
A Homotopical Approach to Cryptography
Paventhan Vivekanandan

School of Informatics, Computing and Engineering
Indiana University Bloomington

Bloomington, USA
pvivekan@umail.iu.edu

Abstract—We present a new direction for the formal specifi-
cation of cryptographic schemes using types. In this approach,
we specify a cryptographic protocol using the tools of homotopy
type theory. Homotopy type theory adds the notion of higher
inductive type and univalence axiom to Martin-Löf’s intensional
type theory. A higher inductive type allows us to introduce
constructors for paths and higher-dimensional paths in addition
to points. The paths are then identified by equivalences in the
universe through univalence. A higher inductive type can act as a
front-end mapped to a concrete cryptographic implementation in
the universe. By having a higher inductive type front-end, we can
encode domain-specific laws of the cryptographic implementation
as higher-dimensional paths. Due to univalence and functoriality,
the path structure will be preserved in the mapping and realized
by equivalence in the universe. Using this model we can achieve
various guarantees on the correctness of the cryptographic
implementation.

Index Terms—Higher Inductive Type, Univalence, Functor, Ho-
motopy, Groupoid, Universe, Equivalence, Quasi-inverse, Identity
type

I. INTRODUCTION

Formal verification of cryptographic protocols has become
a significant research focus over recent years [1] [2]. Some
widely used cryptographic implementations were found to be
flawed after their deployment becoming vulnerable to various
attacks. For example, the Heartbleed attack (CVE- 2014-0160)
is a consequence of a simple coding error [3]. Even with
skilled designers, developers and testers it is highly difficult
to implement a cryptographic protocol without errors [4].
Theorem provers with a mathematical background such as Coq
[5] and Agda [6] can be used for implementing cryptographic
protocols and for designing attack models [1].

Type theory can be used both as a functional program-
ming language and as a theorem prover. In type theory, the
propositions can be interpreted as types whereas set theory
has clear segregation between first-order logic and the axioms
of ZFC. A type in type theory corresponds to a topological
space in homotopy theory. Homotopy type theory [7] extends
type theory by adding the notion of higher inductive type
and univalence axiom. In homotopy type theory, the witness
or proof element of a type can be viewed as a point in a
topological space and a witness of an identity type can be
viewed as a path in a topological space. A higher inductive
type differs from an ordinary inductive type by providing
constructors not only for points but also for paths. A cryp-
tographic scheme can be specified in homotopy type theory
using the notion of higher inductive types. A cryptographic

system which expresses decryption as an inverse of encryption
[8] can be defined using higher inductive type representing
a graphical model in a topological space. Functions from a
concrete implementation of the cryptographic system can be
projected from this graphical model using univalence axiom.
The higher inductive type acts as an abstract model for the
encoded cryptographic system and enables us to model the
correctness properties as paths or higher-dimensional paths in
a topological space. Agda is a dependently typed programming
language based on Martin-Löf’s intensional type theory [6].
A higher inductive type can be specified in Agda using Dan
Licata’s method [9].

In this paper, we discuss specifying cryptographic schemes
using higher inductive types in homotopy type theory, imple-
mented in Agda, and how to project computational models
from such specifications. In this paper, we make the following
contributions.

• We show how to design a cryptographic construction
using a higher inductive type and how to map the abstract
type to a concrete implementation in the universe. Such
developments give rise to interesting homotopies which
are paths between paths or two-dimensional paths in a
topological space.

• Paths in a higher inductive type are used to model
correctness rules such as functional correctness [8], which
says decryption inverses encryption, and this structure
will be preserved in the mapping to the universe due to
the functoriality of mappings in homotopy type theory.

• We can enforce various restrictions on the concrete im-
plementation when a cryptographic protocol is modeled
using a higher inductive type. We discuss designing a
higher inductive type for a database model with multi-
layered encryptions in the style of cryptDB [10].

• We discuss encoding of domain-specific properties related
to homomorphic encryption, deterministic encryption,
and order-preserving encryption as a path between paths
or homotopies in a higher inductive type.

Designing cryptographic constructions as a higher inductive
type has the following benefits.

• In type theory all functions are functorial. Therefore, the
functional correctness and domain-specific properties of
a cryptographic construction can be specified as paths or
homotopies in a higher inductive type, and the functions
will preserve the path structures in the mapping of the

type to the universe.
• By specifying cryptographic properties as paths, we

achieve guarantee on the correctness of the underlying
concrete implementation with respect to the encoded
properties.

• We can have a graphical representation of a cryptographic
construction in a topological space, and we map it to a
concrete implementation in the universe.

• By modeling a cryptographic construction as a higher
inductive type, we can get the groupoid structure and the
relevant coherence laws related to the higher inductive
type for free.

• We will get a non-dependent eliminator also known as the
recursion principle, and we can use it to define functions
or to map the elements including the paths of the higher
inductive type to elements of other types such as the
universe.

• We will get a dependent eliminator also known as induc-
tion principle which can be used to formulate and prove
theorems related to a cryptographic construction encoded
as higher inductive type.

• Correctness and theorem proving become an inherent part
of the system. So we can eliminate the cost involved
in using an external theorem prover to reason about the
correctness properties of the cryptographic protocol in
development.

