
An I/O Separation Model for Formal Verification of
Kernel Implementations

Miao Yu Virgil Gligor Limin Jia
ECE Department and CyLab, Carnegie Mellon University

Abstract—Commodity I/O hardware often fails to separate I/O
transfers of isolated OS and applications code. Even when using
the best I/O hardware, commodity systems sometimes trade off
separation assurance for increased performance. Remarkably, de-
vice firmware need not be malicious. Instead, any malicious driver,
even if isolated in its own execution domain, can manipulate its
device to breach I/O separation. To prevent such vulnerabilities
with high assurance, a formal I/O separation model and its use
in automatic generation of secure I/O kernel code is necessary.

This paper presents a formal I/O separation model, which
defines a separation policy based on authorization of I/O trans-
fers and is hardware agnostic. The model, its refinement, and
instantiation in the Wimpy kernel design, are formally specified
and verified in Dafny. We then specify the kernel implementation
and automatically generate verified-correct assembly code that
enforces the I/O separation policies. Our formal modeling enables
the discovery of heretofore unknown design and implementation
vulnerabilities of the original Wimpy kernel. Finally, we outline
how the model can be applied to other I/O kernels and conclude
with the key lessons learned.

Index Terms—I/O separation; access control and authoriza-
tion; trustworthy computing; security architectures;

I. INTRODUCTION

An important goal of security architectures is to separate
I/O transfers of isolated applications and retain application
protection from compromised OSes and other applications,
with high assurance. To accomplish this without enlarging
the underlying trusted code base (e.g., without enlarging
micro-kernels, micro-hypervisors, separation kernels), existing
designs rely on dedicated I/O kernels [1], [2], [3], [4]. They de-
privilege device drivers, export them to isolated applications
to separate them from each other, and authorize them to access
only their own devices. This also helps eliminate applications’
exposure to unneeded drivers, and is a major advantage since
driver code continues to comprise a very large portion of
modern OS kernels and accounts for many security flaws.

To ensure that an isolated but malicious driver cannot com-
promise another isolated application by manipulating its own
device, I/O kernels rely on the underlying I/O hardware (e.g.,
I/O controllers and IOMMUs) to enforce the association of an
I/O device with an object of an isolated application/driver and
authorize each I/O transfer. Unfortunately, hardware vendors
have produced commodity hardware that focuses primarily on
improved performance [5], [6], increased connectivity [7], [8],
and lower cost [9], at the expense of fine-grained I/O device as-
sociations with isolated-application/driver objects and transfer
authorization. For example, early PCI buses and more recent
CAN buses allow unauthorized peer-to-peer device transfers,

which can be leveraged by a malicious driver to access device
registers of another isolated application. Other designs can
only associate buses with isolated-application objects and
enforce read-write permissions for buses but not individual
devices. For example, IOMMUs [9], [10] authorize accesses at
the granularity of PCI bus controllers via PCIe-to-PCI bridges
instead of individual PCI devices, again, allowing malicious
drivers to breach isolation. In addition, insecure performance
optimizations, such as deferred IOTLB clearing [11], designed
to counter the significant performance degradation caused by
frequent switches between authorized transfers, can also lead
to breaches of application isolation; see Section II.

This shows that the security guarantees of I/O kernels
are intimately connected to the choice of underlying I/O
hardware: a poor choice often leads to security vulnerabilities.
However, neither a formal model nor a high-assurance design
and implementation of I/O separation exists to date. As a
result, current I/O kernels cannot match the high assurance of
their underlying trusted code base; e.g., micro-kernels, micro-
hypervisors [12], [13], [14], [15] and separation kernels [16],
[17]. This imbalance can lead to isolated-application vulnera-
bilities: a malicious application can exploit flawed I/O transfer
authorization to breach the isolation of other applications1.

Our goal is to formalize I/O separation and develop an
abstract model, which can be used as the blueprint for
high-assurance I/O kernel design and implementations, and
make explicit the assumptions about underlying hardware-
authorization properties. Our model does not preclude hard-
ware designs with inadequate authorization, like PCI, PCIe-
to-PCI bridges or USB host controllers, as they occupy a
large fraction of the marketplace. Instead, it makes explicit
the kernel design and implementation requirements for high
assurance, if such hardware were to be used.

We define an abstract I/O separation kernel model in
Dafny [20] (Section IV), after outlining the need for its four-
layer refinement for real system use (Section III). We define
key components and operations of I/O devices and drivers,
specify transfer authorizations, and formalize two desired
security properties: no transfer across an I/O separation
boundary and no object reuse in on-demand I/O. We prove the
abstract I/O separation model satisfies these two properties.
We then define a concrete I/O model that includes more
detailed notions of separation and I/O transfers (Section V).

1Similar vulnerabilities have already been witnessed when isolated VM ap-
plications rely on isolated drivers [18] to ensure I/O separation. A single driver
could still exploit I/O hardware to bypass device-transfer authorization [19].

We construct a mapping to the abstract model and prove the
concrete model sound via refinement. Applying the models
to real I/O kernels, we instantiate the concrete model to
the Wimpy kernel design [21], and we prove its soundness
via refinement to the concrete model (Section VI). Finally,
we specify and verify the Wimpy kernel implementation in
Vale/Dafny [22] and automatically generate verified-correct
assembly code that enforces the I/O separation policies—an
unavailable feature of any OS kernel to date (Section VII).
This formal process leads to discovery of vulnerabilities in
the original design (Section VI-B) and code (Section VII-B).

Due to space constraints, the paper focuses on explaining the
high-level concepts. All Dafny and Vale specifications, from
model to kernel code, and proofs can be downloaded from
https://github.com/superymk/iosep proof/raw/master/proof.zip.

II. COMMON I/O VULNERABILITIES AND THREATS

We review the different ways I/O hardware authorizes
accesses, summarize vulnerabilities caused by inadequate I/O
hardware authorization, and present the threats countered.

A. I/O Transfer Authorization and Separation
An I/O transfer is informally viewed as an ordered associ-

ation of one or more devices to one or more I/O objects of an
isolated application/driver. In the simplest case, the association
is one-to-one; e.g., a USB device can exclusively transfer data
to a buffer of an isolated driver in an application. A single
device can also be associated with objects of several isolated
drivers; e.g., a single GPU device can display output of several
isolated application drivers concurrently. Several devices can
be associated on demand with a single I/O buffer of an isolated
application sequentially shared by several drivers; e.g., several
USB devices. In all cases, the device-object order of the
association indicates whether the I/O object is read or written.

An I/O transfer is authorized if a driver cannot 1) bypass
or modify its device’s association with the isolated-driver
object, and 2) perform the transfer without the permissions
(i.e., write, read) required by the association order. Failure to
enforce 1) or 2) by inadequate hardware can enable isolated
but malicious drivers to breach I/O separation of isolated
applications. Conversely, high-assurance authorization requires
formal analysis of both 1) and 2).

Note that merely enforcing memory address-space sep-
aration for drivers and applications, while useful [23], is
insufficient for transfer authorization. For example, on-demand
activation of a device/driver from one isolated application to
another can cause use-after-free violations without breach-
ing address-space separation. Similarly, a peer-to-peer device
transfer crossing different applications can violate their iso-
lation without breaching address space separation. Also, a
malicious driver executing a single instruction that broadcasts
data to the registers of multiple devices can violate application
isolation without breaching address-space separation.

B. Inadequacy of Existing Hardware
Existing hardware that authorizes I/O transfers at different

levels of granularity is summarized in Figure 1.

No

authorization

Non-selective

authorization

Selective

authorization

Intel

AMD

• PCI, no ACS

• SMBus

• PCIe-to-PCI bridge

with IOMMU

• PCIe with

IOMMU & ACS

ARM • AHB, no ACS

• early: ASB

IBM • PCI, no ACS • PCIe-to-PCI bridge

with IOMMU

External

buses

• CAN

• I2C

• Firewire (with OHCI)

• USB (with IOMMU)

• AXI-to-AHB bridge

with SMMU

• TZ within normal or

within secure world

• AXI with SMMU

• TZ normal vs.

secure world

• PCIe with

IOMMU/CAPI

& ACS

Fig. 1. Examples of authorization levels of I/O hardware.

(a)	

Legend:	 separa)on	 boundary	 unauthorized	 I/O	

PCI	 Bus	 	
Controller	

(b)	

Device	 i	 Device	 j	

Device	 j	 Device	 i	 Device	 h	

PCI	 Bus	 	
Controller	

	 Driver	 j	 Driver	 h	 Driver	 j	 Malicious	
Driver	 i	

Malicious	
Driver	 i	

Device	 j	 Device	 i	
Indirect	 Transfer	 2	 	

Indirect	 Transfer	 	 	 1	 	

authorized	 I/O	

Red	 par))on	 	 Red	 par))on	 	 Green	 par))on	 	 Green	 par))on	 	

Fig. 2. Unauthorized (a) direct and (b) indirect transfers.

1. No authorization. The first column identifies several buses
that completely fail to authorize transfers; e.g., neither se-
lectively associate individual devices with isolated-application
objects nor enforce read-write permissions for I/O transfers.
A device can access another device’s data registers without
providing its identity in the I/O transfers. For example, PCI
buses, the System Management Buses, CAN buses, and ARM
Advanced High-performance Bus (AHB) buses do not require
I/O requests to include device identities for senders’ authen-
tication [24], [25], [26], [27], and yet allow device peer-to-
peer (P2P) transfers. Sender devices always have the same
privilege as the bus controllers in accessing configuration and
data registers of recipient devices. This enables unauthorized
transfers to these objects; i.e., a write over the recipient device
data registers or a read from the recipient device. When
devices are connected to these buses, isolated but malicious
drivers can manipulate them to perform unauthorized direct
and indirect P2P transfers to other devices, as illustrated below.

Example 1. Unauthorized direct transfers. As shown in
Figure 2(a), a malicious driver i can configure its device
i to perform a device P2P transfer and access device j of
another isolated application without any authorization, thereby
breaking I/O separation.

Example 2. Unauthorized indirect transfers. Figure 2(b)
shows Indirect Transfer 1 whereby a PCI device i configures

https://github.com/superymk/iosep_proof/raw/master/proof.zip

IOMMU

Driver jMalicious
Driver i DMA mem DMA mem

Device i

PCIe-PCI Bridge

Device j

PCI

Red partition Green partition

Fig. 3. Non-selective authorization of I/O transfers.

another PCI device h via a P2P transfer and enables it to
read/write I/O objects of otherwise isolated device j on i’s
behalf. Here the device i can embed the identity of an I/O
object of device j into its maliciously configured device h,
instead of issuing reads/writes to the I/O object directly. Thus,
direct transfers of device i to device h do not break I/O
separation. Instead, transfers of device h to device j do. In
Indirect Transfer 2 of Figure 2(b), device i writes over one of
its own transfer descriptors, which enables device i to issue
an unauthorized cross-boundary transfer to device j.
2. Non-selective authorization. The second column of Fig-
ure 1 shows I/O buses that fail to support individual device
association with isolated-driver objects and enforce their read-
write permissions; i.e., access authorization is non-selective.
Instead, these commodity bus controllers can only associate
buses with these objects and enforce read-write permissions
for buses. For example, some IOMMUs [9], [10] authorize
accesses at the granularity of PCI bus controllers via PCIe-
to-PCI bridges instead of individual devices. Similarly, when
issuing requests on behalf of their individual DMA devices,
USB host controllers [8] use their own identities instead those
of individual devices. In both cases, the IOMMU regards
all DMA device transfers as originating from the I/O bus
controller. Hence, it cannot authorize transfers selectively per
individual device.

Example 3. Non-selective authorization of transfers. As
shown in Figure 3, device i is manipulated by malicious driver
i to read or write a DMA memory region of another device
j across an isolation boundary, even though the IOMMU is
correctly configured. For selective authorization of transfers,
devices of different isolated applications must be connected
to different PCIe-to-PCI bridges yielding restricted hardware
configurations [4]. ARM TrustZone authorizes I/O transfers
selectively between the normal and secure world, but it cannot
authorize transfers selectively within a single world.
3. Selective-authorization failure from optimization. The
last column of Figure 1 illustrates the best hardware for
selective (per device) authorization. Unfortunately, commodity
OS kernels using this hardware often have to trade transfer-
authorization assurance for added performance. For example,
to decrease the significant cost of selective authorization via
an IOMMU [28], commodity OS kernels perform all transfers
into one shared kernel buffer-pool, and then authorize kernel

page table

Device

on demand

Device

PCIe bus, ACS

deferred

IOTLB
clearing

IOMMU
. . .

