traditional Semi-näıve (SN) evaluation strategy that
maintains a database incrementally when given a set of changes to base predicates [8]. Semi-näıve (SN)
evaluation iteratively updates the view until a fixed point is reached. Tuples computed for the first time in
the previous iteration are used as input in the current iteration; and new tuples that are generated for the
first time in the current iteration are then used as input to the next iteration.

First, we create for each rule h(t) :- b1(t1), . . . , bn(tn) in a Datalog program the following delta insertion
and deletion rules, where we use the names ins and del to denote an insertion and deletion, respectively:

ins(h(t)) :- bν
1(t1), . . . , b

ν
i−1(ti−1), ∆bi(ti), bi+1(ti+1), . . . , bn(tn)

del(h(t)) :- bν
1(t1), . . . , b

ν
i−1(ti−1), ∆bi(ti), bi+1(ti+1), . . . , bn(tn)

We start initially with two copies of the view, one marked with ν, corresponding to the predicates with
the ν superscript, and another not marked with ν. Then, given a set of insertions, Ik, and deletions, Dk,
for each base predicate, pk, Algorithm 1 uses the delta-rules above to incrementally maintain the view as
follows: If we are in, say, the ith + 1 iteration, then the contents of the table without ν corresponds to the
view at the ith− 1 iteration and the contents of the table with ν to the view at the ith iteration. The ith + 1

3

iteration consists of executing the delta-rules for all updates in Ik and Dk, and whenever an insertion or
deletion rule is fired, we store the derived tuple in Iν

k and Dν
k respectively. Once all rules have been executed,

we change the view accordingly and proceed to the next iteration, but now using the updates stored in Iν
k

and Dν
k , which correspond to the updates derived in iteration ith +1. This is done by the instructions in the

for loop which use set-operations.

Algorithm 1 SN-algorithm.

while ∃Ik.size > 0 or ∃Dk.size > 0 do
while ∃Ik.size > 0 or ∃Dk.size > 0 do

∆tk ← Ik.remove (resp. ∆tk ← Dk.remove)
Iaux

k .insert(∆tk) (resp. Daux
k .insert(∆tk))

execute all insertions (resp. deletion) delta-rules for tk:
∆pi+1

k ← pν
1 , . . . , pν

i−1, ∆tk, pk+1, . . . , pn

for all derived tuples p ∈ ∆pi+1
k do

Iν
k .insert(p) (resp. Dν

k .insert(p))
end for

end while
for all predicates pj do

pj ← (pj ∪ Iaux
j) \Daux

j ; pν
j ← (pj ∪ Iν

j) \Dν
j ; Ij ← Iν

j .f lush; Dj ← Dν
j .f lush;

Daux
j ← ∅; Iaux

j ← ∅; ∆pi+1
j ← ∅

end for
end while

Algorithm 1 maintains correctly the view of a Datalog program [8] whenever there is exactly one derivation
for any tuple. This limitation is due to the use of set semantics. However, Despite of this limitation, Algorithm
1 captures most of the programs used until now in declarative networking. For instance, we can use it to
maintain the datalog program for path vector program described above since any path tuple is supported by
just one derivation. There are other more complicated algorithms that can also maintain views of programs
where tuples have multiple supporting derivations. However, formalizing these algorithms seems to be a
non-trivial task and is left for future work.

3 Network Datalog Program Execution

Maintaining views incrementally in a distributed setting, however, generates many challenges. While in the
centralized setting one can enforce a high degree of synchronization, in a distributed setting this is in general
not the case. For example, in Algorithm 1 one processes older updates always before newer ones. On the
other hand, in a distributed setting an agent is not usually required to stop processing a newer update until
all other agents in the system have processed older updates. Such synchronization would make the system
unfeasible in practice [10].

Guaranteeing desirable properties, such as termination, in such an asynchronous setting is usually much
harder than in centralized setting. We review in this section the distributed evaluation algorithm currently
used by NDlog called pipelined semi-näıve (PSN). We identify some problems with this algorithm and then
propose a new evaluation algorithm called PSNν .

3.1 Problems in Pipelined Semi-näıve Evaluation

In order to maintain incrementally the states of nodes or agents in a distributed setting and at the same
time avoid synchronization among them, Loo et al. in [10, 11] proposed PSN. In PSN, each agent has a queue
of messages scheduling insertions and deletions of tuples to the agents’s local state. An agent proceeds in
a similar fashion as in Algorithm 1; it dequeues one update; then executes its corresponding insertion or
deletion delta-rules; and then for each derived tuple, it sends a message which is to be stored at the end of
the queue of the node specified by derived tuple’s location specifier (@).

4

@1: {}[] {p}[ins(p)] {p}[ins(p)] {p}[]
@2: {r,s,t}[ins(r)] {r,s,t}[] {r}[del(s),del(t)] {r}[]
@3: {}[del(q)] -- ins(r)--> {}[del(q)] -- del(q),del(u)--> {}[] ---->* {}[]
@4: {}[del(u)] {}[del(u)] {}[] {}[]

Fig. 1. PSN computation-run resulting in an incorrect final state. The ith row depicts the evolution of the view, in
curly-brackets, and the queue, in brackets, of node i. The updates in the arrows are the ones dequeued by PSN and
used to update the view of the nodes. We also elide the @ in the predicates and updates.

However, when a message reaches a node, it is not only stored at the end of the node’s queue, but also
immediately used to update the node’s local state, that is, the tuple in the message is immediately inserted
into or deleted from the node’s view. We now demonstrate that updating a node’s view by using messages
before they are dequeued can yield unsound results. Consider the following NDlog program, which is the
same program shown in Section 2.1, but now distributed over four nodes. The view of this program is {s@2,
t@2, q@3,u@4}:

p@1 :- s@2 t@2, r@2 s@2 :- q@3 t@2 :- u@4 q@3 :- u@4 :-

Consider as well the PSN computation-run depicted in Figure 1 which uses the messages inserting the
tuple r@2 and deleting the tuples q@3 and u@4. Notice that in the first state these updates have already been
used to update the view of the nodes as described in PSN. In the final transitions, none of the updates
deleting s or t trigger the deletion of p because the bodies of the respective deletion rules are not satisfied
since t and u are no longer in node 2’s view. Hence, the predicate p is entailed after PSN terminates although
it is not supported by any derivation.

The second problem that we identify is that unlike SN, PSN does not avoid redundant computations.
This is because in PSN a delta-rule is fired by using the contents currently stored in a node’s view, and
not distinguishing, as in SN, its two previous states, which in SN is accomplished by using the predicates
p and pν . For example, the NDlog rule p@1 :- t@1, t@1 would be rewritten into the following two insertion
rules, where we elide the @ symbols: ins(p) :- ∆t, t and ins(p) :- t, ∆t. Thus if we dequeue an update
inserting the tuple t, both rules are fired, and two instances inserting p are added to the queue of node 1.

