
Modeling and Enhancing
Android’s Permission System

Elli Fragkaki, Lujo Bauer, Limin Jia, and David Swasey

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. Several works have recently shown that Android’s security
architecture cannot prevent many undesired behaviors that compromise
the integrity of applications and the privacy of their data. This paper
makes two main contributions to the body of research on Android se-
curity: first, it develops a formal framework for analyzing Android-style
security mechanisms; and, second, it describes the design and imple-
mentation of Sorbet, an enforcement system that enables developers
to use permissions to specify secrecy and integrity policies. Our formal
framework is composed of an abstract model with several specific instan-
tiations. The model enables us to formally define some desired security
properties, which we can prove hold on Sorbet but not on Android. We
implement Sorbet on top of Android 2.3.7, test it on a Nexus S phone,
and demonstrate its usefulness through a case study.

1 Introduction

Recent years have witnessed an explosion in the use of mobile computing thanks
to the proliferation of feature-rich smartphones, and associated app stores and
easy-to-install applications. Smartphones have powerful hardware, with many
useful sensors (e.g., GPS, camera, microphone, accelerometer) exposed via rich
APIs, and enough computing power to run complex applications. Applications
take advantage of these rich APIs to perform convenient and useful, but poten-
tially privacy-sensitive tasks such as accessing address-book or location infor-
mation; accessing online banking and medical accounts; and controlling home
security systems. App stores make it easy for users to install and run applica-
tions, while providing few guarantees about their provenance or behavior.

To protect sensitive resources from applications, and applications from each
other, Android and other mobile OSes implement security mechanisms such as
permission systems and strong isolation between applications. These mecha-
nisms, however, have in practice proved insufficient, with an increasing number
of malicious applications starting to target smartphones [15, 23, 16].

A number of works have investigated these weaknesses from various per-
spectives, including demonstrating how applications can communicate through
covert channels [24, 18], developing tools to detect information leaks [8, 5, 14],
and implementing more powerful protection mechanisms (e.g., [22, 20, 7, 2]).

This paper adds to the body of research on Android security in two main
ways: first, by developing a formal framework for analyzing Android-style se-
curity mechanisms, including defining properties desired of those, and verifying

whether these properties hold; and, second, by designing and implementing an
enforcement system that provides application developers with simple language
constructs to specify flexible secrecy and integrity policies, and provably exhibits
desirable security properties. To remain practically relevant, we constrain our en-
forcement system, which we call Sorbet, to be easily retrofittable into Android’s
current architecture. The design and implementation of Sorbet improves exist-
ing Android permission system in the following aspects: (1) we formally state the
properties that we wish our new mechanisms to achieve, and formally prove that
our system design supports them; (2) we enhance Android’s permission system
to support coarse-grained secrecy and integrity policies; and (3) we provide more
flexible support for fine-grained and scope-limited delegation of permissions.

Formal analysis. One of our main goals is to improve our understanding of
the security properties that we desire of Android-like permission systems, and
to verify that specific systems are capable of specifying and enforcing desired
properties. We pursue this goal by building a generalized, abstract model of the
Android permission system, and stating a set of desirable properties in terms
of the model. We then develop instantiations of this model both for the current
Android permission system and for Sorbet. Based on this formal account, we
study the properties of the current system; our investigation reveals both design
and implementation flaws, which guide the design of Sorbet. We also prove that
Sorbet’s design is sufficient to support the properties that we have defined.

Coarse-grained secrecy and integrity policies. Sorbet’s key innovation is coarse-
grained mechanisms that allow developers to protect their applications against
privilege escalation and undesired information flows (e.g., [6, 8]). Android’s per-
mission system only prevents applications that do not have the correct permis-
sions from directly calling a protected component. This is inadequate to protect
against a malicious application that reaches a protected component indirectly,
via a chain of calls to innocent applications. To protect against such attacks,
we enrich Android’s permission system with the ability to specify information-
flow constraints and explicit declassification permissions, and implement a light-
weight calling-context tracking and checking mechanism. A key challenge here
is to support local specification of global properties.

Flexible and fine-grained delegation. Run-time delegation of URI permissions is
a key feature in Android, and allows applications to use third-party components
(e.g., a viewer activity) to manipulate content that those components normally
would not be permitted to access. On examination, we discovered that Android’s
implementation of permission delegation is plagued by a number of flaws and
questionable design decisions. Sorbet supports more flexible and principled per-
mission delegation and revocation, and allows developers to specify constraints
that limit the lifespan and redelegation scope of the delegated permissions. De-
veloping a mechanism that correctly enforces lifetime and scope constraints turns
out to be unexpectedly tricky, due to redelegation and the dynamic nature of
Android applications and components, including application installation and
uninstallation, and instantiation and termination of components.

2

Contributions and Roadmap This paper makes the following contributions:

– We develop a formal model that generalizes Android-style permissions (§2.2).
We show how Android’s current permission system can be represented as an
instantiation of our abstract model (§2.3).

– Building on this model, we define a set of security properties that one may
desire of Android-style permission systems (§3.1). We show that Android
currently obeys some of the desired security properties, but not others, and
expose several design inconsistencies and implementation flaws (§3.2).

– We describe Sorbet, a set of improvements to Android’s permission sys-
tem that supports developer-specified coarse-grained information-flow and
privilege-escalation policies. We formalize Sorbet as an instantiation of our
model and show that it better supports the desired security properties (§4).

– Finally, we implement Sorbet on top of Android 2.3.7, test it on a Nexus
S phone, and demonstrate several new scenarios that it enables (§5).

2 Preliminaries

We first review the Android architecture as it pertains to permissions (§2.1). We
then develop an abstract model of Android-style permission systems (§2.2), and
an instantiation of it that captures details of Android’s implementation (§2.3).