Driver
Malicious
Driver DMA mem.

page tablepage table

DMA mem.

Red partition Green partition

Fig. 4. Unauthorized transfer caused by deferred IOTLB clearing.

transfers to/from isolated applications [11]. This works well
for low-assurance kernels (e.g., Linux), but adds substantially
more complex code to high-assurance micro-hypervisors [13],
[14] or micro-kernels [12], [15] and causes significant perfor-
mance degradation due to frequent switches to/from them.

Example 4. Unauthorized transfer enabled by a
performance–I/O isolation trade-off. Figure 4 illustrates
the vulnerability of this performance-isolation assurance
trade-off via an attack that breaches DMA memory isolation
by exploiting the deferred clearing of IOMMU’s IOTLB
entries up to 10 ms [28], [11]. During this delay, the DMA
device is allocated to a malicious (red) driver, which is
isolated in another application, on demand. The malicious
(red) driver instructs the DMA device to issue a transfer
whose target virtual address is translated using the undeleted
IOTLB entry (green circle), breaching red-green separation.

Similar vulnerabilities can be caused by green applications,
which could breach the isolation of other green applications.

C. Threats

The examples above show how an adversary can breach
confidentiality and/or integrity of sensitive I/O data across
isolated applications. The emerging attack pattern is simple:
the adversary either compromises an OS driver or provides
an isolated application containing a deliberately compromised
driver. Then the compromised driver can mis-configure its
device to setup unauthorized I/O transfers either directly or
indirectly. These attacks appear in all commodity OSes—even
when they benefit from formally verified micro-hypervisors
and micro-kernels that isolate device drivers.

We assume that attackers control drivers of their devices.
Note that an attacker need not corrupt device firmware to
launch the I/O separation attacks; e.g., surreptitiously modify
the device controller’s firmware by re-flashing [29], [30],
[31] or by supply-chain compromise [32], [33], [34], [35].
Techniques to verify the correct device firmware and register
contents after re-flashing are known [36] and hence are not
addressed here. Also, we assume that legitimate backdoors are
disabled before system operation; e.g., hardware debugging
interfaces for privileged access to I/O devices [37]. As cus-
tomary, we also assume that device hardware is non-malicious.
Denial-of-service and covert-channel attacks in I/O transfers
are also irrelevant to the I/O separation model.

III. MODEL MOTIVATION AND LAYERED APPROACH

The challenges of building an I/O separation model are
to provide security guarantees for (1) different I/O hardware
designs, different types of I/O accesses (e.g., P2P, broadcast),
direct and indirect transfers; and (2) different I/O kernels,
ranging from high-assurance, such as Wimpy kernel (WK) [21]
and the GPU separation kernel (GSK) [38], to low-assurance
OS kernels (Linux) [28], [11]. The model must apply to
all trusted execution environments and hardware-supported
enclaves. We outline why these challenges are important and
how to meet them via a layered modeling approach.

A. Motivation

Application to Different I/O Hardware Designs. It must be
possible to instantiate the formal model on any commodity
I/O configurations regardless of the hardware ability, or lack
thereof, to authorize I/O transfers. The reality is that a large
variety of commodity processors which support application
isolation (e.g., via trusted execution environments [39], par-
titions [16], [17], pieces of application logic [40], [13], [14],
and enclaves [41], [15]) will continue to be interconnected
to I/O hardware that fails to adequately authorize separate
device transfers. This is both for high-performance and low-
cost; e.g., in cyber-physical systems (CPS) [42] and vehicular
computing [42], [26]. Our formalism suggests specific ways
to handle inadequate I/O hardware.

1. No authorization. In this case, an I/O kernel defines
separate device-driver associations and transfer permissions.
Driver code is either (a) formally verified not to violate the
defined authorizations or (b) de-privileged, exported to isolated
applications, and have all its device accesses authorized by the
I/O kernel at run time, or a mixture of both (a) and (b). In case
(a), verified drivers are authenticated at boot time (via secure
and trusted boot) and configured within the I/O kernel. This
is practical only for systems with few devices; e.g., CPS [42]
and vehicular computing [42], [26]. In case (b), unverified
driver accesses to devices could incur substantial overhead,
and hence could only be used for drivers that access devices
infrequently. In both cases, the model shows how authorization
is formally specified and verified; using transitive closures of
transfer descriptors; see Section IV-B.

2. Non-selective authorization. In this case, the I/O kernel
has two non-exclusive options, and is more scalable than the
no-authorization remedy above. First, only the driver code of
devices connected to the same PCI bus needs to be formally
verified to satisfy individual device-transfer authorization, and
only these drivers need to be authenticated and configured
within the I/O kernel during boot. Second, whenever practical,
I/O configurations are restricted to a single device per PCI bus
and this is enforced at boot time. The drivers of these devices
are untrusted and can be exported to isolated applications.

3. Selective-authorization failure. Here, a formal model
applied to micro-hypervisors and I/O kernel verification shows
that all separated but malicious drivers are de-privileged and
safely exported to isolated applications along with their lo-
cal buffers. This solves the I/O separation breaches shown

in Example 4 of Section II-B, and substantially simplifies
both formal micro-hypervisor and I/O kernel verification and
naturally avoids performance penalties (Section VIII-B). To
enable this, the I/O kernel relies on the I/O hardware to
enforce transfer authorization late, and the benefits of late
authorization are discussed in Section IV-D.
Application to Different I/O Kernels. Different I/O kernels
isolate drivers in different ways: some isolate them within the
I/O kernels themselves, while others isolate them within appli-
cations; e.g., in partitions of separation kernels, isolated pieces
of application logic supported by micro-hypervisors, trusted
execution environments, or hardware-isolated enclaves. Some
I/O kernels support device activation on demand whereas oth-
ers support only static activation during system boot. Despite
their differences, all I/O kernels support a notion of separation
to encapsulate drivers and their associated I/O objects (e.g.,
data buffers and configuration registers) and devices of isolated
applications. Hence, any model must support this notion,
and we do this via I/O partitions; i.e., at any given time,
each device, driver, and object belongs to one and only one
partition, and they can move from one partition to another.
Then two security policy properties that an I/O separation
model should naturally enforce are, at a high level: (1) no
cross-partition transfers, and (2) no object data reuse in a
new partition in on-demand I/O. We will make these more
concrete in Section IV. The formal application of the model
to an I/O kernel is discussed in Section V whereas the informal
application to other I/O kernels is in Section VIII-A.

B. Layered Modeling

Figure 5 illustrates our layered modeling approach that
yields a verified assembly implementation of Wimpy kernel.
We use Dafny and start from an abstract I/O separation model
and use a hierarchy of verified refinements. The abstract I/O
separation model specifies key device and driver components
and operations, formalizes the notion of I/O partitions, and
specifies I/O authorization and properties.

The second layer comprises Concrete I/O models, which
are obtained from (verified) refinement of the abstract model,
have more details, including specific types of I/O hardware au-
thorization capabilities and I/O separation policy, as discussed
above. The soundness of a Concrete I/O model is proven by
leveraging the simulation relation between the abstract I/O
separation model and the Concrete I/O model.

The third layer is I/O kernel designs whose formal spec-
ifications represent the (verified) refinement of the Concrete
I/O model in different device classes, whereby some or all
mechanisms for device identification, initialization, transfer
authorization may differ among these classes. This allows
the instantiation of different I/O kernels for typical OS de-
vice classes: a Wimpy kernel, a GPU separation kernel (see
Figure 5), a NIC kernel, etc. Then soundness of an I/O
kernel design specification is proven by the simulation relation
between the Concrete I/O model and the I/O kernel design
specifications.

on-demand, red/green partitions

Wimpy kernel [21] Separation

kernels [16,17]

GPU separation

kernel (GSK) [38]

I/O Separation Model

OS kernels with

Intra-OS protection

[11,28]

Wimpy kernel

GSK codeWimpy kernel code

Abstract model

specification

Concrete model

specification

Kernel design

specification

Kernel implementation

specification

Automated generation

of C/Assembly code

Dafny

Vale/Dafny

static allocation

multiple partitions

on-demand OS DMA

multiple partitions

Refinement proof

Informal refinement argument

Fig. 5. Model Refinements and Automated Code Generation

Using an intermediate concrete-model specification reduces
the proof effort for different I/O kernels refined from the same
concrete model. Further, kernel-design specifications are nec-
essary for three practical reasons. First, design specifications
and (failure of) their soundness proofs enable early detection
of security vulnerabilities before any effort for implementation
specifications, code generation, and their testing is expanded;
e.g., vulnerabilities of the original Wimpy-kernel design [21]
in Section VI-B. Second, the different I/O kernel designs (e.g.,
Wimpy kernel, GPU separation kernel, and NIC separation
kernel) obtained by device class partitioning can be provably
composed within a secure I/O subsystem. This can further lead
to the sound composition of implementation specifications;
e.g., composition is facilitated by the sound correspondence
between individual I/O kernel designs and their implementa-
tion specifications. Thus, the much more complex provable
implementation- and code-composition effort can be avoided.
Third, design changes for a device class often retain the same
I/O kernel design specifications and avoid constructing new
soundness proofs; e.g., USB 3.0 on-demand time-multiplexing
mechanism does not change USB 2.0 I/O kernel specifications.

The last layer of specifications is I/O kernel implementations
in Vale/Dafny [15], so x86 assembly code can be automatically
generated and the implementations can be proven correct in
Dafny. This refinement proof shows that the Wimpy kernel
implementation correctly refines its design specification.

C. Code sizes, level of effort, and model reusability

All the models and refinement proofs shown in the gray box
of Figure 5 are formally specified and verified.

Code sizes. The I/O separation model takes 28,518 lines of
Dafny code (LOC) the concrete model takes 47,120 LOC, the
WK design takes 55,426 LOC, and the WK implementation
takes 136,815 of Dafny and Vale LOC. The WK implementa-
tion are more than double the size of the design specifications
because it requires formal refinement of subjects, objects,
and operations for x86 platforms. The automatically generated
assembly code takes 12,031 instructions.

Level of effort. The overall level of effort for the model
design, specifications of the verified refinements, proofs, and

WK implementation was 4.5 person-years, of which 2.5
person-years were required for the sound WK design and
implementation.

Model reusability. Reuse of the model components can save
substantial level of effort for future I/O separation designs. For
example, the abstract model can be profitably reused for other
secure systems, since its separation properties are general; see
Section VIII-A. This would save over a person-year worth of
effort. Both the abstract and concrete model specifications can
be reused for the GSK design (see Figure 5) saving about
2 person-years or about half of the overall effort. Finally,
improved proof structure could also lead to decreased level
of effort; e.g., caching and reuse of proof results, reuse of the
many lemmas that are common to different proofs.

IV. I/O SEPARATION MODEL

We describe our labeled-transition-based abstract I/O sepa-
ration model and define the security properties of I/O separa-
tion. Detailed definitions are in Appendix A.

A. Abstract Model State

We list key I/O components then describe abstract state.
Overview of Devices, Drivers, and I/O Objects. Device
drivers are arbitrary programs that run on CPUs and read-
/write devices. Devices include peripherals as well as I/O
bus controllers routing I/O transfers between devices and
CPUs/memory. These components can access each other via
different types of I/O communications; e.g., CPUs read and
write devices via Memory-Mapped I/O (MMIO) or Port I/O
(PIO) devices, read and write memory via Direct Memory
Access (DMA), and request CPUs’ attention via interrupts.