Finally, the third problem that we identify is divergence. Consider the simple NDlog program composed
of two rules: p@1 :- a@1 and p@1 :- p@1; and that the node’s 1 queue is [ins(a),del(a)]. The insertion (resp.
deletion) of a will cause an insertion (resp. deletion) of p to be added at the end of the queue. Because of
the second rule, the insertion and deletion of p will propagate indefinitely many insertions and deletions of
p and therefore causing PSN to diverge.

In the informal description of PSN, presented in [10, 11], many assumptions were used, such as that
messages are not lost; a Bursty Model, that is, the network eventually quiesces (does not change) for a time
long enough to all the system to reach a fixed point; that message channels are assumed to be FIFO, hence
no reordering of messages is allowed; and that timestamps are attached to tuples in order to evaluate delta
rules. Even under these strong assumptions, the problems in PSN mentioned above persist. What is more
troublesome is that this design is reflected in the current implementation of NDlog and therefore, all NDlog
programs exhibit those flaws.

In the next section, we propose a new evaluation algorithm, called PSNν , which not only corrects these
problems, but also does not require the last two assumptions (FIFO channels and use of timestamps). The
removal of these two assumptions not only simplifies the implementation, but it also potentially leads to
improved performance, since the implementation no longer requires receiver-based network buffers necessary
to guarantee in-order delivery of messages.

3.2 New Pipelined Semi-näıve Evaluation
At a high-level, PSNν works as follows: Instead of using queues to store unprocessed updates, we use a single
bag, denoted as upd, that specifies the asynchronous behavior in the distributed setting by abstracting the
order in which updates are used. Thus in this abstraction, we do not need to take into account the @ specifiers
since all messages go to upd. We process NDlog rules into delta-rules exactly as in the SN algorithm, so that
the multiple derivation problem does not occur. Then, one PSNν-iteration is completed by executing in a
sequence the following three basic commands, which preserve the invariant that before and after a PSNν-
iteration the views of the tables with ν and without ν are the same:

5

pick – One picks (non-deterministically) any update, u, from the bag upd, except if u is a deletion of an
atom that is not (yet) in the view. Then, if u is an insertion of predicate p, we insert the corresponding pν

to the ν table, otherwise if it is a deletion of the same predicate, we delete pν from the ν table;
fire – After picking an update, one executes all the delta-rules corresponding to u. If a rule is fired, then we
insert the derived tuple into the bag upd.
update – Once all delta-rules are executed, we update the view according to u: if u is an insertion or deletion
of predicate p, we insert it into or delete it from the view without ν.

The execution of an SN-iteration can also be specified with the use of the same three basic commands
above. However, instead of applying just one sequence of the three commands, the ith + 1 SN-iteration
is composed of three phases: first, all elements in upd are picked using the pick command. The resulting
contents in the ν table is updated with the updates derived in the previous iteration. Hence, the contents
of the ν table correspond exactly to the view at the ith iteration, while the contents in table without ν
corresponds exactly to the view at the ith− 1 iteration, as in Algorithm 1. Then one executes the delta-rules
for all updates picked in the previous phase, deriving and storing new updates in the bag upd. After this
phase, upd contains the updates derived at the ith + 1 iteration. Finally, in the third phase, one executes
eagerly the update command which then updates the contents in table without ν to match the contents of
the table with ν.

4 Encoding PSNν and SN in Linear Logic with Subexponentials

We choose to use linear logic to specify the operational semantics of PSNν or of SN instead of a transition
system, because of the following two reasons. First, linear logic is a precise and well established language,
used already for both reasoning and specifying semantics of programming languages. Second, linear logic
provides us with a finer detail on how data is manipulated, thus opening the possibility to use our encoding
to prove the correctness not only of PSNν , but also of how it is implemented.

4.1 Linear Logic and Subexponentials
We review some of linear logic’s basic proof theory. Literals are either atoms or their negations. The connec-
tives ⊗ and O and the units 1 and ⊥ are multiplicative; the connectives & and ⊕ and the units > and 0 are
additive; ∀ and ∃ are (first-order) quantifiers; and ! and ? are the exponentials. We assume that all formulas
are in negation normal form, that is, negation has atomic scope.

Due to the exponentials, one can distinguish in linear logic two kinds of formulas: the linear ones whose
main connective is not a ? and the unbounded ones whose main connective is a ?. The linear formulas can
be seen as resources that can only be used once, while the unbounded formulas as unlimited resources which
can be used as many times necessary. This distinction is usually reflected in syntax by using two different
contexts in the sequent, one containing only unbounded formulas and another only linear formulas [1]. Such
distinction allows one to incorporate structural rules, i.e., weakening and contraction, into the introduction
rules of connectives.

However, the exponentials are not canonical [4]. In fact, we can assume the existence of a proof system
containing as many exponential-like operators, (!l, ?l) called subexponentials [18], as one needs: they may
or may not allow contraction and weakening, and are organized in a pre-order (�) specifying the entailment
relation between operators. Now, instead of only two contexts as in linear logic, sequents for such proof
systems with subexponentials have besides the linear context Γ as many contexts as needed, In these proof
systems the contexts for the subexponentials are denoted by the function K, called subexponential context,
which maps the set of subexponential indexes to multisets of formulas. If l is a subexponential index, we
denote by K[l] the multiset of formulas associated to l by K. Notice that a context K[l] behaves either like
the linear logic’s unbounded context or its linear context depending if the index l allows structural rules or
not. The preorder � is used to specify the introduction rule of subexponential bangs. As in its corresponding
linear logic rule, to introduce a !l one needs to check if some type of formulas are not present, namely, that
there are no formulas in the linear context nor in the contexts of the indexes k such that l 6� k.

Following [18], we use subexponential indexes to encode data structures, such as views, in the context of
a sequent. Given a set of ground atoms D, representing a view, for each predicate p, we store its view with

6

respect to D in the contexts of the subexponentials p and pν using the functions: KD[p] = {p [t] | p t ∈ D}
and KD[pν] = {pν [t] | p t ∈ D}, where [t] is a list of terms. We encode in a similar fashion updates using
the index upd, the query using the function query , and the encoding of program delta-rules using the index
rules. In order to keep track of which updates have been used to fire rules from those that have not, we use
the indexes picked, where we store updates that where picked from the upd bag, and exec, where we store
updates that have been used to fire delta-rules.

To check if the contexts of the indexes in the set I are all empty, we follow [18] and create a new index l̂

such that l̂ � k for all indexes, except those in I. Therefore one can only introduce the subexponential bang
of l̂ if the contexts for the indexes in I are all empty.

