
Privacy-Preserving Audit for Broker-Based
Health Information Exchange

Se Eun Oh
University of Illinois at
Urbana-Champaign

seeunoh2@illinois.edu

Ji Young Chun
University of Illinois at
Urbana-Champaign

jychun@illinois.edu

Limin Jia
Carnegie Mellon University

liminjia@cmu.edu

Deepak Garg
Max Planck Institute for

Software Systems
dg@mpi-sws.org

Carl A. Gunter
University of Illinois at
Urbana-Champaign

cgunter@illinois.edu

Anupam Datta
Carnegie Mellon University
danupam@cmu.edu

ABSTRACT
Developments in health information technology have en-
couraged the establishment of distributed systems known as
Health Information Exchanges (HIEs) to enable the sharing
of patient records between institutions. In many cases, the
parties running these exchanges wish to limit the amount
of information they are responsible for holding because of
sensitivities about patient information. Hence, there is an
interest in broker-based HIEs that keep limited information
in the exchange repositories. However, it is essential to audit
these exchanges carefully due to risks of inappropriate data
sharing. In this paper, we consider some of the require-
ments and present a design for auditing broker-based HIEs
in a way that controls the information available in audit logs
and regulates their release for investigations. Our approach
is based on formal rules for audit and the use of Hierarchical
Identity-Based Encryption (HIBE) to support staged release
of data needed in audits and a balance between automated
and manual reviews. We test our methodology via an exten-
sion of a standard for auditing HIEs called the Audit Trail
and Node Authentication Profile (ATNA) protocol.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Temporal logic; D.4.6 [Security and
Protection]: Cryptographic controls; K.4.1 [Public Pol-
icy Issues]: Privacy

Keywords
Audit; Health information technology; Formal logic; Hierar-
chical identity based encryption

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CODASPY’14, March 03 - 05 2014, San Antonio, TX, USA
Copyright 2014 ACM 978-1-4503-2278-2/14/03 ...$15.00.
http://dx.doi.org/10.1145/2557547.2557576.

1. INTRODUCTION
Broker systems enable organizations to index and share

data securely by providing key infrastructure services. Such
brokers provide an alternative to central repositories in
which data is held as well as indexed by a central authority.
The broker provides some level of indexing, provides for the
transport of data, and supports security functions like au-
thentication and audit, often without holding much of the
key data itself except during its transport. These systems
are of growing interest in the healthcare sector where efforts
are being made internationally to take advantage of Elec-
tronic Health Records (EHRs), which enable institutions
to represent medical data in standardized formats suited to
inter-domain sharing. An advantage of the broker solution
is that it limits the amount of information the broker needs
to hold thus limiting risk and liability. For example, in the
U.S. there are many nascent state-sponsored Health Infor-
mation Exchange (HIE) systems where the state is reluctant
to hold EMR data themselves because citizens have concerns
about sharing their health data with government. Broker-
based exchanges mitigate this concern while providing key
benefits like the ability of healthcare providers to assemble
patients’ medical records quickly at the point of care.

Broker-based HIEs face a special problem with their ac-
cess audit which aims to detect illegitimate accesses as part
of general ongoing monitoring or specific investigations. The
more audit data the HIE keeps the better it supports this
function, but the more risk there is that the audit informa-
tion itself will compromise privacy. Moreover, large numbers
of transactions make it impossible to carry out manual au-
dits at scale so there is a need for automation, which calls
for keeping as much structured information as possible.

The goal of this paper is to explore the design space for
privacy-preserving audit with automation supported by for-
mal logical representation of audit policies. In particular,
we develop a system in which Hierarchical Identity Based
Encryption (HIBE) [11] is used in coordination with a logic-
based audit algorithm [15] to limit the amount of informa-
tion the auditor needs to know to carry out access audit.
The system uses HIBE to encrypt sensitive data on the audit
logs with a ranking of sensitivity. The auditor uses the au-
dit algorithm to decide which portions of the log need to be
decrypted to provide evidence of the audit decision. We use
HIBE because it provides a convenient way to encrypt audit

logs at a fine granularity (i.e., each event is encrypted using
keys derived from the identifiers participating in that event)
and limit the auditors to decrypt minimum-necessary data
for audits. Since events occur frequently, but audits that
require decryption of data are (presumed to be) rare, our
framework provides an efficient audit procedure. We also
explore the idea of extending the audit algorithm to pro-
vide understandable explanations for accesses rather than
just claiming that an access can be proved consistent with
or violate the policy. We design an audit architecture that
augments an HIE using the ATNA [4] profile, a standard
for auditing HIEs, and supports HIBE encryption of audit
logs and an explanation-enabled audit procedure. A key fea-
ture of the design inspired by a pair of state HIEs (namely
those for Maryland and Illinois) is the ability to combine
the ATNA data with external documentation that is input
to the audit algorithm. Our main contribution lies in the
design and implementation of a practical system using this
novel encryption and audit algorithm.

The rest of this paper is organized as follows. In Section 2,
we provide background on HIE and HIBE. An overview of
the architecture of our design is presented in Section 3. Next,
we detail our hierarchical encryption algorithm (Section 4),
the audit algorithm, and an example of using our infrastruc-
ture to audit accesses and produce explanations of the audit
results (Section 5). We present our prototype implemen-
tation and evaluation results in Section 6. In the end, we
discuss related work (Section 7) and conclude (Section 8).