Device drivers interact with devices via I/O objects, which
comprise Data Objects (DOs) and Descriptor Objects both
of which can be read/written by drivers and devices. Data
objects store devices’ input and output data; e.g., device
status registers, data buffers in drivers and devices. Descriptor
objects define device functions, such as transfers to be issued,
power management, performance management, and are further
partitioned into function and transfer descriptors. Function de-
scriptors (FDs) define configurations of device functions other
than I/O transfers; e.g., frame buffer format registers in GPUs

define the data format of pixels, and power control registers
are used to configure power of certain GPU components and/or
display components. Transfer descriptors (TDs) define direct
I/O transfers to be issued by devices. A TD contains a list of
entries, each comprising a pointer to an I/O object, requested
access modes, and new values to write. These TDs encode
separation policies and thus require special attention.

Each internal I/O object is owned by a device or a driver,
while the external I/O objects are not owned by any devices
or drivers. I/O object ownership is defined by I/O kernels and
isolated applications at initialization time. For example, I/O
kernels may isolate external I/O objects (e.g., interface data
structures for protected USB devices) from drivers to authorize
driver access to these objects.

Each device owns a hardcoded TD, which defines local
transfers issued to the device’s own internal objects, based on
the device’s hardware/firmware implementation. For example,
a GPU’s hardcoded TD defines read transfers to TDs of
frame-buffer base registers to enable the GPU to poll their
configurations. Hardcoded TDs are read only by their con-
taining device and do not define read transfers to themselves.
However, they define either read or write transfers to other
TDs. This enables a device to perform arbitrary transfers
via these TDs. Finally, hardcoded TDs cannot be written as
they are immutable between (trusted) re-flashing operations of
device firmware.

Devices, drivers, and objects can be inactive or active.
Inactive devices and drivers cannot perform any I/O transfer.
Active devices and drivers can issue I/O transfers. Active
objects are the ones accessible by active devices and drivers.
State Definition. The abstract system state encompasses I/O
device and driver states that are relevant to I/O separation.
To facilitate specification of access-control (authorization)
policies, the model consists of subjects and objects and a set of
partitions containing devices, drivers, and I/O objects. The set
of subjects comprises Drivers and Devices. All subjects have
unique (e.g., non-reusable) names. Each driver is associated
with a partition ID (i.e., the partition holding the driver) and
a set of objects IDs, owned by the driver. Each device is
associated with an ID of the hardcoded TD it owns. Objects
comprise I/O objects TDs, FDs, and DOs, as introduced above.
Objects are also associated with partition IDs. FDs and DOs
have string values. Each TD’s value is a list of tuples of a
pointer to an object, requested access modes, and new values
to write. Partitions have unique names. A special NULL I/O
partition includes all inactive subjects and objects. Active
subjects and objects can only be in non-NULL partitions.

B. State Transitions

A state transition occurs when an I/O operation modifies a
system state. Operations in I/O systems are categorized into
four groups: I/O transfers, partition creations and destructions,
subjects/objects activations, and subjects/objects deactivations.
Each operation is defined as a Dafny method and includes
authorization decisions of the abstract I/O separation model.

TD1

Driver	

(a)	 Device	 transfer	 to	 I/O	 object	 2	 (b)	 Device	 transfer	 to	 I/O	 object	 3,	
	 	 	 	 	 	 a#er	 TD1	 is	 modified

	 R

R/W

Legend:	 TD
*

modified	 TD

*

Hardcoded	 TD	 Hardcoded	 TD	

Device	 	

I/O	
Object	 3	

I/O	
Object	 2	

I/O	
Object	 3	

I/O	
Object	 2	

	 W

Device	 	

TD1

	 R

Fig. 6. Device transfers authorized by TDs.

TDi

TDh

TDj

* TDi

TDh

TDj

*

*

TDi

TDh

TDj

device i’s
direct write
to TDh

Unauthorize write transfer

device h’s
direct write
to TDj

write transferreachable via writes

*

*

*

Fig. 7. Computing transitive closure of TD state

1) I/O transfers and their authorization: Drivers and de-
vices perform different types of transfers to I/O objects.
Drivers issue arbitrary transfers to any I/O object except to
devices’ hardcoded TDs. Devices can read only their own
hardcoded TDs but not those of other devices. A device can
issue a transfer to an I/O object if and only if the transfer is
defined by the device’s hardcoded TD or by a TD that can
be read by the device via its hardcoded TD. For example, the
device of Figure 6(a) can issue a read/write transfer to the I/O
object 2 because (1) the device can read its hardcoded TD, (2)
hardcoded TD defines a read (R) transfer to TD1 and thus the
device can read TD1, and (3) TD1 defines a read/write (R/W)
transfer to the I/O object 2. However, the device cannot issue
transfers to the I/O object 3 since they are not defined by any
TD that can be read by the device. The device can do so only
after a driver modifies TD1; see Figure 6(b).

For these I/O transfers, the kernel needs to check that the
subjects and objects of the transfers are in the same partition.
However, this check alone is insufficient to prevent cross-
partition indirect transfers; see Figure 2 (b). To do so, writes
to TDs require a more complex check, which we detail next.
Example Transitive Closure of Active TDs. Writes to active
TDs enable indirect transfers by devices. For example, in the
Indirect Transfer 1 of Figure 2(b), malicious driver i writes to
TDi of device i, and hence configures device i to write the
TDh of device h, which causes h to perform a direct write
to target device j. Here, device i performs an indirect I/O
transfer to device j via device h, which acts as a surrogate
for device i and accesses I/O objects of device j on behalf
of device i. To accommodate hardware that cannot mediate
I/O transfer between h and i (e.g., device P2P transfers), the
kernel needs to prevent driver i from writing TDi with values
that may enable unauthorized future indirect write transfers.

The solution is to first compute a transitive closure of the
state of all active TDs when TDi is written by driver i, and
then check that the transitive closure does not include cross-
partition accesses. Figure 7 builds on the example of Indirect
Transfer 1 of Figure 2(b) to illustate how the transitive closure
computation reveals the unauthorized write indirect transfer to
the TDj of device j. Each box represents a state of all active
TDs (denoted as TD state), the leftmost one being the current
state containing all the active TDs when i has written to TDi.
TDs with an * are updated and different from the initial state.
The computation starts from the leftmost state and discovers
that driver i’s write to TDi has created a write transfer from
device i to TDh, indicated by the arrow from TDi to TDh. The
algorithm then generates a new TD state, as illustrated by the
second box, after allowing i to write to TDh. This write creates
a write transfer from h to TDj , which is cross-partition and
marked in red. At this point, our algorithm has not determined
this transfer is cross-partition. In the next step, the algorithm
analyzes this new TD state and discovers that it enables device
h to write TDj , and generates the third TD state by allowing
h to write TDj . Now, the algorithm examines the write issued
and determines that this is an unauthorized indirect transfer.
At this point, the kernel knows that i’s write to TDi shouldn’t
be allowed. The transitive closure computation aims to include
all reachable TD states from the initial state, until a fixed point
is reached or an unauthorized access is found. In this example,
the transitive closure computation includes the three TD states
shown. More details are in Appendix A-D.

2) Partition creation/destruction: A new I/O partition with
ID new pid can be created as long as new pid has not been
used before. A partition with ID pid can be destroyed if no
subject or object exists in that partition, to ensure that no
objects have dangling references to non-existent partition IDs.

3) Object activation/deactivation: Inactive subjects and ex-
ternal objects can be activated into an existing partition. To
ensure no data leaks or accidental references to data occur in
the old partition, the kernel clears the data contained in those
objects, except when it is a device’s (immutable) hardcoded
TD, as we assume the firmware is trusted. If the threat model
considers device firmware to be malicious, the verified correct
firmware can be locally re-flashed and/or remotely attested.

Active subject and external objects can be deactivated by
setting their partition ID to be NULL. The kernel needs to
ensure that no active device can issue transfers to the item
to be deactivated by computing and checking the transitive
closure of the TD state in the current system state. This check
is necessary; otherwise, after a deactivate operation, active
devices can issue transfers to inactive objects, and further issue
cross-partition transfers after these objects are reactivated into
new partitions. For example, consider the case where partition
1 contains device i and driver h, in which device i’s TD defines
a transfer to an object of driver h. After driver h is deactivated
and reactivated into another partition 2, device i can issue
cross-partition transfers to driver h and break I/O separation.
Merely clearing all objects of driver h does not remove the
insecure transfer, and hence cannot prevent this attack. That

is, the check of deactivate operations ensures that the lifetime
of configuration of transfers to an object must be strictly less
than the lifetime of the object in a partition.

C. Soundness

We define the following two isolation properties, over the
execution traces of the abstract I/O separation model.
(SP1) No I/O transfer crosses a partition;
(SP2) Only hardcoded TDs can be reused in a new active

partition.
These two security properties are sufficient for I/O separation
in practice, because each I/O object always belongs to one
partition at any time. If an I/O object is in one partition,
subjects in other partitions cannot access the object, by
property SP1. Further, when objects are moved into a new
partition (i.e., by object deactivation and reactivation), they
may be accessed by all subjects of the new partition, but
not by the old ones. The subjects in this new partition also
cannot read any value written by any subjects of the old
partition. To do otherwise, violates SP2: either TDs are reused
or the new partition is the NULL partition. In the later case,
subjects cannot issue transfers, and consequently cannot read
objects. The reuse of hardcoded TDs between partitions is
secure because hardcoded TDs are immutable between any
two trusted device re-flashings.

We prove that our abstract I/O separation model is sound
with respect to the above mentioned security properties.

Corollary 1 (Soundness of abstract model). The abstract I/O
separation model satisfies SP1 and SP2.

Next, we explain how to prove the soundness theorem in
Dafny. First, we identify state invariants, which define the
security guarantees of abstract model states (Appendix A-C).
These state invariants are preserved by all state transitions. We
show one example invariant below.

(SI1) For any TD state of a transitive closure in a system
state k, if a TD can be read by an active device, then objects
referenced in that TD (i) must be in the same partition as the
TD, and (ii) must not be hardcoded TDs.

Invariant SI1(i) implies that a device must be in the same
partition as the objects to which the device can issue direct
or indirect transfers; i.e., no cross-partition access is possible.
This is because devices are always in the same partition as
their hardcoded TDs and TDs are objects themselves. Thus,
if invariant SI1(i) holds, an active device must be in the
same partition as all the TDs and other objects to which the
device can issue direct or indirect transfers (via TDs). SI1(ii)
together with the fact that hardcoded TDs cannot be accessed
by drivers, reflects the invariant that hardcoded TDs are local
to devices and are immutable between firmware re-flashings.

Then, we define transition constraints (aka., transition prop-
erty), a set of properties for every possible state transition.
Each transition constraint specifies properties of the starting
state, resulting state, and the operation. Below, we illustrate
the constraint used to prove SP2. Appendix A-C contains all
the transition constraints.

(TC1) Only hardcoded TDs can be reused in a new partition
with non-NULL partition IDs.

The general properties for a transition from state k to k′

that we prove are: (1) If k is secure (i.e., satisfies all the state
invariants), then k′ is also secure; and (2) k and k′ satisfy
all the transition constraints (e.g., TC1); and (3) if an I/O
transfer operation is allowed by the kernel, then the subjects
in that operation must be in the same partition as the objects
accessed by that operation. Property (3) can be derived from
the combination of the state invariant (SI1), which ensures
only same-partition transfers from device reads and writes are
allowed by the TD states, and the semantics of driver reads
and writes, which check the partition IDs of objects being
accessed. We then show that the initial state is secure and use
the above one-step lemmas and inductively show that both the
state invariants and transition constraints hold on all traces.

Theorem 1 (State Invariants). If state kn is the resulting state
after a sequence of n transitions from state k0 and k0 satisfies
all state invariants, then kn also satisfies all state invariants.

Proof Sketch. Proof by induction over n. In the base case,
when n=0, kn=k0 satisfies all state invariants. In the induction
case, where ki transitions to ki+1 and i ∈ [0, n − 1], and ki
is assumed to fulfill all state invariants, ki+1 must fulfill all
state invariants due to property (1) of transitions.

Theorem 2 (Transition Properties). If state kn is the resulting
state after application of a sequence of n transitions on state
k0 and k0 satisfies all state invariants, then all transitions in
the trace satisfy all transition constraints.

Proof Sketch. Proof by induction over n and apply the
induction hypothesis and lemmas for the transition properties.

