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Abstract

This paper presents URA, a programming language for access
control that treats ordinary programming constructs (éngegers
and recursive functions) and authorization logic constrife.g.,
principals and access control policies) in a uniform wayrA is

based on polymorphic DCC and uses dependent types to permit

assertions that refer directly touRA values while keeping com-
putation out of the assertion level to ensure tractabilitye main
technical results of this paper include a proof of decidgbfbr
AURA’s type system, a fully mechanically verified proof of sound-
ness, and a prototype typechecker and interpreter.

1. Introduction

There can be no universal definition of security. Every pafcmn-
fidential data and every sensitive resource may have spstaic-
cess control requirements. At the same time, almost every- mo
ern computer system stores some private information origesv

a service intended only for certain clients. To ensure tht al-
lowed principals—human users or other computer systems—ca
reach the protected resources, these access-controleemguits
must be carefully defined and enforced. Aathorization policy
specifies whether a request by a principal to access a resourc
should be granted, andraeference monitomediates all access to
the resource, ensuring that handling of requests compiidstiae
authorization policy.

One significant challenge in building secure systems that en
force access control is that, as the number of resourcesrard-p
pals grows, specifying the authorization policy becomesendtif-
ficult. The situation is further complicated in decentratlzor dis-
tributed settings, where resources may have different mwvaed
the principals may have non-trivial trust relationshipsic® the
policies become sufficiently complex, understanding whpcin-
cipals may access which resources is itself a daunting @mabl
Consequently, reference monitors that enforce such pslialso
become complex, which is not a desired situation when (as in a
conventional access control scheme) the reference masifmart
of the trusted computing base.

To help mitigate this complexity, researchers have prapose
authorization logicsthat facilitate reasoning about principals, re-
quests, and policy assertions [4, 13, 19, 1, 2]. Severalesfetog-
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ics have been concerned with specifying access-contraiesiin
distributed settings [43, 5, 10, 20, 19]. Part of the appéalutho-
rization logics is that proofs of propositions in the logencact as
capabilitiesthat provide the reference monitor with evidence that
a given request should be granted. As proposed by Appel dnd Fe
ten [5], such gproof-carrying authorizationapproach places the
burden of validating the authorization decision on the g@gal re-
questing access. Moreover, the explicit proofs can be lbdge
future auditing, which can help track down bugs in the autfaer
tion policy [38].

Authorization logics provide rich and concise languages fo
specifying access-control policies, abstracting from-level de-
tails like authentication and cryptography. Unfortungteiese log-
ics are rather removed from the languages used to write amdtw
that must respect the access-control policies; typechecked
other tools that help the programmer write correct progrartis
not necessarily help the programmer correctly make use aian
thorization logic. This is especially problematic in theseaf the
reference monitor, which has the task of enforcing poligiggten
in the authorization logic and must still be considered p#ithe
trusted computing base.

This paper presents the design ob®a, a domain-specific
programming language that incorporates a constructiieosiat-
tion logic based on DCC [3, 2] as part of its type system. Rathe
than mediate between programs and policy statements mviiite
two distinct languages, URA usesdependent type® permit pol-
icy statements that refer directly toulkA values (like integers or
datatype constructors). For example, a funcptayForthat acts as
a reference monitor for playing MP3 files might have the fwlltg
type, which requires a proof that principals permitted to access
the song:

(s:Song — (p:prin) — pf (self says MayPlayp s) — Unit.

As indicated by this type, BRA programs may construct and ma-
nipulate authorization proofs just as they might other progval-
ues, and the BRA programming model provides notions of princi-
pals ), authority 6elf), and policy assertiondVayPlay) in ad-
dition to standard functional language features like higireler
functions, polymorphism, and recursive algebraic datdyjn ad-
dition, security-relevant implementation details—liketcreation
of audit trails or the cryptographic interpretation of eémtlogi-
cal statements—can be handled automatically with littledqgro-
grammer intervention.

Because policy assertions are part affa’s type system, de-
ciding whether to grant access amounts to typecheckingad pbo
ject. This can be encapsulated iwRA’s runtime, removing indi-
vidual reference monitors from the trusted computing bikwe-
over, any program written in BRA benefits from the immediate
availability of the authorization logic; many misbehavimgpgrams
can now be ruled out at compile time. Finally, DCC, on which
AURA is based, has been shown to be useful in representing other
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forms of language-based security, such as the type-baseten
ment of information-flow properties as found in Jif [29] oo+
Caml [33]; AURA thus represents a promising avenue for further
work in connecting these concepts.

The main contributions of this paper can be summarized as
follows:

e We present the design of corauRA, a language with support
for first-class, dependent authorization policies.

e We give a fully machine-checked proof of type soundness for
the core language.

¢ We prove decidability of ARA’S type system.

¢ We describe a prototype implementation of a typechecker, in
terpreter, and sample programs.

AURA represents a relatively unexplored facet of language de-
sign. Typical dependently typed languages (see Sectiosedypes
to encode precise program specifications. Our goal is difter

siveness. This section describesma’s design, concentrating on
the features specific to authorization policies.

As alluded to by the functioplayFor in the introduction, we
use an AIRA implementation of a musical jukebox server as a
running example throughout this paper. The full examplensry
in Section 5; the rest of this section will illustrgdayFor in more
detail.

2.1 AURA asan authorization logic

We first turn our attention to ARA’s assertions, which are. based
on the polymorphic core calculus of dependency (DCC) by i8] a
in particular on DCC'’s interpretation as an authorizatiogic¢ [2].

In both DCC and AIRA, an indexed monashys associates propo-
sitions with principals. The statemeatsays P holds when the
principal a has actively affirmed the propositid when a direct
proof for P is known, or whenasays P logically follows from
monad operations that we will describe shortly—it is catito
note, however, that says P does not implyP. We augment DCC
with dependent types, allowing principals to assert prijoos

AURA uses dependent types to naturally connect data with proofs apout data, and with the construats; andsign, which we will

for run-time policy enforcement. Compared with a convemdio
dependently type languageuRA adds some features—assertion
types, digitally signed objects as proofs, #uys monad andpf
modality—and restricts or removes others—only values nmay a
pear in dependent types. The result is a system tuned fondgna
authorization but unsuitable for, e.g., static progranifieation.

Our proof of soundness is implemented in Coq and encom-
passes all of ARA’s features, including: higher order and poly-
morphic types, mutually recursive data types and propmssti a
restricted form of dependent types, and authorization ferod/e
believe that the mechanized proof is of independent valeealse
parts of the proof may be reused in other settings.

The rest of this paper focuses on the novel core features of

AURA. The next section overviewsURA’s programming model
and illustrates the novel features by example. Section&sgifor-
mal account of AIRA’s core language, its type system, operational
semantics, and the main technical results (soundness aittht#-

ity of type checking). Section 4 describes our prototypel@men-
tation. Section 5 gives a larger scale example demongiréatiav
AURA'’s features work in concert. Section 6 situatasrR with re-
spect to related work, especially prior work on authormatbgics
and languages with dependent types. Finally, Section 7ledes
with a discussion of future avenues for extendingrA.

AURA as we present it is intended to be suitable as a compila-
tion target for a more convenient surface syntax. As suchdeve
fer the important (and practical) issues of type inferempegtern-
match compilation, and the like to future work. Additionapics
for future study include authentication, credential ret@mn, the
interpretation of AIRA values in cryptography, and integration with
mixed language (e.g. C or .Net) systems.