2. BACKGROUND
Audit Standard for HIE. Because an HIE shares ac-

cess to patient records to a broad community, it raises sig-
nificant concerns about security and privacy [26]. To help
address these concerns, the National Institute of Standards
and Technology (NIST) recommends collecting and commu-
nicating audit logs about security-related events and data
that should be gathered, consistent with applicable policy,
as one of twelve services [23] to aid security and privacy
protection for HIEs. The Audit Trail and Node Authenti-
cation (ATNA) Profile [4], is a standard developed by In-
tegrating the Healthcare Environment (IHE) that provides
an audit mechanism reflecting such security guidelines, with
two strengths. First, it generates and keeps audit records in
a centralized audit repository, which can be readily adapted
to the typical HIE environment involving Cross Document
Sharing (XDS) [4] and is compliant with HIPAA [3]. IHE
stipulates that events defined in XDS.b [5] must be recorded
in the audit trail. Second, the ATNA is compatible with di-
verse types of healthcare enterprises since it generates audit
logs based on existing standards. In short, ATNA provides
an infrastructure for auditing the HIE. However, it is still
necessary to develop ways to stipulate policies and carry out
the analysis of audit events on ATNA standard audit logs.
Moreover, it may be necessary to work with external docu-
mentation that is not present in ATNA logs to achieve the
overall goals of auditing the HIE. For instance, if one wishes
to use billing records to confirm that an access to a record
has been made to provide a (billed) service, then it may be
desirable to integrate billing records into the underlying an-
alytics engine rather than trying to make billing records a
part of ATNA.

Hierarchical Identity Based Encryption. Hierarchi-
cal Identity Based Encryption (HIBE)[11, 24, 10] is a form

of Identity Based Encryption (IBE) for hierarchical struc-
tures. IBE allows a sender to encrypt messages based on
a receiver’s identity, such as an e-mail address, before the
receiver gets a secret decryption key from a Key Generation
Center (KGC). The KGC generates a secret key to a user
commensurate with the level of sensitivity of the data that
the user needs to access. The private key will allow access at
that level, or depth, in the hierarchy and at all lower levels
and will also delegate authority to the holder of the private
key to generate secret keys to users at lower levels. In other
words, this is one-way access and delegation, so that a user
at level k can generate a secret key for a user at any level
lower than k, but lower level users can not use their secret
keys to make secret keys for users at higher levels in the
hierarchy. Upper level users who generate lower level keys
are referred to as parents in the hierarchical structure. The
HIBE system uses the following five algorithms.

HIBE.Setup : (k, L) 7→ {mk,Pub} takes security parameter
k and maximum depth L, and outputs a master key mk and
public parameters Pub.

HIBE.Extract : (Pub,mk, ID) 7→ skID takes the public pa-
rameters Pub, the master key mk and an identity ID =
(id1, ..., id`) of depth `(≤ L), and outputs a secret key skID
for the identity ID.
HIBE.Delegate : (Pub, skID′ , ID) 7→ skID takes the public

parameters Pub, a parent’s secret key skID′ where the par-
ent’s identity ID′ = (id1, ..., id`′) of depth `′(< ` ≤ L), and
the child’s identity ID = (id1, ..., id`) of depth `. Then the
algorithm outputs a secret key skID for the identity ID.

HIBE.Encrypt(Pub, ID,Msg) 7→ CT takes the public pa-
rameters Pub, an identity ID and a message Msg, and out-
puts a ciphertext CT.
HIBE.Decrypt : (Pub, skID,CT) 7→ Msg takes the public

parameters Pub, a secret key skID and a ciphertext CT, and
outputs a message Msg.

In Section 4, we describe how to use HIBE for a workable
system to encrypt, transmit, and store external documenta-
tion for later use by HIE auditors.

3. AUDIT ARCHITECTURE
Figure 1 shows a high-level schema of the HIE and our

audit subsystem. As data is accessed in the HIE on a
day-to-day basis, a significant amount of internal ATNA-
based audit information is gathered by the HIE. This infor-
mation includes data such as which specific user accessed
a patient’s Protected Health Information (PHI) and which
specific pieces of the PHI were accessed. Individual health-
care organizations (HCOs) using the HIE offer supplemen-
tary audit logs (external documentation) such as patient
registration (PR) and medical billing (BL). The prescrip-
tion monitoring program (PMP) [2], a centralized repository
managed by the state of Illinois, provides prescription de-
tails. Together, the three justify HCOs’ medical providers’
accesses to the HIE. During the audit information collec-
tion by the audit data processor (ADP), the identifier cross-
reference manager (ID-CRM) matches each external party’s
internal patient ID, user ID and hospital ID with the HIE’s
IDs. However, because the HCOs may have privacy con-
cerns about such information, we allow them (or ADP) to
encrypt the sensitive information using HIBE. The informa-
tion is decrypted by the audit subsystem only when it is
necessary for an audit. We describe details for doing this in

E
C

2

External

Hospital

Hospital

HIE

ATNA

Send

Alice’s record

Retrieve

Alice’s record

P

M

P

PR

Audit Data Processor (ADP)
KGC

Audit Agent

Audit

logs

Audit

Algorithm

Auditor

Auditor

Viewer

A
C

2

A
C

1

A
C

3

A
A

1

AA3

SR1
SR4

S
R

2

S
R

3

EC1

AA2

BL

Audit data Collector

(AC) Path:

1. ATNA logs

2. External documentation

3. Encrypted external doc

 and ATNA logs

Access Analysis

(AA) Path:

1. Provider ID, Patient ID

 and Event time

2. Provider ID, Patient ID

 and Event time

3. SQLITE database

Supplement Resolution (SR)

Path:

1. Residual policy

2. ID(s)

3. Secret key(s)

4. SQLITE database

Explanation Creator

(EC) Path:

1. Explanations

2. Human-readable

 explanations

3. Report

N

ID-CRM

E
C

3

Expl

policy

Audit Subsystem

Figure 1: HIE Audit Infrastructure

Section 4. Our audit subsystem consists of four main compo-
nents: (1) The ADP, which aggregates internal ATNA logs
and external documentation from HCOs (called audit logs),
encrypts external data and makes both available to the au-
dit agent (path AC1 and AC2), (2) the audit agent, which is
the main driver of remaining audit subsystem, (3) the audit
algorithm, which is the core automation technology, and (4)
an auditor viewer, which is the audit subsystem’s interface
for communicating with the auditor. The ADP contains the
KGC for HIBE and must be trusted by the HCOs.