Our proof relies on a set of axioms (formally defined in
Dafny specifications) to represent common assumptions about
devices and drivers; see Appendix A-C.

D. Discussion: Late versus Early Authorization

Authorization of all I/O transfers based on transitive-closure
computation is necessary to accommodate hardware with
inadequate I/O authorization; i.e., for the model to be hardware
agnostic. This also shows how the (un)availability of adequate
I/O hardware can impact a system’s security and performance.

A typical system with I/O hardware for access authorization
supports what we call late authorization: the I/O kernel autho-
rizes all direct transfers at the time they happen. Late autho-
rization is not possible with inadequate I/O hardware; e.g., the
indirect accesses in Figure 2 (b). Instead, conservative early
authorization where the kernel computes the transitive-closure
and rejects transfers that enables future cross-partition accesses
before the access really happens is needed. It may deny some
legitimate transfers that appear to violate I/O separation in
some traces that may not occur in a given runtime execution
session. However, conservative authorization is sound: it never
misses a transfer that might leave the system in a vulnerable
state. This is because the transitive closure outputs all potential
TD states whereas actual execution traces of I/O operations

may yield transfers that reach only a subset of these states.
Naturally, if I/O transfer authorization is performed early,
without the benefit of examining all and only actual execution
traces starting in a TD state, then it has no choice but to deny
all potentially insecure I/O transfers which could be issued in
that TD state. For instance, in Example 2 and Figure 2(b), the
write from device i to h doesn’t mean that device h will write
to j, which would violate separation, in the future. However,
authorization without adequate I/O hardware support needs to
stop this write early; otherwise, it invites successful attacks.

In short, late authorization is always sound and complete
whereas early authorization, while always sound, can be
incomplete.

V. A CONCRETE I/O MODEL

We describe the verified refinement of the abstract I/O
separation model to obtain a concrete I/O model, which is
further refined to obtain the Wimpy kernel design.

A. Isolation and Device Policies

This concrete I/O model makes explicit its policy for
separating transfers of isolated (green) applications from those
of untrusted (red) OS and applications using I/O hardware au-
thorization and specific ephemeral-device activation policies.
Red-Green I/O Partitions. The red-green I/O separation
policy allows untrusted (red) OS drivers to run and access
all their devices in an untrusted (red) I/O partition; aka., the
“red partition”. When an isolated green application requires
I/O separation on-demand, the I/O kernel creates a new I/O
partition for its drivers, aka., a “green partition,” deactivates
the required devices from the red partition, and activates them
into the green partition, along with the drivers and necessary
external objects. Once the isolated application finishes its
execution, it invokes the I/O kernel to deactivate its drivers,
external objects and devices, activates corresponding devices
in the red partition, and destroys the green partition. The I/O
kernel may create multiple isolated green partitions to enforce
I/O separation for multiple isolated applications, while only
one red partition exists. The red partition must exist in this
on-demand concrete separation model, because the untrusted
(red) OS and applications run first, before loading the I/O
kernel to run security-sensitive green applications (often by a
micro-hypervisor or micro-kernel).
Ephemeral Devices. Ephemeral devices are created by mul-
tiplexing shared physical devices to create the illusion of
separate physical devices. For example, an I/O kernel can
multiplex a shared bus controller to create separate ephemeral
devices [21]. Different I/O kernels implement different policies
for ephemeral-device activation. This concrete model enforces
the separation policy that a physical device and its mapped
ephemeral devices must not be active at the same time.
The creation of separate ephemeral devices enables secure
multiplexing of physical devices, but does not address I/O
separation; vulnerabilities shown in Section II still persist.

Ephemeral differ from virtual devices in several ways.
For example, unlike virtual devices [43], they have a short

lifetime, as short as a few I/O transfers. They often provide
minimal functionality required by isolated drivers, whereas
virtual devices aim to provide rich functionality to support
OS and applications. Unlike virtual devices, whose device
activation policy is uniform across different VMs, ephemeral-
device activation depends on the types of physical devices they
multiplex.
I/O Policies. This concrete model enforces different I/O
transfer policies for drivers and devices in different parti-
tions, reflecting differences in the underlying authorization
mechanisms. For example, by default, drivers of a green
partition (green drivers) can write to external TDs of devices
associated with that partition, which allows the (ephemeral)
bus controllers configured by green drivers to read these TDs
and issue transfers to I/O objects in other green partitions. To
prevent bus controllers from issuing direct transfers to objects
in a different green partition, an I/O kernel needs to authorize
transfers issued by the bus controllers when green drivers write
TDs. This authorization requires TD-state transitive closure
computation. In practice, an I/O kernel may not compute the
transitive closure for performance reasons, and instead may
impose a stronger and more conservative policy that forbids
green devices from writing to TDs.

In the red partition, untrusted red drivers and their devices
can issue transfers to objects in various ways supported by
different hardware platforms; e.g., device P2P transfers, I/O
multicast and broadcast. The I/O kernel ensures all transfers
issued by red drivers and devices are confined to the red
partition by leveraging existing hardware security isolation
mechanisms; e.g., setting the IOMMU page tables and reset-
ting the IOTLB. The I/O kernel also prevents configurations
that allow P2P transfers on PCI buses, which have inadequate
access control of I/O transfers.

B. Defining the Concrete Model

Compared to the abstract model, the concrete model in-
cludes additional I/O operations using abstractions of specific
hardware isolation mechanisms such as IOMMU and IOTLB
and extended device and driver (de)activation conditions. New
state invariants and transition constraints are applied to the
concrete model to prove soundness.
State. In addition to everything in the abstract I/O separation
model, a concrete-model state includes a dedicated partition
ID for the red partition and an ephemeral device map, mapping
each ephemeral or physical device to a set of ephemeral
devices and indicating which ones are active. This map helps
enforce the separation policy of ephemeral devices and ensure
that a physical device is not active at the same time as its
mapped ephemeral devices.

In the initial state of the concrete model, the red partition
is the only active partition, and devices, drivers, and objects
are either active in the red partition or inactive.
State Transitions. Each operation of the concrete model maps
to one and only one operation of the I/O separation model,
as shown in Table I of Appendix B. For each operation in

the abstract model, this concrete model makes a distinction
between green and red partitions.

The driver write operation in the abstract model is split
into a green driver write and a red driver write operations.
The former relies on I/O kernel code for access control. The
latter may rely on available I/O hardware mechanisms (e.g.,
IOMMU and/or PCIe ACS) to block any cross-partition trans-
fers issued by red devices and thus the concrete model imports
isolation assumptions based on the hardware mechanisms.
This is because green applications require I/O separation of
ephemeral devices at finer-granularity than can be achieved
by even perfect I/O hardware mechanisms alone. In contrast,
I/O kernels only need to prevent red drivers from accessing
the physical device mapped to ephemeral devices, which can
be achieved by using I/O hardware mechanisms.

Similarly, driver, device, and external object activation and
deactivation operations are split into a green and a red version.
Red drivers and their external objects have (de)activation
operations acquire/release memory in the red partition on-
demand and they are never allowed to be moved to a green
partition. The green drivers and external objects are directly
activated into green partitions on demand, but never in a red
partition. Red driver, device, or external object deactivation
operations require that no other red device can issue direct
or indirect transfers to it. This requirement is fulfilled by
using adequate hardware mechanisms that are capable of fine-
grained access control such as IOMMU and PCIe ACS. The
model imports this requirement as an Axiom.
State Invariants and Transition Constraints. For simplicity
of exposition, we show only how a single state invariant, SI1,
of the abstract model is refined to obtain invariants in the
concrete model. The transition constraints are almost identical
to those of the abstract model, so we omit them. Similar to the
operations, the state invariants are concretely applied to green
and red partitions.

SI1c In any TD state of a transitive closure in system state ck,
if a red device can read a TD, then the objects referenced
by the TD must be i) in the red partition, and (ii) must
not be hardcoded TDs.

SI2c All TDs in green partitions (i) only reference objects in
the same partition with the TDs, and (ii) do not define
direct TD write transfers.

The state invariant SI2c is stronger than the direct inter-
pretation of SI1 in the abstract model to green devices, as
no indirect transfer is allowed at all by SI2c(ii). An I/O
kernel could enforce the weaker SI1 for the green partition
by computing a transitive closure, but this is less desirable
because of the performance penalty incurred by doing so.
SI2c is a more conservative policy which can be easily
implemented by the I/O kernels because only green drivers
can configure transfers by USB host controllers, USB devices,
and (ephemeral) interrupt controllers, if any. In Section VI-B,
we will illustrate a vulnerability in the original Wimpy kernel
design, which violates SI2c.

C. Soundness of the Concrete Model

The I/O separation properties for the concrete model are: (1)
subjects can only issue I/O transfers to objects in the same red
or green partitions; (2) only hardcoded TDs can be reused in a
new green or red partition. These properties are instantiations
of SP1 and SP2 to green and red partitions.

To prove that the concrete model enforces I/O separation,
we need to prove the refinements of Theorem 1 and 2,
and Corollary 1 of the (abstract) I/O separation model. The
theorem statements remain the same; however, the underlying
definitions of state invariants and transition properties are
replaced by the ones defined specifically for the concrete
model; i.e., SI1c, SI2c, TC1c, etc.

We leverage the simulation relation between the abstract and
concrete model in proving these theorems. We formally define
a mapping f from concrete states, operations, and transitions
to abstract states, operations, and transitions as illustrated in
Table I of Appendix B. (For brevity, we overload f for all of
the mappings.) We then prove the following lemma.

Lemma 1. If ck1 makes a successful transition to ck2 under
operation co (d = true) and f(ck1) = k1, then there exist o
and k2 such that k1 can make a successful transition to k2
under o; i.e., such that f(ck2) = k2 and f(co) = o.

The key part of proving the theorems is to show that a
successful transition from a secure state in the concrete model
always results in another secure state and that the transition
properties hold on this transition. Instead of directly proving
this statement on the concrete model, we first separate state
invariants and transition properties of the concrete model into
two groups: one that can be proved with the abstract model’s
security invariants and transition properties, and the other
which cannot. For example, SI1c belongs to the first group,
while SI2c belongs to the second group. Once the two groups
of properties are proven, the key part of proving the theorems
holds. To prove the first group of properties, we only need to
show three detailed lemmas hold: (1) a secure concrete state
always maps to a secure abstract state; (2) if a concrete state ck
maps to a secure abstract state, then ck fulfills state invariants
in the first group, and (3) if a concrete transition co maps
to an abstract transition that satisfies transition properties,
then the concrete transition satisfies transition properties in
the first group. The proofs of (1) – (3) are straightforward
since concrete states only differ from abstract states in the
treatment of green and red partitions and ephemeral devices,
and fulfill stronger invariants; e.g., SI2c is stronger than SI1.
A direct proof of the second group of properties is trivial,
because concrete operations enforce these properties in their
specifications.

VI. WIMPY KERNEL DESIGN

The Wimpy kernel (WK) [21] aims to enforce on-demand
I/O channel separation for isolated applications. It shares
the same I/O separation goals of the concrete model in
Section V-A and is specialized to ensure the proper red/green
parition separation in the presence of USB host controllers

and USB peripheral devices. We describe its specification, an
instantiation of the concrete model from Section V, and finally
discuss its vulnerabilities.

A. Instantiating Concrete Model to WK Design

The WK design inherits much of the state, operations,
state invariants, and transition constraints from the concrete
model from the previous section. One specific operation is
the activation of USB host controllers and devices into the
red partition, which is specified as concatenations of concrete-
model operations (Table II in Appendix B). The concatenation
ensures the atomicity of this operation: all of the devices
are activated at the same time. The WK design refines the
ephemeral-device policy from the concrete model to require
an ephemeral device for the same physical device to be active
in one partition. The soundness proof of WK design relies on
a straightforward simulation proof, as the mappings are mostly
identity functions.

B. Vulnerabilities of the original WK Design

We compared the sound kernel specifications with the
original design [21] and discover discrepancies that lead to
vulnerabilities. We illustrate the two vulnerabilities found and
identify the invariants they violate.
Vulnerability 1: A violation of red-green separation. Red
devices can issue unauthorized transfers to green drivers,
devices, and external objects.