2. Programmingin AURA

AURA is intended to be used to implement reference monitors [11]
for access control in security sensitive settings. A rafeeanonitor
must first mediate access by allowing and denying requesss to
resource (based, in this case, on policy specified in an enétion
logic) and second log accesses to enaxgost factaudit. This
latter point we have covered in detail elsewhere [38] (altiowe
discuss logging briefly in Section 2.3); in this paper we @miate
on the details integrating programming with an authoraatogic.
The potential design space of dependently-typed languiages
quite large, and there are many challenges in striking a dgabd
ance between expressiveness and tractability of type afgeck
AURA’s design strives for simplicity, even at the cost of expres-
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describe shortly.

Principals in AURA, writtena, b, etc. and having typerin, rep-
resent distinct components of a software system. They may co
respond to human users, system components such as an operat-
ing system kernel, a particular server, etc. Formally,gpals are
treated as special values irURA; they are characterized by their
ability to index the family okays monads.

As ‘asays’ is a monad[40], we can construct a term of type
asays P from a proofp of P using the operatiometurn ap. A
proof encapsulated insays monad cannot be used directly; rather,
the monad'’s bind operation, writtdbind p (Ax:P. g)) allowsx to
stand in for the proof insidp and appear in the expressign

For example, consider the principasndb, the sondreebird,
and the assertiohlayPlayintroduced earlier. The statements

ok : asays (MayPlay a freebird
delegate: bsays ((p:prin) — (s:Song —
(asays (MayPlay p 3) —
(MayPlay p $)

assert thaa gives herself permission to pldyeebird andb dele-
gates taa the authority to make any variety MayPlaystatement

on his behalf. These two terms may be used to create a proof of
b says (MayPlay a freebird as follows:

bind delegate(Ad: ((p: prin) — (s: Song —
(asays (MayPlay p9) —
(MayPlay p 9).
return b (d a freebird o)

Such a proof might have direct utility—it could be passedh® t
playFor function if self is b—or it might become part of a larger
chain of reasoning.

In addition toreturn, AURA allows for the introduction of
proofs ofa says P without corresponding proofs &. We provide
a pair of constructssay andsign, that represent a principal’s ac-
tive affirmation of a proposition. The valuggn(a, P) has type
asays P; intuitively we may think of it as a digital signature by
a’s private key on propositioR. Such a value is intended to have a
stable meaning as it is passed throughout a distributedragst

A principal should only be able to create a term of the form
sign(a, P) if it is—or, at least, has access to the private key af—
We thus prohibit such terms from appearing in source progjaamd
introduce the related terrfsay P), which represents an effectful
computation that uses the runtime’s current authority-tthaits
private key—to sign propositioR. When executeday P generates
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a fresh valuesign(self, P), whereself is a distinguished principal
representing the current runtime authority.
It is worth noting that a principal can assert any propositio

evenFalse Because assertions are confined to the monad—thanks

to the non-interference property of DCC—a false assertaomado
little harm other than making the principal’'s own assewigrcon-
sistent. In practice, it is useful to restrict the kinds afexsions that
various principals can make, batpriori, AURA requires no such
constraints.

The concept of a program’s runtime authority already hag-a na
ural analog in the operating system world—a UNIX process, fo
example, has an associated user ID that often, but not always
responds to the user who started the process. In a morebdisli
setting, running under the authority @fcan indeed be represented
by possession ad’s private key. In such a setting objects of the
formsign(a, P) can be represented by actual digital signatures, and
principal identifiers—which, in ARA, are first class values of type
prin—can be thought of as public keys.

The restriction of authority to a single principal is only fm-
plicity’s sake—although syntax would need to be changething
in our development would conflict with a more complex notidn o
authority. AURA currently provides no means tansferring au-
thority, in effect disallowing programs from directly maniating
private keys; this preventsURA programs from creating new prin-
cipals (i.e., key pairs) at runtime but also trivially disals the ac-
cidental disclosure of private keys. Wer@Ra to be extended with
support for dynamically generated principals, the additbinfor-
mation flow tracking could assist in ensuring that privatgsketay
sufficiently private.

2.2 Authorization proofs and dependent types

By treating assertions as types and proofs as expressioaseweask-
ing advantage of the well-known Curry-Howard Isomorphid, [
23] between logic and programming languages. Yet while bile a
ity to manipulate proofs just as one can manipulate othextgaes

is quite useful, we cannot hide from the fact that useful risses
must somehow refer to objects within our language. In thev@bo
example, for instancefeebird is data that appears at the asser-
tion (i.e., type) level; the functioplayFor in the introduction also

a clearly dependent type.

AURA incorporates dependent types directly—in contrast to, for
example, using GADTSs [32] or static equality proofs [35] tms
ulate the required dependencies. Such an approach allaighst
forward use of data at the type level and avoids replicatiegsame
constructs in both static and dynamic form, but unconstdinse
of dependent types can quickly lead to an undecidable tyjpithar
ment. Moreover, care must be taken to separate effectfuputan
tions from pure proof objects.

Much like CIC [17], AURA has separate univers@gpe and
Prop, with Type and Prop themselves being classified l§ind.
The previously mentioned assertibtayPlay, for instance, would
be given the assertion tygerin — Song — Prop. Unlike CIC,
both types of kindType and propositions of kindProp describe
data that may be available at runtime. Propositions, howewe
required to be completely computation-free: propositioeser
reduce and ARA does not employ type-level reduction during
typechecking, meaning that only dependencies on valwesWiell-
formed normal forms) for which equality comparison is aahlé
can be used non-trivially. This turns out to be enough to ensu
decidability of AURA’s type system.

AURA offers a type-refining equality test atomic values—
for instance, principals and booleans—as well as a dynaast c
between objects of equivalent types, which prove necedsary
certain equalities that arise only at runtime. For exampleen
typecheckingf self = a then e else eq, the fact thakelf = a is
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automatically made available while typecheckinddue to the fact
that prin is an atomic type), and hence proofs of tye# says P
can be cast to type says P and vice-versa.

The distinction betweefype and Prop is also illustrated by
the previously introduceday andsign. On the one handsay P
certainly belongs infype’s universe—not only do we intend it to
be reduced by our operational semantics, this reductiomésfact-
ful (if trivial) computation dependent on a program’s rumé au-
thority. On the other handign(a, P) should be of type: says P,
which, like P, is of kind Prop. To solve this dilemma we introduce
the modalitypf : Prop — Type, allowing us to givesay P the
type pf (self says P) of kind Type. The pf modality also comes
equipped with its owrind andreturn operations, much likesays,
thus allows proofs to be manipulated by computations wielepk
ing the worlds of computations and assertions separate.

AURA’s dependent types also address something that might
have seemed odd about our cryptographic interpretatidmeshfs
monad, namely that one most often thinks of digitally sigrdata,
whereasign(a, P) signs only an assertion. With dependent types,
however, this issue evaporates, as an assertion can refaatever
data might be endorsed. We find this design compelling, tsecau
digital signature on raw data does not necessarily have silden
meaning; signing only propositions ensures that the sigla¢al is
attributed with some semantics, just as, for example, aipghlys
signature on a contract will indicate whether the signeraigypto
the contract or merely a witness.