Access Analysis. The audit agent, which has the pri-
vacy policy relative to which audit is performed (represented
in formal logic in our implementation), fetches relevant au-
dit logs from the ADP (path AC3). The auditor sends a
particular set of accesses of audit interest to the audit agent
through the auditor viewer (paths AA1 and AA2). The au-
dit agent passes the audit logs to the core audit algorithm
in SQLite format (path AA3) along with the policy and the
specific accesses of interest. The audit algorithm is designed
to automatically check whether the specific access complies
with the policy, if all relevant logs are available to it.

Supplement Resolution. Since some parts of the au-
dit logs are encrypted, the audit algorithm may not be able
to decide compliance or violation and return a residual pol-
icy (path SR1) which can be checked after the encrypted
data has been decrypted (we describe the residual policy
and its generation formally in Section 5).The audit agent
determines what encrypted minimum information is needed
to complete the audit by looking at the residual policy, and
requests corresponding decryption keys from the ADP, more
specifically the KGC (path SR2). Once the KGC returns the
keys (path SR3), the audit agent decrypts the relevant ex-
ternal audit logs and sends the decrypted data to the audit
algorithm as a SQLite database (path SR4). The ADP and
the audit agent separately log the IDs whose keys were re-
quested and the audit agent may additionally log the resid-
ual policies to facilitate a later audit on the audit process it-
self. The audit algorithm uses the newly available decrypted
data to complete the audit.

Explanation Creator. The audit algorithm generates
a formal explanation of why the access in question looks le-
gitimate. This explanation is returned to the auditor viewer
(path EC1), which then translates the explanation to human-
readable form and returns it to the auditor (path EC2). If a
policy violation is identified, the auditor viewer sends a no-
tification with details of the audit log to the relevant HCOs
(path EC3).

Our core audit algorithm (described in Section 5) is based
on a prior algorithm called reduce, which can audit for policy
violations even when some log information is missing [15].
Over this basic algorithm, we make two additional contri-
butions. First, we extend reduce’s output with explanations
showing why a certain access satisfies or violates the policy.
Second, we allow HCOs or the ADP to encrypt external au-
dit logs in layers, through HIBE. This allows the audit agent
to selectively decrypt minimum-necessary data, and facili-
tates any subsequent audit of the audit process and might
increase the HCOs’ confidence in the HIE. Use of HIBE (in-
stead of conventional public-key cryptography) also allows
the HCOs to encrypt data offline, without any interaction
with the KGC.

4. HIERARCHICAL ENCRYPTION
In this section, we describe how we encrypt and de-

crypt external audit logs, specifically documentation, from
the HCOs using HIBE for privacy protection during audits.
There are various HIBE schemes that satisfy different prop-
erties and security goals. It is important to select a HIBE
scheme with constant, small-size ciphertexts, e.g. [11], since
such a scheme will optimize storage cost regardless of hierar-
chy depth. Even though privacy infringement investigations
are rare in practice and encrypted sensitive data will seldom
be decrypted, it must nonetheless be stored by the audit
subsystem.

External Data Hierarchy and Identity. Suppose that
the data in some external documentation D has been parti-
tioned hierarchically into n degrees of sensitivity, resulting in
data D1, . . . ,Dn, where Dn is the data in the documentation

patient-id HCO-id date-of-bill level1 level2 level3

eeb728473e1949a Carle07RQ12 2013:09:08:10:18:41 EncID1,1(cs1010) EncID1,2(HEMOGLO...) EncID1,3(73.8)
d99486a44ca64cb Provena01AV98 2013:09:17:02:48:29 EncID2,1(ra1010) EncID2,2(MCH,Auto...) EncID2,3(279)
42210b2417d74b1 NWM0329W2 2013:10:21:11:47:22 EncID3,1(pq1010) EncID3,2(PLATELET...) EncID3,3(11.6)

Table 1: observes-in-bill table

that is most sensitive, and D1 is the data that is the least
sensitive. In our system, all data in Dn will be encrypted
using an IBE identifier IDn = (id1). We suggest this iden-
tifier be derived from non-sensitive descriptive information
such as the HCO’s identity, the patient’s identity, degree
of sensitivity, and time. Data in Dn−1 will be assigned an
identifier IDn−1 = (id1, id2) and so on. Finally, data in D1

will be assigned an identifier ID1 = (id1, ..., idn). As an ex-
ample, the billing table shown in Table 1 is hierarchically
organized into 3 sensitivity levels. Information concerning
observation result that a patient receives is level 3 sensitive
(most sensitive), observation type is level 2 sensitive, and
provider information is level 1 sensitive (least sensitive).

Billing Data Encryption. Table 1 shows encrypted pa-
tient observation information taken from illustrative medi-
cal bills. Consider data D that contains exactly the first
row of the table. Within D, data at the highest level of
sensitivity, D3(= 73.8), will be assigned identity ID3 = (id1)
which is the concatenation eeb728473e1949a || Carle07RQ12
|| 2013:09:08:10:18:41 || level3 of non-sensitive identifying
information. The identity of less sensitive data, D2(=
HEMOGLO...), is ID2 = (id1, id2), where id2 = level2. Fi-
nally, the identity of the least sensitive data D1(= cs1010) is
ID1 = (id1, id2, id3), where id3 = level1. External documen-
tation at each level of sensitivity (D1, ..., Dn) is encrypted
using the assigned identities IDi (1 ≤ i ≤ n). For i = 1
to n, the ADP or the HCOs run HIBE.Encrypt(Pub, IDi,Di)
to get a corresponding ciphertext EncIDi(Di). For exam-
ple, EncID1,3(73.8) in Table 1 represents the encryption of
the data D3. The corresponding HIBE encryption would be
HIBE.Encrypt(Pub, ID1,3, 73.8) where ID1,3 = ID3.