4.2 Focusing and algorithmic specifications

` K : Γ ⇑ L,> [>]
` K : Γ ⇑ L, A ` K : Γ ⇑ L, B

` K : Γ ⇑ L, A & B
[&]

` K : Γ ⇑ L

` K : Γ ⇑ L,⊥ [⊥]

` K : Γ ⇑ L, A{c/x}
` K : Γ ⇑ L, ∀x A

[∀]
` K +l A : Γ ⇑ L

` K : Γ ⇑ L, ?lA
[?l]

` K : Γ ⇑ L, A, B

` K : Γ ⇑ L, A O B
[O]

` K : Γ ⇓ Ai

` K : Γ ⇓ A1 ⊕A2
[⊕i]

` K1 : Γ ⇓ A ` K2 : ∆ ⇓ B

` K1 ⊗K2 : Γ, ∆ ⇓ A⊗B
[⊗], provided (K1 = K2) |I\B

` K : · ⇓ 1
[1], provided K[I \ B] = ∅

` K : Γ ⇓ A{t/x}
` K : Γ ⇓ ∃x A

[∃]

` K ≤l : · ⇑ A

` K : · ⇓ !l A
[!l], provided K[{x | l 6� x ∧ x ∈ B}] = ∅

` K : Γ ⇓ Ap
[I], provided A⊥

p ∈ (Γ ∪ K[I]) and (Γ ∪ K[B]) ⊆ {A⊥
p }

` K +l P : Γ ⇓ P

` K +l P : Γ ⇑ · [Dl], provided l ∈ I \ B
` K : Γ ⇓ P

` K +l P : Γ ⇑ · [Dl], provided l ∈ B

` K : Γ ⇓ P

` K : Γ, P ⇑ · [D1]
` K : Γ ⇑ N

` K : Γ ⇓ N
[R⇓]

` K : Γ, S ⇑ L

` K : Γ ⇑ L, S
[R⇑]

Fig. 2. The focused linear logic system SELLFΣ , where Σ = 〈I,�,B〉. Here, Ap is a positive literal; S is a positive
formula or a literal; P is a not a negative polarity literal; and N is a negative formula.

` K : Γ ⇓ Bθ

` K : Γ ⇓ p t̄
[def ⇓]

` K : Γ ⇑ L, Bθ

` K : Γ ⇑ L, p t̄
[def ⇑]

` K : · ⇓ t = t
[=]

{` Kθ : Γθ ⇑ ∆θ : θ ∈ csu(s, t)}
` K : Γ ⇑ ∆, s = t

[6=]

Fig. 3. Rules for definitions and equalities. In the definition rules, p t̄ = Hθ and ∀x[H
∆
= B] is a definition. In the

equalities rules, Kθ[i] = K[i]θ for all i ∈ I and csu(s, t) is the complete set of unifiers of s and t.

Focused proof systems, first introduced by Andreoli for linear logic [1], provide normal-form proofs for
proof search. Inference rules that are not necessarily invertible are classified as positive, and the remaining
rules as negative. Using this classification, focused proof systems reduce proof search space by allowing one
to combine a sequence of introduction rules of the same polarity into larger derivations, which can be seen
as “macro-rules” that introduce synthetic connectives. The backchaining rule in logic programming can be
seen as such macro-rule.

In [18], Nigam and Miller propose the focused system for linear logic with subexponentials called SELLFΣ ,
where Σ is a tuple 〈I,�,B〉 such that 〈I,�〉 is a preorder and B ⊆ I. Intuitively, I is set of subexponential
indexes and its subset B specifies the subexponentials that do not allow for contraction nor for weakening.

7

We usually elide the subexponential context whenever it is clear from the context. In order to introduce
SELLF, we first classify formulas whose main connective is ∃,⊗,⊕, 1, and the subexponential bang, and
positive literals as positive. The remaining formulas are classified as negative. SELLF is a straightforward
generalization of Andreoli’s sytem. As in the original presentation for linear logic, there are two sequents:
one with the ⇑ which belongs to the negative phase, and another with the ⇓ which belongs to the positive.
Each sequent has two contexts to the left of the arrow of the form K : Γ . The multiset Γ is the linear context
that collects the formulas whose main connective is not a subexponential question-mark, and K is an indexed
function from the set I of subexponential indexes to multiset of formulas. Given a subexponential signature
〈I,�,B〉, we specify the following operations over these contexts:

• (K1 ⊗K2)[i] =
{
K1[i] ∪ K2[i] if i /∈ C
K1[i] if i ∈ C ∩W • K[S] =

∪
{K[i] | i ∈ S}

• (K +l A)[i] =
{
K[i] ∪ {A} if i = l
K[i] otherwise • K ≤i [l] =

{
K[l] if i � l
∅ if i � l

• (K1 ?K2) |S is true if and only if (K1[j] ?K2[j])

where i ∈ I, j ∈ S, S ⊆ I, and ? ∈ {=,⊂,⊆}.
To illustrate how algorithmic specifications can be specified in SELLF, consider the following linear logic

definitions:

load 〈t1, . . . , tn〉 l prog
∆= ?l(l t1 · · · tn) O prog

unload l 〈v1, . . . , vn〉 bprog
∆= (l v1 · · · vn)⊥ ⊗ (bprog v1 · · · vn)

loop l kprog prog
∆= ∃v1 · · · vn[(l v1 · · · vn)⊥⊗

(kprog v1 · · · vn) (loop l kprog prog)]⊕ !l̂(prog)
end ∆= ⊥

In a focused system, these definitions are enforced to behave as follows [18]: The definition load 〈t̄〉 l prog
inserts in the context l an atom whose terms are t̄ and proceeds introducing the logic formula prog . The
second definition, unload l 〈v̄〉bprog , deletes an atom from the context l and procedes introducing the logic
formula obtained by applying the terms v̄ to bprog . We use a continuation passing style specification by
using the definition loop l kprog prog . It intuitively deletes an atom from the context of l and focuses on
the logic formula obtained from applying the terms v1 · · · vn and the continuation (loop l kprog prog) to
kprog . The loop ends when the context of l is empty, specified by the use of the !l̂, and then continues by
introducing the logic formula prog . Finally, the definition end is just used to mark the end of a program
instruction.

The definition move S R K
∆= loopS λTλcontl(load 〈T 〉R contl) K illustrates the use of these definitions.

It moves all the elements from the context S to the context R, and then proceeds with the logic formula K .

4.3 Encoding views, updates, and queries

Given a set of ground atoms, D, specifying a view, we encode it into the sequent of a proof by using the
following function defined over predicate names p:

KD[p] = {p [t1, . . . , tn] | p t1, . . . , tn ∈ D} and KD[pν] = {pν [t1, . . . , tn] | p t1, . . . , tn ∈ D},

where [t1, . . . , tn] is a list of terms.
A multiset of updates, U , is a multiset tuples of the form 〈p, L, ins〉 and 〈p, L,del〉, where L = [t1, . . . , tn]

is a list of ground terms and p a predicate name. These tuples denote that the ground atom p t1 · · · tn has
to be respectively inserted or deleted from the view. A query is a ground atom, s = q t1 · · · tn, for which we
would like to determine its membership in the database after all updates have been propagated. They are
encoded int SELLF in the context upd and query as follows

KU [upd] = {upd pLu | 〈p, L, u〉 ∈ U} and Ks[query] = {query q [t1, . . . , tn]}.