2.1 Android Overview

Android is a Linux-based open-source OS designed for smartphones. Android ap-
plications are written in Java and compiled to Dalvik bytecode. Each application
is executed in a separate Dalvik Virtual Machine (DVM) instance.

Android applications are composed of four types of components:

Activities define the user interface. Only one activity interacts with the user at
a time. Users typically interact with a sequence of activities to perform a task.

Services run in the background and have no user interface. Unlike activities,
services remain active regardless of which application is in the foreground.

Broadcast receivers listen for system-wide broadcasts, and inform other applica-
tion components upon the receipt of a broadcast.

Content providers store data and are the main way to share data between appli-
cations. Each provider exposes a public URI that uniquely identifies its data set.
Components and applications can access or update the data via SQL queries.

Activities, services, and broadcast receivers communicate via intents, asyn-
chronous messages that deliver data and, if needed, cause a new instance of
the recipient component to be created. The OS mediates both cross- and intra-
application communications via intents. The recipient of an intent can be spec-
ified explicitly by its package and class name, or implicitly via the action the
intent attempts to initiate. We will often write that a component calls another
component in lieu of explaining that the communication is via an intent.

3

Static Constructs
Components C ::= Ccode | Cdata

Code Components Ccode ::= (name,A, ϕckCallee, ϕckCaller ,Pdecl ,Preq ,Pgrnt)
Data Components Cdata ::= (name, ϕckCaller ,Pdecl)

Component Groups Ĉ ::= (name, ϕckCallee, ϕckCaller ,Pdecl ,Preq ,Pgrnt, {C1, · · · ,Cn})

Run-time Constructs

Run-time Instances Ins ::= iC | iĈ
Comp Instances iC ::= (namer ,C ,Pgrnt)

Comp Group Instances iĈ ::= (namer ,Ĉ ,Pgrnt, {iC1, · · · , iCn})
Principals Prin ::= Ins | user
Targets Tgt ::= Ins | C | Ĉ
Events E ::= x = E1; E2 | call iC1 iC2 I | return iC1 iC2 I | resolve iC ϕ

| grant Prin Tgt P F | revoke Prin ({Tgt1, · · · ,Tgtn}) P

| checkguard iC Tgt ϕ | exit Ins | install Prin Ĉ | uninstall Prin Ĉ

Fig. 1. Syntax of permission model

Android uses (application) permissions to protect components and sensitive
APIs. Permissions are strings (e.g., android.permission.INTERNET) defined by the
system or declared by applications. A component or API protected by a permis-
sion can be accessed only by applications that hold this permission. Applications
acquire (application) permissions only at install time, with the user’s consent.

Additionally, content providers can use URI permissions to grant ad-hoc
access to specific pieces of data that they control (records, tables, or databases).
URI permissions can be dynamically granted and revoked.

2.2 Abstract Model

To be able to formally state the properties desired of a permissions architecture,
we develop an abstract, formal model of Android-style permissions systems. The
model comprises: (1) static elements, which are the code and data we want to
protect; (2) run-time elements, such as system events and component instances;
and (3) a transition system that captures the behavior of the protection mecha-
nisms. The model is more general than Android’s implementation as its purpose
is to encompass a wider design space of permission systems, including previously
suggested extensions (e.g., [22]). We only sketch the model here; see our technical
report [13] for details. Fig. 1 shows the model’s static and run-time elements.

Static constructs Following Android, applications in our model are built from
components. We distinguish between code components (Ccode) and data compo-
nents (Cdata). Code components—activities, services, and broadcast receivers—
may act both as callers and as callees; data components—content providers—are
passive and only receive calls. A code component is comprised of a name (name),
the actions A to which the component is willing to respond, permissions (Pdecl ,
Preq , and Pgrnt), and guards (ϕckCallee, ϕckCaller).

In Android, calls to a component are guarded by a permission check. We gen-
eralize this check to an abstract guard modeled by a boolean function ϕckCaller .
For now, we specify only that ϕckCaller takes as arguments a component and

4

the calling context and returns true or false. A second general guard, ϕckCallee,
specifies when outgoing calls should be allowed.

We distinguish between permissions that are declared (Pdecl), requested from
the user (Preq), and granted (Pgrnt). This allows us to model behaviors such as
dynamic delegation of permissions.

We model applications,Ĉ , as a set of components ({C1, · · · ,Cn}) with guards
and permissions that apply to all. This is consistent with Android, where per-
missions are typically declared, requested, and granted at the application level,
but individual components can protect themselves with additional permissions.

Run-time constructs It is important to distinguish static components from
run-time instances, and run-time instances from each other. A static component
C may have multiple run-time instances iC , composed of a unique identifier
(e.g., pointer), namer , and the permissions Pgrnt granted to this instance. We

similarly model run-time component groups iĈ (e.g., a running application).
Principals Prin are entities that can grant and revoke permissions: run-time

components and component groups, and the user (i.e., human who installs ap-
plications). Targets Tgt are the objects of such operations, and can be either
run-time or static components or component groups.

Abstracting detail, we focus on system events that concern permissions, such
as component communication via intents (call iC1 iC2 I), and granting (grant)
and revoking permissions (revoke). We discuss these further in §2.3 and §4.1
when we focus on the Android and Sorbet instantiation of the abstract model.

Transition system We capture the dynamics of the model as a transition
system. We model a system state Σ as a tuple composed of a set of entities
(run-time and static) and auxiliary data structures Aux . We write E to denote
a sequence of events to be processed by the system. We assume that each event
is associated with a unique event ID n. The evolution of the system is a series of
transitions (Σ; E o−→ Σ′; E ′), where o records whether the evaluation of event n
is successful (o = ok(n)) or fails (o = fail(n)). Evaluation of a call event will fail,
for example, if the appropriate guards don’t evaluate to true. A trace, denoted
by T , is a sequence of transitions: Σ0; E0

o1−→ Σ1; E1 · · ·
ok−→ Σk; Ek.