2.3 Auditingin AURA

Passing proofs at runtime is also useful for after the faditang

of AURA programs. The full details are given elsewhere [38] but
we note that, when full proofs are logged for every resource a
cess, it becomes possible to deterntiogvaccess was granted at a
very fine granularity. This is of great importance when tfterim of
some institutional policy is not properly reflected in théuat rules
enforced by a software system—for example, an auditor camex
ine the proof that allowed an unwanted access to take plade an
determine whether and where authority was improperly deéely

These guarantees can be made as long as the interface to the
resources of interest is sufficiently rich: we can simplyrdechat
every interface function—that is, a function that wrapsvedolevel
operating system call—writes its arguments to the log. &laee no
constraints on what the rest of the reference monitor maytiaero
than that it must respect this interface—it is not possiblenad-
vertently add a path through the program that causes insuific
information to be logged. This is in keeping wittuRA’s general
philosophy of resilience toward mistakes on the part of tre p
grammer.

Returning toplayFor, let us assume that there exists a native
functionrawPlayFor: Song— Unit that is not security-aware and
hence is not available to the programmer. We define the auderf
functionplayFor as simply

As:Song Ap: prin. Aproof: pf (self says MayPlayp s).
rawPlayFor s.

BecauseplayFor is an interface function—i.e., because it has ac-
cess torawPlayFor—its arguments will automatically be logged,
and because the access control policy is entirely encoded in
playFor's signature, the log will automatically contain everyiin

an auditor needs to determine precisely how any song was-auth
rized to be played.

3. The AurA CorelLanguage

This section presents the main technical contributionkiefgaper,
namely a formal description of theURA core language, its type
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system, operational semantics, and the correspondingfspaio
type soundness and decidability of type checking.

We adopt the design philosophy of elaboration-style seitgnt
(as used, for example, by Let. al[27]): the AURA intermediate
language is intended to make type checking as explicit asifpos
ble. Following this principle, our design eschews complaitgrn
matches, equality tests over complex values, and implests
Our goal was to cleanly divide the compiler into two parts: an
elaboration phase that uses inference, possibly with $t&giand
programmer-supplied hints, to construct an internal regmeation
that makes all type information explicit; and a compilatjgmse
that processes the fully elaborated intermediate reptatsem into
executable code.

3.1 AURA coresyntax

As described above, URA is a call-by-value polymorphic lambda
calculus. It consists of a “term-level” programming langea
(whose expressions are classified by types of Kipple) for writ-
ing algorithms and manipulating data and a “proof-leveBeation
language (whose expressions are classified by proposiifdasd
Prop) for writing proofs of access-control statements. These tw
languages share many featuresapstraction, application, con-
structors, etc.) and, due to the dependent types, propesiand
types may mentions terms. To simplify the presentation ORA,
it makes sense to unify as many of these constructs as paséibl
thus adopt a lambda-cube style presentation [9] that usesatime
syntactic constructs for terms, proofs, types, and projoosi. Dif-
ferent categories are distinguished by the type systemasgary.
This approach also has the appeal of greatly reducing thbeuaof
objects in the language, which simplifies both the metathaad
implementation. Our design was significantly influenced by t
Henk intermediate language [24], which also adopts thispamn
representation.

The lambda-cube terms of thauRA core syntax are given by:

Terms t = x| ctr]| ...
| AT:t1. to | t1t2 | (:E:t1)—>t2
| match ¢1 t2 with {b} | <t1 Zt2>
Branches b ::= - | ctr=1¢Ib

Here, z ranges over variables, aradr ranges over programmer-
defined constructors created using data type declaratiordea
scribed below. In addition to the standard lambda abstmacti
application, and dependent arrowsuma also has a pattern
matching construct and an explicit type cast. In the exjass
match ¢ t1 with {b}, ¢ is the term that is being analyzed,is the
return type, and is a list of brancheg; is matched against; the
type annotation; in the syntax of the pattern-matching expression
ensures that type checking is straightforward even wheséhef
branches is empty. The explicit ca#t : t2) ensures (safely) that
t1 be considered at type.

To express and reason about access controR AAextends the
core syntax above with additional terms. Here, and througtie
rest of the paper, we use metavariable conventions that ribake
easier to recall constraints placed on a term by the typessyst
a ranges over principald? ranges over propositiong,ranges over
proofs,e ranges over program expressions, arsfands for values.
All of these metavariables are synonymous wittvhich we use to
indicate syntactic objects of any flavor. Th&Ra-specific syntax
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is given by:

t ::= ... | Type | Prop | Kind
|  prin | asaysP | pf P

|  self | sign(a,P) | sayP
| returns a p | binds e1 e

| return, p | bind, ey ez

| if v1 = vo then e else es

3.2 Typechecking AURA
AURA’s type system contains the following judgments:

Well-formed signatures Sko

Well-formed typing environments S+ E

Well-formed terms SEFt:s

Well-formed match branches S E;s;args - branches : t

Figure 1 shows the term type checking rules. We omit the rules
for typechecking signatures and branches, though we tesitréir
salient features below. The full type system can be founderCoq
implementation.

In these judgmentss is a signature that declares types, propo-
sitions, and assertions (described in more detail beloyping en-
vironmentsE map variables to their types as usual, but they also
record the hypothetical equalities among atomic run-tiaiees. In
the definition of environmentg, below, a bindinge ~ (v1 = v2):t
indicates that, andvs have type, and that the run-time values of
v1 andwvs are equal.

Environments E ::= - | Ez:t | E,z~(v1 = v2):t

3.3 Signatures: data declarations and assertions

Programmers can define bundles of mutually recursive datsty
and propositions in ARA, just as in other programming languages.
A signatureS collects together these data definitions and, as a con-
sequence, a well-formed signature can be thought of as map fr
constructor identifiers to their types. We omit the formargmar
and typing rules for signatures, as they are largely sttiighard.
Instead we explain signatures via examples.

Data definitions may be parameterized. For example, thd-fami
iar polymorphic list declaration is written:

data List: Type — Type {
| nil :(t:Type) — Listt
| cons:(t:Type) —t — Listt — Listt

AURA’s type system rules out data declarations that require
nontrivial equality constraints at the type level. For epdan the
following GADT-like declaration is ruled out, sindgad t uwould
imply ¢t = u:

data Bad:Type — Type — Type {
| bad:(t: Type) — Bad tt
}

Logical connectives like conjunction and disjunction cam b
encoded using dependent propositions, as in Coq and otber ty
based provers. For example:

data And:Prop — Prop — Prop {
| both:(p1:Prop) — (p2Prop) — pl — p2 — And pl p2
}

AURA’s type system conservatively constraPop definitions
to be inductive by disallowing negative occurrence$edp con-
structors. Such a restriction is essential for consistentye logic,

1n the Coq development, these constructs are represeriteglamstants
and term application.
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— StE WeTMeTYPE =2 & Wr-TM-PROP
S EF Type: Kind S E+ Prop : Kind

SFE Sectr) =t W SFE Ex)=t W SEx:t1t2: ko ko € {Type, Prop, Kind} WETM-ARR
SEFctr:¢ FrTM-CTR SEFz:¢ FTM-FV SEF (2:01) — ta : ko ST

SErt¢t:k SExz:tbu:ki SEF (z:u) — ki:ke k€ {Type, Prop,Kind} k2 € {Type,Prop}

SEF Azt u: (z:t) — k1 WF-TM-ABS

SEFt1:(z:u2) > u SEFt2:ux val(te) orz ¢ fv(u)