This example is illustrative: All external documentation
in our system is organized in tables and encrypted with
HIBE. Identities used for encryption may have cell-, column-
or table-granularity, depending on the nature of the docu-
mentation.

Issuance of Secret Keys and Decryption. When
the audit algorithm requests encrypted data, the audit
agent requests an appropriate secret key from the KGC
for decryption. Assume that the audit agent needs the
secret key corresponding to IDk. To issue an appro-
priate secret key to the audit agent, the KGC runs
HIBE.Extract(Pub,mk, IDk) using its master key mk to get
skIDk . After receiving skIDk from the KGC, the audit
agent runs HIBE.Decrypt(Pub, skIDk , EncIDk (Dk)) to obtain
Dk. If the audit agent needs additional information at
any level k′ that is lower than k, the audit agent runs
HIBE.Delegate(Pub, skIDk , IDk′) to get a secret key skIDk′ ,
and then runs HIBE.Decrypt(Pub, skIDk′ , EncIDk′ (Dk′)) to
get Dk′ . This does not require communication with the
KGC.

5. AUDIT WITH EXPLANATIONS
Garg et al. [15] develop an algorithm for finding viola-

tions of a policy on system logs. Their algorithm takes into

consideration incompleteness of information in logs. For ex-
ample, if the policy carries the obligation “a notice must be
sent in the next 30 days”, then before the 30 day deadline
is reached, the log may not contain enough information to
decide whether or not this obligation is met. To account
for incompleteness, the reduce algorithm uses a best-effort
(but sound) approach; it checks as much of the policy as
possible given the available log and returns a residual pol-
icy that captures policy conditions which could not be ver-
ified. When the missing information becomes available, the
residual policy can be re-checked using the reduce algorithm
itself. Here, we use reduce’s support for incompleteness to
audit iteratively; as iteration rounds progress, the audit al-
gorithm decrypts increasingly sensitive, HIBE-encrypted ex-
ternal audit logs. This continues until either it is determined
that there are no policy violations or relevant violations have
been found. Thus, we limit the amount of external audit logs
decrypted for audit.

It also helps audit to have an intuitive explanation of why
a decision (policy violation or not) was made. For instance,
it is helpful to know that a physician’s access to a medical
record in a hospital was allowed because the patient was
referred to that hospital, or because that the patient visited
that facility. Accordingly, we extend the reduce algorithm
to also provide such an explanation.

5.1 Policy and Explanation Syntax
Following the prior work [15], we use a first-order logic as

the policy specification language. We summarize the syn-
tax of formulas and explanations in Figure 2. We write α
to denote formulas and ϕ to denote generalized formulas,
which are either formulas or audit decisions (> = no viola-
tion, ⊥ = violation) coupled with explanations γ. Formulas
include atomic predicates, true (>), false (⊥), conjunctions
(∧) and disjunctions (∨) of formulas (denoted C and D, re-
spectively), and first-order quantifiers (∀ and ∃).

Here c denotes a restricted class of formulas, called guards,
borrowed from [15]. They guarantee (statically) that the
number of substitutions for x that makes c true is always
finite. When guarded by a formula c, both universal and
existential quantifiers can be handled easily. Readers may
ignore the distinction between c and α for the purpose of
understanding this section.

Each formula is annotated with a policy label, written
`. Labels have no semantic meaning except to establish a
syntactic link between an explanation and the original for-
mula from which the explanation was derived. The formula
σ � ϕ means that the substitution for free variables in ϕ is
σ. This formula itself is not used for policy specification.
It can appear in residual formulas output by our extended
reduce algorithm.

An explanation γ corresponds to a sub-tree of labels of
a formula’s abstract syntax tree. An explanation is only
meaningful relative to a formula. An explanation can be a
single label, which points to a leaf position of the formula.

Conj clause C ::=
∧

i ϕi

Disj clause D ::=
∨

i ϕi

Formula α ::= 〈`〉P | 〈`〉> | 〈`〉⊥ | 〈`〉C | 〈`〉D
| 〈`〉∀~x.(c ⊃ ϕ) | 〈`〉∃~x.(c ∧ ϕ)
| σ � ϕ

Generalized form. ϕ ::= α | expl(>, γ) | expl(⊥, γ)
Explanation γ ::= ` | ` ◦ γ | γ1 ⊕ γ2 | σ � γ

Figure 2: Syntax of formulas and explanations

A concatenated explanation ` ◦ γ is an explanation for a
formula labeled by ` at the root, where γ is, recursively,
the explanation of the root’s children. An explanation can
also combine explanations from branches of a conjunction or
disjunction (denoted γ1 ⊕ γ2). Finally, an explanation can
be guarded by a substitution σ (syntax: σ � γ).

5.2 Extended Reduce Algorithm
The reduce algorithm, as presented in [15], takes as argu-

ment a policy formula α and an audit log L and returns a
residual policy α′, which may be > (no violation), ⊥ (viola-
tion) or another formula called the residual formula (mean-
ing that critical information is absent from the log; α′ must
be checked when more information is available). To extend
reduce to generate explanations, we change it to take as in-
put a policy represented as a generalized formula ϕ, a log
L and, additionally, a substitution σ for free variables of
ϕ. The output of our extended reduce algorithm is also a
generalized formula. If the output is α, it means that some
information necessary for audit is missing from the log, and
α is the residual policy to be checked when that information
becomes available. The output expl(>, γ) means that there
is no policy violation and γ explains why that is the case.
Similarly, the output expl(⊥, γ) signals a policy violation
justified by explanation γ.