The specific rules in the transition system depend on the concrete implemen-
tations being modeled. Here we show the rule schema for a successful call event.
The call succeeds only if both guards evaluate to true.

call-t (Σ; E , n :: call iC1 iC2 I)
ok(n)−→ (Σ′; E) where Σ′ = updateCall(Σ, call iC1 iC2 I)

if iC2.ϕckCaller (Σ, iC1) = true and iC1.ϕckCallee(Σ, iC2) = true
A parallel rule, call-f, specifies that a call fails if either guard returns false.

2.3 Android Model

We instantiate our abstract model to describe the key behaviors of Android’s
permission system1. This has helped us to identify flaws in its implementation

1 When we refer to Android, we mean version 2.3.7, which was the newest version
available while we were carrying out our investigation. The behaviors we describe
generally hold in 4.0 as well.

5

and peculiarities in its design. We omit a full description, but show example
instantiations of guards (ϕuri

P) and transition rules for granting permissions.

Guards The guard ϕuri
P checks whether a component has the URI permissions

specified in P. ϕuri
P can be used as ϕckCaller when P is the set of URI permissions

protecting a component.
We first define functions to look up the permissions associated with a run-

time component from the current state. Function grantedByUsrPerm(iC , Σ) re-
turns permissions granted at install time, and function URIPerm(iC , Σ) returns
the URI permissions dynamically granted to iC ; URIPerm in turn relies on a
data structure M to track the URI permissions granted to each application.
Then, we define ϕuri

P as follows.

ϕuri
P , f(iC , Σ) = P ⊆ grantedByUsrPerm(iC , Σ) ∪URIPerm(iC , Σ)

Granting permissions URI permissions can be granted temporarily, via an
intent, or permanently, via grantUriPermission. We model the former as:

grant iC1 iC2 P Ftmp ; call iC1 iC2 I.
Here, iC1 grants permission P with flag Ftmp to iC2 before transferring control

to iC2. Granting permanently we model as grant iC1 Ĉ P Fprm . Flags Ftmp

and Fprm constrain the lifetime of the delegation of P and the scope of its
potential redelegation by iC2. Mirroring Android, the lifetime of permissions
granted with Ftmp is confined to the lifetime of the recipient (iC2) of the grant
operation. When granting with Fprm , the recipient will have the permission until
the system reboots or the permission is revoked. Neither flag restricts the scope
of redelegation. The following rule shows how grant currently works in Android.

(Σ; E , n :: grant iC1 iC2 P Ftmp)
ok(n)−→ (Σ′; E) if ϕuri

{P}(iC1, Σ) = true

where Σ′ = updateGrant(Σ, iC1, iC2, P,Ftmp)

Granting succeeds only if the granter has permission P . Afterwards, updateGrant
updates state, by recording in M that the enclosing application of iC2 now has
permission P with flag Ftmp , and that the instance iC2 has P in Pgrnt.

The rule for granting with Fprm (omitted here) differs only in its update

function: M records that now Ĉ has permission P with the flag Fprm . These
rules make explicit that Android does not distinguish between Ftmp and Fprm

when deciding whether a component can grant permissions. This causes problems
when components redelegate permissions, as we discuss in §3.2.

3 Security Properties

We define several properties that one might desire of an Android-style security
architecture (§3.1) and investigate whether they currently hold (§3.2).

3.1 Specifying Desired Security Properties

We formulate the properties desired of Android’s security architecture based
on the resources that need protection. These are typically interfaces that allow

6

access to functionality that could cause harm or inconvenience (e.g., sending
expensive text messages) and to sensitive data that should not leave the posses-
sion of components that legitimately require it (e.g., financial information in a
banking application; location information). We abstractly define access-control
properties that specify when and how a protected interface can be called and
information-flow properties that specify when and what information can flow
to or from a component. We also investigate lower-level, functional-correctness
properties concerning granting and revoking permissions, since these directly
affect the access-control and information-flow properties.

Local properties The following two properties state that the immediate
restrictions specified by a component on its callers or callees are always obeyed.

Property 1. (Local callee protection) If a component A is called by another
component B, then A’s guard ϕckCallee evaluates to true.

Property 2. (Local caller protection) If a component A calls another compo-
nent B, then A’s guard ϕckCaller evaluates to true.

It is easy to show that Prop. 1 and 2 hold on any instantiation that includes
rules like call-t and call-f (see §2.2).

Delegation and revocation properties

Property 3. (Delegation) A component A has a permission P if A owns P ,
or there is a delegation chain from a component B to A such that A satisfies
the scope and lifetime constraints imposed by every component on the chain, and
that every component on the chain also has P .

Intuitively, Prop. 3 ensures that the use of a redelegated permission is con-
fined by the lifetime and scope constraints specified by the original granter. For
instance, if an email component gives to a viewer component the URI permission
P for displaying an attachment, two sensible constraints are that P is confined
to a specific instance of the viewer, and that the viewer cannot redelegate P .

Property 4. (Revocation) If A revokes P from B, then there is a delegation
chain from A to B, or A owns P .

This is a basic correctness property for revocation. Allowing arbitrary com-
ponents to revoke permissions is likely to be disruptive; hence, only the owner
or granter should be allowed to revoke a permission.

Global properties The next two properties are simplified noninterference.
We customize the general notion that secret inputs cannot affect public outputs
and tainted inputs cannot affect endorsed outputs to fit the permission-based
Android model.

Property 5. (Privilege escalation) Given any component B protected by per-
mission P , and any component A that does not have that permission, if SAB is
a system that contains A and B (and other components), and SB is the same
system without A, then a call chain ending with B exists in SAB if and only if it
exists in SB. Additional call chains ending with B may exist in SAB if explicitly
allowed by policy.