8

4.4 Encoding (delta) rules

A Datalog delta-rule, ∀X1, . . . , Xm[U(p) Tp ← s1 T1, . . . , sn Tn], is encoded as the tuple 〈m,head, body〉,
where the natural number m specifies the number of universally quantified variables in the rule; the tuple
head = 〈p, U,N〉 specifies the predicate name of the head of the rule (p), if the rule is an insertion or deletion
rule (U), and the list of natural numbers and ground terms, N , denotes the bounded variables and terms used
in head of the rule; and finally the list of tuples body = [〈B1, s1 ,N1〉, . . . , 〈Bn, sn,Nn〉] encodes similarly the
body of the rule, where for the ith element in the body of the rule, Bi specifies if it is a predicate (B = pr),
or a function relation (B = fu); si is the name of the element; and Ni is the list of natural numbers and
terms specifying the bounded variables and terms used.

As an example, the insertion rule ∀XY Z[(ins(p) aZ) ← (∆s Y X), (leq z Z)] is encoded as the tuple
〈3,head, body〉, where the first component, 3, corresponds to the number of bounded variables, X, Y, and
Z, in the rule; head is the tuple 〈p, ins, [a, 3]〉 specifying that the head of the rule takes as arguments the
term a and third bounded variable Z; and body is the list [〈pr, ∆s, [2, 1]〉, 〈fu, leq, [z, 3]〉] specifying that the
first body element is a predicate and the second a function relation.

Given a Datalog program P, let P∆ be the set of insertion and deletions rules obtained from P. Let
R(P∆, p, U) = [Rp

1, . . . , R
p
n] be any list of the encodings of different insertion, if U = ins, or deletion, if

U = del, delta rules in P∆ with ∆p in its body. Then we encode P in SELLF by storing the tuples
〈p, R(P∆, p, U), U〉 in the context rules, as follows:

KP [rules] = {rules pR(P∆, p, U)U | p is a predicate name.}

Depending on the number of updates propagated, rules can be used several times, and therefore the index
rules allows contraction and weakening differently from the indexes used for storing views, updates, and the
query.

4.5 Basic Commands

The linear logic definition for the basic commands described informally in Section 3 are depicted Figure
4. The basic command pick is specified by unloading (non-deterministically) any update tuple, 〈p, l, u〉, from
the context of upd and then loading this tuple in the context of picked, denoting that its corresponding delta
rules should be executed. We also update the context pν according to the type u of the update, namely,
we remove (reps. insert) the tuple l if u is a deletion (resp. insertion). The basic command fire is the most
elaborate. It starts by unloading an updated, 〈p, l, u〉, that is in picked; then retrieving the corresponding
insertion or deletion delta rules, r, for the predicate p; loading and unloading l into ∆t, in order to execute
its delta rules; and finally loading the tuple 〈p, l, u〉 in the context exec, denoting that the delta rules for this
update have been executed.

In order to execute a rule, we need to traverse all possible combinations of tuples that are currently in
the view of predicates appearing in rule’s body. First, we start create by using createSubs a substitution,
represented by a list, S, of the same length, M , as the number of universally quantified variables in the rule.
Initially, all elements of S are unk denoting that no substitution is assigned to a particular variable. While
traversing the views of a rule’s body, this substitution is used either to check if an entry can be used to fire
this rule or it is replaced by a more specific substitution which contains less unk elements. This traversing
is done in the definitions of execAux: the definition for execAux S 〈P, U,N〉 []K is used when all elements of
the body have been traversed and therefore one has a satisfying substitution list S. We add to the context
upd the insertion or deletion update, according to U , of the list of terms TL found by picking the respective
terms from the substitution list S by using the predicate fSlist.

The definition for execAux S Hd [〈pr, P,N〉|Bd] K is used when we are traversing a body element that
is a predicate. We first find an auxiliary location Pi

aux of P that is empty and copy all contents of P to it.
Then loop through all elements, TL, in Pi

aux , updating the substitution list S to a more specific substitution
Su if the tuple TL does not conflict with the terms currently used in S, or otherwise ending the loop and
trying to find a different combination of tuples that satisfy the rule’s body. Given a list of terms, TL, a list
of natural numbers, N , and a substitution list, S, we use the auxiliary predicates depicted in Figure 6 to

9

pick
∆
= ∃PLU [unload upd 〈P, L, U〉; load 〈P, L, U〉 picked

[(U = ins)⊗ load 〈L〉 P νend] ⊕ [(U = del)⊗ unload 〈L〉 P νend)]]

fire
∆
= ∃PLUR[unload picked 〈P, L, U〉;unload rules 〈P, R, U〉;

load 〈P, L, U〉 exec; load 〈L〉 ∆P ; execRules R (unload ∆P 〈L〉 end)]

update
∆
= ∃PLU [unload exec 〈P, L, U〉

[(U = ins)⊗ load 〈L〉 P end]⊕ [(U = del)⊗ unload P 〈L〉 end]]

query
∆
= !test∃SL[unload queryLoc 〈S, L〉 (unload 〈L〉 S>)]

Fig. 4. Linear logic definitions specifying the basic commands. We elide from specifications the λ symbols and denote
formulas of the form A (B C) as (A; B C).

execRules [R | L] K
∆
= execute R (execRules L K)

execRules [] K
∆
= K

execute 〈M, Hd, Bd〉K
∆
= ∃S.[createSubs S M ⊗ (execAux S Hd Bd K)]

execAux S 〈P, U,N〉 [] K ∆
= ∃TL.[fSlistN S TL ⊗ load 〈P, TL, U〉upd K]

execAux S Hd [〈pr, P,N〉|Bd] K
∆
= ∃i.[selEmptyLoc P i

aux

copy P Pi
aux

loop Pi
aux λTLλcontl

∃Su.[findUnif N TL S Su⊗
(!∞(Su 6= no)⊗ execAux Su Hd Bd contl

⊕
(Su = no)⊗ contl)])

K

execAux S Hd [〈fu, F,N〉|Bd] K
∆
= (F = leq)⊗

∃T1T2.[(fSlistN S [T1, T2])⊗
[(leq T1 T2)⊗ execAux S Hd Bd K]
⊕
[(gr T1 T2)⊗K]]
⊕
· · ·

Fig. 5. Main definitions for rule execution. The predicate fSlistN S TL constructs the list of ground terms TL by
replacing the numbers in N by the element in S appearing at the correspondent position. The predicate selEmptyLoc
selects any auxiliary location Pi

aux for the predicate P that contains no element. Finally, the predicate copy just copies
the elements from the context of on index to the context of another index. Here we also assume that there are enough
auxiliary indexes for each predicate.

findUnif N TL S Sf
∆
= ∃SrSu.[fSlistN S Sr ⊗ fUnAux TL Sr Su⊗

(Sr = no ⊗ Sf = no)⊕
(!∞Sr 6= no ⊗ updSubstN S Su Sf)]

fUnAux [T | TL] [S | SL] [T | Sr]
∆
= [!∞(T 6= unk)⊗ (T = S)⊗ fUnAux TL SL Sr]⊕

[T = unk ⊗ fUnAux TL SL Sr]

fUnAux [T | TL] [S | SL] no
∆
= !∞(T 6= unk)⊗ !∞(T 6= S)

createSubs z []
∆
= 1

createSubs (s M) [unk|L1]
∆
= createSubs M L1

Fig. 6. Auxiliary definitions used in the process of checking if two terms are unifiable and finding a unifier. The
predicate updSubst just replaces the elements of S appearing at the positions specified in the list N by the terms in
Su appearing at the same positions resulting in the list Sf . We assume that the constant unk is a new constant not
appearing in the Datalog program’s alphabet.