SEFtits: {z/t2}u WF-TM-APP

SEFe:s fullyapplieds ctr args k Sctr) =k
branchescover Sbranches ctr S E; s;args b branches : t
SEFs:u SEFt:u wue {Type, Prop}

S E F match e t with {branches} : t

WF-TM-MATCHES

L WEF-TM-PRIN L WEF-TM-SELF
S EF prin : Type S EF self : prin

SEFa:prin SEF P: Prop WETM-SAYS SEFa:prin valla) SEFp:P SEF P:Prop WETM-SAYS.RET
S EF asays P : Prop SEF returns a p: asays P

SElei:asaysP SEbes: (z:P)—asaysQ =z ¢ v(Q)
S EF binds e1 e2 : asays Q
S-Fa:prin S-F P:Prop SEF P: Prop

SEtsign(a, P) : asays P WE-TM-SIGN S EF say P : pf self says P WE-TM-SAY

WF-TM-SAYS-BIND

SEF P: Prop W P SEFp: P S;E}—P:Propw
SEF pf P: Type FTM-FF S EF return, p: pf P F-TM-PFRET
SEkFei:pfP SEFes:(z:P)—pfQ z¢fv(Q)
S EF bind, e1 ez : pf Q

WF-TM-PFBIND

SEFwvi:k SERw:k atomicS val(vi) val(ve) SEx~(vi=wv2)kter:t SEkFea:t

SEF ifv; =vstheneg elsees : t WE-TM-IF

SEFe:s converts Est

SEF (e 1) 1 WF-TM-CAST

Figurel. AURA typing rules

since otherwise it would be possible to write loops that bihany 3.4 Coreterm typing
proposition, includingalse Falseitself is definable: it is a propo- Type is the type for computation expressions, @p is the

sition with no constructors: type for propositions. ConstaKind classifies botiype andProp
as shown in rules W-TMm-TYPE and WF-TM-PROR (Here and

data False:Prop { } elsewhere, we use the lowercase word “type” to mean a classifi
in the type system-Rrop and Type are both “types” in this sense.)
Assertions, like theMayPlay proposition from above define The typechecking rules for constructors declared in thassig
uninhabited constants that constr&ebps: ture and free variables are completely standard (s€eTW-CTR
and WF-TM-FV). More interesting is W-TM-ARR, which says that
assert MayPlay:Prin — Song — Prop the type of an arrow is the type of arrow’s output type. Theefat

is required to be one ofype, Prop, or Kind, which rules out non-
. : T : : sensical arrow forms. For examplgg : Type) — Type is legal
While assertions are similar in flavor to datatypes with nestaic whereag(z : Type) — self is not—the former could be the type of

tors, there is a key difference. When an empty datatype is scr e -
tinized by a match expression, the match may be assigned anythe polymorphic list constructor while the latter doesndka sense

: . . . sinceself is a computation-level value.
type. Hence if we were to defifdayPlayas an empty inductive . . . .
type, A says False would follow from A says MayPlay A freebird ce Ttrlﬁyag“iﬂr{ﬁﬁerf||Z&ogdgt.r&dbfﬁﬂgeff;nndf:s IS j(t\arlggairgtsx-
In contrast, there is no elimination form for assertionsisTheans P ' guagesy

that principals may sign assertion without compromisireirtéays ‘;V?l?rt]Cst?gltqscgnvgéuﬁerprﬁ%gﬁ:bstrf‘:;?da'? og‘ce):sa- Trrc])e g;%_rt‘g‘en
monad’s consistency. » aprooi, atyp prop
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resulting lambda must be typable with an arrow that itsedftyae
Type or Prop. These restrictions imply that all the lambda abstrac-
tions are either a computation or a proof term for a propmsiti
AURA does not supporfype—level lambdas as i, because do-
ing so would require support fgi-reduction at the type level. Such
reductions, while useful for verification, appear superkibere.

The interesting part of the WTm-APPrule is the side condition
that eithert, is a value Yal(t2)), or u does not depend om
(z ¢ fv(w)). This restriction reveals that even though @ seems
to be quite liberal with respect to the dependencies alldvyedell-
formed(z:s) — t terms, the actual dependencies admitted by the
type system are quite simple. For instance, although thegygtem
supports singleton types like S(0), it cannot check S(1€2pbse
the latter type depends on a non-value.

The upshot of these restrictions is that®a requires that types
may only depend on values (i.e. terms that cannot reducé$. Th
decision limits the applicability of dependent types foogmam
verification tasks, but greatly simplifies the metatheonce there
is no possibility of effectful computations appearing irypé.

Typechecking pattern match expressions is fairly stan(lafmet
TM-MATCHES), though it is a bit intricate becauseJRA supports
a rich class of parameterized recursive datatypes. Onlgesgpns
that have saturated (fully applied) types can be matchethstga
The types of the branches must exhaustively match the cansts
declared in the signature, and any parameters to the dathgipg
analyzed are also made available inside the branches. Eacthb
must return an expression of the same type, which is thetitypal
of the entire match expression. Since data types and ptapesin
AURA may be nullary (have zero constructors), typechecking-with
out inference requires the match expression to carry antatiow.
For lack of space, we omit the auxiliary definitions and thagju
ment used for typechecking the branches themselves.

3.5 Principalsand proofs

Principals are an integral part of access control logics AugA
treats principals as first-class objects with typa. The only built-

in principal isself, which represents the identity of the currently
running process (see WrM-PRIN and WF-TM-SELF); additional
principal identifier constants could be accommodated sinbyl
adding them with typerin, but we omit such a rule for simplicity’s
sake.

As described above, URA uses the principal-indexeshys
monad to express access control policies. Propositiesys P
means that principal has asserted propositiégh(either directly or
indirectly). Expressioneturns a p is the return operation for the
a says monad, andind; e; ez is the corresponding bind operation.
These constraints are shown in rules\WM-SAYS, WF-TM-SAY S-
RETand WF-TM-SAYS-BIND. The rules are adapted from DCC [2],
with the exception that BRA eschews DCC's label lattice in favor
of explicit delegation among principals. (Abadi has cakesimilar
DCC fragment CDD, standing for cut-down DCC).

The expressioBign(a, P) witnesses the assertion of proposi-
tion P made by principaks (WF-TM-SIGN). Sincesign(a, P) is
intended to model evidence manufactureddbwithout justifica-
tion, it should never appear in a source program. Moreoweces
signed propositions are intended to be distributed andrfayses-
cape the scope of the runningJRA program, they are required to
be closed. Note, however, that the declaration signaturaust be
available in whatever context the signature is to be asgnibean-
ing. In practice, this means that two distributed®a programs
that wish to exchange proofs need to agree on the signatsees u
to construct those proofs.

Creatingsign(a, P) requiresa’s authority. AURA models the
authority vested in a running program using the principastant
self. Thesay P operation creates an object of typ€selfsays P.
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Intuitively, this operation creates the signed asserign(self, P)
and injects it as a proof term for further manipulation (see-vw1-
SAY).

AURA uses the constanif : Prop — Type to wrap the
access-control proofs that witness propositions as pnogeues,
as shown by the rule W T™M-PF. Thepf type operates monadically:
the return operatioreturn,, p injects a proof into the term level
and the corresponding bind operatibind, allows a computation
to compose proofs (rules WTM-PFRET and WF-TM-PF-BIND).
This separation between proofs and computations is negesa
prevent effectful program expressions from appearing imcfp
term. For example, ifay P was given typeself says P rather than
pf selfsays P, it would be possible to create a bogus “proof”
Az : Prop. say x; the meaning of this “proof” would depend on the
authority gelf) of the program that applied the proof object.