7

In other words, with respect to accessing B, a system with unprivileged compo-
nent A should behave the same as a system without A. The only exception is if
additional policy explicitly allows A to affect B. Without such exceptions, this
property would likely be too restrictive.

For example, let B be the interface, guarded by permission P , for rebooting
the phone. Suppose that component C has P (which allows it to call B), and
a public interface, such that any calls to that interface will cause C to call B.
Then, a component A that does not have P can indirectly cause B to be invoked
by calling C. C’s indiscriminate invocation of B is an example of the confused-
deputy problem. Since a trace culminating in that invocation of B cannot exist
in a system without A, Prop. 5 prohibits this behavior.

In the other direction, we may want to prevent sensitive information from
being leaked, which permission systems typically cannot specify directly. We
leverage permissions to state an undesired information flow as follows. Suppose
that permission P1 guards the source of some information and permission P2

guards the sink. Then, an undesired information flow can be specified as a call
chain from a component that uses P1 to a component that uses P2. A system
that has no undesired information flows should then obey the following property.

Property 6. (Information flow) Given an undesired information flow from a
component A guarded by P1 to a component B guarded by P2, a call chain that
ends with B exists in a system with A if and only if the same call chain exists
in a system without A. Additional call chains ending with B may exist in the
system with A only if explicitly allowed by policy.

Without a more expressive policy specification language, these properties
cannot be specified precisely.

3.2 Analyzing Android Permissions

We investigated the extent to which Android’s current permission system, as
represented by our model, supports the properties defined in §3.1.

Local properties hold Android’s permission system implements the call-t
and call-f rules, and the guards specified by the components are checked at
run time; hence, Prop. 1 and 2 hold. However, Prop. 2 holds trivially, because
callers cannot state useful guards on callees.

Delegation and revocation properties do not hold Prop. 3 requires that
a permission does not outlive the lifespan specified by its granter. Android’s
implementation, however, does not distinguish between Ftmp and Fprm when
deciding whether a component can grant permissions. This violates Prop. 3 and
causes several bugs (see our companion technical report [13]), e.g., a component
that gained temporary permission can redelegate the permission permanently,
including to itself.

Android’s revokeURIPermission revokes a URI permission from all components
to which it was dynamically granted, and can be called by any component that
was granted the permission at install time. This violates Prop. 4, which requires

8

that a component A can revoke only from entities to which it granted permission
(unless A owns the permission). Such violations can easily cause confusion, as
unrelated applications can revoke each other’s permissions.

Global properties do not hold Previous work has pointed out that An-
droid suffers from privilege-escalation flaws (e.g., [6]); i.e., Prop. 5 does not hold.
Prop. 6 also does not hold, as Android does not have a mechanism for prevent-
ing, or even specifying, undesired information flows. An application can access
any component for which it has the permission to do so, regardless of whether
it had previously accessed protected information. Previous work has shown that
this results in various specific undesired information flows [24, 18, 8].

Examining Android in light of these properties also revealed several design and
implementation bugs, which we reported to Google. These include the ability of
components that received a temporary permission to redelegate that permission
permanently, and improper bookkeeping of granted permissions during applica-
tion uninstallation and installation that can lead to privilege escalation. These
flaws are discussed in more detail in our companion technical report [13].

4 Sorbet: Android Permissions++

Motivated by the properties of §3.1, we develop Sorbet, an improved permis-
sion system that supports (1) developer-defined policies to mitigate undesired
information flows and privilege-escalation attacks; and (2) well-behaved permis-
sion delegation and revocation. Our goals were to enable developers and users
to specify richer policies on their applications without dramatically altering An-
droid, and to construct an enforcement system that is provably well behaved.

Some of the mechanisms we use have been discussed previously [10, 22, 14,
7]; we integrate these and other ideas into a system that we can formally show
satisfies interesting security properties and enables new use cases.

4.1 New Features in Sorbet

Coarse-grained information-flow protection Sorbet extends Android’s
permission labels to make them suitable for specifying coarse-grained information-
flow policies, and enforces such policies at component and application bound-
aries. By reusing permission labels, this approach requires little new syntax.

In Sorbet, a component A guarded by P1 (e.g., the contacts permission)
can specify (in the application manifest) information-flow policies of the form
disallow-flow(P1, P2). This indicates that any component B that made use of P1

to access A cannot (including transitively) use permission P2. A component can
also request at install time the permission allow-declassify(P1, P2) to declassify
sensitive information, i.e., to escape the restriction imposed by disallow-flow(P1, P2).
We formalize this mechanism and the property it enforces in §4.2 and §4.3.

9

Our mechanism can be used by programmers to strengthen their own code
by separating trusted information that should remain internal to an applica-
tion from untrusted flows that may be communicated to the outside, thereby
decreasing the chance of the application being misused by malicious ones. The
mechanism can also be used to defend against malicious applications or devel-
opers, by specifying policies that should hold between applications.

Coarse-grained privilege-escalation protection To mitigate the confused-
deputy problem, Sorbet tracks the permissions of all components on the call
stack. When a component A is called, and A is protected by permission P ,
Sorbet checks if every component on the call stack has P . However, this is too
restrictive for practical use; e.g., an email app, which needs to use the INTERNET

permission to send email, could do so only when started by applications that
have the INTERNET permission. To address this, Sorbet allows components to
request a privileged permission P̂ . When a component B has the permission P̂ , it
is permitted to call A even when other components on its call stack do not have
P . P̂ is similar to the enable privilege operation in Java stack inspection. Other
works have also tracked the call stack for similar purposes (e.g., [7]); Sorbet’s
novelty here is in allowing developers to specify policies, and in enabling proofs
that this and other design features allow the system to exhibit desired properties.