10

both update S to a more specific substitution if there is no conflict between the terms in TL and the terms
in S that appear in the positions specified in N ; or otherwise returns no.

Finally, the definition for execAux S Hd [〈fu, F, ΛL〉|Bd] K just checks if the arguments of the function F ,
given the substitution S, maps F to true. Here we show only the case when F is the function less or equal
which are specified in logic as usual. If it is the case, then one continues to traverse the body, otherwise one
must pick a different combination of tuples.

The definition for the basic command update just updates the contents of a predicate whose delta rules
have been executed. Finally, the basic command query can only be used when the contexts for upd,picked,
and exec are empty, which is specified by the use of the !test. It is also the only command that can finish a
proof due to the presence of > which is reached only after verifying that the query is in the view.

We insert these basic commands in a sequent by using the function

KBC [∞] = {!−∞pick, !−∞fire, !−∞update, !−∞query},

where ∞ (resp. −∞) is the maximal (resp. minimal) index, that is, l � ∞ (−∞ � l) for all index l. Since
the maximal index allows both contraction and weakening, the basic commands can be used as many times
as needed. The purpose of the minimal index is novel. It ensures that the execution of a basic command is
atomic, that is, one can only use a basic command when there is no other basic command being introduced.
Due to the focusing discipline, whenever we use a basic command, that is, focus on one of the formulas above,
we need to immediately introduce the !−∞, which is only applicable if the linear context is empty, that is,
when there are no other basic commands being introduced. This intuition is formalized by Proposition 3.

Given a set of ground atoms D, a Datalog program P, a multiset of updates U , and a ground atom s,
the sequent S(D,P,U , s) is defined as:

` KD ⊗KP ⊗KU ⊗Ks ⊗KBC : · ⇑ ·,

where KBC is the encoding of basic commands, Ks is the encoding of the query for s, KU is the encoding of
updates, KP the encoding of delta-rules, and KD the encoding of the view.

Definition 1. Let α be a rule with active formula F and G be a formula produced by α. Then we say that G
is the immediate descendant of F and that all other formulas appearing in the premises of α are immediate
descendants of the same formula appearing in α’s conclusion. In a derivation, the transitive and reflexive
closure of the immediate descendant relation specifies the descendant relation.

Definition 2. An execution of a basic command BC is any focused derivation that introduces a sequent
focused on the formula !−∞BC and whose rules introduce only descendants of !−∞BC. A complete execution
of a basic command BC is an execution whose premises do not contain any descendants of BC. We say that
the execution of pick (resp. fire and update) uses u if u is the element unloaded from upd (resp. picked and
exec).

Proposition 1. Any complete execution of any basic command has only one open premise.

Proof Induction on the height of derivations. 2

Proposition 2. Let D be a set of ground atoms, P be a Datalog program, and U = 〈q, l, u〉 be an update.
Let Ξ be any complete execution of fire using U , whose premise is a fire-ready sequent with subexponential
context Ke and premise with subexponential context Kp. Then Kp[i] = Ke[i] for all indexes i different from
upd, picked, and exec, Kp[upd] = Ke[upd] ∪ F(D,P, U), Ke[picked] = Kp[picked] ∪ {picked q l u}, and
Kp[exec] = Ke[exec] ∪ {exec q l u} .

Proof Induction on the height of derivations. It is easy to check that the only context that has its contents
changes is upd. All other contexts are used as auxiliary contexts which are empty in both the premise and
endsequent of Ξ.

For soundness, we just inspect Ξ and extract the elements in D that can fire a rule...
2

11

Proposition 3. Let D be a set of ground atoms, P be a Datalog program, U a multiset of updates, and s be a
ground atom. Then any focused proof of S(D,P,U , s) can be partitioned into executions of basic commands.
Moreover, the top-most execution is of the command query.

Proof By induction on the height of proofs. Because of the !−∞ appearing before the encoding of basic
instructions in the end sequent S(D,P,U , s), one is enforced to introduce the defined atoms that do not have
a question-mark as main connective before focusing on another basic command.

Since the only command that can close a proof is query , the top-most execution of the proof has to be
of it. 2

5 Correctness

The following definitions specify the proofs that correspond to computation runs of PSNν and of SN, called
respectively PSNν and SN-proofs. The correctness proof goes by showing that if one proof exists then the
other must also exist; or in other words, any query that is entailed by using PSNν is also entailed by SN
and vice-versa.

Definition 3. An execution of a basic command BC is any focused derivation that introduces a sequent
focused on the formula !−∞BC and whose rules introduce only descendants of !−∞BC. We say that the
execution of pick (resp. fire and update) uses u if u is the element unloaded from upd (resp. picked and
exec).

Definition 4. A derivation is a complete iteration if it can be partitioned into a sequence of executions of
pick, followed by a sequence of executions of fire, and finally a sequence of executions of update, such that the
multiset of tuples, T , used by the sequence of pick executions is the same as used by the sequence of fire and
update executions. In this case, we say that the complete-iteration uses the multiset T . A complete iteration
is an SN-iteration if T contains all tuples at the end-sequent that are in K[upd]. A complete iteration is a
PSNν-iteration if T contains only one element.

Definition 5. Let D be a set of ground atoms, P be a Datalog program, U a multiset of updates, and s be
a ground atom. We call any focused proof, Ξ, of the sequent S(D,P,U , s) as a PSNν-proof (respectively
SN-proof) if it can be partitioned into a sequence of PSNν-iterations (respectively SN-iterations) followed
by an execution of query.

The following lemma states that given a non-recursive program, then conflicting updates, that is, updates
inserting and deleting the same tuple, do not interfere in the final output of the PSNν computation. The
restriction to non-recursive programs is because we cannot guarantee in general termination of PSNν in
the presence of conflicting updates. For example, the same program used above to show divergence of PSN
would also make PSNν diverge. However, as we argue later, if such a termination is guaranteed then the
proof works in exactly the same way.