3.6 Equality and conversion

Some typing rules (e.g. WTM-APP) require checking that two
terms can be given the same type. Satisfying such constriairat
dependently type language requires deciding when two tanas
equal—a difficult static analysis problem in the best case.

In AURA we address this with a conditional construct. Dynam-
ically, if v1 = v2 then ey else ez steps toe; whenwvy andwv, are
equal, otherwise the expression steps:40 Statically (rule We-
TM-IF), thethen branch is typed in an environment containing the
static constrainfv; = wv2). As we will see shortly, the constraint
may be used to perform safe typecasts. This is an instandeof t
type refinement problem, well known from pattern matchinigim
guages such as Coq [16], Agda [31], and Epigram [28].

AURA limits its built-in equality tests to inhabitants afomic
types. First, the built irprin type is atomic. Second, a type is also
atomic when it is defined by a non-parameterizgge declara-
tion each of whose constructors take no arguments.liShéype
above is not atomic, nor isst nat (sinceconstakes an argument).
However, the followingSongtype is atomic:

data Song Type { | freebird Song| ironman Song}

Our definition of atomic type is limiting, but we believe itrche
naturally extended to first-order datatypes.

With equalities over atomic types in the context, we can now
consider the issue of general type equality. As in standaskmta-
tions of the Calculus of Constructions [9] we address typeaéty
in two acts.

Two types in AJRA are considered equivalent when they are
related byconverts The conversion relation, defined in Figure 2, is
reflexive, symmetric, and transitive. The key rule ieNG/-AXIOM ;
it uses equality assumptions in the environment. For itgtamder
assumptionr = self, termx says P converts withself says P. As
equalities only mention atomic values, conversion willyoalter
the “value” parts of a type—convertible types always hagesiéime
shape up to embedded data values.

AURA contains explicit, safe typecasts. As specified in rule
WEF-TM-CAST, term (e : T') is assigned typ&’ whenevere’s
type is convertible with". Standard presentations of dependently
type languages instead use implicit conversions which ntayro
anywhere in a type derivation. Using the explicit cast isesbing
because it gives an algorithmic type system. Casts havertioni
effect and are simply discarded by our operational semsntic

3.7 Evaluation rules

Figure 3 defines BRA’s operational semantics using a call-by-
value small-step evaluation relation.

Most of the evaluation rules are straightforward. The rute P
BIND is a standard beta reduction for monads. TeanP cre-
ates a proof that principaklf has asserted that propositiéhis

2008/5/30



converts Et s

converts Es ¢ CONV-SYMM

converts Et ¢ CONV-REFL

converts Es u  converts Eu ¢
converts Es t

CONV-TRANS

x~(s=t):k €E

converts Es ¢ CoNv-AXIOM

converts Es; t1  converts Ess to
converts E(s1 s2) (t1t2)

CONV-APP

converts Es; ¢;  converts Ess ¢2
converts E(Ax:s1. s2) (Ax:t1. t2)

CONV-ABS

converts Es; t1  converts Ess o
converts E((z:s1) — s2) ((z:t1) — t2)

CONV-ARR

Figure2. Conversion
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Figure3. Reduction Rules

Draft

true; therefore, it evaluates to an assertion “signed” hgcipal

self. There are two possibilities in the evaluation of ffiev; =

ve then ey else e statement: whem; equals tovs, it evaluates

to e1; otherwise it evaluate te.. The reduction rule for pattern
matching is most complicated, and we need to define two auxil-
iary reduction relations to implement it. We write, b) +—; e to
denote the evaluation of valueagainst a set of branches. These
evaluation rules search through the list of branches umtibtches
with the constructor of one of the branches, at which poiet th
rules focus on the branch and supply the body of the brandn wit
the arguments in. The tricky part lies in correctly identifying
the arguments in and discarding the type parameters. We write
(v, ¢,body) . (e,n) to denote the evaluation of the body of
the branch where matches with the constructerin the branch.
Here,n is the number of parameters that should be discarded before
the first argument of is found. Note that the semantics represents
constructors as a pair of the constructor nanaad its number of
type parameters. For instance, in the definition of polyrirpsts
shown previously, the representationcofus is (cons, 1).

3.8 Metatheory

We have proved the following progress and preservationrémes
for AURA. The soundness proofs are fully mechanized in the Coq
proof assistant.

Theorem 1 (Preservation) If S;- - e : t ande — ¢/, then
S-Fe:t.

Theorem 2 (Progress) If S; - = e : ¢ then either vale) or existse’
such thate — ¢’.

We have also proved that type checking in/@a is decidable
by giving a constructive proof of the following theorem:

Theorem 3 (Type Checking is Decidable)

o If Sk ¢ and Sk E, thenVe, Vt, either there exists a derivation
such that SE I ¢ : ¢ or there doesn't exist a derivation such
that SE+ e : t.

o |[f S o thenVE either there exists a derivation such that &
or doesn'’t exist a derivation such that-SE.

e Either there exists a derivation such thatS> or doesn't exists
a derivation such thatig F ©.

We have mechanized all of the decidability proofs exceptifer
decidability of theconvertsrelation, which is proved on paper. A
sketch of the latter is given below.

Lemma 4 (Converts is Decidable) VE, Vt, Vs, it is decidable
whether there exists a derivation such that convertssgE

Proof (sketch):

1. Define an algorithmic version of the converts relationas f
lows. GivenE t and s, apply Conv-ApP, CONV-ABS, and
CONV-ARR rules until thet's ands’s in all subgoals are atomic
(variables, constructors, or constants). If there exisstaoal
convertsE t 's’ such that one of’ ands’ is atomic, and the
other is not, then there does not exists a derivation sudh tha
converts B s. Then we do a graph search using E as the graph
definition to see it’ can reachy’. If the graph search succeeds
on all subgoals, thenonverts Et s; otherwise there does not
exist a derivation such thabnverts E s.

2. Prove that the algorithmic version of the converts is soamd
complete with respect to the original definition.

3. The algorithmic version of converts is obviously decidab
since the graph algorithm is decidablg is finite).

4. According to the sound and completeness argument, the con
verts relation is decidable.
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While defining the graph search algorithm is easy on paper,
defining such a function in Coq is non-trivial; we must explic
itly declare termination for Coq functions. Furthermoriveg the
graph search function in Coq, proving the soundness andleteap
ness of the algorithm with regard to the inductively definexaverts
relation also requires a significant amount of engineenivegteave
it for future work.

4. Validation and prototypeimplementation

Mechanized Proofs The judgments and rules presented in this
paper are a close approximation of the formal Coq definitiains
AURA. For instance, in order to prove the preservation of pattern
matching, we have to take the parameters and argumentsesiippl
to the constructor in the pattern-matching evaluationstule order

to prove the decidability of type checking, we strengthettesl
typing judgments to take two signature arguments: one omta
the type declarations of the top-level constructors thataggpear

in mutually recursively defined data types, and the othesésldor
looking up the constructors of the data types.

AURA has 20 reduction rules, 40 typing judgments including
the well-formedness of terms, environments and signatuned
numerous other relations such as atomic equality typeststint
the type system. For a system of this size, implementing Is ful
mechanized version of the soundness proofs of the entigeitaye
is challenging.

