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Abstract—Authorization logics allow concise specification of
flexible access-control policies, and are the basis for logic-based
access-control systems. In such systems, resource owners issue
credentials to specify policies, and the consequences of these
policies are derived using logical inference rules. Proofs in
authorization logics can serve as capabilities for gaining access
to resources.

Because a proof is derived from a set of credentials possibly
issued by different parties, the issuer of a specific credential
may not be aware of all the proofs that her credential may
make possible. From this credential issuer’s standpoint, the
policy expressed in her credential may thus have unexpected
consequences. To solve this general problem, we propose a
system in which credentials can specify constraints on how
they are to be used. We show how to modularly extend well-
studied authorization logics to support the specification and
enforcement of such constraints. A novelty of our design is
that we allow the constraints to be arbitrary well-behaved
functions over authorization proofs. Since all the information
about an access is contained in the proofs, this makes it possible
to express many interesting constraints. We study the formal
properties of such a system, and give examples of constraints.

Keywords-Access control, Logic, Formal languages, Com-
puter security

I. INTRODUCTION

Today’s computing environments are characterized by an
ongoing dramatic increase in connectivity and data sharing.
The number of computing devices and kinds of devices that
can communicate with each other is increasing sharply, as
is the amount of data and kinds of data that they store, gen-
erate, and exchange. These trends are ubiquitous: they are
present in business computing environments, which are be-
ing transformed by cloud computing; in basic infrastructure,
where the Smart Grid is transforming the national power
grid; and in home environments, in which the household is
increasingly inhabited by dozens of interconnected digital
devices ranging from portable media players and digital
picture frames to smart refrigerators and Internet-connected
security systems. The new functionality arising through
this transformation is enabling increases in productivity,
efficiency, and safety and giving rise to fundamentally new
applications in almost all aspects of our lives.

A critical concern in this setting is access control—the
ability to easily and quickly allow access to authorized users
or devices, while preventing misuse, unauthorized access,

and violations of privacy. Flexible and secure access-control
mechanisms are part of what makes the new functionality
and applications possible and sustainable.

In the past decade and a half, significant progress has
been made in increasing the assurance and expressiveness
offered by access-control systems, in large part through the
use of formal logics. When used to model a system, such
logics can confirm that the system exhibits various desirable
correctness properties, e.g., that its decision procedure will
never erroneously permit an access if such an access is not
consistent with access-control policy. These guarantees can
be even stronger when the gap between model and system
is bridged by making the logical infrastructure part of the
system. An increasingly popular and practical method of
accomplishing this is using the proof-carrying authorization
(PCA) [4] paradigm. In this approach, the credentials that
define a policy are specified in an access-control logic, and
the request to access a resource is accompanied by a logical
proof that the request satisfies access-control policy and
should therefore be granted.

Because a proof is derived from a set of credentials
possibly issued by different parties, the issuer of a specific
credential may not be aware of all the proofs that her
credential may make possible. From this credential issuer’s
standpoint, the policy expressed in her credential may thus
have unexpected consequences, potentially leading to secu-
rity breaches, insider attacks, and, generally, policies that are
more permissive than is desired.

Our contribution: In this paper, we propose a robust
mechanism for allowing credential issuers to specify con-
straints that restrict the circumstances under which their
credentials and the authority they express may be used.
Building on the observation that a proof of access describes
in full detail the manner in which a credential is used, we al-
low credential issuers to specify constraints as functions over
the proofs in which their credentials are used. This powerful
mechanism allows our framework to capture a wide variety
of constraints of practical interest, including the following:
limiting (re-)delegation depth when delegating authority;
enforcing strict revocation policies on all credentials used in
a proof; preventing a credential from being used to access
resources outside a particular set, which can be specified
explicitly or by indirection; and constraining the size of



the proof. To make it easier to understand and implement
constraints, we classify them in two dimensions: in one,
according to their intended use; and, in another, according
to the information they need in order to be enforced.

In addition to supporting a wider variety of constraints
than other approaches, our framework for enforcing con-
straints exhibits desirable formal properties. We designed
our framework to modularly build on existing authorization
logics with robust proof theories. This makes it possible to
apply our approach to different authorization logics, and at
the same time makes it easy to prove meta-properties about
the resulting system, thus providing a high assurance of
correctness. We demonstrate this by applying our framework
to a specific authorization logic.

After examining our approach in a formal setting, we dis-
cuss several issues that needed to be resolved to implement
our approach in a practical setting, and propose a detailed
implementation strategy for deploying our approach in a
proof-carrying authorization framework. We illustrate both
the formal treatment of our framework and the discussion
of implementation concerns with a range of example con-
straints, several of which we develop in full detail and show
in the context of sample proofs of access.

Roadmap: The rest of this paper is organized as
follows. First, in Section II, we review a simple authoriza-
tion logic that will form the basis for our exploration. In
Section III, we further discuss the need for constraining
the use of credentials, describe our method for specifying
constraints, and illustrate it with examples. We explain
how to enforce these constraints, and examine the formal
properties of our approach, in Section IV. In Section V we
describe in detail how to implement our approach in the
context of a proof-carrying authorization system. We discuss
the applicability of our framework to other authorization
logics in Section VI, and conclude in Section VII with a
discussion of related work.

II. REVIEW OF A SIMPLE AUTHORIZATION LOGIC

We build our constraints on top of a simple core logic for
access control, which is based on simply-typed CDD [1].
The syntax of the logic is given below.

formulas F : := P | F1 → F2 | A sign F | A says F
contexts Γ : := · | Γ, F

We use P to denote basic predicates, and F1 → F2 to denote
implication. Formulas A sign F and A says F both state
that principal A affirms that F is true. The difference is that
A sign F corresponds directly to a credential that A has
signed using his private key. The formula A says F denotes
that it can be deduced that A believes F from credentials
that A and other principals have signed. The main difference
between our logic and simply-typed CDD is our treatment
of credentials. CDD does not distinguish between directly
asserted facts and derived facts, whereas we do.

Γ, F =⇒ F
init

Γ, F1 =⇒ A says F2

Γ, A sign F1 =⇒ A says F2
signL

Γ =⇒ F
Γ =⇒ A says F

saysR
Γ, F1 =⇒ A says F2

Γ, A says F1 =⇒ A says F2
saysL

Γ, F1 =⇒ F2

Γ =⇒ F1 → F2
→R

Γ =⇒ F1 Γ, F2 =⇒ F3

Γ, F1 → F2 =⇒ F3
→L

Figure 1. Sequent calculus for a simple authorization logic

A logical context Γ contains a list of formulas.
The sequent calculus rules for this simple logic are shown

in Figure 1. The signL and saysL rules allow reasoning about
the consequences of a principal’s beliefs. In both rules, the
assumptions and the formulas that are derived from these
assumptions involve only a single principal; this ensures
that one principal’s beliefs cannot influence another’s except
through the use of explicit delegation between principals.
The saysR rule states that a principal affirms any tautology.
Notice that there is no signR rule because A sign F
is considered an atomic formula that cannot be derived.
Delegation can be encoded as implication. For instance, the
formula A says (B says P → P ) denotes that principal A
has delegated the authority P to principal B.

Proofs play a crucial role in our work. We formally define
them as follows.

Proofs p : := · | 〈rname,Γ, F, {p1, . . . , pn}〉

A proof has four components: the name of the last inference
rule applied (rname), the context containing the assumptions
from which the proof is constructed (Γ), the goal being
proved (F ), and the list of premises (p1, . . . , pn) from
which the inference rule derived the goal. For example, the
following proof tree, labeled E , is equivalent to the proof
immediately below it.

E = P =⇒ P
init

· =⇒ P → P
→R

E =
〈
→R, ·, P → P,

{
〈init, P, P, {}〉

}〉
The proof ends with rule →R, the context of the conclusion
is empty (·), the final goal formula is P → P , and the
premise is another proof. This previous proof ends with an
application of the init rule, both the context and the final
goal are P , and there are no premises.