Lemma 1. Let D be a set of ground atoms, P be a non-recursive Datalog program, s be a ground atom,
and U be a multiset of updates, such that 〈p, L, ins〉, 〈p, L,del〉 ∈ U . Let U ′ = U \ {〈p, L, ins〉, 〈p, L,del〉}
be a multiset of updates. Then the sequent S(D,P,U , s) has a PSNν-proof iff the sequent S(D,P,U ′, s) has
a PSNν-proof.

Proof (⇒) The updates 〈p, L, ins〉, 〈p, L,del〉 ∈ U do not really affect the execution of query , since for
all insertions propagated by the update 〈p, L, ins〉 there are the same deletions propagated by the update
〈p, L,del〉. We can construct the a proof of S(D,P,U ′, s) by trimming the pieces of derivations in the proof
of S(D,P,U , s) that depend on these updates. We do so by induction on the number of PSNν-iterations.
Let Ψ be the set of updates propagated by 〈p, L, ins〉 and 〈p, L,del〉. One determines this set by inspection

12

on the proof of S(D,P,U , s). Consider the following representative inductive case where the proof ends with
a PSNν-iteration of the form:

` K1 : · ⇓ (upd p1 L1 u)⊥

Ξ
` K′

2 : · ⇑ ·
` K′

2 : · ⇓ end

` K2 : · ⇓ prog

` K : · ⇓ (upd p1 L1 u)⊥ ⊗ prog

` K : · ⇓ unload upd 〈p1, L1, u〉 prog

` K : · ⇓ !−∞pick

If the update 〈p1, L1, u〉 is an update propagated from 〈p, L, ins〉 or 〈p, L,del〉, then this derivation is
completely deleted. Otherwise, we should not delete the whole derivation, but only the parts in the execution
of fire that use tuples in the view which come from insertions propagated from 〈p, L, ins〉. These deletions
are also done by induction, but this time on the number of “loops” in fire.

Here is a representative inductive case, where in the derivation below the loops are two consecutive
occurrences of loops over p1:

` K1 :⇓ (p1t)⊥

Ξ
` K′

2 :⇓ loop p1 kprog2 prog2

` K2 :⇓ (kprog t) (loop p1 kprog prog)

` K :⇓ (p1t)⊥ ⊗ (kprog t) (loop p1 kprog prog)

` K :⇓ loop p1 kprog prog

We delete this derivation only if p1 is of the forms p or pν or pi
aux and the update 〈p, [t], ins〉 is in Ψ . At the

same time, we delete all occurrences of the atoms (upd p l u), (p l), (pν l), and (paux l) such that the update
〈p, l, u〉 is in Ψ .
(⇐) Let Ξ be the given proof of the sequent S(D,P,U ′, s). Moreover, let Ξp be the derivation composed of
all PSNν-iterations in Ξ and Ξq be the derivation composed of the query execution in Ξ. We can construct
a proof of the sequent S(D,P,U , s) as follows. We add to the context upd of all sequents in Ξp that are not
introduced by an initial rule the updates 〈p, L, ins〉 and 〈p, L,del〉. Let Ξ ′

p be the resulting derivation. Then
the end sequent of Ξ ′

p is S(D,P,U , s) and its open premise is such that the context of upd is composed
exactly of the updates 〈p, L, ins〉 and 〈p, L,del〉. Now, since the program is non-recursive, it is case that
there is a finite sequence of PSNν-iterations that computes the updates 〈p, L, ins〉, 〈p, L,del〉 and all the
updates propagated by them. Let Ξu be the derivation corresponding to such computation2. The context of
upd of Ξu’s end sequent is the multiset {〈p, L, ins〉, 〈p, L,del〉}, while the same context for its premise is
the ∅. Finally, we can compose the derivations Ξ ′

p, Ξu, and Ξq and construct the proof for S(D,P,U , s). 2

The following lemma states that we can permute the order of how we pick updates to execute PSNν-
iterations. While performing these operations, however, it can happen that new rules are fired. In particular,
when we permute a PSNν-iteration that uses a deletion update over a PSNν-iteration that uses an insertion
update. The updates generated in these cases are necessarily conflicting, that is, are pairs of insertions and
deletions of the same tuple. Provability is not lost as stated in the previous lemma.

Lemma 2. Let D be a set of ground atoms, P be a non-recursive Datalog program, U be a multiset of
updates, such that u1, u2 ∈ U , and s be a ground atom. Let Ξ be a PSNν-proof of S(D,P,U , s) which ends
with two PSNν-iterations that use u1 and u2. Then there is a PSNν-proof of S(D,P,U , s) which ends with
two PSNν-iterations that use the updates u2 and u1.
2 We can search for such computation by just following the algorithm specified in linear logic. We do so by picking

any ins update and then the corresponding del update. Since in the execution of fire we traverse all possible
combinations of tuples in the view, it does not really matter in which order we unload elements. Hence, one does
not require to backtrack between focusing phases, but just to backtrack inside focusing phases, which is controlled
by the size of the “macro-rules”.

13

Proof We must consider four different cases, according to the updates u1 and u2:
• u1 and u2 are both insertions: 〈p1, L1, ins〉 and 〈p2, L2, ins〉. We show that the multiset of firings obtained
by first picking 〈p2, L2, ins〉 and then 〈p1, L1, ins〉 is the same as before. Let F1 be the multiset of firings in
the first case and F2 be the set of firings in the second case. Let s1 ∈ F1. If s1 is a firing obtained in the first
PSNν-iteration, then it must be the case that s1 ∈ F2 since the same delta rule is executed. If s1 is obtained
in the second PSNν-iteration, then either it did not use the insertion of 〈p1, L1, ins〉, in which case, s1 ∈ F2,
since the same delta-rule would be executed; or it did use the insertion of 〈p1, L1, ins〉, in which case there is
a rule that contains both p1 and p2 in the body, and therefore s1 ∈ F2 because then its delta rule containing
∆p1 and t in its body is fired. To prove that if s2 ∈ F2 then s2 ∈ F1 follows the same reasoning.
• u1 and u2 are both deletions: 〈p1, L1,del〉 and 〈p2, L2,del〉. The reasoning is similar as in the previous
case. Let F1 be the multiset of firings in the first case and F2 be the set of firings in the second case.
• u1 is an insertion and u2 is a deletion: 〈p1, L1, ins〉 and 〈p2, L2,del〉. Again, we show that the multiset
of firings obtained by first picking 〈p2, L2,del〉 and then 〈p1, L1, ins〉 is the same as before. Let F1 be the
multiset of firings in the first case and F2 be the set of firings in the second case. Let s1 = 〈s, Ls, ins〉 ∈ F1

be an update created in the first PSNν-iteration. Then either one did not use L2 from p2, in which case,
s1 ∈ F2, or one did use L2 from p2, in which case it must be that another update s′1 = 〈s, Ls,del〉 ∈ F2