We define a function simplify that takes a generalized for-
mula and returns another generalized formula, in simpler
form. The function simplify serves a dual purpose. First,
it rewrites the original formula using basic rules of logic,
e.g., it replaces ϕ ∧ > with ϕ. Second, and more impor-
tantly, if the input formula is equivalent to either > or ⊥, it
produces a succinct explanation of why that is the case by
combining and selectively retaining explanations from the
original formula. The output of simplify is either a residual
policy formula α, or a binary answer (> or ⊥) paired with
an explanation γ.

We omit the detailed definitions of reduce and simplify;
next, we demonstrate how the algorithm works.

5.3 Example Scenario
In this section, we present a simple audit scenario that

illustrates reduce, simplify and HIBE.
Policy. Suppose a HIE’s policy for data sharing is that

a provider p1 can send detailed information about a patient
q to another provider p2 if, within a year of such sharing,
p2 bills the insurance company for services provided to q
at p2. The encoding of a HIE’s policy for data sharing is

Level 1 (least) Level 2 Level 3 (most)
provider-id (p2) service-type (vl) OBS-value(va)
INS-company (p) INS-plan (c)

OBS-type (ty)

Table 2: Sensitivity levels in the audit scenario

shown below. A provider p1 can send a patient document
m to a provider p2 at time t (send(p1, p2,m, t)), where (1)
m describes patient q (hasattrof(m, q)), (2) m includes de-
tailed information ty and va about the patient, e.g., ty is
the type of observation q is under and va is the result of the
observation (includes(m, ty, va, t)), (3) q is classified as type
tp and provided with service vl at t (patientInfo(q, tp, vl, t)),
(4) p2 works in organization o (organization(p2, o, t)), and (5)
organization o records that patient q has an insurance plan
p from company c at time t (insuranceInfo(q, p, c, t)); then
there should be a consequent patient medical bill of type b
at time t′ (medical-bill(q, b, t′)), t′ should be within 365 days
of the data sharing, the organization o should note that q has
an insurance plan c with company p (insurance(q, p, c, o, t′)),
and either the bill is from q’s visit to p2 or for an observation
carried out by p2 on q. Predicates visits-in-bill(q, p2, vl, o, t

′)
and observes-in-bill(q, p2, ty, va, o, t

′) represent p2’s records of
medical bills of the two specific types.

ϕpol = 〈DISC〉
∀p1, p2,m, q, t, ty, va, tp, vl, o, p, c
send(p1, p2,m, t)∧ hasattrof(m, q)∧
includes(m, ty, va, t)∧ patientInfo(q, tp, vl, t)∧
organization(p2, o, t)∧ insuranceInfo(q, p, c, t)
⊃〈AC〉∃t′, b.medical-bill(q, b, t′)∧

〈BLL〉(〈time〉timein(t, t′, t+ 365)
∧〈INS〉insurance(q, p, c, o, t′)
∧〈DJ〉(〈VST〉(〈B〉b = visit-history∧

〈visit〉visits-in-bill(q, p2, vl, o, t′)))
∨(〈OBS〉(〈B〉b = observation∧

〈obsv〉observes-in-bill(q, p2, ty,
va, o, t′))))

Audit Logs. The internal log contains information about
all the predicates to the left of the implication in ϕpol as
well as the predicate medical-bill. Predicates visits-in-bill and
observes-in-bill record detailed information about patients’
hospital visits, which are considered external documenta-
tions that belong to the hospital. Both external and internal
logs are represented as database tables. Tables visits-in-bill
and observes-in-bill are HIBE-encrypted according to levels
shown in Table 2.

For illustration, we assume that the following substitution
σ is the only one that satisfies the condition of the outermost
universal quantification on the example log (here, terms like
P1 starting with uppercase letters are constants):

σ = p1 7→P1 , p2 7→P2 ,m 7→M1 , q 7→Q1 , t 7→T1 , ty 7→TY1 ,
va 7→VA1 , tp 7→TP1 , vl 7→VL1 , o 7→O1 , p 7→PI , c 7→C1

We further assume that timein(T1 ,T2 ,T1 + 365) and
timein(T1 ,T3 ,T1 + 365) are true. Below are the (only)
log entries about predicates to the right of ⊃ in ϕpol.

medical-bill(Q1 , visit-history ,O1 ,T2)
medical-bill(Q1 , observation,O1 ,T3)
visits-in-bill(Q1 ,P2 ,VL1 ,O1 ,T2)
observes-in-bill(Q1 ,P2 ,TY2 ,VA2 ,O2 ,T3)
insurance(Q1 ,PI ,C1 ,O1 ,T2)

Reduce on Encrypted Data. In the initial phase of au-
dit, the auditor does not possess decryption keys for external
data. This poses no problem because reduce can handle log
incompleteness; reduce treats the log incomplete in predi-
cates like visits-in-bill, and simply returns such predicates in
the residual output. The output of running reduce on ϕpol

and the example log is shown in the next page.