Flag Recipient Redelegation scope Lifetime
Fcomp activity no redelegation activity exit
Ftask activity activities in the same task activity exit
FappTmp activity activities in the same app activity exit
FallTmp activity any component activity exit
Fapp app no redelegation app uninstall
Fall app unrestricted app uninstall

Fig. 2. Flags for constraining delegation. Columns show the recip-
ient scope, the scoping constraints of redelegation, and the lifetime
of the granted permission.

As with information
flow, Sorbet protects
against privilege escala-
tion at both component
level and application
level. To account for An-
droid’s inability to com-
pletely mediate commu-
nication (e.g., via pub-
lic static fields) between
components within an
application, the policy enforced at the application level assumes that compo-
nent boundaries within an application are not respected.

Principled redelegation and revocation Sorbet also addresses Android’s
problems with indiscriminate redelegation. The challenge here is to design a (cor-
rect) mechanism to allow programmers to predictably control delegation lifetime
and redelegation scope. Building on Android’s notion of temporary and persis-
tent permissions, we enable the grant operation to precisely convey the intended
scope of the recipient (a component or an application), the scope of redelega-
tion (none, components in the same task, components in the same application,
and unrestricted), and the lifetime of the permission (until the recipient activ-
ity exits, or is uninstalled). For simplicity, we converge on six combinations of
these constraints (summarized in Fig. 2), which the programmer can specify via
flags passed as arguments to grant. The enforcement mechanism enforces the
transitive properties that the constraints implicitly require.

10

Sorbet allows a component A to revoke a permission P from component B
only if A granted P to B (or A owns P). In other words, the act of delegating
creates a new link in a delegation chain, and revocation removes that link.

4.2 Implementation of Improvements in Abstract Model

We now briefly describe Sorbet as an instantiation of the abstract model. We
focus on mechanisms for enforcing information flow, and briefly discuss privilege
escalation. Delegation and revocation are discussed in our technical report [13].

Information-flow protection To enforce information-flow policies specified
by disallow-flow(P1, P2) and allow-declassify(P1, P2), we augment the model with
an auxiliary data structure N , which keeps track of information-flow constraints.
More concretely, N maps a component instance iC to the set of information-
flow constraints that includes all such policies specified by components in the
call chain before and including iC .

We define forbidP(N , iC) to return the set of permissions that are for-
bidden from being used by constraints in N (iC). For instance, if N (iC) =
{disallow-flow(P1, P2)}, then forbidP returns {P2}. Function guardP(Σ, iC) re-
turns the set of permissions that guards the calls to component iC . A successful
call between components in the same group can now be defined as follows.

call-t (Σ; E , n :: call iC1 iC2 I)
ok(n)−→ (updateCall(Σ, call iC1 iC2 I); E)

if iC2.ϕckCaller (Σ, iC1) = true and iC1.ϕckCallee(Σ, iC2) = true
and guardP(Σ, iC2) ∩ forbidP(N , iC1) = ∅

The last line is the added check for information-flow policies. The call succeeds
only if the permission required to access the callee is not forbidden by the policy.

If the call succeeds, information will flow from the caller to the callee, and con-
straints need to be similarly propagated. In addition, the callee has its own con-
straints that need to be incorporated in N . For this, we define two new functions.
updFlow(N , iC ,Fl) returns a new mapping N ′, where N ′(iC) = N (iC) ∪ Fl .
updDeclassify(N , iC , allow-declassify(P1, P2)) returns a new mapping N ′, which
removes disallow-flow(P1, P2) from N for iC . Hence, after a declassification per-
mission allow-declassify(P1, P2) is encountered, the constraint that forbade access
to components guarded by P2 is lifted. E.g., if the user explicitly allows access
to the Internet after private data is read, then this will be allowed.

We define function flowP(Σ, iC) to return the set of information-flow con-
straints that guard the calls to iC , and getDeclassify(iC) to return the set
of declassification permissions of iC . The function updateCall first computes
N ′ = updFlow(N , iC2, flowP(Σ, iC1)), then N ′′ = updFlow(N ′, iC2,N (iC1)),
and finally N ′′′ = updDeclassify(N ′′, iC2, getDeclassify(iC2)).

Android does not mediate all communications between components within
the same application (e.g., via shared static fields). Sorbet conservatively as-
sumes that components within an application have communicated, and treats
cross-application calls differently. We write NA(iC) to be the union of sets
of information-flow constraints N (iC ′), for each iC ′ that is in the same ap-
plication as iC . We define forbidPA(N , iC) = NA(iC). We define function

11

guardPA(Σ, iC) to return the set of permissions that guards the calls to all
components in the same application as component iC . In the rule for cross-
application calls, NA takes the place of N , and guardPA takes the place of
guardP. This means that if any component in an application has accessed private
data protected by disallow-flow(P1, P2), then no component in that application
can use permission P2. The update function similarly accumulates all constraints
in the entire application, rather than just one component.

Returns are treated similarly to calls, with the caller and callee designations
switched. We omit the definitions here for space reasons.

Privilege-escalation protection To prevent privilege escalation, we use aux-
iliary tree-like data structures to keep track of the full call history. We define a
call forest TS as a list of call trees T , as follows:

Call Forest TS ::= [T1, · · · , Tn] Call Tree T ::= (TS , (iC ,P))

We use MT S to denote a mapping from run-time components to call forests.
Each call tree represents a call chain, and the root of the tree is the last com-
ponent on the call chain. The child of the root is a call forest, which is a list of
call chains, each representing a past call chain to the root component. If com-
ponent A (which has permissions PA) calls B (with permissions PB), and C
(with permissions PC) also calls B, and B has only one run-time instance, then
MT S(B) = [([], (A,PA)), ([], (C,PC))]. In other words, each call tree in the call
forest MT S(B) records the full context of the call stack. If B now calls D, the
call tree ([([], (A,PA)), ([], (C,PC))], (B,PB)) will be stored in MT S(D).