This vulnerability is caused by a violation of the state
invariant SI1c of the sound WK design and concrete I/O
model, which in turn violates invariant SI1 of the abstract
model. Consequently, the separation property SP1 can not be
proven in the original design.

This vulnerability happens when a red device is under
the same PCI bus with the isolated USB Host Controller
(USB HC). Because PCIe-to-PCI bridges authorize device P2P
transfers and DMA transfers at the granularity of PCI bus
controllers, the vulnerability can be exploited as in Example
1, 2 and 3 in Section II. WK incorrectly assumes that IOMMU
and PCIe ACS mediate these transfers.

To remove this vulnerability, the sound WK design restricts
hardware configurations to prevent such transfers. These re-
strictions require green USB host controllers to be attached
only to PCIe (not PCI) buses, and then the IOMMU and PCIe
ACS block unauthorized red-device transfers. Note that the
WK design could implement the transitive closure computation
and checks of the abstract model, but it is inefficient. So
the WK design deviates from the abstract model and makes
explicit assumptions about the I/O hardware.
Vulnerability 2: A violation of green-green separation. Green
drivers can issue indirect writes to external TDs and cause
their devices to initiate transfers to other green partitions after
reading these TDs.

This vulnerability is caused by a violation of state invariant
SI2c(ii) of the sound WK design, which denies indirect
transfers in green partitions. Figure 8 illustrates how to exploit
this vulnerability. Nexus RVM [2] also has this vulnerability.

Green	 par((on	 1	 Green	 par((on	 2	

Driver	 i	
	

W	

TD

Driver	 j	

USB	 HC	 j	

Obj	 1	

Obj	 3	

Obj	 2	

USB	 HC	 i	

W	 	 	 	 	 	 	 	 (2)	

TDi

HTDi	
R	

Driver	 i	
	

RW	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3)	
TD

Driver	 j	

USB	 HC	 j	

Obj	 1	

Obj	 3	

Obj	 2	

USB	 HC	 i	

TDi

HTDi	
R	

Driver	 i	
	

Driver	 j	

USB	 HC	 j	

Obj	 1	

Obj	 3	

Obj	 2	

	 	 	 	 	 	 	 	 	 	 (4)	 	

R/W	

R/W	
TD

USB	 HC	 i	

TDi

HTDi	
R	

R	 	 	

Green	 par((on	 1	 Green	 par((on	 1	 Green	 par((on	 2	 Green	 par((on	 2	

(1)	

Fig. 8. Wimpy kernel design vulnerability 2.

At time (1), malicious driver i writes to an external TD,
with a value defining a write transfer to the TD itself.

At time (2) the same driver writes to its device i’s (USB
HC i’s) transfer descriptor TDi enabling it to read the external
TD. WK allows driver i to perform both operations because all
direct transfers defined in the modified TDs reference objects
in the local green partition 1, and their new values enable only
local-partition transfers.

At time (3), the USB HC device i reads the value of the
external TD. Because driver i modified the TD and defined a
write transfer to the TD itself at time (1), device i can then
write new configuration values to this TD, under the control
of malicious driver i. Next, device i overwrites the external
TD thereby enabling transfers to driver j and device USB HC
j. The WK allows USB HC device i to write the configuration
values to external TD since this operation is direct and local
to the green partition 1. Note that WK does not ensure that
the values written by the device prevent indirect transfers.

At time (4), the USB HC i issues an indirect transfer to
device USB HC j and/or driver j of partition 2 via the external
TD, which violates the green-green partition separation. This
transfer is similar to the Indirect Transfer 2 of Figure 2(b).

To remove this vulnerability, the sound WK design specs
prevent all direct TD write transfers by devices in their local
green partition. Again, computing the TD state transitive
closure would have removed this vulnerability. For perfor-
mance concerns, the sound WK enforces a stronger and more
conservative policy: WK design prevents all direct TD write
transfers by devices in their local green partition. This type of
check is not included in the original WK design [21].

VII. GENERATION OF FORMALLY VERIFIED WK CODE

We use Vale/Dafny [22] to specify and verify a new, sound
Wimpy kernel (WK) implementation, following the general
approach used in prior work [15]. Comparing the new imple-
mentation with the original, we identify additional implemen-
tation errors in the original code.

A. WK API Specifications and Verification

All the WK APIs are specified in Vale, using the specifications
of 15 CPU instructions. To generate assembly code, we

implement an assembly printer to print the abstract-syntax-tree
(AST) of APIs generated by Vale into GNU assembly format.
Then, a new WK implementation is achieved by replacing the
APIs with the newly generated ones in the original WK code.

To verify the Wimpy kernel APIs, Vale specifications are
converted into Dafny (by Vale); and we discharge proof
obligations in Dafny, by a simulation (refinement) proof that
connects the implementation to the design.
System State. The WK implementation defines the detailed
machine state, including CPU register state and stack state,
and refines the design specifications as follows:

Identifiers. The implementation must use device, driver,
and object identifiers established on x86 platforms instead of
abstract identifiers of the design specifications. For example,
USB peripheral device identifiers use USB hierarchy addresses
(i.e., USB bus ID, USB address, connected hub’s USB address,
and hub port) and I/O objects in memory use physical memory
addresses; and PIO registers use PIO addresses.

Ephemeral USB Host Controller Objects. The implementa-
tion must use designated registers of ephemeral USB HCs to
instantiate the abstract objects in the design.

USB Interface Data Structures (IDSes). The implementation
must use the designated fields of USB IDSes, which map to
abstract objects in the design.

We define mappings between the concrete implementation
on the x86 platform and their abstract definitions in the design
specifications.
Operations. WK implementation code defines 21 APIs and
23 direct I/O accesses, each of which maps to exactly one op-
eration of the design specifications (Table III of Appendix B).

We specify direct I/O accesses of drivers and devices to
physical memory and device registers of x86 platforms in
Dafny to provide a complete list of read and write accesses
that hardware can perform (Section IV-A). If we missed
some access patterns, for instance, memory accesses by green
drivers, we would have been able to prove an insecure kernel
secure. WK code also includes auxiliary foreign function
interfaces (FFIs) such as APIs provided by the underlying
micro-hypervisor (Appendix C).
Axioms. WK APIs and direct I/O accesses rely on 107
axioms, 105 of which are independent of I/O hardware autho-

rization and are used to reduce proof effort. A further break
down is in Appendix C. Only the following two axioms define
I/O hardware authorizations.

Ax1I If OS devices can only reference I/O objects outside
the untrusted OS partition by memory addresses, then
IOMMUs prevent these devices from accessing any
objects outside that partition.

Ax2I Only USB IDS queue headers may define transfers to
USB peripheral devices.

Ax1I holds because IOMMU authorizes all memory ac-
cesses by devices. Sound WK implementation of moving a
device between red and green partitions invokes the mHV to
flush the IOTLB, just as any OS kernel would context switch
an IOMMU. Other cached entries of the mHV hardware
authorization mechanisms are also invalidated to prevent stale
access permissions from being used to breach isolation. Ax2I
holds because queue-element transfer descriptors are always
linked by a queue header [8].
State Invariants. The implementation maintains 88 state
invariants, 36 of which are refinements of the state invariants
of WK design. Among the rest of the 52 new invariants
introduced in the WK implementation, 34 invariants refer to
the CPU registers, stack, and global variables used by the
WK APIs. These invariants define valid values that can be set
in these registers and memory; e.g., the ESP register always
points to WK’s stack; global variables containing identifiers
of isolated drivers’ partitions cannot contain the identifier of
the untrusted OS partition. 13 invariants define valid mappings
between identifiers used in code and abstract identifiers used
by design specifications. Another invariant ensures that the I/O
objects of OS drivers and devices have valid memory regions.
Only 4 invariants are related to the I/O hardware used by WK.

SI1I The physical address spaces of OS drivers and devices,
isolated drivers, physical USB HCs, and WK code, stack,
global variables must not overlap.

SI2I USB IDSes in WK code, I/O objects of isolated drivers,
physical and ephemeral USB HCs, and USB peripheral
devices must not have PIO addresses; and I/O objects
of USB peripheral devices must not have memory ad-
dresses.

SI3I All ephemeral USB host controllers’ interrupts must be
disabled.

SI4I USB IDSes referenced by ephemeral USB HCs must be
either a queue header (QH) or a queue-element transfer
descriptor (QTD) of those IDSes.

Transition Constraints. In addition to the refinements of the
WK-design transition constraints, the implementation enforces
the following constraint.

TC1I All mappings between identifiers used in WK code and
identifiers used in design specifications are not modified
by APIs or direct I/O accesses.

The Vale/Dafny specifications of the WK implementation
support I/O separation since their correspondence to the sound
WK design specifications is already proven.

B. Vulnerabilities of the Original WK code

We re-examined the original WK code [21] and found that it
fails to satisfy the Vale/Dafny specifications of the verified WK
implementation in four areas. This shows that careful but infor-
mal implementation of the original kernel code can still lead to
exploitable vulnerabilities without formal verification. The first
three vulnerabilities arise from violations of implementation-
specific state invariants and transition constraints, whereas
the fourth arises from incomplete kernel mediation of IDS
modifications by drivers. These are low-level implementation
errors, unrelated to the design vulnerabilities of Section VI-B.

Vulnerability 1: Isolated application drivers can modify
their devices’ USB addresses. In the original WK implemen-
tation, a rogue isolated driver could configure its device to
overlap its address with another isolated driver’s USB device.
Hence, the rogue driver could access the latter device and
break I/O separation between isolated application drivers. This
vulnerability violates TC1I.

Vulnerability 2: Physical and ephemeral USB HCs can
have PIO addresses. This enables untrusted OS applications
to access both the ephemeral USB HCs owned by isolated
application drivers and their mapped physical USB HCs,
despite selective authorization of all memory accesses. This
vulnerability violates state invariant SI2I.

Vulnerability 3: WK fails to clear a physical USB HC’s
I/O objects when releasing it to untrusted OS/applications.
The original kernel code fails to prevent unauthorized object
reuse. Note that isolated drivers cannot clear these objects
since they do not have direct I/O access to them, as these
USB HCs are shared. Hence, I/O separation between untrusted
OS/Apps and isolated drivers does not hold. This vulnerability
violates the refinement of the concrete model’s TC1c in the
implementation.

Vulnerability 4: Isolated drivers can modify USB IDSes after
verification by WK. This enables time-of-check-to-time-of-use
attacks and violates I/O separation between isolated drivers,
and between untrusted OS/applications and isolated drivers.

C. Current Limitations

This WK implementation is unoptimized: only one USB
IDS can be used in one API invocation by green applica-
tions, whereas the original implementation takes multiple USB
IDSes. For now, this implementation does not support USB
device interrupts and assumes that WK disables them.

VIII. DISCUSSION

A. Future Use for Other I/O Kernel Designs

Our I/O model can be instantiated to other I/O kernels. We
informally discuss those shown by dashed lines in Figure 5.

The GPU separation kernel (GSK) [38] is a special I/O
kernel that separates ephemeral GPUs to create separate screen
areas for trusted and untrusted applications to coexist on the
same display. This allows both applications to perform concur-
rent I/O operations securely on these GPUs. Informally, GSK
design can be generated from the same concrete model used
for Wimpy kernel (WK). In contrast to WK, GSK’s ephemeral

GPUs can be active in green and red partitions at the same
time, even though they map to the same physical GPU. GSK
ensures the separation of ephemeral GPUs. More concretely,
the state of GSK design needs one additional variable: the ID
of the ephemeral GPU used by the untrusted OS. Ephemeral
GPUs in isolated applications can be active at the same time,
and thus concurrent I/O operations are allowed on the same
physical GPUs. To satisfy the ephemeral device policy of
the concrete model, GSK needs to maintain additional state
invariants and transition constraints for ephemeral GPUs; e.g.,
ephemeral GPUs must be inactive when its mapped physical
GPU is active. The informal analysis shows that the original
GSK design fails to enforce I/O separation when the physical
GPU shares the same PCI bus with a red device; i.e., it has the
vulnerability 1 of the WK design. The solution is to enforce
GSK use of only PCIe GPUs. GSK does not have vulnerability
2 of the WK design because isolated applications only need
to provide display contents (data object values) and window
geometry configurations (function descriptor values) without
accessing any TDs.