is created because a delta rule of the same rule must be fired in the second PSNν-iteration. In this case,
neither s1 nor s′1 belong to F2 because, by inverting the order of picks, no rule is fired. However, from Lemma
1, the resulting sequent is still provable. The reasoning is the same for the case when s1 = 〈s, Ls,del〉 ∈ F1.
To show the reverse direction that if s2 ∈ F2 then s2 ∈ F1, the reasoning is similar to the next case.
• u1 is a deletion and u2 is an insertion: 〈p1, L1,del〉 and 〈p2, L2, ins〉. Once more, we show that the multiset
of firings obtained by first picking 〈p2, L2, ins〉 and then 〈p1, L1,del〉 is the same as before. Let F1 be the
multiset of firings in the first case and F2 be the set of firings in the second case. Let s1 ∈ F1, then s1 ∈ F2

since the same delta rule must be fired when one picks u2 before u1. Now, consider that s2 = 〈s, Ls, ins〉 ∈ F2

is created in the first PSNν-iteration. Then it is created either not using L2 from p2, in which case s2 ∈ F1, or
by using L2 from p2, in which case, a it must be that another update s′2 = 〈s, Ls,del〉 ∈ F2 is created because
a delta rule of the same rule must be fired in the second PSNν-iteration. So s2, s

′
2 /∈ F1. However, again from

Lemma 1, the resulting sequent is still provable. The reasoning is the same for when s2 = 〈s, Ls,del〉 ∈ F2.
2

The following lemma states that we can merge a complete-iteration and a PSNν-iteration into a larger
complete-iteration, and conversely we can split a larger complete-iteration into a smaller complete-iteration
and a PSNν-iteration.

Lemma 3. Let D be a set of ground atoms, P be a non-recursive Datalog program, U be a multiset of
updates, such that {u} ∪ T ⊆ U , and s be a ground atom. Then there is a proof of the sequent S(D,P,U , s)
which ends with a complete-iteration that uses the multiset T followed by a PSNν-iteration that uses the
update u iff there is a proof of the same sequent that ends with a complete-iteration that uses the multiset
T ∪ {u}.

Proof For each direction there are two cases according to the update u to consider. Let F1 be the multiset
of updates created by a complete-iteration, C1, using T followed by PSNν-iteration, P1, using u and F2 be
the multiset created by a complete-iteration, C2, using T ∪ {u}.
• u is an insertion: 〈p, L, ins〉. Let s1 ∈ F1 be an update created. If s1 is created in C1, then s1 ∈ F2 since a
delta rule of the same rule is fired in C2. If s1 is created in P1, then either the delta rule that is fired does
not use any updates in T , in which case the same delta rule is also fired in C2, thus s1 ∈ F2; or the delta
rule use updates in T , in which case there is another delta rule of the same rule that is fired in C2, namely
the one where the delta appears in the right-most position (left-most position) if s1 insertion (deletion) with
respect to the updates used; hence, s1 ∈ F2. Now, for the reverse direction, the reasoning is much easier. Let
s2 ∈ F2 be an update created, by using the update 〈p, L, ins〉 then a delta rule of the same rule is fired in
P1; hence s2 ∈ F1. Otherwise, the same delta rule is fired in C1 and therefore s2 ∈ F1.
• u is a deletion: 〈p, L,del〉. Again, let s1 ∈ F1 be an update created. If s1 is created in C1 not using the
tuple L from p, then the same rule is fired in C2; hence s1 ∈ F2. Otherwise, s1 is created in C1 using the

14

tuple L from p, then s1 there is another delta rule of this rule in C2, hence s2 ∈ F2, namely the one where
the delta appears in the right-most position (resp. left-most position) if s1 insertion (resp. deletion) with
respect to the updates used. Now, for the reverse direction, the reasoning is similar to the previous case. 2

The following theorem uses the operations on proofs formalized in the lemmas above to transform PSNν-
proofs into SN-proofs and vice-versa, proving hence the correctness of PSNν .

Theorem 1. Let D be a set of ground atoms, P be a non-recursive Datalog program, U be a multiset
of updates, and s be a ground atom. There is a PSNν-proof of S(D,P,U , s) iff there is an SN-proof of
S(D,P,U , s).

Proof (⇐) Given a PSNν-proof, we construct an SN-proof by induction as follows: use Lemma 2 to
permute PSNν-iteration that picks an element u ∈ U , then repeat it with its subproof. The resulting proof
has all PSNν-iteration in the same order as in an SN-Proof, but they have to be merged into SN-iterations,
which is possible by applying repeatedly Lemma 3. This process terminates since there are finitely many
possible updates in a non-recursive program.
(⇒) Given an SN-proof, we repeatedly apply Lemma 3 to obtain a PSNν-proof. 2

Corollary 1. For non-recursive programs, a query is entailed by using PSNν iff it is entailed by using SN .

In the theorem above, we restricted ourselves to non-recursive programs. The reason for this restriction
was just because of issues involvong termination in the presence of conflicting updates. If we can guarantee
such termination for PSNν , however, then the proof works exactly in the same way. Let us return to our path-
vector example, shown in Section 2, which is a recursive program. Because of the use of the function f inPath,
one does not compute paths that contain cycles. This restriction alone is enough to guarantee termination
of PSNν : the number of path-updates propagated by conflicting updates inserting and a deleting the same
link tuple is finite. Therefore we can use the same reasoning above to show that PSNν is correct for this
program.

In literature, there are algorithms that can be used to determine termination of Datalog programs [16].
It seems possible to adapt them to a distributed setting, but this is left out of the scope of this paper. We
are also currently investigating larger classes of programs for which PSNν terminates.

6 Related Work

Navarro et al. proposed in [17] an operational semantics for a variation of the NDlog language that also
includes rules with events. However, their semantics also computes unsound results and therefore it is not
suitable as an operational semantics for NDlog. For instance, besides the problems we identify for PSN, one
is also allowed in their work to pick an update that deletes an element without checking if this element
is present in the view, which may also yield unsound results. Moreover, in their operational semantics
no incremental maintenance algorithm is incorporated. Therefore, users of their language are required to
implement themselves how states are updated when incoming updates arrive at any node and furthermore
prove its correctness.

Although here we focus on declarative networking, maintaining states incrementally in a distributed
setting can also be useful when programming robots. As nodes in a network, robots are usually in an
environment that changes incrementally, for example, objects move from one place to another. Since robots
perform actions by taking into account the facts that they believe to be true at that moment, for the robot
to perform sound actions, their internal knowledge bases have to be maintained correctly and efficiently
whenever they detect changes in the environment. Ashley-Rollman et al. proposed a language designed for
programming robots and inspired by NDlog called MELD [2]. Although the operational semantics of their
language seems to agree with PSNν , we are not aware of any formal specification of its operational semantics
nor of any correctness proof. We believe that their language will also benefit from the insights and results
obtained here.