A call from component A to component B is allowed only when for any
permission P that guards the access to B, either A has P̂ ; or A has P and
for every call chain recorded in MT S(A), either (1) all the components have
permission P ; or (2) there exists a component C that has permission P̂ , and all
the components in the call stack after C have P .

As with information flow, the rule for cross-application calls assumes that all
components within an application have communicated with each other.

4.3 Properties

We prove Sorbet obeys Prop. 1–6. Here we show only the more concrete re-
statements of Prop. 5 and 6 made possible by Sorbet’s new policy statements
(disallow-flow, allow-declassify, and P̂). For brevity, details and proof sketches are
relegated to our companion technical report [13].

We first define an indirect call chain.

Definition 1. (Indirect call chain) Given components A and B, there exists
an indirect call chain from A to B if there exist

1. components D1, · · · , Dk; and
2. call chains from A to D1, from D1 to D2, · · ·, and from Dk to B.

We say that a component A can influence another component B if there is
an indirect call chain from A to B. For example, A can affect the behavior of

12

B (i.e., the intents that B sends) if either (1) A is part of a call chain to B,
or (2) A appears in a call chain to some component D, and this chain shares a
component with a different call chain to B. The shared component carries A’s
influence to B.

Property 5*. (Privilege escalation (2)) Given a component B protected by
permission P , and a component A that does not have P and belongs to a dif-
ferent application than B, if SAB is a system that contains A and B (and other
components), and SB is the same system without A, then a (possibly indirect)
call chain that ends in B exists in SAB if and only if it exists in SB. Additional
(possibly indirect) call chains may exist in SAB only if each such chain has a
common suffix with a (possibly indirect) call chain from A to B, and there exists
a component between A and B that has permission P̂ ; or there is a component
B′ between A and B, the path between B and B′ contains components of the
same application, and B′ is not protected by permission P but communicated to
B via unmonitored channels.

Property 6*. (Information flow (2)) Suppose a component A is guarded by
permission P1 and an information-flow policy disallow-flow(P1, P2), and a com-
ponent B is guarded by P2, and A and B belong to different applications. Then,
a (possibly indirect) call chain that ends with B, in a system with A, exists if
and only if the same call chain exists in a system without A. Additional (possibly
indirect) call chains may exist in the system with A only if each such chain has a
common suffix with a (possibly indirect) call chain from A to B, and there exists
a component between A and B that has permission allow-declassify(P1, P2).

5 Implementing and Evaluating Sorbet

We implemented Sorbet on top of Android 2.3.7. This section describes the
most salient implementation details, including the syntactic additions for ex-
pressing Sorbet’s policies, and a case study that illustrates Sorbet’s features.

Syntactic additions We extended Android’s manifest file syntax to support
information-flow and integrity policies. The component protected by P1 can
specify disallow-flow(P1, P2) by adding android:forbiddenPermissions=["P2"] to
the permissions by which this component is protected. allow-declassify(P1, P2)
is specified as <declassified-info source=["P1"] destination=["P2"]/>. A per-
mission is labeled as privileged P̂ by the addition of a “privileged” attribute to its
declaration: <uses-permission android:name="P " android:privileged="true"/>.

Implementation overview Sorbet’s keystone is a reference monitor built
on top of Android’s ActivityManager (Fig. 3). ActivityManager already medi-
ates inter-component communication, which includes preventing calls that are
illegal by Android’s policy; Sorbet modifies it so that mediation of relevant
calls is handled by Sorbet instead of by the legacy parts of ActivityManager.
Enforcing Sorbet’s policies also requires additional bookkeeping, including of
instance data (e.g., to recognize that a particular application has accessed a re-
source protected by a “forbidden” permission), and richer static policy specified

13

in application manifests. Hence, a significant component of Sorbet’s implemen-
tation is the data structures that implement this bookkeeping. The bookkeeping
includes keeping track of individual files accessed by applications; for enforce-
ment purposes, these are treated as components.

!""#$!""%$&'()*+',$

!-.+/01$
23435',$

6),7'0$
&'8','4-'$
2)4/0),$

93-:35'$23435',$

;3+3$!9<$

=',4'*$

<4(034-'$
>303$

!""#$!""%$

6),7'0$603.-$
>303$

!4?,)/?$9',@($

Fig. 3. Sorbet architecture: additions to
Android are shaded; arrows indicate inter-
actions between system components.

The most challenging part in im-
plementing Sorbet was to identify
not just which application invoked
a protected resource (which Android
typically already does) but which spe-
cific component instance was respon-
sible for the call; we accomplished
this by enhancing Android’s IPC data
structures to carry more information
about the caller. Another challenge
was to capture operations not me-
diated by ActivityManager, such as
opening a socket or a file. Android
enforces permission-based policies on
such operations by Linux-level checks
based on the (Linux) group ID of
the calling application; applications
are assigned group IDs at installation
time by the package manager. To me-
diate access to these operations, we
used TOMOYO Linux [21], a set of Linux kernel patches that replaces scat-
tered, ad-hoc access-control checks with centralized ones.2 We further extended
TOMOYO Linux so that access attempts for which policy was enforced at Linux
level (e.g., to open a socket or a file) trigger a call to Sorbet’s reference monitor.
This also allows Sorbet to mediate security-relevant behaviors implemented in
native code that may be included in Android applications.