III. CONSTRAINTS IN POLICY SPECIFICATION

We can use an authorization logic such as the one shown
in Section II to express flexible distributed access-control po-
lices. A defining characteristic of distributed access-control
systems is that multiple principals can contribute credentials
that together define the access-control policy protecting
some resource.
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An inherent shortcoming of such systems is that it is
difficult for a principal to foresee all the consequences that
her credentials may have. This is for two reasons. First,
the credentials created by different parties may not be all
available in a single place in order to be analyzed. Hence, the
global policy, which is the set of inferences that can be made
from the sum of all the credentials in the system, is likely
to be unknown. Second, as principals issue new credentials
over time, these new credentials may be combined with
previously created ones in ways that the authors of the
previously created credentials were not able to foresee.

There is an inherent tension in distributed access control
between the desires for flexible policy specification and for
clear understanding of the global policy. To make accurate
and sound credential-creation decisions, a credential issuer
needs to know how her credentials could be used in the
global system. We propose a method for allowing credential
issuers to accomplish this by embedding in their credentials
explicitly specified constraints. These constraints describe
the permitted uses of the credentials in which they are
embedded, and are enforced using proof rules.

In Section III-A we review the design space of methods
for limiting undesired inferences in logic-based access-
control systems and describe our approach. Then, in Sec-
tion III-B, we show that this approach supports two intu-
itively distinct categories of constraints. In Section III-C,
we give concrete examples of a range of different, prac-
tically interesting constraints. We defer discussion of how
to enforce the constraints we describe here to Sections IV
and V.

A. An Approach to Limiting Undesired Inferences

In logic-based access-control systems, there are several
general ways to allow a credential issuer to control how
her credentials may be used. One possible approach is to
implement in a manner completely external to the authoriza-
tion logic a method for allowing one principal to prohibit
other principals from issuing credentials that may lead to
undesired inferences. For example, all credential creation
could be mediated by a central authority that would prevent
the creation of credentials that are inconsistent with extra-
logically specified policies. A second option is to redesign
the rules of the authorization logic to directly enforce the
commonly desired constraints by prohibiting logical infer-
ences that would violate these constraints, i.e., to enhance
authorization logics by making them more restrictive in the
inferences they allow. Finally, one can allow credentials to
specify the kinds of authorization proofs within which the
use of those credentials is valid, leaving the specification
and enforcement of authorization policies and constraints
modularly connected.

The first of these approaches is arguably the least useful,
since it is antithetical to the goals of distributed access con-
trol: distributed access-control systems seek to decentralize

authority, and so it would be unreasonable in such a system
to give one principal control over what other principals may
assert or believe.

The second option is more reasonable. However, since in
this case constraints would be enforced directly via the infer-
ence rules of an authorization logic, any one logic is likely
to support only a set of the most commonly used, predefined
constraints. Further, incorporating constraint enforcement
directly in the rules of the logic in this way makes it
harder to reason about the properties of the logic, and hence
harder to maintain guarantees of the logic’s correctness. Two
examples of systems that fall roughly into this category are
SecPAL [11], [10] and DL [24]. We discuss them, and this
approach, in more detail in Section VII.

The third option is the approach that we develop in this
paper. We observe that a proof of access fully describes
all the credentials used during an access and the details
of how these were combined. A proof records every de-
duction step from the assumptions, which in the case of
authorization logic correspond to credentials, to the final
conclusion. Hence, a powerful way to define constraints is as
functions over proofs. More specifically, a constraint C takes
an authorization proof p as an argument and returns either
true, when the constraint is satisfied, or false, otherwise.

Constraint C : proof → bool

Since we can easily extract from a proof all the assump-
tions that are used in it, this allows us to define constraints
based on properties of these assumptions. An example of
such a constraint is one that limits the number of distinct
credentials used in a proof. Another example is a limit on the
number of distinct principals that may contribute credentials
to a particular proof.

The formula that represents the proof goal (i.e., the
statement that must be proved in order for access to be
allowed) can also be used in the specification of constraints.
For example, we can define a constraint that returns true
only when the goal of the proof belongs to a predefined set.
This allows a credential issuer to make the credential that
contains this constraint valid for for proving only a specific
set of goals.

Finally, more complex constraints can be defined induc-
tively over the structure of the proof. For instance, we can
define a constraint on the depth of a proof.

At this point, we do not impose any restrictions on con-
straints: they can be arbitrary functions over authorization-
logic proofs. However, this is too general to be practical.
For instance, if the constraint is a diverging function, then
the access-control system may suffer from nontermination.
We discuss this further in Section V.

B. Constraints on Credential Usage

Having decided on the general approach for specifying
constraints as functions over authorization proofs, we now
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describe two different ways to use constraints that can be
enforced in this manner: constraints on the proofs that a cre-
dential can participate in and constraints on (re-)delegation.

1) Final-usage constraints: Consider the following sce-
nario. If Admin signed a credential stating that Alice is
a student, and some other principal in the system signed
another credential stating that all students are allowed to
access the wireless network, then Alice will be granted
access to the wireless network. By examining only his
own credentials (which is all he may be able to do given
the distributed nature of the system), Admin may have no
way of knowing all the resources that Alice can access by
combining Admin’s credential with credentials from other
principals. When something goes wrong—that is, when a
principal gains unintended access to some resource using
a proof that includes Admin’s credential—Admin might be
held responsible for signing such a credential and so having
unwittingly participated in making the access possible.

Therefore, the first kind of constraint that we propose is
one that allows a credential issuer to restrict which proofs
can be constructed by using a particular credential as one
of their assumptions. We call such a constraint a final-
usage constraint. We write A sign F � C to denote a
credential signed by principal A to assert that A believes
F is true under the condition that this credential is used as
an assumption only in proofs that satisfy constraint C. The
intuition behind this kind of constraint is that the credential
issuer can directly prevent her credential from being used
to derive facts that the issuer has not thought of as being
reasonable or possible. For example, Admin can specify as
a policy that Alice is a student only for the purpose of Alice
being granted access to the wireless network. We define this
policy below.

Admin sign Student(Alice) � C1 where

C1(p) = GoalOf(p) ∈ {Admin says MayAccessWifi(Alice)}
Constraint C1 takes a proof p as an argument and returns

true, i.e., allows the credential to be valid, only when
this credential is used in a proof whose final goal is
Admin says MayAccessWifi(Alice).

Since they can be arbitrary functions, final-usage con-
straints need not individually enumerate the proofs within
which credentials are to be considered valid, as was done in
the above example: they can describe proofs at the level of
abstraction that the credential issuer finds most appropriate.

2) Delegation constraints: The second kind of constraint
regulates (re-)delegation of authority. Recall that formulas
of the form A says (B says P → Q) specify the delegation
of authority from A to B. Specifically, in this example A
is delegating to B any privileges that A has over Q. To
exercise this privilege, B exhibits a proof of B says P ,
perhaps by directly asserting P , making it possible to derive
a proof of A says Q. Notice that P and Q might not be the
same formula. For instance, the following formula states that

the library will allow Alice to borrow books as long as the
registrar affirms that Alice is a student.

Library sign
(
(Registrar says Student Alice)
→ MayBorrow Alice

)
The principal A may not want his delegation credential

to be used with an arbitrary proof of B says P . In the
library example, the library might decide that it will only
accept a proof that Alice is a student when Registrar actually
signed the credential, and would refuse proofs derived from
credentials that are signed by principals other than Registrar
(even if Registrar signed some of them).

We write A sign ((B says P � C) → P ) to denote that
principal A delegates the authority P to principal B under
the condition that the proof of B says P satisfies constraint
C.

Constraint C could be, for example, a constraint on the
number of distinct principals that contribute to the creden-
tials used in the proof of B says P . In that case, using
C, A would be enforcing a strong bound on the delegation
depth (i.e., on the number of times P could be redelegated
starting from B) because each re-delegation would require
a different principal to sign a credential.