Traditional separation kernels [17], [16] can also be formal-
ized in our framework. However, they would have a different
I/O separation policy from the concrete model for WK and
GSK, and thus require a new concrete model. First, I/O parti-
tions are separation-kernel partitions, and thus there is no dis-
tinction between red and green I/O partitions. Second, the new
concrete model leverages the unidirectional communication
channels provided by separation kernels to authorize transfers
issued by drivers. Isolated applications use these channels to
communicate with I/O kernels in different partitions. Third, the
allocation of devices to these I/O kernels is static and cannot
be modified on demand, because devices cannot move between
partitions. I/O kernels instantiating such a concrete model
can enforce all policies as traditional separation kernels; in
addition, they can support DMA accesses that were excluded
by traditional separation kernels [44], [17].

Low-assurance OS kernels, such as the Linux kernel, can
also fit into our framework. However, another concrete model
is necessary to capture the intra-OS I/O separation policies
that prevent devices from accessing non-DMA memory. This
new model would have two I/O partitions, one comprising
all active subjects and objects, and the other the NULL I/O
partition for inactive ones. The kernel would ensure that Non-
DMA memory areas contain only inactive I/O objects (i.e.,
unmapped in DMA memory), and thus active devices cannot
access them. Unlike previous I/O separation designs [11], the
new concrete-model instantiation in OS kernels could support
device P2P communications, with early authorization.

B. Lessons Learned

Several practical lessons arise from the process of designing
and applying the models to the verification of I/O kernels.
Three of these lessons are summarized below.

First, the application of our models to systems with in-
adequate I/O hardware clearly shows the significant extra
verification cost and limited scalability of these systems; see

Section III. This suggests that inadequate I/O hardware should
be deprecated for use in large commodity systems.

Second, formal design and implementation force rigorous
reasoning beyond careful but informal development. Without
formal specifications and verification, security assurance is
difficult to obtain even for small I/O kernels (e.g., fewer than
4K SLoC) that use the best I/O hardware. Subtle I/O kernel
design and implementation vulnerabilities can be easily missed
by informal development; viz., Sections VI-B and VII-B. Also,
simply using the best I/O authorization hardware to separate
address spaces is insufficient; e.g., separation of ephemeral
devices (viz., Section V-A), which are multiplexed on the same
physical device, must be formally verified.

Third, the performance of formally verified I/O separation
need not incur any penalty beyond that of secure IOMMU
context switches in existent OS kernels [11]. Just the opposite:
use of non-shared, de-privileged drivers and buffers in isolated
applications, which don’t rely on shared buffer pools in
OS kernels, and of small and simple, dedicated I/O kernels
naturally offer added performance benefits [21]. In contrast,
substantial performance improvements that preserve intra-OS
kernel I/O separation by selective authorization can still incur
up to 25% throughput overhead and 20% increased CPU
utilization by using shared buffer pools [11].

IX. RELATED WORK

Low assurance and limited I/O functions.. Device virtual-
ization [3], [45] can support separate I/O transfers to different
virtual machines. However, this yields a much larger trusted
code base hence lowers assurance significantly. To minimize
trusted code bases, some isolation kernels [46], and micro-
hypervisors [47], [19], [48] support I/O separation for only a
limited set of I/O devices and functions. Other micro-kernels
(e.g., Nexus RVM [2]) are incompatible with commodity
OSes. They fail to authorize P2P device transfers (viz. the
vulnerability 2 in Section VI-B) and support multiple-device
broadcasts on a bus controller. Finally, since no commodity I/O
devices can encrypt/decrypt traffic with secret keys of crypto
enclaves, they cannot transfer to/from encrypted memory; i.e.,
SGX [41]. Instead, they separate I/O transfers to isolated
drivers, which establish crypto channels with enclaves [49].

Verified kernels. The SELinux security kernel [50] enforces
MAC policies but assumes that unverified kernel mechanisms
support I/O separation. The seL4 micro-kernel can ensure
static I/O separation when it implements a separation ker-
nel [51], as described in Section VIII-A. The ExpressOS [52]
micro-kernel provides formally verified application security
properties without trusting system services. However, it does
not enforce I/O separation for isolated applications; e.g., an
application can read I/O buffers of other applications and I/O
separation for general devices is not enforced.

Acknowledgment
We thank the reviewers for their thoughtful comments and

suggestions. The research reported herein was supported in
part by the Department of the Navy, Office of Naval Research,
under Grant No. N00014-17-1-2892.

REFERENCES

[1] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel: An op-
erating system architecture for application-level resource management,”
in ACM SOSP, 1995.

[2] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schneider,
“Device driver safety through a reference validation mechanism,” in
USENIX OSDI, 2008.

[3] L. Xia, J. Lange, P. Dinda, and C. Bae, “Investigating virtual passthrough
i/o on commodity devices,” SIGOPS Oper. Syst. Rev., vol. 43, no. 3, pp.
83–94, Jul. 2009.

[4] S. Boyd-Wickizer and N. Zeldovich, “Tolerating malicious device drivers
in linux,” in USENIX ATC, 2010.

[5] PCI-SIG, “Multicast, https://pcisig.com/specifications,” May 2008.
[6] NXP Semiconductors, “I2C-bus Specification and User Manual,

https://www.nxpcom/docs/en/user-guide/UM10204.pdf,” April 2014.
[7] “The Linux Documentation Project,” http://www.tldp.org/HOWTO/

Plug-and-Play-HOWTO-7.html [Accessed on Jun. 20, 2019], 2007.
[8] Intel, “Enhanced Host Controller Interface Specification for Universal

Serial Bus,” 2002.
[9] Intel, “Intel virtualization technology for directed I/O architecture spec-

ification,” Intel Pub. no. D51397-006 rev. 2.2, 2013.
[10] F. L. Sang, É. Lacombe, V. Nicomette, and Y. Deswarte, “Exploiting an

I/OMMU vulnerability,” in Proc. Int. Conf. on Malicious and Unwanted
Software, MALWARE, 2010, pp. 7–14.

[11] A. Markuze, A. Morrison, and D. Tsafrir, “True IOMMU protection
from DMA attacks: When copy is faster than zero copy,” in ASPLOS,
2016, pp. 249–262.

[12] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “sel4: Formal verification of an os kernel,”
in ACM SOSP, 2009, pp. 207–220.

[13] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta,
“Design, implementation and verification of an eXtensible and Modular
Hypervisor Framework,” in IEEE S&P, 2013, pp. 430–444.

[14] A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and A. Datta, “überspark:
Enforcing verifiable object abstractions for automated compositional
security analysis of a hypervisor,” in USENIX Security, 2016, pp. 87–
104.

[15] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo: Us-
ing verification to disentangle secure-enclave hardware from software,”
in ACM SOSP, 2017, pp. 287–305.

[16] I. GreenHills Software, “Integrity-178b separation kernel security tar-
get,” https://www.commoncriteriaportal.org/files/epfiles/st vid10362-st.
pdf [Accessed on 2 Dec 2020], 2010.

[17] J. M. Rushby, “Separation and integration in MILS (The MILS Consti-
tution),” in Technical Report SRI-CSL-08-XX, February 2008.

[18] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield, “Breaking up is hard to do: Security
and functionality in a commodity hypervisor,” in ACM SOSP, 2011, pp.
189–202.

[19] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, “Building
verifiable trusted path on commodity x86 computers,” in IEEE S&P,
2012.

[20] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in LPAR’10, 2010, pp. 348–370. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1939141.1939161

[21] Z. Zhou, M. Yu, and V. D. Gligor, “Dancing with giants: Wimpy kernels
for on-demand isolated I/O,” in IEEE S&P, 2014, pp. 308–323.

[22] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson, “Vale: Verifying high-
performance cryptographic assembly code,” in USENIX Security, 2017,
pp. 917–934.

[23] R. Achermann, N. Hossle, L. Humbel, D. Schwyn, D. Cock, and
T. Roscoe, “A least-privilege memory protection model for modern
hardware,” 2019.

[24] T. Shanley and D. Anderson, PCI System Architecture, 4th ed. Addison-
Wesley Professional, 1999.

[25] The System Management Interface Forum (SMIF), Inc., “System Man-
agement Bus (SMBus) Specification Version 2.0,” 2000.

[26] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in IEEE S&P,
2010, pp. 447–462.

[27] ARM, “ARM AMBA 5 AHB Protocol Specification,” 2015.
[28] O. Peleg, A. Morrison, B. Serebrin, and D. Tsafrir, “Utilizing the

IOMMU scalably,” in USENIX ATC, 2015, pp. 549–562.
[29] J. Zaddach, A. Kurmus, D. Balzarotti, E. Blass, A. Francillon, T. Good-

spped, M. Gupta, and I. Koltsidas, “Implementation and implications of
a stealth hard-drive backdoor,” in ACM ACSAC, 2013.

[30] C. L. Rothwell, “Exploitation from malicious PCI Express peripherals,
PhD Thesis, University of Cambridge, Computer Laboratory, UCAM-
CL-TR-934,” Feb 2019.

[31] T. Markettos, C. Rothwell, B. Gutstein, A. Pearce, P. Neumann,
S. Moore, and R. Watson, “Thunderclap: Exploring vulnerabilities in
operating system IOMMU protection via DMA from untrustworthy
peripherals,” in NDSS, 2019.

[32] J. Applebaum, J. Horchert, and C. Stocker, “Catalog Reveals
NSA Has Back Doors for Numerous Devices,” 2013.
[Online]. Available: https://www.spiegel.de/international/world/
catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.
html

[33] S. Anthony, “Massive, undetectable security flaw in USB: It’s time to
get your PS/2 keyboard out of the cupboard,” Extreme Tech, no. July
31, 2014. [Online]. Available: https://www.extremetech.com

[34] L. Mearian, “There’s no way of knowing if the NSA’s spyware is on
your hard drive,” Computerworld, vol. 2, 2015.

[35] L. Constantin, “What is a “Supply Chain Attack?”,” in Motherboard,
Sept. 2017. [Online]. Available: https://motherboard.vice.com/en us/
article/d3y48v/what-is-a-supply-chain-attack

[36] V. Gligor and M. Woo, “Establishing software root of trust uncondition-
ally,” in NDSS, 2019.

[37] Trusted Computing Group, “Hardware Requirements for a
Device Identifier Composition Engine,” 2018. [Online].
Available: https://trustedcomputinggroup.org/wp-content/uploads/
Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78
For-Publication.pdf

[38] M. Yu, V. D. Gligor, and Z. Zhou, “Trusted display on untrusted
commodity platforms,” in ACM CCS, 2015, pp. 989–1003.

[39] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Understanding
the prevailing security vulnerabilities in TrustZone-assisted TEE sys-
tems,” in IEEE S&P, May 2020.

[40] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“TrustVisor: Efficient TCB reduction and attestation,” in IEEE S&P,
2010.

[41] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, Report 2016/086, 2016, https://eprint.iacr.org/2016/086.

[42] Wikipedia, “CAN bus,” 2019. [Online]. Available: https://en.wikipedia.
org/wiki/CAN bus

[43] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
ACM SOSP, 2003.

[44] J. M. Rushby, “Design and verification of secure systems,” vol. 15, no. 5,
pp. 12–21, 1981.

[45] K. Tian, Y. Dong, and D. Cowperthwaite, “A full GPU virtualization
solution with mediated pass-through,” in USENIX ATC, 2014, pp. 121–
132.

[46] M. Peinado, Y. Chen, P. Engl, and J. Manferdelli, “NGSCB: A Trusted
Open System,” in Proc. Australasian Conference on Information Security
and Privacy, 2004.

[47] Y. Cheng and X. Ding, “Guardian: Hypervisor as security foothold for
personal computers,” in TRUST, 2013.

[48] Z. Zhou, J. Han, Y.-H. Lin, A. Perrig, and V. Gligor, “Kiss: Key it simple
and secure corporate key management,” in TRUST, 2013.