Linear logic has previously been used to specify concurrent systems [14, 15]. For instance, one is able to
encode in linear logic many formalisms that are used to specify distributed sytems, for example the π-calculus,

15

Petri-nets, Concurrent ML, and other distributed systems. Linear logic has also been used to specify access
control policies [6]. One is able, for instance, to express policies that are not permanent but consumable, for
example, a one-time access to a room. In a proof-authorization code framework, whenever a clients, such as
a mobile phone, requests a server for access to some resource, it attaches a linear logic proof demonstrating
that his request follows from the given policies. In all of these approaches, however, it does not seem possible
to encode located resources in a natural way as when using linear logic with subexponentials. In particular,
it seems that in plain linear logic one always needs to rely on terms, such as lists or constants, to encode the
notion located resources. Here on the other hand, we encode located resources in the level of propositions by
using subexponentials.

7 Conclusions

In this paper, we have developed a new PSN algorithm, PSNν , which is key to specifying the operational
semantics of NDlog programs. We have proven that PSNν is correct with regard to the centralized SN by using
a novel approach: we encode both the SN and PSNν in linear logic with subexponentials. The correctness
result is proven by showing that a proof that encodes a SN evaluation can be transformed to one that encodes
a PSNν evaluation and vice versa. Focused proofs in linear logic give well-defined operational semantics for
PSNν . Furthermore, PSNν lifts restrictions such as FIFO channels from NDlog implementations and leads
to significant performance improvements of protocol execution.

This work is part of a bigger effort to formally analyze network protocol implementations [5, 23]. The
results in this paper lay a solid foundation toward closing the gap between verification and implementation.
An important part of our future work is to formalize low-level NDlog implementations so that verification
results on high-level specifications can be applied to low-level implementations.

In our correctness proof, we limited ourselves to the fragment of non-recursive programs. The main
problem of including larger classes of programs is that we cannot necessarily guarantee termination of PSNν

using recursive programs in the presence of conflicting updates, that is, updates inserting and deleting the
same fact. However, if we can guarantee such termination for PSNν , then the proof works exactly in the
same way. Moreover, since the SN algorithm that we use in this paper is only shown to be correct when
tuples have at most one supporting derivation, the correctness of PSNν is also restricted to this fragment.
Given these restrictions, we believe that there are many directions to extend the class of programs considered
in this paper:

• Non-recursive programs where facts can have multiple supporting derivations: It seems possible to modify
Algorithm 1 in such a way that the resulting algorithm also works correctly for this class of programs. For
instance, instead of using set semantics, one could attempt to use multiset semantics, where one not only
keeps track of which facts have been deduced, but also of the number of derivations supporting it. Then
extending PSNν to accommodate this change seems to be straighforward. The programming language MELD
seems to go a step further in this direction and also store the depth of the derivations supporting a fact. This
allows one to perform further optimizations of the operational semantics of their language, such as deciding
whether or not to process an update according to the depth of the derivation supporting it.

• Recursive programs where tuples have a finite number of supporting derivations - As discussed before,
we conjecture that if all facts have always a finite number of supporting derivations, then we can guarantee
termination of PSNν whenever SN terminates and they would yield the same result. The proof would work
exactly in the same way. Some work on the problem of determining when all facts derived from a Datalog
program have a finitely many supporting derivations has appeared in literature [16]. It seems possible to
adapt such approach to a distributed setting when using provenance mechanisms [9].

• Recursive programs where tuples can have infinitely many supporting derivations - It seems that in this case
one cannot avoid divergence unless some level of synchronization among agents is allowed: Before processing
an insert update, an agent would need to confirm with its neighbor agents that all previous updates have
already been processed. If this is the case, then the agent checks its current bag of updates and cancels up
any conflicting updates. Another idea is to use provenance mechanisms [9] as suggested in the previous case.
Fortunately, however, until now no real applications required such type of programs.

16

Finally, we still need to investigate precisely how to handle aggregates and negation in a distributed
setting. It seems to be possible to incorporate well-known techniques [8] that maintain states in the centralized
setting into PSNν .

We plan to continue pursuing all of these directions in the near future.

References

1. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. 2(3):297–347, 1992.
2. Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, and Padmanabhan Pillai. Meld:

A declarative approach to programming ensembles. In IROS, pages 2794–2800. IEEE, 2007.
3. I. Balbin and K. Ramamohanarao. A Generalization of the Differential Approach to Recursive Query Evaluation.

Journal of Logic Prog, 4(3):259–262, 1987.
4. Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The structure of exponentials: Uncovering the

dynamics of linear logic proofs. In Georg Gottlob, Alexander Leitsch, and Daniele Mundici, editors, Kurt Gödel
Colloquium, volume 713, pages 159–171. Springer, 1993.

5. Formally Verifiable Networking. http://netdb.cis.upenn.edu/fvn/.
6. Deepak Garg, Lujo Bauer, Kevin D. Bowers, Frank Pfenning, and Michael K. Reiter. A linear logic of authorization

and knowledge. In ESORICS, pages 297–312, 2006.
7. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
8. Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In Pe-

ter Buneman and Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, D.C., May 26-28, 1993, pages 157–166. ACM Press, 1993.

9. Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou, Zachary G. Ives, and Boon Thau Loo. Recursive computation
of regions and connectivity in networks. In ICDE, pages 1108–1119. IEEE, 2009.

10. Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros Maniatis, Raghu
Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative Networking: Language, Execution and Optimization.
In SIGMOD, 2006.

11. Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros Maniatis, Raghu
Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative Networking. In Communications of the ACM
(CACM), 2009.

12. Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy Roscoe, and Ion Stoica. Im-
plementing Declarative Overlays. In SOSP, 2005.

13. Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakrishnan. Declarative Routing: Extensible
Routing with Declarative Queries. In SIGCOMM, 2005.

14. Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic concurrent linear logic programming.
In Pedro Barahona and Amy P. Felty, editors, PPDP, pages 35–46. ACM, 2005.

15. Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical Computer Science, 165(1):201–232,
September 1996.

16. Inderpal Singh Mumick and Oded Shmueli. Finiteness properties of database queries. In Australian Database
Conference, pages 274–288, 1993.

17. Juan A. Navarro and Andrey Rybalchenko. Operational semantics for declarative networking. In PADL, pages
76–90, 2009.

18. Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subexponentials. In PPDP, pages
129–140, 2009.

19. P2: Declarative Networking System. http://p2.cs.berkeley.edu.
20. Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey of Research on Deductive Database Systems. Journal of

Logic Programming, 23(2):125–149, 1993.
21. RapidNet: A Declarative Toolkit for Rapid Network Simulation and Experimentation. http://netdb.cis.upenn.

edu/rapidnet/.
22. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A Scalable P2P

Lookup Service for Internet Applications. In SIGCOMM, 2001.
23. Anduo Wang, Limin Jia, Changbin Liu, Boon Thau Loo, Oleg Sokolsky, and Prithwish Basu. Formally Verifiable

Networking. In SIGCOMM HotNets-VIII, 2009.

17