C. Example Constraints

We illustrate the range of constraints that can be supported
by our approach by exhibiting a set of example constraints
that can be useful in access-control scenarios and describing
how to implement them using our approach. We group these
examples into three categories based on the information they
need in order to be enforced: constraints based on the logical
context, constraints based on the final goal of the proof, and
constraints based on the entire proof structure.

Some of the constraints are straightforward; we will define
in detail only the more complicated ones. To increase our
assurance that we did not overlook any critical details,
we have encoded all the examples using Twelf [27], an
implementation of LF; we discuss details of these low-level
encodings in Section V.

1) Context-based: Access-control decisions are normally
based on some set of policies, which are represented as
assumptions in the context of a logical judgment. In prac-
tice, these assumptions are typically implemented as digital
certificates signed using principals’ private keys. Part of
the process of verifying the validity of a proof involves
confirming that each logical assumption is backed by a
corresponding, valid digital certificate. The context of an
authorization proof hence provides us with rich information
as to which credentials are involved in granting access and
which principals are involved in issuing these policies. The
first kind of constraint for which we show examples is based
solely on the context of a proof.

Before showing examples, we define an auxiliary func-
tion, which we will use frequently, to extract the logical
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context from a proof.

ctxOf (〈rname,Γ, F, {...}〉) = Γ

Number of unique credential issuers. This constraint speci-
fies that the number of credential issuers involved in the
proof should not exceed a particular limit. Given a proof,
one can easily calculate how many principals have con-
tributed credentials to this proof by examining the context.
Such a constraint on proofs is particularly useful when a
credential issuer wishes to constrain delegation depth. For
instance, suppose a manager delegates certain authority to
a subordinate and permits this subordinate to re-delegate
the authority to another, but does not want the delegation
chain to extend any further. We can conservatively limit
the delegation depth by limiting the number of unique
credential issuers contributing credentials to the proof. To
do so, we first define a function uniqCredOf that calculates
the number of unique credentials issuers in the context;
its definition is straightforward. Then, we can define the
constraint that the number of unique credential issuers is
at most two as follows.

C2(p) = uniqCredOf(ctxOf (p)) ≤ 2

The following credential then limits the depth of re-
delegation starting from the subordinate to at most one.

manager sign (subordinate says P � C2 → P )

To make use of this delegation, one would have to first
prove subordinate says P . Constraint C2 ensures that this
proof contains credentials from only two issuers, i.e., that
the delegation depth cannot be more than two. Usefully,
this constraint does not prevent the subordinate from
organizing his policies via roles and groups, since the
credentials expressing such organization would be issued
by the subordinate himself and so would not contribute
to the issuer-uniqueness count.

Attributes required of credential issuers. In many cases, a
principal may wish to require that all credential issuers
who contribute credentials to a proof possess certain
attributes. For instance, an admin in the Computer Science
department may want to specify that his credential can be
used only in those proofs in which all credentials have
been issued by principals affiliated with the Computer
Science department. As another example, Alice may want
to give Bob access to her pictures, but only under the
condition that if this access is redelegated, it must have
been redelegated to someone who is both Alice’s and
Bob’s friend.

One way of ensuring this is for Alice to define a
constraint that will make her delegation to Bob valid only
when all credentials in a proof are issued by Alice, Bob,
or one of their joint friends. This constraint can define
a function f to recurse over the structure of the context

Γ and make sure that each credential in Γ is signed by a
principal who is both Alice’s and Bob’s friend. This func-
tion will use several auxiliary constructs. The predicate
friend(p) asserts that p is a friend of the principal making
such an assertion. E.g., Alice says friend(Bob) indicates
that Alice believes Bob to be her friend. A helper function
findProof takes a formula as an argument and finds a proof
for the formula, if a proof exists. There are several ways
to implement such a function; we discuss this in more
detail in Section V. We write && to denote the binary
operator and on booleans.

f(·) = true
f(A sign F � C, Γ) = findProof (Alice says friend(A))

&& findProof (Bob says friend(A))
&& f(Γ)

Now we can define the constraint Alice desires.

C(p) = f(ctxOf (p))

To delegate to Bob under the desired constraint, Alice
issues a credential of the following form.

Alice sign (Bob says access � C → access)

Flexible revocation. The enforcement of credential revo-
cation in logic-based access-control systems is often
implemented in one of the following ways. (1) The
authority conveyed by a credential is made explicitly
contingent on the agreement of a revocation authority,
e.g., instead of A sign F we would have something like
A sign (CA says notRevoked → F ). (2) The reference
monitor verifies that each credential in a proof is still valid
according to some revocation authority.

Neither of these approaches is very flexible, however,
and resource owners might have different ideas of which
revocation servers they prefer and how fresh they would
like revocation lists to be. Using our constraints, we can
allow any credential issuer to easily specify and enforce
her revocation policies on every credential in a proof to
which she has contributed. We are able to achieve flexible,
credential-issuer-controlled revocation checking because
we allow credential issuers to specify constraints based
on the proof, which includes all the credentials which
make the logical derivation of the proof possible.

The definition of this constraint is similar to the
previous example. For each credential in the context,
the constraint requires a proof from a revocation server
asserting that the credential is not in its revocation list,
with the choice of the revocation server and revocation
interval at the discretion of the credential issuer specifying
the constraint.
2) Goal-formula-based: To control the consequences of

one’s credential, one can specify that her credential can only
be used in a proof with a specific final goal. We showed
an example of such a constraint in Section III-B. Similar,
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but more expressive constraints might use indirection to
determine whether the final goal of a proof is acceptable.
For example, one could use findProof , defined earlier in
this section, to test whether a particular final goal is in
scope. This would allow the scope of permitted final goals
to be widened after issuing credentials constrained in such
a manner.

3) Proof-structure-based: Previous examples use only
small pieces of the proof, namely, the logical context or the
final goal formula. The full power of our constraints is best
demonstrated in cases where the entire proof is examined.
Proof size. First, we show how to define a constraint that

limits the size of a proof. This constraint could be useful
either as a redelegation constraint or as a final-usage
constraint. For example, Alice may be willing to delegate
her authority only when any redelegation is “simple,” i.e.,
the subproof by which the recipient of the delegation
exercises the delegation is small. Such a constraint could
be used in parallel with the previously described constraint
for limiting the number of unique credential issuers to
enforce an even tighter bound on redelegation by limiting
redelegation not just between individuals but also between
their roles or groups.

Another use for such a constraint, this time as a final-
usage constraint, is in scenarios in which Alice distrusts,
and hence does not want her credentials to be associated
with, any suspiciously large proofs, perhaps because she
cannot envision why those would be necessary.

To implement the proof-size constraint, we first define
the size of a proof in terms of its derivation depth. The
following function is recursively defined over the structure
of a proof and returns the depth of the proof.

depth(·) =0
depth(〈rn, Γ, F, {p1, · · · , pk}〉)=1 + max(depth(p1), · · · ,

depth(pk))

The constraint that the depth of the proof is no greater
than n is then defined straightforwardly as follows.

C(p) = depth(p) ≤ n

Usage. By examining the structure of the proof, one can
find out if a specific credential is used as part of the
derivation or was just spuriously added to the logical
context. For example, suppose we were given a derivation
of the following judgment.

A sign F,B sign P =⇒ B says P

Here, the formula B says P can be proved solely
from B’s credential (B sign P ), making A’s credential
(A sign F ) spurious, as it does not (and cannot) contribute
to the proof.

A principal A may want to prevent her credential from
appearing in such proofs in which it is not needed. For
example, she may want to avoid the unnecessary hassle

of explaining to an auditor why her credential showed up
in a suspicious proof (e.g., a proof that was possible only
because some credential issuer delegated more authority
than he should have). Of course, a manual examination of
the proof would show that A’s credential didn’t participate
in the proof in a meaningful way and so A cannot have
been responsible for the improper delegation. However, A
would prefer for it to be impossible to construct a valid
proof if that proof used her credentials spuriously.