[49] S. Weiser and M. Werner, “SGXIO: Generic trusted i/o path for Intel
SGX,” in CODASPY, 2017, pp. 261–268.

[50] P. Loscocco and S. Smalley, “Integrating flexible support for security
policies into the linux operating system,” in USENIX ATC, 2001, pp.
29–42.

[51] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “Sel4: From general purpose to a proof
of information flow enforcement,” in IEEE S&P, 2013, pp. 415–429.

[52] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusudan, “Verifying
security invariants in ExpressOS,” in ASPLOS, 2013, pp. 293–304.

http://www.tldp.org/HOWTO/Plug-and-Play-HOWTO-7.html
http://www.tldp.org/HOWTO/Plug-and-Play-HOWTO-7.html
https://www.commoncriteriaportal.org/files/epfiles/st_vid10362-st.pdf
https://www.commoncriteriaportal.org/files/epfiles/st_vid10362-st.pdf
http://dl.acm.org/citation.cfm?id=1939141.1939161
https://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
https://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
https://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
https://www.extremetech.com
https://motherboard.vice.com/en_us/article/d3y48v/what-is-a-supply-chain-attack
https://motherboard.vice.com/en_us/article/d3y48v/what-is-a-supply-chain-attack
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf
https://eprint.iacr.org/2016/086
https://en.wikipedia.org/wiki/CAN_bus
https://en.wikipedia.org/wiki/CAN_bus

APPENDIX A

A. Operations for I/O Separation Model

Each operation in the I/O separation model takes the current
state k and the operation arguments and returns the resulting
state k′ as well as a boolean (decision) value d, indicating
whether the operation is successful. When d is true, the oper-
ation completes successfully; when d is false, the operation is
denied and k′ = k. We present the transition defined by each
operation below.
(1) Driver Write:
DrvWrite(drv id , td id val , fddo id val). The driver with
ID drv id attempts to update TDs with new values td id val
and the FDs and DOs with new values fddo id val . The
I/O kernel performs the following two checks: (1) the driver
must be in the same partition as all the objects specified by
td id val and fddo id val ; and (2) for the transitive closure,
tc of the TD state in the updated system state, knew , all the
objects to which transfers could be issued by any active device
in knew must be in the same partition as the device and must
not include a hardcoded TD.
(2) Device Write:
DevWrite(dev id , td id val , fddo id val). Like drivers, a
device can also issue write requests. The state is updated
without any checks. This is because device writes can only
occur either as defined by the device’s hardcoded TD, which
references device’s object only, or after appropriate driver
write operations, which have already been allowed by the I/O
kernel; see Section IV-B1.
(3) Driver Read:
DrvRead(drv id , read objs id , obj dst src). The driver
with ID drv id attempts to read objects identified by their
IDs in read objs and stores a subset of the read values to
objects with IDs specified by the last parameter obj dst src,
which maps destination object IDs to source object IDs. The
I/O kernel checks that (1) the driver is in same partition as
all objects in read objs; and (2) the writes to the destination
objects are allowed by the same checks as those specified in
the Driver Write operation.
(4) Device Read:
DevRead(dev id, read objs, obj dst src). Device read
performs similar functions as Driver Read, and is always
allowed under the same conditions for Device write.
(5) Create Empty Partition:
EmptyPartitionCreate(new pid). To create a new I/O par-
tition with ID new pid , the ID new pid must be a fresh ID;
i.e., an ID that has not been used before.
(6) Destroy Empty Partition:
EmptyPartitionDestroy(pid). This operation destroys an
empty I/O partition pid . The partition ID pid must not be
NULL and in the set of existing partition IDs in the current
state. Furthermore, no subject or object can exist in the
partition pid .
(7, 8, 9) Driver/Device/External Objects Activation:
DrvActivate(drv id , pid), DevActivate(dev id , pid), and
ExternalObjsActivate(obj ids, pid). These operations acti-

vate the given subject and external objects into the partition
with ID pid . The I/O kernel checks that in the current state:
(1) The given subject and external objects must be inactive,
and (2) the partition pid exists in the set of non-NULL
partition IDs. Then, to fulfill the security property SP2, the
kernel clears the subject’s objects and all external objects to
prevent object reuse between partitions, but not modifying
any given device’s (immutable) hardcoded TD. Finally, the
given subject’s partition ID, its objects’ partition ID and given
external objects’ partition ID are updated to pid .
(10, 11, 12) Driver/Device/External Objects Deactiva-
tion: DrvDeactivate(drv id), DevDeactivate(dev id), and
ExternalObjsDeactivate(obj ids, pid). These operations de-
activate the given subject and external objects. The I/O kernel
first checks that they are active. Then the I/O kernel computes
the transitive closure (tc) of the TD state in the current system
state. The kernel checks tc to ensure that no active device
can issue transfers to any objects of the given subject, nor
to the given external objects. On success checks, the kernel
updates the partition ID of the given subject and its objects to
be NULL.

B. Dafny Specification Example

Simplified Specifications of Operations. Figure 9 presents a
simplified Dafny specification of the Device Write operation.
The operation takes the current state k, the ID of the device
issuing the write transfer, and IDs of objects to be modified
together with the new values to be written. The operation
returns the resulting state k′, as well as a boolean value d
to indicate whether the operation is allowed or denied. Then
the specification presents the preconditions and postconditions
of the operation. The operation requires the current state k
fulfilling all the state invariants. The device must be active, and
the write transfers must be defined in TDs. After the operation
returns, it ensures that the result state k′ fulfills all the state
invariants, and the operation fulfills all transition properties.
The body of the operation specifies the operation implementa-
tion first, then proves the implementation against all specified
postconditions of the operation given the preconditions. All
other operations are formally specified under the same schema.

State Transition. The model calls K CALCNEWSTATE
function to apply a single transition; that is, an operation on
the state k. As shown in Figure 10, the function takes a state
k, and the operation name op corresponding to the transition
taking place. After the transition is done, it returns the result
state and the boolean decision value d. The function requires
state k secure; i.e., fulfilling all state invariants, because all
operations taking a secure state ends up at a secure state only.
The function further requires operations’ preconditions always
imply operations’ postconditions, and the preconditions hold
for the given operation op. The first statement is always true
according to the specifications of operations. And the second
statement is also always true, because operations can only take
place after their preconditions are met.

method DevWrite (
k: State ,
dev sid : Subject ID ,

/ / ID o f the device issues the w r i t e access
td id val map : map<TD ID , TD Val>,

/ / IDs o f TDs , and values to be w r i t t e n
fd id val map : map<FD ID , FD Val>,

/ / IDs o f FDs , and values to be w r i t t e n
do id val map: map<DO ID , DO Val>

/ / IDs o f DOs, and values to be w r i t t e n
) returns (k ’ : State , d: bool)

/ / Return k ’ as new sta te , d as a l low / deny dec is ion
requires I s V a l i d S t a t e (k) ∧ IsSecureState (k)

/ / Requirement: k f u l f i l l s a l l SIs
requires Dev ID (dev sid) in k . sub jec ts . devs
requires SubjPID (k , dev sid) 6= NULL

/ / Requirement: Device i s i n s ta te and i s a c t i v e

requires ∀ td id2 • td id2 in td id val map
=⇒ DevWrite WriteTDWithValMustBeInATransfer (

k , dev sid , td id2 , td id val map [td id2])
requires ∀ fd id2 • fd id2 in fd id val map

=⇒ DevWrite WriteFDWithValMustBeInATransfer (
k , dev sid , fd id2 , fd id val map [fd id2])

requires ∀ do id2 • do id2 in do id val map
=⇒ DevWrite WriteDOWithValMustBeInATransfer (

k , dev sid , do id2 , do id val map [do id2])
/ / Requirement: Issued t r a n s f e r s must be def ined i n
/ / TDs f i r s t

ensures I s V a l i d S t a t e (k ’) ∧ IsSecureState (k ’)
/ / Proper ty : k ’ f u l f i l l s a l l SIs

ensures IsSecureOps (k , k ’)
/ / Proper ty : DevWrite f u l f i l l s a l l TCs def ined i n
/ / IsSecureOps

ensures (∀ t d i d • t d i d in td id val map
=⇒ t d i d in k . ob jec ts . tds) ∧

(∀ f d i d • f d i d in fd id val map
=⇒ f d i d in k . ob jec ts . fds) ∧

(∀ do id • do id in do id val map
=⇒ do id in k . ob jec ts . dos)
/ / Proper ty : Wri t ten ob jec ts are i n the I /O s ta te

ensures SubjWrite ObjsToWriteMustHaveSamePIDWithSubj (
k , dev sid , td id val map , fd id val map ,
do id val map)

/ / Proper ty : A l l w r i t t e n ob jec ts must be i n the
/ / same p a r t i t i o n w i th the device

. . ..
/ / A d d i t i o n a l proved proper t i es , e . g . , the opera t ion
/ / always re tu rns t rue

{
/ / Operat ion implementat ion
var tds ’ := WriteTDsVals (k . ob jec ts . tds , td id val map) ;
var fds ’ := WriteFDsVals (k . ob jec ts . fds , fd id val map) ;
var dos ’ := WriteDOsVals (k . ob jec ts . dos , do id val map) ;

var k ’ sub jec ts := k . sub jec ts ;
var k ’ ob jec ts := Objects (tds ’ , fds ’ , dos ’) ;

k ’ := State (k ’ subjects , k ’ objects , k . p ids) ;
d := true ;

/ / Proof o f opera t ion p r o p e r t i e s
. . .

}
Fig. 9. Simplified Device Write Operation in Dafny

The body of the K CALCNEWSTATE function returns an
arbitrary state fulfilling the post-conditions of operation op.
Note that, this function does not compute the result state k′

by applying the implementations of operations. The operation
correctness properties are not used in proving the theorem 1,
2 and Corollary 1, as long as the result state k′ fulfills
the postconditions of operations. The K CALCNEWSTATE
function is defined as Dafny function to enable its use in the
proof of the theorems and the corollary.

function K CalcNewState (k: State , op: Op) :
(r e s u l t : (State , bool))

requires I s V a l i d S t a t e (k) ∧ IsSecureState (k)
/ / Requirement: k f u l f i l l s a l l SIs

requires P OpsProperties (k , op)
/ / Requirement: For opera t ion <op>, i t s
/ / p recond i t i ons always imply i t s pos tcond i t i ons

requires P OpsFu l f i l lP reCond i t i ons (k , op)
/ / Requirement: I f opera t ion <op> takes place ,
/ / then i t must f u l f i l l a l l i t s p recond i t i ons on
/ / the cu r ren t s t a t e k

ensures I s V a l i d S t a t e (r e s u l t . 0) ∧
IsSecureState (r e s u l t . 0)
/ / Proper ty : The r e s u l t s t a te f u l f i l l s a l l SIs
/ / r e s u l t .0 i s the r e s u l t s t a t e

ensures IsSecureOps (k , r e s u l t . 0)
/ / Proper ty : The opera t ion <op> f u l f i l l s a l l TCs
/ / def ined i n IsSecureOps

{
i f (op . DrvReadOp?) then

var k ’ , d : | DrvRead PostCondit ions (k , op . drv s id ,
op . read objs , op . tds dst src , op . fds dst src ,
op . dos dst src , k ’ , d) ; (k ’ , d)

else i f (op . DevReadOp?) then
var k ’ , d : | DevRead PostConditions (k , op . dev sid ,

op . read objs , op . tds dst src , op . fds dst src ,
op . dos dst src , k ’ , d) ; (k ’ , d)

else i f (op . DevWriteOp ?) then
var k ’ , d : | DevWri te PostCondi t ions (k ,

op . dev sid , op . td id val map , op . fd id val map ,
op . do id val map , k ’ , d) ; (k ’ , d)

else i f (op . EmptyPart i t ionCreateOp ?) then
var k ’ , d : | Common PostConditions (k , k ’ , d) ;
(k ’ , d)

else i f (op . EmptyPart i t ionDestroyOp ?) then
var k ’ , d : | Common PostConditions (k , k ’ , d) ;
(k ’ , d)

else i f (op . DrvAct ivateOp ?) then
var k ’ , d : | Common PostConditions (k , k ’ , d) ;
(k ’ , d)

else i f (op . DrvDeactivateOp ?) then
var k ’ , d : | Common PostConditions (k , k ’ , d) ;
(k ’ , d)

else i f (op . DevActivateOp ?) then
var k ’ , d : | Common PostConditions (k , k ’ , d) ;
(k ’ , d)

else i f (op . DevDeactivateOp ?) then
var k ’ , d : | Common PostConditions (k , k ’ , d) ;
(k ’ , d)

else i f (op . Externa lObjsAct ivateOp ?) then
var k ’ , d : | Common PostConditions (k , k ’ , d) ;
(k ’ , d)

else i f (op . ExternalObjsDeact ivateOp ?) then
var k ’ , d : | Common PostConditions (k , k ’ , d) ;
(k ’ , d)

else
var k ’ , d : | DrvWri te PostCondi t ions (k , op . drv s id ,

op . td id val map , op . fd id val map ,
op . do id val map , k ’ , d) ; (k ’ , d)