We formalized the soundness proofs af@a in the Coq proof
assistarft We use a variant of the locally nameless representa-
tion [8] to formalize the metatheory of the language. Welt-do
umented definitions of BRA including typing-rules, reduction
rules, and other related relations are about 1400 lines qfdode.
The progress and preservation proofs take about 6000 Ifrésep
code. Though the automation used in the these Coq proof$-is re
atively rudimentary, we did not devote much time to writing: a
tomation tactics by ourselves.

The most intricate parts of the language design are theiamntsr
of the inductive data types, the dependent types, atomialiggu
types, and the conversion relations. This complexity isodéd in
the Coq proof development in two ways: one is in the number of
lemmas stating the invariants of the signatures of the gatst the
other is in the number of revisions to the Coq proofs due tides
changes caused by failure to prove the soundness. We foanidth
such a complicated system, mechanized proofs are defibigtigr
suited for dealing with iterative revisions of the langualgsign,
since Coq could easily identify which proofs require modifion
when the language design changes.

Because AIRA is a superset of system F plus inductively de-
fined data types we conjure that without much difficulty, weldo
extract mechanized soundness proofs of other related ygberss
from the Coq proofs of ARA.

Typechecker and Interpreter The prototype ARA type checker
and interpreter together implement the language as it imdtized
in Coq with only minor differences. The typechecker recagsia
small number of additional types and constants that arenesept
in the formal definition. These types include literal 32ihiegers,
literal strings and tuples. Although it is derivable ivRAA, we in-
clude afix constant for defining recursive functions. By using this
constant together with tuples, mutually recursive funtican be
defined more succinctly than is possible in the formal deédinifo
allow for code reuse, we have addedianlude statement that per-
forms textual substitution from external files. The softevaorts in-
cluded files in dependency order and copies each only oncall¥i

2Code available atittp://www.cis.upenn.edu/~stevez/sol/
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while the formal definition allows for implicit coercion, éhproto-
type typechecker requires that all coercion be made ekplibie
interpreter directly implements the formally defined sagtep op-
erational semantics.

AURA is not meant for general-purpose application develop-
ment; instead, we intend for it to be used synergisticallghveix-
isting production programming languages. To simplifiesttwh-
nical demands for reaching this goal, we intend to eventiathet
the .NET runtime, as the CLR encourages language intermig|
(see Section 7). We plan to expose authorization policeenri
in AURA to the .NET common type system by providing libraries
for interacting at runtime with propositions. We will alsgptore
the possibilities of rewriting annotated methods in coegilNET
code to make implicit calls to these libraries. This apphosttould
allow any language that uses the common type system to peero
ate with AURA.

5. An Extended Example

In this section, we illustrates the key features afiR’s type
system by explaining a program implementing a simple stiegm
music server.

The extended code sample is listed in Figures 4 and 5. The
example program typechecks in the prototyperA interpreter
and uses some of the language extensions discussed inrSéctio
At the very beginning (Line 1) the program imports librarydeo
that defines unit (with other tuple types), list, and mayhmes/

We imagine that the server implements the following policy.
Every song may have one or more owners, corresponding toiprin
pals who have purchased rights to play the song. Additipnsding
owners may delegate their listening rights to other prialsip

The rights management policy is defined over predic@wess
and MayPlay, which are declared as assertions in Lines 5 and 6.
Recall that assertions are appropriate because we canpetter
find closed proofs of ownership and delegation in pure tyger

The main policy ruleshareRulgsee Line 12) is defined using a
say expression. The type shareRulés an implication wrapped in
two monads. The outgsf monad is required becausay accesses
a private key and must be treated effectfully. The insef says
monad is required to track the provenance of the policy. Tt
cation encodes the delegation policy above. StereRulgrovides
a way to build up a proof off self says (MayPlay A g, which is
required beforé\ can play song.

The exact form ofshareRuleis somewhat inconvenient. We
derive two more convenient ruleshareRuléandshareRulé (see
lines 53 and 76). These use monadic bind and return opesation
to change the placement pf andsays type constructors relative
to shareRul&s type. The resulting type adhareRulé shows that
one can obtain a proof term @ff self says (MayPlay A 9 by a
simple application okhareRulé€ to various arguments, as shown
in Line 101.

The key functionality of the music server is provided by a

function stub,playFor, which is intended to model an effectful
function that streams a provided song to a specified prihcifz
type is given by the annotation on line 20. TpkayFor function
takes the song to be played and the principal it should plag the
first two arguments. The third argument is a proof of the psitpm
self says (MayPlay A § demonstrating the requesting principal’s
capability to play the song, which is required by the ses/pdlicy.
As modeling an audio API would clutter the exampigayFor
simply returns a unit value. In a real implementatiqubayFor
would call into the trusted computing base, which would dtgp
appropriate proofs for future auditing.

The remaining code implements the application’s main com-
putation. ThehandleRequestunction takes a delegation request
and, using a provided database of owner information, ati®map
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include "tuple.core” include "list.core” include "maybe.core”
data Song: Type { | freebird Song| ironman Song}

assert Owns:prin — Song — Prop;
assert MayPlay:prin — Song — Prop;

data OwnerRecordType {
| ownerRecord(p: prin) — (s: Song —
(pf (self says (Owns p $)) — OwnerRecord

let shareRule
pf (self says ((0: prin) — (r: prin) — (s: Song —
(Owns 03 — (osays (MayPlayrg) — (MayPlay r9))
say ((0: prin) — (r: prin) — (s: Song —
(Owns 03 — (osays (MayPlayrg) — (MayPlay r9)
n

( A real implementation would do something heje
let playFor:(s: Song — (p: prin) —
(pf (self says (MayPlay p§)) — Unit=
As: Song Ap: prin . Aproof: (pf (self says (MayPlay p 9)) . unit
n

let notFound:(p: prin) — (s: Song —
(Maybe(pf (self says (Owns p 3))) =
Ap: prin. As: Song. Nothind pf (self says Owns p $)
in

let getOwnerProaf(s: Song — (p: prin) —

(List OwnerRecoryl — (Maybe(pf (self says (Owns p 3))) =

As: Song Ap: prin . AownerRecordsList OwnerRecord .
fix (Arec: (List OwnerRecor§l —
(Maybe(pf (self says (Owns p 3))).
Al: (List OwnerRecor)l.
match | with (Maybe(pf (self says Owns p §)) {
| nil — notFound p s
| cons — Ax:OwnerRecordAxs List OwnerRecord .
match x with (Maybe(pf (self says Owns p 3)) {
| ownerRecord— Ap’:prin. As':Song.