Case study To test Sorbet and illustrate its usefulness, we used it to imple-
ment several policies; some that can be implemented (sometimes partially) by
previously proposed mechanisms (e.g., [2, 7]), and some that require Sorbet’s
features. Our main case study involves four applications: a file manager for stor-
ing and manipulating private files (e.g., a diary or list of account numbers); a
text editor; an encryption application; and an email application. The high-level
policy we focus on is to prevent private files from being leaked on the Internet,
but to allow them to be manipulated by various applications at the user’s be-
hest (e.g., by using the private file manager to launch an editor). Private files are
kept in a content provider implemented by the file manager, and protected by
separate permissions that allow read and write access. Applications can access
private files only when dynamically delegated the appropriate permissions by the
file manager. We next describe several specific scenarios (summarized in Fig. 4)
that examine variants of this policy and show how they could be implemented.

2 TOMOYO Linux has similarly been used by other researchers [2].

14

Scenario
Private File
Manager

Editor
Encryption
App

Email App PE IF

1 Private files cannot
be sent over the
network

a
protected by

R/W perms
– – – – –

b
protected by

R/W perms
use Internet use Internet use Internet X –

c
protected by

R/W perms
forbid Internet

use Internet use Internet use Internet – X

2 Private files sent
over network only
via email

a
protected by

R/W perms
use Internet use Internet use ̂Internet X –

b
protected by

R/W perms
forbid Internet

use Internet use Internet
use Internet
declassify

R/W→Internet
– X

3 Private files sent over
network only via
email and if encrypted

protected by
R/W perms

forbid Internet
use Internet

use Internet
declassify

R/W→Internet
use ̂Internet X X

Fig. 4. Three scenarios from our case study. Columns indicate the permissions assigned
to each application, and whether enforcement is via protection from privilege escalation
(PE), or information flow prevention (IF).

Scenario 1. We start from a base case in which private files must not be sent
over the network (Fig. 4, Scenario 1). In Android, the only way to prevent one
of these applications from leaking files to the network is to avoid granting any of
the applications the Internet permission (Scenario 1a). In Sorbet, this policy
can be enforced by either the mechanism that prevents privilege escalation or
the one that prevents undesired information flows. In the first case, all other
applications can be granted the Internet permission, but will no longer be able
to use it if the file manager, which does not have this permission, is on the call
stack (Scenario 1b). In the second case, the file manager declares the Internet
permission as forbidden, with the same effect (Scenario 1c).

Scenario 2. We now extend the desired policy to allow only the email client to
send a private file (an activity that the user explicitly initiates), while other ap-
plications can use the Internet for other purposes. This cannot be implemented
in stock Android, but can still be done with either of Sorbet’s protection mech-
anisms. For enforcement via the privilege-escalation mechanism, the email app
must declare and be granted the privileged version of the Internet permission.
To enforce the same policy via Sorbet’s information-flow mechanism, the file
manager would declare the Internet permission as forbidden (as in Scenario 1),
and the email would declare the permission to declassify from R/W to Internet.

Scenario 3. Finally, we extend the policy from Scenario 2 to allow emailing pri-
vate files only if they are encrypted. Enforcing this without limiting reasonable
uses of the email app requires both the information-flow and privilege-escalation
mechanisms. As in Scenario 2a, the email app is given the privileged Internet
permission, so that it can send email even if indirectly invoked by the file man-
ager, which does not have the Internet permission. In addition, the file manager
declares the Internet permission forbidden, and the encryption app is allowed to

15

declassify. Now, the only path to emailing private files is via the encryption app,
which is trusted to invoke the email app only with encrypted data.

The last scenario shows that Sorbet allows easy specification of useful poli-
cies significantly beyond what Android offers. Our case study used minimally
modified off-the-shelf applications: Open Manager v2.1.8, Qute Text Editor v0.1,
Android Privacy Guard v1.0.9, Email v2.3.4. We modified manifest files, added
sending functionality to some, and added a content provider to Open Manager.
Sorbet’s overhead was sufficiently small to be unobservable by the user.3

6 Related Work

Researchers have analyzed the security of Android’s permission system [5, 10],
developed analysis tools for Android applications [11], and proposed new pro-
tection mechanisms (e.g., [20, 22]). Many works studied Android’s attack surface
(e.g., [19]), including covert channels [24], DoS [1] and web attacks [17], and
unauthorized application repackaging [27].

Several works have pointed out flaws in Android’s permission system. One
weakness is the lack of global properties: Android’s permission system does not
prevent privilege escalation or information leakage. Davi et al. [6] and Felt et
al. [12] have studied privilege-escalation attacks in detail. Bugiel et al. devel-
oped a system that monitors interactions between applications at run time and
mitigates a wide range of privilege-escalation attacks [2]. Our mechanism has
many similarities, but we focus on allowing developers to specify policies on a
per-application basis, and emphasize formal analysis of mechanisms. Dietz et al.
proposed a framework, Quire, for provenance tracking to mitigate the confused
deputy problem [7]. Our goals overlap, but Sorbet differs in several ways: We do
not track full provenance information, but instead focus on flexible, application-
level policy specification based on permissions; we rely on the Android runtime
for bookkeeping, rather than using digital signatures. We also support declas-
sification, and formally investigate Sorbet’s properties. Another approach to
mitigating application collusion is through domain isolation. Bugiel et al. as-
signed trust levels to applications, allowing them to communicate only if they
are at the same level [3]. They focus on defining policy for a set of applications
at the same trust level, whereas we let applications define policy individually.

Several works have investigated privacy leaks in Android [8, 24, 4, 9]. We pro-
vide a formal framework that allows such flaws to be seen as violations of desired
security properties. Projects such as TaintDroid [8] and AppFence [14] aim to
automatically detect and prevent dangerous information leaks. Our work is in
several ways complementary. TaintDroid and AppFence operate at a much finer
granularity, tracking tainting at the level of variables, and enforce fixed policies.
In contrast, our enforcement is at the component level, and allows developers

3 We ran microbenchmarks, but, as common in this setting, the small changes—and
sometimes improvements—in latency were dwarfed by the variances between runs.