}
Fig. 10. K CALCNEWSTATE: example of a state transition

C. Axioms, State Invariants and Transition Constraints for I/O
Separation Model

Axioms. To prove that the I/O separation model is secure we
use the following five intuitive axioms (formally defined in
Dafny specifications).
Ax1 All TDs have finite range of values.
Ax2 Only active subjects can issue transfers to objects.
Ax3 Hardcoded TDs cannot be accessed by drivers.
Ax4 A device performs a transfer to an object only if the

device can issue a transfer (Section IV-B1).
Ax5 The set of all subjects and objects are known a priori;

i.e., in either active or inactive state.
Axiom Ax1 is required by the termination of the transitive-

closure computation. Axiom Ax2 states a basic tenet of all
state-transition models, while Ax3 reflects a common access
restriction on drivers; Axiom Ax4 defines the basic device
ability to issue transfers. Axiom Ax5 fixes the domain of
the model operations, and is standard in all state-transition
models. Note that this axiom does not prevent the modeling
of device and driver install and uninstall operations, which are
now represented by activation and deactivation operations.
State Invariants. The I/O separation model defines the fol-
lowing state invariants for a secure system state:
1. Drivers and devices must have different subject IDs.
2. The set of subjects must not be empty.
3. TDs, FDs and DOs must have different object IDs.
4. The set of objects must not be empty.
5. Each device’s TDs must include its hardcoded TD.
6. No two subjects associate (own) the same object.
7. Objects associated with any subjects must exist in the

system states’ objects.
8. No hardcoded TDs define direct transfers to a TD with both

read and write access modes.
9. Hardcoded TDs do not reference any hardcoded TDs.

10. Objects referenced in a device’s hardcoded TD must be
associated with the device.

11. Arbitrary set of TDs in the system state have finite ranges.
12. Only hardcoded TDs and active objects have values.
13. The partition IDs of the system state do not include NULL.
14. (SI1) For any TD state of a transitive closure in a system

state, if a TD can be read by an active device, then objects
referenced in that TD (i) must be in the same partition as
its referenced objects, and (ii) must not be hardcoded TDs.

15. All objects associated with a subject must be in the same
partition with the subject.

16. Active subjects and objects must belong to existing parti-
tions.

Transition Constraints. The I/O separation model defines the
following transition constraints:
1. IDs of objects and hardcoded TDs associated with subjects

must be immutable in transitions.
2. (TC1) Only hardcoded TDs can be reused in a new partition

with non-NULL partition IDs.
3. Hardcoded TDs’ values must be immutable in transitions.

D. Computing Transitive closure

Let a TD state contains the values of all active TDs in the
current state. The transitive closure of a TD state is the set of
all reachable TD states from that state via TD writes. The
implementation uses two mutually recursive functions. The
first function discovers all direct TD writes that can be issued
by a device in one TD state, via a breadth-first-search (BFS)
algorithm, which starts from the device’s hardcoded TD, and
constructs and traverses the graph of TDs that can be read by
the device. After discovering all TDs that can be read by the
device, this function iterates over all their entries and outputs
all TD writes enabled by these entries. The second function
uses the output of the first function, constructs and traverses

TABLE I
Operation mapping: concrete to I/O separation model

Operations in I/O
separataion model Operations in concrete model

DrvWrite DM RedDrvWrite
DM GreenDrvWrite

DevWrite DM RedDevWrite
DM GreenDevWrite

DrvRead DM RedDrvRead
DM GreenDrvRead

DevRead DM DevRead
EmptyPartitionCreate DM EmptyPartitionCreate

EmptyPartitionDestroy DM EmptyPartitionDestroy
DrvDeactivate DM GreenDrvDeactivate
DevDeactivate DM DevDeactivate

DrvActivate DM DrvActivateToGreenPartition
DM DrvActivateToRedPartition

DevActivate DM DevActivate

ExternalObjsActivate DM ExternalObjsActivateToGreenPartition
DM ExternalObjsActivateToRedPartition

ExternalObjsDeactivate DM GreenExternalObjsDeactivate
DM RedExternalObjsDeactivate

TABLE II
WK operations as concatenations of concrete operations.

Operations in
concrete model

Operations in
(correct) WK design

DM RedDrvRead WSD OSDrvRead
DM GreenDrvRead WSD WimpDrvRead

DM DevRead WSD DevRead
DM RedDrvWrite WSD OSDrvWrite

DM GreenDrvWrite WSD WimpDrvWrite
DM RedDevWrite WSD OSDevWrite

DM GreenDevWrite WSD WimpDevWrite
DM EmptyPartitionCreate WKD EmptyPartitionCreate

DM EmptyPartitionDestroy WKD EmptyPartitionDestroy
DM DevActivate WSD DevActivate

DM DevDeactivate WSD DevDeactivate
DM DrvActivateToGreenPartition WKD DrvActivateToGreenPartition

DM GreenDrvDeactivate WKD GreenDrvDeactivate
DM ExternalObjsActivate
ToGreenPartition

WKD ExternalObjsActivate
ToGreenPartition

DM ExternalObjsActivate
ToRedPartition

WKD ExternalObjsActivate
ToRedPartition

DM GreenExternalObjsDeactivate WKD GreenExternalObjsDeactivate
DM RedExternalObjsDeactivate WKD RedExternalObjsDeactivate

DM DevActivate || DM DevActivate ... WKD MultiDevs ReturnOS

a graph of TD states with the BFS algorithm, and outputs all
potential states that enable I/O transfers.

The transitive-closure computation always terminates since
the set of TDs is finite, and each TD has a finite set of values. It
terminates even when TD graphs are cyclic. Thus, the number
of all possible TD states is finite.

APPENDIX B

Operation Refinements. Table I shows the operation mapping
from the concrete model to the I/O separation model, while
Table II illustrates the operations of the correct Wimpy kernel
as concatenations of concrete model operations. Table III
shows the operation mapping from the sound Wimpy kernel
design to its implementation specifications.

APPENDIX C

FFIs for WK Implementation A breakdown of the FFIs
that WK implemented is as follows. 9 of these FFIs invoke
APIs provided by the underlying micro-hypervisor (mHV)

TABLE III
Operation mapping: WK design to implementation. (“/” denotes operations with the same prefix or suffix. And WSD DevWrite wraps both

WSD OSDevWrite and WSD WimpDevWrite, and is for all active devices.)

Operations in (correct) WK design WK APIs
WKD EmptyPartition
Create/Destroy

WK EmptyPartition
Create/Destroy

WKD DrvActivateToGreenPartition WimpDrv Activate
WKD GreenDrvDeactivate WimpDrv Deactivate

WSD DevActivate/Deactivate USBPDev Activate/Deactivate
EEHCI Activate/Deactivate

WKD ExternalObjsActivateToGreenPartition USBTD slot allocate 1slot
WKD GreenExternalObjsDeactivate USBTD slot deallocate 1slot

WSD WimpDrvWrite USBTD slot submit and verify qtd32/qh32
WKD MultiDevs ReturnOS OS Activate AllReleasedPEHCIsAndUSBPDevs

WKD ExternalObjsActivateToRedPartition OS Activate MainMem ByPAddr
WKD RedExternalObjsDeactivate OS Deactivate MainMem ByPAddr

WSD WimpDrvWrite WimpDrv Write eEHCI Config/Status/USBTDReg
WSD WimpDrvRead WimpDrv Read eEHCI Config/Status/USBTDReg

Operations in (correct) WK design Direct I/O Accesses
WSD OSDrvRead WSM OSDrvRead ByPAddr/PIO/ObjIDs

WSD DevRead WSM OSDevRead ByPAddr/PIO
WSM OSNonUSBPDevRead ByObjIDs

WSD OSDrvWrite WSM OSDrvWrite ByPAddr/PIO/ObjIDs

WSD OSDevWrite WSM OSDevWrite ByPAddr/PIO
WSM OSNonUSBPDevWrite ByObjIDs

WSD WimpDrvRead/Write WSM WimpDrvRead/Write ByPAddr
WSD DevRead/Write* WSM USBPDevRead/Write ByObjID

WSD DevRead

WSM EEHCIReadOwnObjs ByOffset
WSM EEHCIReadUSBTD BySlotID

WSM EEHCIReadUSBPDevObj ByObjID
WSM EEHCIReadObjs ByPAddr

WSD WimpDevWrite
WSM EEHCIWriteOwnDO ByOffset

WSM EEHCIWriteUSBPDevObj ByObjID
WSM EEHCIWriteObjs ByPAddr

and by internal code used by the WK APIs. That is, 4 APIs
are provided by mHV to move main memory areas between
OS/Apps and isolated drivers on-demand, and 3 APIs are pro-
vided by internal WK code that creates, destroys, and separates
ephemeral USB HCs on demand. Another API implements the
clearing of all mutable objects of USB peripheral devices. The
last API enables isolated drivers to clear data objects (DOs)
in their memory. Furthermore, WK code includes FFIs for
internal functions that support different versions of USB buses;
e.g., USB IDS memory moves, data structure parsing.

Axioms for WK Implementation A further breakdown of the
105 axioms is as follows. 37 axioms refer to the correctness
of arithmetic and bit-oriented operations. 50 axioms assert
that the mappings implemented object values and operations
to those of the WK design are valid; e.g., the mapping of
I/O access parameters to abstract object identifiers and values
of design specifications is formatted properly. These axioms
are valid because the mappings from WK implementation
specifications to those of WK design have easily checkable
formats. 9 axioms refer to trivial hardware properties of OS
devices, USB host controllers, peripheral devices and IDSes,
and to the memory properties of device drivers; e.g., they
constrain valid I/O objects values, and IDSes defining transfers
to a USB device always define transfers to all its FDs and
DOs. 7 axioms state that the memory layout of WK code,
stack, and globals are valid. One axiom asserts the validity
of ID mappings of USB TDs. Another axiom asserts that I/O

accesses and WK APIs are atomic, and is typical of state-
transition models. (The WK implementation uses additional 15
Dafny assume statements for trivial utility lemmas for similar
proof simplification purpose.)

	Introduction
	Common I/O Vulnerabilities and Threats
	I/O Transfer Authorization and Separation
	Inadequacy of Existing Hardware
	Threats

	Model Motivation and Layered Approach
	Motivation
	Layered Modeling
	Code sizes, level of effort, and model reusability

	I/O Separation Model
	Abstract Model State
	State Transitions
	I/O transfers and their authorization
	Partition creation/destruction
	Object activation/deactivation

	Soundness
	Discussion: Late versus Early Authorization

	A Concrete I/O Model
	Isolation and Device Policies
	Defining the Concrete Model
	Soundness of the Concrete Model

	Wimpy Kernel Design
	Instantiating Concrete Model to WK Design
	Vulnerabilities of the original WK Design

	Generation of Formally Verified WK Code
	WK API Specifications and Verification
	Vulnerabilities of the Original WK code
	Current Limitations

	Discussion
	Future Use for Other I/O Kernel Designs
	Lessons Learned

	Related Work
	References
	Appendix A
	Operations for I/O Separation Model
	Dafny Specification Example
	Axioms, State Invariants and Transition Constraints for I/O Separation Model
	Computing Transitive closure

	Appendix B
	Appendix C