ϕr1 =〈DISC〉σ�
〈AC〉σ1 � 〈BLL〉
(〈time〉>∧ 〈INS〉insurance(q, p, c, o, t′)∧
〈DJ〉(〈VST〉(〈B〉>∧ 〈visit〉visits-in-bill(q, p2, vl, o, t′))

∨〈OBS〉(〈B〉⊥∧
〈obsv〉observes-in-bill(q, p2, ty, va, o, t′)))

∨σ2 � 〈BLL〉
(〈time〉>∧ 〈INS〉insurance(q, p, c, o, t′)∧
〈DJ〉(〈VST〉(〈B〉⊥∧ 〈visit〉visits-in-bill(q, p2, vl, o, t′))

∨〈OBS〉(〈B〉>∧
〈obsv〉observes-in-bill(q, p2, ty, va, o, t′)))

Here,
σ1=t ′ 7→T2 , b 7→visit-history
σ2=t ′ 7→T3 , b 7→observation

The existentially quantified variables t′ and b in ϕpol have
two possible substitutions, corresponding to the two entries
in the medical-bill table. The residual formula hense contains
a disjunction over these two possibilities.

Simplification. Next, we call simplify on ϕr1 to condense
as many explanations as possible. This yields:

ϕs1 =〈DISC〉σ�
〈AC〉σ1 � 〈BLL〉
(expl(>, time)∧ 〈INS〉insurance(q, p, c, o, t′)∧
〈DJ〉(〈VST〉(expl(>, B)∧

〈visit〉visits-in-bill(q, p2, vl, o, t′))
∨expl(⊥, OBS ◦ B)))

∨σ2 � 〈BLL〉
(expl(⊥, time)∧ 〈INS〉insurance(q, p, c, o, t′)∧
〈DJ〉(expl(⊥, VST ◦ B)

∨〈OBS〉(expl(>, B)∧
〈obsv〉observes-in-bill(q, p2, ty, va, o, t′))))

Requesting Decryption Keys. To proceed fur-
ther, we must decrypt the insurance table and either the
observes-in-bill table or the visits-in-bill table. Since the max-
imum sensitivity level of entries in visits-in-bill is lower than
that in observes-in-bill, the audit agent asks the KGC for keys
at level 2 (the maximum level of visits-in-bill and insurance).1

The KGC generates keys based on its master key mk and
gives them to the audit agent. Both the KGC and the audit
agent may log why the keys were generated (by recording
the residual formula ϕs1) to aid a subsequent audit of this
audit process. The audit agent then decrypts entries in those
two tables and provides the formula ϕs1 with the decrypted
tables (added to the original log) to reduce. The output of
reduce is the following formula ϕd1. Note that the clause
guarded by σ2 remains the same because even the extended
log contains no information to reduce it.

ϕd1 =
〈DISC〉σ�
〈AC〉σ1 � 〈BLL〉
(expl(>, time)∧ expl(>, INS)∧
〈DJ〉(〈VST〉(expl(>, B)∧expl(>, visit))∨expl(⊥, OBS ◦ B)))
∨σ2 � 〈BLL〉

(expl(⊥, time)∧ 〈INS〉insurance(q, p, c, o, t′)∧
〈DJ〉(expl(⊥, VST ◦ B)

∨〈OBS〉(expl(>, B)∧
〈obsv〉observes-in-bill(q, p2, ty, va, o, t′))))

1For simplicity, we assume here that the audit agents de-
crypts entire tables atomically. In practice, it could decrypt
only specific rows of interest.

Simplification and Explanation. Finally, simplify is
run on ϕd1 to obtain the following output:

ϕs2 = expl(>, DISC ◦ σ � AC ◦ σ1 � 〈BLL〉◦
(time⊕ INS⊕ (DJ ◦ VST ◦ (B⊕ visit)))

The result indicates that the log satisfies the policy. The
reason is the following: (1) σ is the only substitution that
makes the conditions associated with the action send true
and (2) the conditions required for such a send (AC) under
σ are true. The explanation of (2) is that there exists a
substitution σ1 that matches an entry in medical-bill and
makes BLL true. More concretely, the time of the bill, the
insurance information, and hospital’s billing record of the
patient all satisfy the policy constraints. In particular, the
hospital’s record shows that the patient visited the hospital
(VST).

6. IMPLEMENTATION & EVALUATION
To validate our proposal, we implement the HIE (Fig-

ure 1) based on IHE Profile XDS.b[5]. It supports the shar-
ing of patient clinical documents based on the HIE’s doc-
ument registry which keeps a patient document index and
location where the documents are stored in. Based on these,
the web-based document viewer looks for patient documents
based on patient information. We implement a Java API
to create ATNA-based XML logs [19] on top of HIE. We
report our evaluation of HIBE key generation, decryption
and the reduce algorithm based on a policy encoding the
guidelines [6] of the U.S. Office of the National Coordinator
(ONC) for Health Information Technology and a synthetic
audit log. All experiments are performed on a machine with
an Intel Core i7 2.3GHz processor and 1GB of memory, run-
ning Ubuntu 12.04. We use the Charm library [1] to imple-
ment the HIBE module. In particular, we use a symmetric
curve with a 512-bit base field to initiate a group in the el-
liptic curve with bilinear pairings. For illustration purposes,
we assume a maximum depth of three sensitivity levels in
the hierarchy. To encrypt arbitrary messages with HIBE,
we use a hybrid encryption scheme: we extract a session
key after hashing [10] a random element from the message
space of HIBE, encrypt messages with the session key via
AES (CBC mode) symmetric encryption and encrypt the
random element using HIBE [11].

Policy. According to the ONC, providers requesting a
patient’s IIHI (individually identifiable health information)
by electronic means for treatment must verify a treatment
relationship with a patient by attestation or artifacts such
as patient registration, prescriptions, consults, and referrals.
The top-level encoding of the policy is shown below and
consists of a disjunction of six sub clauses, and at least one
must be satisfied for each access. We omit the details of
these clauses. ϕpol, shown in Section 5.3, is a simplified
encoding of ϕBilling.