The key idea for defining such a constraint is to
iteratively examine the proof structure from bottom to top.
A formula A says F is held to contribute to constructing
the proof if its subformula F contributes. The base case is
at the leaves of the proof tree where the init rule is used;
any formula directly used in the init rule is a contributor
to the proof. Due to space constraints, we omit a more
detailed definition.

Intermediate step. In distributed access-control systems,
there are often natural boundaries between institutions
for decision making. Because of these boundaries, it is
useful to be able to specify which inferences based on
the credentials issued in one domain ought to be used
across domain boundaries.

For instance, suppose that the Computer Science de-
partment (CS) is in charge of saying who are its em-
ployees, while the Human Resources department (HR)
is in charge of allocating benefits packages. CS will
issue credentials, perhaps describing Alice’s qualifications
when she was hired, that will allow a proof that CS
considers Alice a full-time staff member. HR will use CS’s
proof to provide Alice with a benefits package. In an effort
to prevent HR and other departments from misinterpreting
their internal assessment of Alice, credential issuers in
CS may wish to state that their credentials can be used
to prove that Alice is an employee of CS, and that only
as part of that proof in its entirety can be used in the
context of other proofs. In this way, HR can make the
assignment of the benefits package explicitly contingent
only on the proof of the fact that CS believes Alice to
be an employee, and not independently on any of the
credentials that contributed to that proof.

The key part of defining this constraint is to traverse the
proof from the goal backward and check if the specified
intermediate goal is reached before the use of any creden-
tial with this constraint. For these purposes, a credential
is “used” when the signL rule is applied to it. We write
Fcred to denote the credential being constrained and Finter

to denote the intermediate goal in which Fcred must first be
used in order for its use in a larger proof to be valid. We
define a helper function unused : form → proof → bool
that takes as arguments a formula and a proof and returns
true if the formula is not used in the proof. This function
can be inductively defined over the structure of the proof;
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we omit the details here. We define two other functions,
=f and 6=f , to test the equality of two formulas. We
further assume that the constraint language supports if-
statements and pattern matching. We can then specify the
constraint with the following pseudocode.

C(p) =
if unused(Fcred, p) then true
elseif (GoalOf(p) =f Finter) then true
else match p with

| 〈→L, G, F, {p1, p2}〉 => C(p1) && C(p2)
| 〈signL, (G, F1), F, p′〉 => (F1 6=f Fcred) && C(p′)
...
| => false

In more detail: We first check whether Fcred is used
in the proof; if it is not, then the constraint is trivially
satisfied. Otherwise, we check if the goal of the proof
is Finter, in which case the constraint is also satisfied. If
neither of the above is true, we pattern match on the proof.
In most cases, the constraint simply recursively checks for
the same conditions on the subproofs. For instance, if the
current proof ends with the →L rule, then we check if the
condition holds for the proofs of each premise of the →L
rule. The interesting case is when the proof ends with the
signL rule. In that case, we only recurse on the proof of
the premise if the credential being decomposed by signL
is not Fcred. If Fcred is the credential being decomposed,
the fall-through case will return false. This is because at
the time when Fcred is used, the desired intermediate goal
Finter has not yet been reached.

Choice of participating in delegation. Our final example
constraint allows a principal to specify the conditions
under which she is willing to act as a delegatee. Suppose,
for example, that Admin creates a credential that requires
Alice, Bob, and Charlie to cooperate in order to exercise
privilege P .

Admin sign ((Alice says P )
→ (Bob says P )
→ (Charlie says P ) → P )

Alice decides that she is willing to participate in
using the delegated authority only as long as both Bob
and Charlie make their own decisions without delegating
the responsibility to others. In other words, Alice will
participate only if she can be guaranteed that all the
credentials used in the proof of Bob says P are issued
by Bob, and, similarly, all credentials used in the proof
of Charlie says P are issued by Charlie.

The high-level idea of the definition of the constraint
that will give Alice this guarantee is as follows. First, we
induct over the structure of the proof and find the subproof
that ends with the signL rule that decomposes Admin’s
delegation credential. Then, we follow the implication
inside Admin’s credential to identify the subproofs of
Bob says P and Charlie says P . Finally, we check that

the only credentials in the assumptions of each of the
subproofs are issued by Bob or Charlie, as appropriate. We
described how to implement these component functions in
previous examples.

IV. ENFORCEMENT AND FORMAL PROPERTIES

In this section, we describe how to enforce the constraints
introduced in Section III, which we do by incorporating them
in the simple authorization logic described in Section II. We
take a layered approach in which we maintain the structure
of the original proof rules of the authorization logic, and add
constraint checking as a layer on top of the authorization
logic rules.

A. Syntax

We first summarize the syntactic constructs we need
to express the two uses of our constraints described in
Section III. We use C to denote constraints. We write tt to
denote a constant function that always returns true, which
is the most permissive constraint. We also write C1 ∧ C2

to denote the composition of two constraints which returns
true if both of them return true and returns false otherwise.
Formal definitions for constraints are given in Section IV-C.

To allow credential issuers to add constraints to their
credentials, we define constrained formulas, denoted by Fc,
and credentials, denoted by Fk, as follows.

regular formulas F : := P | F1 → F2 | A says F
constrained formulas Fc : := F | (F � C → Fc)
credentials Fk : := A sign Fc � C
contexts Γ : := Γ, F | Γ, Fc | Γ, Fk

A constrained formula (Fc) can be either a regular formula
(F) or a special implication (F � C → Fc). The assumption
of this special implication is a formula guarded by a con-
straint (F � C). The conclusion of the implication is another
constrained formula. Hence, a constrained formula can be of
the form F1 � C1 → (F2 � C2 → (· · · → F)).

Credentials have the form A sign Fc � C, which allows a
credential issuer A to specify that this credential is valid
only in proofs that satisfy constraint C. In addition, A
can use Fc to specify delegation constraints. For instance,
A sign (B says P � C → P ) � C′ is a delegation
credential issued by principal A, and states that A will
delegate P to B under the condition that the proof of
B says P satisfies constraint C. When the constraint C is
the constant tt constraint, we often omit them and write
A sign (B says P → P ).

We also extend the logical context Γ to include con-
strained formulas and credentials.

B. Sequent Calculus Rules

To enforce the constraints we specified, we augment the
basic sequent calculus rules shown in Figure 1 with rules
for enforcing constraints. At a high level, we modify or
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Γ, F =⇒ F\tt init
Γ, Fc =⇒ A says F\C′

Γ, A sign Fc � C =⇒ A says F\(C ∧ C′)
signL

Γ =⇒ F\C
Γ =⇒ A says F\C

saysR
Γ, F1 =⇒ A says F2\C

Γ, A says F1 =⇒ A says F2\C
saysL

Γ, F1 =⇒ F2\C
Γ, =⇒ F1 → F2\C

→R
Γ =⇒ F1\C1 Γ, F2 =⇒ F3\C2

Γ, F1 → F2 =⇒ F3\C1 ∧ C2
→L

E :: Γ =⇒ F\C1 V(C, E) Γ, Fc =⇒ F′\C2

Γ, F � C → Fc =⇒ F′\C1 ∧ C2
→L′

E :: Γ =⇒ F\C V(C, E)

Γ
v

=⇒ F
verify

Figure 2. Sequent calculus for a sample logic with constraints

augment the basic sequent calculus rules in the following
ways. First, constrained formulas (Fc) are treated specially
when being decomposed, because the verification of redel-
egation constraints occurs at these decomposition points.
Second, the final step in proof construction now needs to
enforce verification of final usage constraints. Finally, rules
that do not interact with constraints in an interesting way
still need to propagate the constraints from premises to their
conclusions. We show the augmented sequent calculus rules
in Figure 2, and now discuss them in more detail.

There are two main judgments. Judgment Γ v=⇒ F states
that, under the assumptions in Γ, we can prove that F is
true and that all the constraints present in the assumptions
in Γ are satisfied. Judgment Γ =⇒ F\C states that under the
assumptions in Γ we can prove F is true, and the constraints
present in Γ will be satisfied if the constraint C evaluates to
true. Intuitively, this C is the conjunction of all constraints
that the credentials in Γ require the final proof to satisfy,
and it will hence be checked in the last derivation step.