Aproof: pf (self says (Owns g 5')).

ifp=p’
thenifs=¢
then
Just(pf (self says (Owns p §))
(proof: (pf (self says (Owns p 3)))
else rec xs
else rec xs
)
ownerRecords
n

let shareRulé:
(pf ((0: prin) — (r: prin) — (s: Song —
(self says (Owns 0 §) — (osays (MayPlayrg) —
(self says (MayPlay r 9))) =
bind shareRulg\sr: (self says
((o: prin) — (r: prin) —
(s:Song — (Owns 03 —
(osays (MayPlayr9) —
(MayPlay rg)) .
return (AO: prin. Ar: prin. As: Song.
Aowns (self says (Owns 0 $).
Amay. (osays (MayPlay rg).
bind sr (Asr’: ((0’: prin) — (r’: prin) — (s': Song —

(Owns ds') — (0 says (MayPlay f §')) —

(MayPlay ¥ ¢')) .
bind owns(Aowns :(Owns 0 3.
return self (sr’ o r s owné may)))))
in

Figure4. AuRrA code for a music store (cont. in Figure 5).
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92

94

96

98

100
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let shareRul¢: (o: prin) — (p: prin) — (s: Song —
(pf self says (Owns 0 §) —
(pf (0says (MayPlay p§)) —
(pf self says (MayPlay p §) =
AO: prin. Ap: prin. As: Song.
AownsPf pf (self says (Owns 0 3).
AplayPf pf (0 says (MayPlay p 9).
bind ownsPf(Aopf. (self says (Owns 0 $).
bind playPf(Appf: (o0 says (MayPlay p 3).
bind shareRulé (Asr':
((0': prin) — (r’: prin) — (s': Song —
(self says (Owns 6 §')) —
(o’ says (MayPlay r §')) —
(self says (MayPlay r '))) .
(return (sr’ o p s opf ppf))))

in

let handleReques{s: Song — (p: prin) — (0: prin) —
(List OwnerRecoryl —
(delPf pf (0says (MayPlay pg)) — Unit=
As: Song.Ap: prin. Ao: prin. Al: List OwnerRecord.
AdelPf pf (o says (MayPlay p 9).
match (getOwnerProof s o)lwith Unit {
| Nothing — unit
| Just — Ax: (pf (self says (Owns 0 §)).
playFor s p(shareRul€ o p s x delPf
}

in unit

Figure5. AuRA code for a music store (cont. from Figure 4).

construct an appropriats:lf says MayPlay proof. If it succeeds
playSongs invoked.

The implementation ofiandleRequegiine 93) is straight for-
ward. There are two interesting things to note. FirapdleRequest
takes a database of owner information expressed as a list of
OwnerRecord. OwnerRecordline 8) is an inductive type whose
single constructor has a dependent type. BecawggerRecort
third argument depends on its first twOwnerRecorcencodes an
existential type. Second, thaatch expression on line 98 relies
on the fact that(getOwnerProof s o)l returns an object of type
Maybe(pf (self says (Owns p 3)). Getting such a type is possible
because whegetOwnerProofpulls a proof from the list, its type
is refined so that the existentially bound principal and sarg
identified withp ands.

GetOwnerProofline 30) performs this type refinement in sev-
eral steps. It uses the fixpoint combinator (line 33) to penfa list
search. After eac®wnerRecords decomposed, we must check its
constituent parts to determine if it is the correct record, ahso,
refine the types appropriately. The action occurs betwews li12
and 48. At runtime the firsf expression tests for dynamic equal-
ity between the principal we're searching f@, and the princi-
pal store in the current recorg,. A similar check is performed
for betweenSong s ands'. If both checks succeed then we cast
proof:pf (self says Owns ps’) to type pf (self says Owns p $ and
return it packaged as laybe If either dynamic check fails we
repeat again and, if no match if found, eventually retNothing

6. Related Work

We have published related results ouama, a language closely re-
lated to theProp fragment of AJRA [38]. This includes soundness
and sound normalization proofs foruika,, as well as discussion
and examples of audit in the presence of authorization proof
One intended semantics foruika implements objects of form
sign(A, P) as digital signatures. All cryptography occurs at a lower
level of abstraction than the language definition. This apphn
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has previously be used to implement declarative informafiioy
policies [39]. An alternative approach is to treat keys gmesyor
first class objects and to provide encryption or signing fies

in the language [6, 14, 34, 26, 25]. Such approaches typicall
provide the programmer with additional flexibility, but cphcate
the programming model.

Authorization logics Many logics and languages [4, 5, 13, 10,
20, 2, 19] have tracked authorization uskags. We follow the ap-
proach of DCC [2], the logic in whickays was first defined as an
indexed monad. This is compelling for several reasonst,FxGC
proofs are lambda-terms, a fact we exploit to closely cottpée
Prop and Type universes. Second, DCC is a strong logic and im-
portant authorization concepts, such asatis-forrelation and the
hand-off rule(Asays B acts-for A — (B acts-for A, can be de-
fined or derived. Third, DCC is known to enjoy a non-interfere
property: in the absence of delegation, statements inAtheys
monad will not effect théB says monad. In our setting this means
that a given program cannot be tricked by what an untrusteed pr
gram says. ARA modifies DCC in several ways. In addition to
adding dependent typesufRA omits DCC'’s protects relation. The
protects relation strengthens monadic bind, making pitipos
Asays (B says P) andB says (A says P) interderivable. While use-
ful in other settings, such equivalences appear incorrecaé-
cess control. Additionally ARA’s use of signatures changes some
meta-theoretic properties of the DCC leading to, for exampl
more subtle proof of normalization [38].

Fournet, Gordon and Maffeis [20, 21] discuss authorization
logic in the context of distributed systems. They use a &ahit
form dependent pairs to associate propositions with daitdiké&)
in AURA proofs are erased at runtime. Consequently, their type
discipline is best suited for closed systems that do notiredpgh-
assurance logging.

The Grey project [10] uses proof carrying authorization amm
ner similar in propose to BRA. In Grey, mobile phone handsets
build authorization proofs that unlock doors. Whil@®a is a uni-
fied authorization logic and computation language, Greydgd is
not integrated with a computation language.

DeYoung, Garg, and Pfenning [19] describe a constructive au
thorization logic that is parameterized by a notation oftifiropo-
sitions and proofs are annotated with time intervals duvitnich
they may be judged valid. This allows revocation to be matlete
credential expiration.

ration may restrict security sensitive operations to a binasted
computing base, but does not give rise to a logical soundregs
erty.

Dependent type theory The AURA language design was influ-
enced by dependent type systems like the Calculus of Canstru
tions (CoC) [9, 17], and proof carrying authorization lagiespe-
cially Dependency Core Calculus (DCC) [2]. Both CoC angrA
contain dependent types and a unified syntax encompassthg bo
types and terms. However there are several important elifters
between CoC and ¥RA. Most critically, CoC quotients type equal-
ity by beta-equivalence butyRA does not. Type-level beta reduc-
tion, while convenient for verification, is unnecessary égpress-
ing authorization predicates, and greatly complicateguage de-
sign and use.