ϕONC = ∀p1, p2,m, q, t, ty, va, tp, vl, o, p, c
send(p1, p2,m, t)∧ hasattrof(m, q)∧
includes(m, ty, va, t)∧ patientInfo(q, tp, vl, t)∧
organization(p2, o, t)∧ insuranceInfo(q, p, c, t)
⊃ϕException ∨ ϕBilling ∨ ϕRegistration ∨ ϕPrescription

∨ϕReferral ∨ ϕConsult

Audit Logs. We generate synthetic data representing
both external audit logs and internal ATNA logs. The gen-
erated ATNA log has a size of 5.7 MB, which represents

Key Gen.
(ms)

Session key
Dec.(ms)

Message
Dec.(ms)

Algorithm
(ms)

Single
access(ms)

Day
(s)

Month
(m)

Up to Level 3 17.73 20.76 0.06 42.6 81.15 6.57 3.26
Up to Level 2 11.73 13.73 0.04 41.3 66.80 5.41 2.68

Table 3: Consumption time for HIBE and reduce

9,644 accesses to HIE over 4 months (this realistic number
is based on Johnson et al.’s data [18]). The external audit
data has a size of 12 MB, and includes roughly 9,644 entries
about patient registration, billing and referral. The exter-
nal logs are encrypted using HIBE with three pre-defined
sensitivity levels.

Evaluation Results. We evaluate the efficiency and
scalability of both HIBE and the reduce algorithm. We use
the audit scenario shown in Section 5.3 and break it into
three phases. In the first phase, the auditor does not have
any keys, and we measure the time reduce takes to gener-
ate a residual policy; in the second phase, we measure the
time it takes the KGC to generate a decryption key given an
ID, and the time it takes to decrypt relevant log data using
the key (because our encryption is hybrid, the latter further
splits into the time taken to decrypt the symmetric key, and
the time take to decrypt the data using the symmetric key);
in the third phase, we run reduce again and measure the time
reduce takes to check the residual policy on the decrypted
data. We run the audit scenario on two accesses, one re-
quires a decryption key of level 2, and the other requires a
decryption key of level 3. The size of messages encrypted up
to level 2, shown in Table 3, is 416B including the session key
and the size of messages encrypted up to level 3 is 580B in-
cluding the session key. Table 3 summarizes our results. All
numbers are averages of 20 trials (all have negligible stan-
dard deviations). The first column shows the time taken to
generate HIBE decryption keys, the second column indicates
the time needed to decrypt a session key with the HIBE key,
the third column shows the time to decrypt a message using
AES and the fourth column shows the total time consumed
by reduce, which is derived by adding up the time for each
iteration of reduce(before and after decryption). As can be
seen, the total time is split almost evenly between reduce
and the cryptographic operations for data at level 3 and is
dominated by reduce for data at level 2. Johnson et al [18]
report approximately 81 accesses per day in a typical HIE.
Based on this number, we calculate the total time for au-
diting all accesses in a day and in a month to be 6.57/5.41
seconds (level 3/level 2) and 3.26/2.68 minutes, respectively.
Since audit is an offline process, we consider these numbers
practical.

Practical Issues in Deployment. Integrating our au-
dit architecture into an actual distributed healthcare envi-
ronment will require the HCOs to trust the security of the
audit infrastructure. Our audit subsystem mitigates this
concern to some extent, since data is stored encrypted and
it is decrypted only when absolutely necessary and auditors
never see log data unencrypted. However, in cases where
human judgment is necessary, auditors may need access to
unencrypted data. This raises concerns about auditor trust-
worthiness, but such concerns are orthogonal to our design
and exist in all audit environments.

7. RELATED WORK
Audits in the Healthcare Domain. Previous works

have envisaged a scientific and technical approach to audit
the healthcare system. Gunter et al. [17] introduce access
rules informed by probabilities (ARIP) to establish appro-
priate access rules for HCOs based on their work flows and
social networks by analyzing audit logs and attributes of
HCOs. However, their work is not feasible for infrastructure
currently in place at HCOs, while our work is applicable to
the real-world heterogeneous healthcare environment with
IHE standard based audit infrastructure. In addition, Fab-
bri and LeFevre [13, 14] have proposed explanation-based
auditing, which enables patients to review access to their
health records with human interpretable explanations. They
adopt a machine learning approach to automatically gener-
ate log explanation while we use the logic-based algorithm to
identify the legitimacy of access based on the privacy policy.
Gregg [16] builds an audit interface for the ATNA-based au-
dit logs from a picture archiving and communications system
(PACS). However, their work does not consider privacy.

Audit Log Encryption. We share the goal of previ-
ous encryptions of audit logs[12, 22, 27] to not only protect
against malicious attackers, but also to limit exposure of pri-
vate information in the log to an authorized auditor. Our
approach is different from previous methods for encrypting
audit logs because we supplement internal log information
with external data, which we encrypt with HIBE, allowing
auditors to access only the minimum necessary data. In
doing so, our scheme creates an identity, a descriptive la-
bel, using terms that do not need to be encrypted, such as
unidentifiable codes for patient, provider, and type and date
of visit, for the audit log entry, allowing the auditor to find
the log needed without the more cumbersome encrypted key-
word approach previously used. In previous schemes, such
as [27], the auditor has to match all encrypted keywords with
a given trapdoor that contains those words. This makes it
secure but extremely inefficient.

Algorithms for Policy Compliance Checking. We
build on Garg et al.’s algorithm reduce for auditing policies
over incomplete logs [15]. We inherit the policy language
used by the reduce algorithm, which is a first-order logic that
can encode first-order Linear Temporal Logic (LTL) formu-
las. Policies that are naturally specified in LTL can be easily
translated to formulas in this logic. There has been much
work on compliance checking of policies expressed in Lin-
ear Temporal Logic (LTL) [25, 7, 20, 9, 8, 21]. Most of the
work focuses on runtime monitoring. In contrast, we assume
that logs are recorded by audit agents, and post-hoc audit is
applied to these logs. To our knowledge, reduce is the only
policy-based log audit algorithm that can handle incomplete
logs. We leverage reduce’s capability to handle incomplete
logs to integrate encrypted logs. We also extend reduce to
generate explanations for the output of the algorithm.