We use the following notation. We write E :: J to
mean that E is the proof of judgment J . We write V(C, E)
to denote the process that checks that proof E satisfies
constraint C; in other words, that C(E) = true. The logical
inference rule does not specify how the constraint is to be
verified, just that it should be. We discuss different ways
of implementing this verification, and detail our preferred
version, in Section V.

The init rule states that we can prove F if F is assumed
to be true and that the constraint to be satisfied is a trivial
constraint that is always true. The next four rules (saysR,
saysL, →L, and →R) are the same as the ones in the basic
sequent calculus in Figure 1 except that the constraint from
the premise is carried over to the conclusion. The constraint
in the conclusion of the →L rule is the conjunct of the two
constraints from the premises.

Rules signL, → L′, and verify are the most interesting
ones, because they operate on constraints in nontrivial ways.
Rule signL states that to use a constrained credential, one
needs to check that the constraint C associated with that

credential is true. Rule → L′ decomposes a constrained
implication. The first premise states that there exists a proof
E for deriving F from Γ. The second premise checks that
E satisfies constraint C. If the constraint is satisfied, we can
proceed to prove F ′ using the assumption Fc. The last rule
(verify) transitions from an unverified proof to a verified
proof. The only remaining thing we need to do is to check
that the proof E satisfies constraint C. The rules in Figure 2
explicitly specify where the constraints are checked, and
we believe they match the high-level intuition about which
part of the proof is subject to constraints. Note that the
delegation constraints are checked eagerly, while the final-
goal constraints are propagated top-down and checked in the
very last step of the proof.

C. Formal Definition of Constraints

Proofs constructed using the sequent calculus rules in
Figure 2 include constraints propagated at each application
of those rules. The definitions of proofs in Section II need to
be updated to include these constraints. The new definitions
of proofs include the constraint in the conclusion.

Proofs p : := · | 〈rname,Γ, F, C, {p1, . . . , pn}〉

With this definition of proofs, constraints associated with
credentials can refer to constraints in the proofs as well. For
instance, Alice can specify that she will only delegate to
Bob, if Bob can come up with a proof with no constraints
other than the constant constraint tt. This kind of restriction
is quite useful in preventing Bob from hiding in his con-
straints policies that would normally be expressed through
credentials. We discuss this in more detail in Section VI.

Recall that constraints are functions on proofs. Now that
our definition of proofs include constraints, we have created
a cycle in our definitions. In order for definitions to be well-
founded, we need to break this cycle. We use a standard
trick and index atomic constraints by their name strings.
We assume there is a constraint map Ψ that maps each
name string to the definition of the constraint. The proofs
mention constraints by their names, allowing the definitions
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Γ, Fc
a=⇒ A says F

Γ, A sign Fc � C a=⇒ A says F
signL

E :: Γ a=⇒ F V(C, E) Γ, Fc
a=⇒ F′

Γ, F � C → Fc
a=⇒ F′

→L′

E :: Γ a=⇒ F Cof(Γ) = C V(C, E)

Γ v=⇒ F
verify

Figure 3. Selected alternative sequent calculus rules for a sample logic
with constraints

of constraints to mention proofs directly without creating a
cycle. The formal definitions are as follows.

Constraints C : := nameOf s | C1 ∧ C2

Constraint map Ψ : string → proof → bool

D. Alternative Formulation

The formulation discussed thus far propagates constraints
via the rules of the logic and checks them at the end. Because
our constraints are layered on top of ordinary authorization-
logic constructs, it is fairly easy to separate the constraint
checking from the logic rules themselves. To demonstrate
this point, we show an alternative formulation of the system,
which has a clearer distinction between the constraints and
the logical rules.

We first define a function Cof(Γ) to extract all the final-
usage constraints from the assumptions in Γ. It is inductively
defined as follows.

Cof(·) = tt

Cof(Γ, F ) =
{

Cof(Γ) ∧ C if F = A sign Fc � C
Cof(Γ) otherwise

In this formulation, specifying the sequent calculus that
enforces constraints requires modifying or adding only three
rules of the original set shown in Figure 1. The modified or
new rules are shown in Figure 3. We ignore the final-usage
constraints in rule signL. Instead, in rule verify, we collect
all the constraints present in the assumptions in Γ, and verify
that they are satisfied with respect to the final proof.

We can prove that the new system is sound with regard
to the system shown in Figure 2. To state the soundness
theorem, we first define S(C) to be the set of atomic
constraints contained in C.

S(tt) = ∅
S(C) = {C} when C is an atomic constraint
S(C1 ∧ C2) = S(C1)

⋃
(C2)

The following theorem then states that a verfied proof in
the new system implies the existence of a verified proof in
the old one.

Theorem 1: If Γ =⇒ F\C1, and Cof(Γ) = C2 then Γ a=⇒
F and S(C1) ⊆ S(C2)

Proof (sketch): By induction on the derivation of Γ =⇒
F\C1. 2

This theorem tells us that the new system imposes more
constraints than the old one, and therefore admits fewer
proofs. The difference between these two systems lies in
whether to enforce constraints specified by credentials that
are not used in the proof. By used, we mean the credential
is decomposed by the signL rule in the proof. In the new
system, all constraints specified in credentials and checked.
On the other hand, in the old system, only constraints
specified in credentials that actually contributed to the proof
are checked. Consequently, we do not have a general com-
pleteness result for the new system. However, if we further
assume that each credential in Γ is used in the proof, then
these two systems are equivalent.

Each of these formulations has its advantages and dis-
advantages. The second formulation is closer to the original
authorization logic rules, which makes extending an existing
authorization logic very easy. We chose to use the first
formulation because it encodes the extraction of constraints
in the rules, and therefore offers a declarative view of how
constraints are enforced on a per-rule basis.

E. Revisiting the Need for Delegation Constraints

Notice that final-usage constraints are very expressive,
since they take as input strictly more information than dele-
gation constraints. Hence, we could dispense with enforcing
delegation constraints in our inference rules and instead
encode any delegation constraints as final-usage constraints.

Given a delegation constraint C, we can define another
constraint C′ such that A sign (F1 → F2) � C′ is equivalent
to A sign (F1 � C → F2). In other words,

Γ, A sign (F1 → F2) � C′ v=⇒ F iff
Γ, A sign (F1 � C → F2)

v=⇒ F
However, if rewritten in this manner, the definitions of

constraints could become very complicated, because any
delegation constraint rewritten as a final-usage constraint
would first need to recurse into the proof to reach the proof
component that the original constraint cared about. Having
two separate constraint forms makes the intention of the
constraint much clearer and the definitions of constraints
more concise.

F. Formal Properties

One of the most important properties required of a logic
is consistency, i.e., that from an empty context one cannot
prove arbitrary formulas. One of the main benefits of our
layered approach is that a logic that has been extended to
support constraints inherits many of the good properties from
the underlying authorization logic, including consistency.

We are able to prove the following lemma which states
that each proof in our system can be mapped to one in the
basic authorization logic shown in Figure 1. We define Γ−
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to be the context consisting of all formulas in Γ with the
constraints of each formula erased.

Lemma 1: If Γ =⇒ F\C then Γ− =⇒ F .
Proof (sketch): By induction over the structure of the
derivation of Γ =⇒ F\C. 2

Our logic is consistent because rules in Figure 2 admit
strictly fewer proofs than rules in Figure 1, and we have
proved the consistency of the simple authorization logic
described in Figure 1. We first proved the standard cut-
elimination theorem for this logic; the consistency proof is
derived directly from the cut-elimination theorem.

V. A PROOF-CARRYING-AUTHORIZATION
IMPLEMENTATION

In previous sections we described how to define con-
straints and extend the inference rules of an existing au-
thorization logic to enforce these constraints. We left un-
explored, however, several important issues that have to be
resolved before our constraint framework can be used in a
practical, deployed system. We discuss these issues here,
and describe how to implement our constraint framework
in a proof-carrying authorization system. In the appendix,
we substantiate this description with a detailed use case,
described at a level of detail sufficient for direct implemen-
tation.