As realized in the Coq Proof Assistant [16], CoC can contain
inductive types and different universes for computatiod kgic
types—AURA universesProp and Type correspond to Prop and
Set in Coq. However, because Set is limited to pure compuisiti
Coq does not wrap Props inpfi monad. In Coq all inductive dec-
larations are subject to a complewsitivity constraint which en-
sures inductive types have a well-defined logical integiiet. In
contrast AJRA uses a simpler positivity constraint Rrop and no
constraint inType. Additionally, AURA performs less type refine-
ment than Coq for GADTs/type indices. When compared with,Coq
AURA is strictly weaker for defining logical predicates, but can d
fine certain stronger algebra datatypes for use in computati

Several other projects have combined dependent types agd pr
matic language design. Ynot (an embedding of Hoare Type The-
ory [30] in Coq), Agda [31], and Epigram [28] are intended tips
port general purpose program verification and usually rechiat
the programmer construct proofs interactively. In coriti2epen-
dent ML [45], ATS [45, 44], and RSP1 [42] provide distinguésh
dependency domains and can only express constraints octobje
from these domains. These dependency domains are inteaded t
be amenable to automated analysis. Cayenne [7] extendeHask
with general purpose dependent types. In Cayenne typeigqual
is checked by normalizing potentially divergent Haskethis—a
strategy which may cause type checking itself to divergenddak
and Setzer [22] present a core calculus for interactiveraragiing
in dependent type theory. Their language uses an 10 monau to e
capsulate stateful computations. Inhabitants of the manadhod-
eled as imperative programs and type equality is judged up to

The trust management system PolicyMaker [12] treats accesshisimulation on (imperative) program text.

control decisions as a distributed programing problem. Acko
Makerassertionis a pair containing a function and (roughly speak-
ing) a principal. In general, assertion functions may comicete
with each other, and each function’s output is tagged by the a
sociated principal. PolicyMaker checks if a request coagplvith
policy by running all assertions functions and seeing if/tpeo-
duce an output in which distinguished principal POLICY saps
prove. Principal tags appear similar is purpose, but ndizagaon,

to says modalities in AJRA. Note also that expressing security
properties via term-level computation is fundamentallffedent
than expressing them as types, the approach followed in ottosit
work discussed here. The ideas in PolicyMaker have beereckfin
in KeyNote [12] and REFEREE [15].

The Fable language [36] associates security labels withwddt
ues. Labels may be used to encode information flow, acces®ton
and other policies. Technically, labels are terms which imaye-
ferred to at the type levetoloredjudgments are used to separate
the data and label worlds. The key security property is tteat-s
dard computations (i.e. application computations deedritvith
color app) are parametric in their labeled inputs. UnlikeuRa
proofs, the label sub-language (i.e. policy computatioescdbed
with color pol) admits arbitrary recursion. Hence the color sepa-
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Peyton Jones and Meijer describe the Henk typed intermedi-
ate language [24]. Henk is an extension of the lambda cub#yfam
of programing languages that includes CoC. Liker&x, Henk is
intended to be a richly-typed compiler intermediate lamgguaJn-
like AURA, Henk has not been proved sound. Additionally, its lack
of a pf monad (or equivalent technique for isolating computations
from proofs) makes it unsuitable for programming in the pree
of both dependent types and effects.

7. FutureWork

Futurework: Theory As discussed in Section 3, we have proved
that the degree to which URA restricts dependency allows for
tractable typechecking. This does not, however, rule ceipthssi-
bility that this tractability could be preserved if lesstragive sorts
of dependency were added taAA. In particular, it may well be
useful to look at the simulation of dependency with GADTSs][32
in search of examples that, while relatively simple, carbehan-
dled directly in AURA, and to look for ways to extendURA with
support for such features without losing decidability.

Section 2 describes the correspondence betweasays P
and objects digitally signed by’'s private key. It is natural,
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then, to wonder about the possibility of an analog for pukbg
encryption—perhaps terms of tyfe for « could be constructed
from objects of typel” encrypted witha'’s public key. It is unclear
how precisely to integrate such an additional monad witiRA,
however, not least because, while Hags monad makes complete
sense operating only at th&rop level, we almost certainly want
to encrypt data of kindlype. Additionally, our use of dependent
types means that the type of aruRa term will often reference
part of the term itself, which may well be unacceptable fatada
that is meant to be encrypted.

The tracking of information flow was one of the first uses pro-
posed for DCC [3], and even without encryptiow®a’s assertions
are sometimes reminiscent of confidentiality tracking;enamcryp-
tion to be added, the similarities would be even more prooednlt
may be possible to take advantage of this by equippingAwith
a more general notion of information flow—which does not sece
sarily have as straightforward a cryptographic intergieta—for
use internal to a single well-typed application while réver to
the coarser-graineshys (and possiblyfor) when communication
with the outside world is desired. The challenge, of couis¢o
make this change of granularities as fluid and unencumbersng
possible.

Even without information flow it may still be useful to have
a better idea of which proofs may come from the outside world.
After all, operations on digital signatures are not trivialit since
proofs are defined to be computation-free, a purely locabfpro
could be given a more efficient but less portable representat
and certain proofs might be completely elided at runtime.the
first case, we would first need to extend our formalism withsom
notion of network communication; inference could be perfed
backwards from communication points to ascertain whictofsro
need not be represented in portable form. As an initial sigpitds
recognizing the second case, we might consider an addifioma
of abstraction, with an argument that cannot be used inioextays
but is guaranteed to be necessary at compile time only; lydeal
however, we would want to infer these abstractions as part of
compilation.

It is clear from our examples thatuRA is fairly verbose. As
it is meant to be an intermediate language, this is not a ipgess
usability issue. We hope that a higher-level language tbaemtes
AURA will be able to cut down on this verbosity using inference
techniques. Our proof-passing style also suggests thefusme
variety of proof inference. Of course, this very quickly bewes
undecidable, but that does not rule out practical partiitsms.

Finally, although AJRA emphasizes the security aspects of pro-
gramming with an embedded authorization logic, there might
other applications of this idea. In particular, one of thallgnges
of making program verification via dependent types pratiga
the need to construct and otherwise manipulate proof abjé€xft
course, one can always add axioms to the logic, but doing 1s0 ca
easily compromise its consistency. Failures due to a poaicelof
axioms might be hard to isolate when debugging. $h& mon-
ads of DCC provide a possible intermediate ground: One could
imagine associating a principal with each module of the oy
and then allowing modules to make assertions. Explicit wete-
gations would then be required when importing axioms frora on
module to another; such delegations would document the f@odu
dependencies and help the type checker isolate uses of fault
ioms. We speculate that it is even possible that blame (istyle
similar to that proposed by Wadler and Findler [41]) can bgrap
priately assigned to offending modules whenever a run-gmer
caused by incorrect assertions is encountered.

Future work: Practice The single-step interpreter is useful as a
tool for checking the correctness of small examples; howete
is infeasible to use it to run code in a production environmaAs
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such, we are extending the implementation to generate Cipet-
ible with both Microsoft's .NET CLR and the open-source Mono
runtime. Don Syme’s work on ILX aids us greatly in this effort
ILX, described in [37], is a group of extensions to the ClLttha
facilitates the use of higher-order functions, discrinbéaunions
and parametric polymorphism. By compiling for this exigtstan-
dard execution environment, we will gain access to the etesy
of .NET software and libraries. Most notably, we should b&ab
to make use of existing code for cryptography and crosgeptat
networking. We will also be free from having to worry about/r-
level issues like efficient machine code generation andeggeriool-
lection, both of which are well outside of theuRA project’s scope.

Additionally, there remain practical issues that®a must ad-
dress in order to fully express policies likely to be foundtgin-
tended problem domain. Chief among these is the demandédor th
signatures thaxpire either due to explicit revocation or simply the
passage of time. This stands in contrast to our current iisma—
and, indeed, most formalisms of programming languagestexsa
that successfully typechecks is generally seen as validefpard-
less of the time or the state of the world. It would, of coutse,
possible to define the operational semantics 0RA such that ev-
ery operation has a chance to fail at runtime due to digitedatiure
expiration, but this would quickly make programming quitere
bersome. Instead, we hope to find a solution that allows tinte a
revocation to be referenced byuRA in an intuitive way; one pos-
sibility is, explored by Garg and Pfenning [19], is the uséiredar
logic, which is naturally suited to describing resourcest ttan, in
some sense, be used up.
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