8. CONCLUSIONS
We have proposed an audit infrastructure for broker-based

HIE systems, that limits the information shared through
HIE. The audit logs are encrypted with HIBE and stored
in a centralized audit repository for effective HIE audit, and
decrypted on a need-only basis by our audit subsystem. Our
logic-based audit algorithm provides further evidence of the
auditor’s behavior, and thus increases the trustworthiness
of the system. The initial performance evaluation of a pro-
totype implementation shows that our proposed infrastruc-
ture is practical and scalable. As future work, we plan to
implement the extended audit algorithm with explanations
and investigate the possibility of combining audit and access
control mechanisms in the HIEs.

Acknowledgements
This work was partially supported by NSF CNS 09-64392
(NSF EBAM) and HHS 90TR0003-01 (SHARPS). The views
expressed are those of the authors only. We appreciated
feedback on this work from Mark Chudzinski and Ivan Han-
dler from the Office of Health Information Technology of
the State of Illinois and from Mike Berry and Noam Arzt of
HLN Consulting, LLC.

9. REFERENCES
[1] Charm: A tool for rapid cryptographic prototyping.

http://www.charm-crypto.com.

[2] Illinois Prescription Monitoring Program.
https://www.ilpmp.org/.

[3] HIPAA Security Series, 4 Security Standards:
Technical Safeguards. Department of Health and
Human Services USA, 2007.

[4] Integrating the healthcare enterprise volume 1
integration profiles. ACC, HIMSS and RSNA
Integrating the Healthcare Enterprise, 2007.

[5] IHE IT Infrastructure Technical Framework
Supplement 2007-2008 Cross-Enterprise Document
Sharing-b (XDS.b). ACC, HIMSS and RSNA
Integrating the Healthcare Enterprise, 2008.

[6] Privacy and Security Framework Requirements and
Guidance for the State Health Information Exchange
Cooperative Agreement Program. Office of the
National Coordinator for Health Information
Technology, 2012.

[7] F. Baader, A. Bauer, and M. Lippmann. Runtime
verification using a temporal description logic. In
Proc. of FroCos, 2009.

[8] H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Rule-based runtime verification. In Proc. of VMCAI,
2004.

[9] D. A. Basin, F. Klaedtke, and S. Müller. Policy
monitoring in first-order temporal logic. In Proc. of
CAV, 2010.

[10] D. Boneh and X. Boyen. Efficient selective
identity-based encryption without random oracles.
Journal of Cryptology, 24(4):659–693, 2011.

[11] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical
identity based encryption with constant size
ciphertext. In Advances in Cryptology–EUROCRYPT
2005, pages 440–456. Springer, 2005.

[12] D. Davis, F. Monrose, and M. K. Reiter. Time-scoped
searching of encrypted audit logs. In Information and
Communications Security, pages 532–545. Springer,
2004.

[13] D. Fabbri and K. LeFevre. Explanation-based
auditing. Proc. VLDB Endowment, 5(1), 2011.

[14] D. Fabbri and K. LeFevre. Explaining accesses to
electronic medical records using diagnosis information.
Journal of the American Medical Informatics
Association, 20(1), 2013.

[15] D. Garg, L. Jia, and A. Datta. Policy auditing over
incomplete logs: theory, implementation and
applications. In Proc. of CCS, 2011.

[16] B. Gregg, H. D’Agostino, and E. Toledo. Creating an
IHE ATNA-based audit repository. Journal of Digital
Imaging, 2006.

[17] C. Gunter, D. Liebovitz, and B. Malin.
Experience-based access management: A life-cycle
framework for identity and access management
systems. Proc. of IEEE Security & Privacy, 9(5), 2011.

[18] K. B. Johnson, K. M. Unertl, Q. Chen, N. M. Lorenzi,
H. Nian, J. Bailey, and M. Frisse. Health information
exchange usage in emergency departments and clinics:
the who, what, and why. Journal of the American
Medical Informatics Association, 18(5):690–7, 2011.

[19] G. Marshall. Security Audit and Access
Accountability Message XML Data Definitions for
Healthcare Applications. (September), 2004.

[20] G. Roşu and K. Havelund. Rewriting-based techniques
for runtime verification. Automated Software
Engineering, 12:151–197, 2005.

[21] M. Roger and J. Goubault-Larrecq. Log auditing
through model-checking. In Proc. of CSF, 2001.

[22] B. Schneier and J. Kelsey. Secure audit logs to support
computer forensics. ACM Transactions on Information
and System Security (TISSEC), 2(2):159–176, 1999.

[23] M. Scholl, K. Stine, K. Lin, and D. Steinberg. Security
Architecture Design Process for Health Information
Exchanges (HIEs). 2010.

[24] J. H. Seo, T. Kobayashi, M. Ohkubo, and K. Suzuki.
Anonymous hierarchical identity-based encryption
with constant size ciphertexts. In Public Key
Cryptography–PKC 2009, pages 215–234. Springer,
2009.

[25] P. Thati and G. Roşu. Monitoring algorithms for
metric temporal logic specifications. Electronic Notes
in Theoretical Computer Science, 113:145–162, 2005.

[26] J. R. Vest and L. D. Gamm. Health information
exchange: persistent challenges and new strategies.
Journal of the American Medical Informatics
Association, 17(3):288–94, Jan. 2010.

[27] B. R. Waters, D. Balfanz, G. Durfee, and D. K.
Smetters. Building an encrypted and searchable audit
log. In Proc. of NDSS, 2004.