In a proof-carrying authorization system, a reference
monitor permits access to a resource once it has been
presented with a valid proof that confirms that the policy
guarding the resource has been satisfied (e.g., a proof of
Admin says MayAccess(resource)). To determine whether a
proof submitted with a request is valid, the reference monitor
checks (1) that the proof is well formed with respect to
the agreed-upon definition of an authorization logic and (2)
that each of the assumptions in the proof corresponds to
a (cryptographically) valid digitally signed certificate (i.e.,
credential).

In our scheme for enforcing constraints via logical infer-
ence rules, we make use of a verification predicate V(C, E),
which holds whenever all the constraints C hold for the proof
E . To implement our constraint-enforcement scheme in a
practical system we have to decide how a reference moni-
tor should determine whether various V(C, E) encountered
throughout the proof of access hold. There are two main
ways in which this could be accomplished: the reference
monitor could evaluate the constraints C with respect to E ,
or the reference monitor could be supplied with evidence
that V(C, E) holds.

In the first case, constraints could be represented as
programs in an agreed-upon programming language. When
the reference monitor encounters a V(C, E) in a proof, it
would execute the code comprising C and proceed with
verification only if the program returned true. This approach
to confirming whether V(C, E) holds has the advantage of

making it straightforward to represent arbitrarily complex
constraints, but also significant disadvantages, most partic-
ularly that the reference monitor would have to either trust
or ensure that the constraint programs are not malicious and
terminate in a reasonable amount of time.

The second case, in which the reference monitor is
furnished with easily verifiable evidence that V(C, E) holds,
is closer to the spirit of proof-carrying authorization. In this
case, the constraints still need to be specified in an agreed-
upon language, but now the authorization proof needs to
include (as subproofs) proofs that each constraint C evaluates
to true when applied to the appropriate proof E . Since
verifying constraints is now done by proof checking, from
the reference monitor’s standpoint, this approach is safer—
there is no need to trust credential issuers to produce only
benign constraints or to include in the TCB mechanisms to
ensure safe execution of foreign code. In the design of our
prototype implementation, we pursue this option.

One tradeoff made by using proofs of constraint com-
pliance is that proofs of access may become large—they
include not only the authorization proof and the definitions
of constraints, but also proofs that the constraints have been
met. In principle, such proofs could become arbitrarily large,
since their size could be proportional to the execution time
of arbitrary functions that express constraints. We have not
found this to be a concern in practice, however: all the
constraints that we discuss here have proofs of compliance
that are linear in the size of their input, i.e., the authorization
proof.

An important distinction between regular credentials and
constraints is that regular credentials are expressed via
agreed-upon predicates of an authorization logic (e.g., says),
which restricts the form that credentials can take. Con-
straints, on the other hand, we would like to keep as un-
restricted as possible so as to not limit their expressiveness.
Hence, we would like to allow constraints to be specified in
a general language that permits them to define functions or
relations useful for describing the properties that they want
to ensure hold.

In light of this, there is a significant difference between
verifying the validity of authorization proofs and proofs
of constraint compliance. Authorization proofs are verified
with respect to an agreed-upon definition of an authorization
logic, whereas constraint compliance proofs are verified
with respect to the functions or relations that comprise
the constraint. When a complete proof, which contains
both an authorization proof and one or more constraint
compliance proofs, is being verified by a reference monitor,
the reference monitor will have to ensure that the definitions
of the constraints do not interfere with the definition of the
authorization logic, e.g., by including in the definition of the
constraint new inference rules that modify the semantics of
the authorization logic. This kind of separation between the
authorization logic and the constraint definitions can be ac-
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complished in several ways, including alpha-renaming each
constraint definition and its associated proofs or processing
the authorization proof and each constraint definition and
proof in independent proof-checking environments.

We pursue the latter strategy. We encode our authorization
logic and proofs, and constraints and constraint-compliance
proofs in LF [19]. To verify the validity of a proof of access,
we use a modified LF type checker which maintains indepen-
dent environments for processing authorization proofs and
proofs of constraint compliance. Our previous investigation
of using such modular LF type checkers has found that they
are straightforward to design and introduce only minimal
overhead into the proof-checking process [9].

VI. DISCUSSION AND FUTURE WORK

In this section we discuss several issues raised by or
relevant to our framework for specifying constraints.

Tracing hypothesis in the contexts: In many of our
examples, the constraints trace the decomposition of hy-
potheses in the context. For instance, in the usage-constraint
example, we would like to determine if Alice sign F has
contributed to the final proof. If rule signL is used on this
particular credential, and F is useful in proving the final
goal of the subproof, then Alice sign F is useful. However,
there could be multiple instances of F in the context, and
ideally we would like to track the usage of the specific
one that comes from Alice sign F . To do so, we need to
attach unique labels to formulas in the context. We give F
a label, and check whether the F with that label is used in
the subproofs. In our prototype LF encoding, we omit the
labeling of hypotheses. As a consequence, our constraints
are not as precise as one would like. We plan to improve
our encoding in future work.

Constraints vs more precise authorization policies: Our
approach to specifying constraints is sufficiently expressive
that parts of policies that would normally be encoded as for-
mulas in the authorization logic could instead be encoded as
constraints. For example, suppose Alice wishes to delegate
to Bob the authority to access her computer, but only if
Charlie consents to this. The condition requiring Charlie’s
consent could be expressed as a constraint C,

Alice sign (Bob says MayAccess(X) � C
→ MayAccess(X))

or expressed directly in the authorization logic

Alice sign (Bob says MayAccess(X)
→ Charlie says Consent(Bob, MayAccess(X))
→ MayAccess(X))

One subtle point is that Bob could use constraints to
circumvent Alice’s constraints on delegation. For instance,
if Alice does not allow Bob to re-delegate by requiring that
Bob is the only contributor of credentials in the proof of
Bob says MayAccess(door), Bob can hide his re-delegation

to Charlie in the constraint C. This is not a desirable
property. Luckily, since our constraints are functions on
proofs, which include the constraints accumulated in the
proofs, Alice can refine her requirement not to allow the
proof of Bob says MayAccess(door) to depend on any
constraints other than the constant tt constraint.

When given the choice of encoding a policy restriction
as a formula or as a constraint, it is preferable to encode
it as a formula, since this helps to make the meaning
of policies clearer. Many constraints, however, cannot be
encoded in typical authorization logics, most particularly
those constraints that depend on parts of the proof that are
not directly related to the credential in question.

Constraints vs more expressive authorization logics:
The expressive power of the constraints comes from their
ability to examine the proof structure. This raises the ques-
tion of whether we should design authorization logics with
richer syntax and more complex inference rules so as to
natively be able to restrict inference in the way that we
do here with constraints. While in some cases this may be
a feasible alternative to using constraints, it is not likely
to suffice in the general case. For one, revising a logic
in this way is likely to make it more difficult to prove
formal properties about the logic. For another, such revision
will result in a logic that implements only a fixed set of
constraints, rather than leaving it up to credential issuers to
create whichever constraints they choose.

Generalization: We have demonstrated how to augment
a simple authorization logic with a mechanism for specifying
and checking constraints. Our approach requires small and
relatively straightforward changes to the inference rules of
a logic, and we believe would be applicable to a variety of
logics other than the one we showed here. Recently, various
new authorization logics have been developed [16], [13],
[15]. We plan to investigate general principles and methods
for extending the syntax and proof rules of different logics
with constraints in a manner similar to what we have shown
in this paper. We would also like to prove meta-theorems
that these more general methods do not interfere with or
still allow properties such as consistency to be proved.

VII. RELATED WORK

The study of logics for access-control gained prominence
with the work on the Taos operating system [3]. Since
then, significant effort has been put into formulating formal
languages and logics (e.g., [3], [5], [12], [25], [2], [20], [21],
[22], [14]) that can be used to describe a wide range of
practical scenarios.