16

to specify policies, including, e.g., declassification, which is key to enabling ap-
plications that have legitimate reason to send tainted data to operate. We also
formally prove that our design enforces desired high-level security properties.

Systems such as Saint [22] and Apex [20] also improve Android’s permission
system, e.g., by protecting callers with guards that consider context beyond just
permissions, while staying generally close to the original design. We focus on
deeper revisions to the permission model and enforcing transitive properties.

Formal analysis of Android-related security issues has received less attention.
Shin et al. [25] developed a formal model in order to verify functional correctness
properties of Android, which revealed a flaw in the naming scheme for permis-
sions and a possible attack [26]. In contrast, our work develops a more abstract
model suitable for reasoning about extensions to Android’s permission system.

7 Conclusion

This paper develops a framework for formally analyzing Android-style permis-
sion systems, and shows how to enhance Android’s permission system to support
rich policies while maintaining convenient, application-centric policy specifica-
tion. We have proved the design of our enforcement system satisfies a set of secu-
rity properties, showed its feasibility by implementing and running it on a Nexus
S phone, and demonstrated its usefulness through a case study. In doing so, we
discover that Android’s inability to provide strong isolation between components
constrains the expressiveness of our system and complicates its implementation.
Our system successfully provides both application- and component-level protec-
tions, but it would need to resort to application-level protection less often if
Android’s component-level abstractions were more robust.

Acknowledgments This research was supported by NSF grants 0917047 and
1018211; by CyLab at Carnegie Mellon under grants DAAD19-02-1-0389 and
W911NF-09-1-0273 from the Army Research Office; and by a gift from KDDI
R&D Laboratories Inc.

References

1. A. Armando, A. Merlo, M.M., Verderame, L.: Would you mind forking this process?
A denial of service attack on Android (and some countermeasures). In: Proc. IFIP
SEC (2012)

2. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: To-
wards taming privilege-escalation attacks on Android. In: Proc. NDSS (2012)

3. Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.R., Shastry, B.: Prac-
tical and lightweight domain isolation on Android. In: Proc. SPSM (2011)

4. Chaudhuri, A.: Language-based security on Android. In: PLAS Workshop (2009)

5. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in Android. In: Proc. MobiSys (2011)

17

6. Davi, L., Dmitrienko, A., Sadeghi, A.R., Winandy, M.: Privilege escalation attacks
on Android. In: Proc. ISC (2010)

7. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: Lightweight
provenance for smart phone operating systems. In: Proc. USENIX Security (2011)

8. Enck, W., Gilbert, P., gon Chun, B., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proc. USENIX OSDI (2010)

9. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of Android application
security. In: Proc. USENIX Security (2011)

10. Enck, W., Ongtang, M., McDaniel, P.D.: On lightweight mobile phone application
certification. In: Proc. CCS (2009)

11. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proc. CCS (2011)

12. Felt, A.P., Wang, H., Moshchuk, A., Hanna, S., Chin, E.: Permission re-delegation:
Attacks and defenses. In: Proc. USENIX Security (2011)

13. Fragkaki, E., Bauer, L., Jia, L.: Modeling and enhancing Android’s permission sys-
tem. Tech. Rep. CMU-CyLab-11-020, CyLab, Carnegie Mellon University (2011)

14. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the
droids you’re looking for: Retrofitting Android to protect data from imperious
applications. In: Proc. CCS (2011)

15. Lineberry, A., Richardson, D.L., Wyatt, T.: These aren’t the permissions
you’re looking for. www.defcon.org/images/defcon-18/dc-18-presentations/

Lineberry/DEFCON-18-Lineberry-Not-The-Permissions-You-Are-Looking-For.

pdf (2010), [accessed 10-Apr-2012]
16. Loftus, J.: DefCon dings reveal Google product security risks. gizmodo.com/

5828478 (2011), [accessed 10-Apr-2012]
17. Luo, T., Hao, H., Du, W., Wang, Y., Yin, H.: Attacks on WebView in the Android

system. In: Proc. ACSAC (2011)
18. Marforio, C., Francillon, A., Čapkun, S.: Application collusion attack on the

permission-based security model and its implications for modern smartphone sys-
tems. Tech. Rep. 724, ETH Zurich (2011)

19. Mylonas, A., Dritsas, S., Tsoumas, B., Gritzalis, D.: Smartphone security evalua-
tion – The malware attack case. In: Proc. SECRYPT (2011)

20. Nauman, M., Khan, S., Zhang, X.: Apex: extending Android permission model and
enforcement with user-defined runtime constraints. In: Proc. ASIACCS (2010)

21. NTT Data Corporation: TOMOYO Linux. tomoyo.sourceforge.jp/ (2012), [ac-
cessed 10-Apr-2012]

22. Ongtang, M., McLaughlin, S.E., Enck, W., McDaniel, P.D.: Semantically rich
application-centric security in Android. In: Proc. ACSAC (2009)

23. Passeri, P.: One year of Android malware (full list). hackmageddon.com/2011/08/
11/one-year-of-android-malware-full-list/ (2011), [accessed 20-Jun-2012]

24. Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A., Wang, X.: Sound-
comber: A stealthy and context-aware sound Trojan for smartphones. In: Proc.
NDSS (2011)

25. Shin, W., Kiyomoto, S., Fukushima, K., Tanaka, T.: A formal model to analyze
the permission authorization and enforcement in the Android framework. In: Proc.
SocialCom/PASSAT (2010)

26. Shin, W., Kwak, S., Kiyomoto, S., Fukushima, K., Tanaka, T.: A small but non-
negligible flaw in the Android permission scheme. In: Proc. POLICY (2010)

27. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone appli-
cations in third-party Android marketplaces. In: Proc. CODASPY ’12 (2012)

18