The proof-carrying approach that we adopt as an enforce-
ment paradigm in this work was pioneered by Appel and
Felten [4] and further explored in Alpaca [23] and other
projects [7], [8], [17], [26].

The usefulness of mechanically generated proofs led to
efforts to balance the decidability and expressiveness of
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access-control logics. These efforts resulted in various first-
order classical logics, each of which describes a compre-
hensive but not exhaustive set of useful access-control sce-
narios [5], [18], [24], [25], and more powerful higher-order
logics that served as a tool for defining simpler, application-
specific ones [4], [6], [23]. Researchers have recently started
to examine constructive authorization logics [16], about
which they have proved meta-properties such as soundness
and non-interference, as well as logics that reason about
linearity and time [15], [13].

Some of the goals of our framework, in particular, the
high-level notion of constraining the use of credentials and
constraining authority based on context have been explored
to a degree in projects such as DL [24] and SecPAL [11],
[10]. Both of these systems, for example, support constraints
designed to limit the depth of re-delegation of authority.
Both DL and SecPAL can be categorized as approaches in
which the rules of an authorization logic are made more
restrictive so as to make it possible for credentials to more
precisely specify what inferences they ought to enable. DL
itself does not have a proof theory, and the semantics of
DL is given in terms of a translation to a Prolog program.
This makes it difficult to prove potentially important meta-
properties about the language, and, indeed, in DL it is possi-
ble to circumvent delegation-depth constraints by delegating
without using the explicit delegation predicate. SecPAL has
a more developed proof theory, although meta-properties of
the logic remain somewhat difficult to prove.

Our proposed framework is notably different from these
related existing approaches in several ways. First, the con-
straints that we describe in this paper are more general than
those that appear in related work in that we allow constraints
to be arbitrary predicates on authorization proofs. Since
proofs contain crucial information about why access should
be granted, this enables our framework to support more sce-
narios and finer-grained constraints than existing approaches.
Second, we build our framework as an extension of well-
behaved constructive authorization logics. The enforcement
of the constraints in our framework is based on sequent
calculus, which is highly declarative and provides a good
basis for proving useful properties about the resulting logics
and systems. Related projects typically provide a language
for specifying policies, but are not founded on formal
foundations that lend themselves as well to proofs of meta-
properties. Furthermore, unlike much work on modeling
access-control systems, our approach lends itself naturally
to use not just as a model, but as the actual enforcement
mechanism, via proof-carrying authorization. Even with
respect to related work that is used for enforcement and not
just modeling, the proof-carrying approach has a number
of benefits, most critically in terms of the assurances of
correctness that it can provide.

VIII. CONCLUSION

In this paper we propose a general framework for allowing
credential issuers to have fine-grained control over the
circumstances under which their credentials can be used. Our
framework is built on top of authorization logics with robust
proof theory and hence exhibits desirable formal properties,
such as consistency.

We demonstrate the flexibility of our framework by show-
ing a wide range of example constraints relevant to access-
control scenarios and describing how these constraints can
be expressed using our framework.

We also describe how our framework can be used in
practice, and show a detailed encoding that demonstrates
the integration of our framework into a traditional proof-
carrying authorization system.
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APPENDIX

We now revisit an example from Section III-C, for
which we will show an LF encoding that integrates an
authorization-logic proof with a proof that constraints have
been verified. The specific example constraint we use is
the attribute constraint. We proceed as follows. We first
provide a set of basic definitions (e.g., of concepts like
“formula”), and define the trivial tt constraint. We then show
an encoding of the authorization logic from Figure 2 and of
the attribute constraint. Finally, we show the authorization
proof and constraint-verification proof and demonstrate how
they integrate. The LF code of this and other examples
can be downloaded from http://www.ece.cmu.edu/∼lbauer/
constraints/code/.

Basic definitions: Figure 4 contains the type definitions
for our framework. Lines 1 and 2 define a string type str and
a wrapper (strconst) for creating str’s from Twelf’s built-in

1 str : type.
2 strconst : string→ str.
3

4 form : type.
5 cform : type.
6 cred : type.
7 ctx : type.
8 constraint : type.
9 fromDef : {def : str}constraint.

10 ...
11 prove : ctx→ form→ constraint→ type.
12 vprove : ctx→ form→ type.
13 verify : prove G F C→ constraint→ type.
14

15 %% Conjunction for constraints
16 andc : constraint→ constraint→ constraint.
17 %% Construct for constructing a proof of a pair of constraints
18 verifyPair : verify P (andc C1 C2)
19 ← verify P C1
20 ← verify P C2.
21

22 %% Create tt constraint
23 ttc : constraint = fromDef ”...”.
24 %% trivial proof for tt constraint
25 vtt = tt/check2v tt/checktt.

Figure 4. Basic definitions
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1 tt/Def : str = strconst ”a string of the next three lines”.
2

3 tt/check : prove G F C→ type.
4 tt/check2v : tt/check PF→ verify PF (fromDef tt/Def).
5

6 tt/checktt : tt/check PF.

Figure 5. Basic definitions for constraints

strings. Next, we declare types for formulas (form), constraint
formulas (cform), credentials (cred), the logical context (ctx),
and constraints (constraint). fromDef constructs a constraint
object from the string that represents the definition of the
constraint.

An authorization logic proof has type prove G F C (line
11), where G is the context, F is the goal formula, and
C is the constraint to be verified. This type represents the
judgment Γ =⇒ F\C. A verified proof has type vprove G F
(corresponding to the judgment Γ v=⇒ F). On line 13, verify
is the verification predicate V(E , C). An LF term of type
verify pf c is evidence that proof pf satisfies constraint c.

We define andc (line 16) to be the conjunction operator
for constraints. An object of type verifyPair v1 v2 is evidence
for the constraint andc c1 c2 if v1 attests to c1 and v2 attests
to c2. Finally, we declare the trivially true constraint ttc. Its
definition would normally be encoded in the string argument
to fromDef, but for clarity we show it in Figure 5.

The first line of Figure 5 is a placeholder for a self-
referential pointer that can be used within the constraint
definition to refer to the constraint. Here we declare it manu-
ally, although in practice it would be automatically generated
by the system processing the definition of the constraint
while checking the proofs. Next, tt/check PF is a predicate
stating that proof PF satisfies the constraint being defined.
Line 4 defines the glue for converting a proof (of type
tt/check) specified in the constraint’s language into a globally
intelligible proof (of type verify ...) that the constraint has
been verified. Finally, line 6 defines the concrete construct
for constructing evidence for the tt/check predicate. Because
the constraint we are defining is the trivially true constraint,
there are no requirements on the proof itself, and evidence
that the constraint has been satisfied is constructed trivially
by the tt/checktt construct.

The definition of the authorization logic (which corre-
sponds to the sequent calculus in Figure 2) is shown in
Figure 6. We first define context to be a list of formulas and
constraint formulas (lines 2–5), and then define operations
on the context, e.g., for looking up a formula (lines 7–8).
Next, we define logical connectives (lines 10–14). Finally,
we define the set of sequent rules. Most of the definitions
are straightforward. The interesting one is the cimpL rule,
where LF’s dependent types help us to link the evidence
that constraints are satisfied to a specific proof. Line 24
represents the premise for proving the left-hand side of
the implication. There is a constraint associated with this

1 %%% Context operations
2 nil : ctx.
3 consf : form→ ctx→ ctx.
4 consc : cform→ ctx→ ctx.
5 consk : cred→ ctx→ ctx.
6 ...
7 lookup : ctx→ form→ type.
8 lookup/hit : lookup (consf F G) F.
9 ...

10 %% Logic connectives
11 says : str→ form→ form.
12 imp : form→ form→ form.
13 cimp : form→ constraint→ cform→ cform.
14 signed : str→ cform→ constraint→ cred.
15

16 %% Deduction rules
17 init : prove G A ttc ← lookup G A.
18

19 signedL : prove (consk (signed K Fc C) G) (says K F)
20 (andc C C′)
21 ← prove (consc Fc G) (says K F) C′.
22 ...
23 cimpL : prove (consc Fc G) F C2
24 → {ee : prove G F1 C1} verify ee C
25 → prove (consc (cimp F1 C Fc) G) F (andc C1 C2).
26

27 final : {ee : prove G F C} verify ee C→ vprove G F.

Figure 6. Sequent calculus

proof, so we also need to verify that this proof satisfies the
constraint. In the LF encoding, {ee : prove G F1 C1} verify ee C
means that ee is the name for the argument representing a
proof of prove G F1 C, and LF’s dependent types allow ee to
directly show up in the argument immediately after it, which
is evidence for the verification of constraint C on ee.

Encoding an attribute constraint: In Figure 7 we show
an encoding of the constraint, previously described in Sec-
tion III-C, that requires each credential in a proof to have
been created by Alice, Bob, or a principal who is friends
with both. Notice that the first few lines are similar to the

1 attrib/check : prove G F C→ type.
2 attrib/check2v : attrib/check E→ verify E (fromDef attrib/Def).
3

4 attrib/alice : str = strconst ”Alice”.
5 attrib/bob : str = strconst ”Bob”.
6 attrib/friend : str→ form.
7

8 attrib/ceq : constraint→ constraint→ type.
9 attrib/ceq/ttc : attrib/ceq ttc ttc.

10 attrib/ceq/and
11 : attrib/ceq (andc C1 C2) ttc ← attrib/ceq C1 ttc ← attrib/ceq C2 ttc.
12

13 attrib/checkG : ctx→ type.
14 attrib/checkG/nil : attrib/checkG nil.
15 attrib/checkG/alice : attrib/checkG (consk (signed attrib/alice F C) G)
16 ← attrib/checkG G.
17 attrib/checkG/bob : attrib/checkG (consk (signed attrib/bob F C) G)
18 ← attrib/checkG G.
19 attrib/checkG/consk : attrib/checkG (consk (signed A F C) G)
20 ← attrib/checkG G
21 ← prove G′ (says attrib/alice (attrib/friend A)) C1
22 ← prove G′′ (says attrib/bob (attrib/friend A)) C2
23 ← attrib/ceq C1 ttc
24 ← attrib/ceq C2 ttc.
25

26 attrib/checkP : {P : prove G F C}attrib/checkG G→ attrib/check P.

Figure 7. Encoding of an attribute constraint
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definitions in Figure 5. These are the boilerplate for defining
constraints: a predicate for checking the constraint locally,
and a wrapper that makes it possible to integrate a proof of
constraint compliance (specified in the constraint language)
with the authorization proof. The definitions for constructing
proofs of constraint compliance are customized.

Lines 8–11 define a predicate stating when two constraints
are equivalent. We will use these definitions to state that the
conjunction of two trivially true constraints (ttc) is equivalent
to ttc. Line 13 defines the predicate attrib/checkG G, which
holds when all the credentials in G satisfy the constraint.
Lines 14–24 define constructs for constructing evidence that
attrib/checkG G holds. The base case is on line 14, which
states that an empty context is always OK. There are three
inductive cases. The first two deal with situations in which
the first credential in the context is signed by Alice or
Bob. Lines 19–24 describe the case where we check if the
credential issuer A is a friend of both Alice and Bob (lines
21–22). Lines 23–24 check that the constraints in those
proofs are nothing more than the trivally true constraint.

We can use these definitions to build a term attesting that
the context of a proof satisfies the constraint, and this term
can be further incorporated into the authorization proof to be
sent to the reference monitor at the time of an access request.
In the example proof in Figure 8, line 68 is the final proof
of the fact that Alice authorizes access from credentials ka,
kb and kc. ka (line 18) is Alice’s credential delegating access
to Bob with the attribute constraint; kb (line 21) is Bob’s
credential delegating access to Carl; and kc (line 24) is Carl’s
credential stating that access is allowed. Furthermore, Alice
and Bob have both asserted that Carl is a friend (kaf on line
12 and kbf on line 15).

The only construct we can use to produce a verified proof
is verifyR, which takes two arguments: the first one (p4) is
a proof that Alice allows access with certain constraints;
and the second one (v3) is a proof that p4 satisfies those
constraints. Lines 55–57 give the type and definition of p4.
By looking at the type of p4 we can see that the constraints
associated with p4 are not that interesting: they are conjunc-
tions of tt. Lines 59–61 are the type and definition of v3.
We use the pairing construct defined in Figure 4 to construct
a proof for the constraints associated with p4.

The interesting part of the proof is where delegation
constraints are checked. When constructing p4, we first need
to prove that Bob allows access, so that we can use Alice’s
delegation to Bob (ka). On line 57, p3 is a proof that Bob
allows access. To use Alice’s delegation credential, we need
to check that p3 satisfies the attribute constraint. This check
is witnessed by v2 (lines 43–52). v2 is constructed by using
constructs defined as part of the attribute constraint shown
in Figure 7.

1 %% encoding of a proof that makes use of the attribute constraint
2 alice = strconst ”Alice”.
3 bob = strconst ”Bob”.
4 carl = strconst ”Carl”.
5 access : form.
6 access′ = form2cform access.
7

8 %% define the constraint from its content
9 cattrib = fromDef (strconst ”the definition of the constraint”).

10

11 %% credential alice signed (friend carl)
12 kaf = signed alice (form2cform (attrib/friend carl)) ttc.
13

14 %% credential bob signed (friend carl)
15 kbf = signed bob (form2cform (attrib/friend carl)) ttc.
16

17 %% credential alice signed (bob says access <| C→ access) <|| tt
18 ka = signed alice (cimp (says bob access) cattrib access′) ttc.
19

20 %% credential bob signed (carl says access <| tt→ access) <|| tt
21 kb = signed bob (cimp (says carl access) ttc access′) ttc.
22

23 %% credential carl signed access <|| tt
24 kc = signed carl access′ ttc.
25

26 %% some small proofs for building up the real one
27 pinit : prove (consc (form2cform F) G) F ttc = init lookup/hitc.
28

29 paf : prove (consk kaf nil) (says alice (attrib/friend carl)) (andc ttc ttc)
30 = signedL( saysR pinit).
31 pbf : prove (consk kbf nil) (says bob (attrib/friend carl)) (andc ttc ttc)
32 = signedL( saysR pinit).
33

34 p2 : prove (consk kc nil) (says carl access) (andc ttc ttc)
35 = signedL (saysR pinit).
36

37 p3 : prove (consk kb (consk kc nil)) (says bob access)
38 (andc ttc (andc (andc ttc ttc) ttc)) =
39 signedL (saysR (cimpL pinit p2 vtt)).
40

41 %% v2 attesting that the context (kb, kc) only contains credentials
42 %% issued by alice, bob, or alice and bob′s friend
43 v2 : verify p3 cattrib
44 = attrib/check2v
45 (attrib/checkP p3
46 (attrib/checkG/bob
47 (attrib/checkG/consk
48 (attrib/ceq/and attrib/ceq/ttc attrib/ceq/ttc)
49 (attrib/ceq/and attrib/ceq/ttc attrib/ceq/ttc)
50 pbf
51 paf
52 attrib/checkG/nil))).
53

54 %% notice that v2 is a witness for (verify p3 cattrib)
55 p4 : prove (consk ka (consk kb (consk kc nil))) (says alice access)
56 (andc ttc (andc (andc ttc (andc (andc ttc ttc) ttc)) ttc))
57 = signedL (saysR (cimpL pinit p3 v2)).
58

59 v3 = verifyPair vtt
60 (verifyPair (verifyPair vtt
61 (verifyPair (verifyPair vtt vtt) vtt)) vtt).
62

63 %% the entire proof
64 %% p4 is a proof of ka, kb, kc ==> alice says access \ C
65 %% where C is (some true constraints)
66 %% v3 is the witness of C
67 proof : vprove (consk ka (consk kb (consk kc nil))) (says alice access)
68 = verifyR p4 v3.

Figure 8. Encoding of an example proof
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