II. BACKGROUND

A formal specification of a cryptographic scheme requires
a programming language with support for theorem proving.
Proof-assistants with a strong mathematical background such
as Agda and Coq can be used to specify correctness and
security properties of a cryptographic construction. There are
works which use an embedded domain-specific language [1]
[24] [20] on existing theorem provers to support defining and
proving cryptographic properties. In this paper, we discuss
a new approach to specify cryptographic protocols based
on types. This approach involves correlating a type with a
cryptographic implementation. By combining with the right
type, we can guarantee on various correctness properties of the
cryptographic application. In the remainder of this section, we
discuss the tools of homotopy type theory which are instru-
mental in modeling and associating types with cryptographic
implementations.

Unlike set theory, which is an interplay between propo-
sitions and sets, type theory is based on the interpretation
of propositions-as-types. According to this interpretation, a
proposition stating that two elements of a type a, b : A are
equal corresponds to a type known as the identity type given
by a =A b or IdA(a, b). In homotopy type theory, elements
of the identity type a =A b are used to model the notion of
paths or equivalences between a and b in the space A. An
element of the type a =A b is a witness or a proof stating
that a and b are propositionally equal. Propositional equality
is a proof relevant notion of equality expressed by identity
types. There is also a proof-irrelevant notion of equality in type

theory known as judgmental equality or definitional equality.
Definitional equality is not internal to the theory, and it is used
to express equality by definition. For example, when we have
a function f : Nat → Nat defined as f(x) = x3 then f(2)
is definitionally equal to 23.

Homotopy type theory extends Martin-Löf’s intensional
type theory by adding univalence axiom and higher inductive
types. It introduces the notion of viewing type as a topological
space in homotopy theory or a higher-dimensional groupoid
in category theory. Because of this correspondence, we can
observe an element of the identity type x =A y for a, b : A
as a path in a topological space or a morphism in a groupoid.
Also, an element of the iterated identity types m =x=Ay n
and p =m=x=Ayn q can be viewed as a 2-dimensional and
a 3-dimensional path respectively in a topological space or
a morphism between morphism and a higher-level morphism
respectively in a groupoid and so on.

A morphism at a level k in a groupoid is called a k-
morphism. A k-morphism has a groupoid structure defined
by identity, composition, and inverse operations. These op-
erations satisfy the groupoid laws which are associativity of
composition, identity as a unit of composition and cancellation
of inverses through a weak sense of equality but only up to a
morphism at the next level k+1. We can view the k-morphism
as a k-dimensional path in a topological space. Similarly, we
can observe the elements of an iterated identity type at level k
as k-dimensional paths. Therefore a proof element of the type
x =A y acts like a one-dimensional path between endpoints
x and y and a proof element of type m =x=Ay n acts like
a 2-dimensional path or a homotopy between paths of type
x =A y and so on. A homotopy between non-dependent
functions f1, f2 : A1 → A2 is given by the following equation.

f1 ∼ f2 :≡
∏
x:A1

(f1(x) =A2
f2(x)) (1)

Moreover, the paths also satisfy the groupoid laws up to
homotopy at the next level in the following sense.
• refl ◦ x = x ◦ refl = x −→ identity as a unit of

composition
• (x ◦ y) ◦ z = x ◦ (y ◦ z) −→ associativity of composition
• !x ◦ x = x ◦ !x = refl −→ cancellation of inverses

where refl is an element of type x =A x

Because of the correspondence of types to a topological
space or a higher-dimensional groupoid, we can map the
elements of an identity type, which are paths in homotopy
type theory, to equivalences between types in a universe.
Equivalence can be relaxed to a bijection when types behave
like sets. The following defining equations give an equivalence
between type A and type B.

A ' B :≡
∑

f :A→B

isequiv(f) (2)

isequiv(f) :≡
(∑

g:B→A

(f◦g ∼ idB)
)
×
(∑

h:B→A

(h◦f ∼ idA)
)

(3)

In (3), the composite f ◦ g is homotopic to the identity
function idB , and the composite h ◦ f is homotopic to the
identity function idA. The mapping of a path to equivalence
is made possible by the univalence axiom which describes that
we may identify equivalent types A and B in the following
sense.

ua : (A ' B)→ (A =U B) (4)

In (4), the type U is the universe or the type of types.
The univalence axiom states that when we have a proof
of type A ' B, we can obtain a path between A and
B. Axiomatization of univalence weakens the computational
properties of type theory. But there are works in progress,
such as cubical type theory, which provides a computational
interpretation of the univalence axiom.

There is also a reduced notion of equivalence called quasi-
inverse. A quasi-inverse for a function f : A → B is given
by

qinv(f) :≡
∑

g:B→A

(
(f ◦ g ∼ idB)× (g ◦ f ∼ idA)

)
(5)

Also, we have a function that maps an element of quasi-inverse
qinv(f) to isequiv(f) for f : A→ B [7].

mkqinv : qinv(f)→ isequiv(f) (6)

For examples described in this paper, we will use mkqinv to
obtain a proof of equivalence from quasi-inverse. For a path
p : A =U B, we have a function coe [12] that coerces along
p. The following equation gives the type of coe.

coe : (A =U B)→ (A→ B) (7)

In the presence of univalence, we also have a computation
rule for coe [12] defined as follows.

coe (ua (f , isequiv(f)))x = f(x) (8)

where x : A, f : A→ B and (f , isequiv(f)) : A ' B.
Higher inductive types are a general schema for defining

new types in homotopy type theory. It extends an ordinary
inductive type by providing constructors for generating paths
and higher paths. In homotopy type theory, we define a higher
inductive type by specifying its introduction, elimination, and
computation rules. The introduction rule of a type specifies
its constructors. The elimination rule of a type defines how
to use its elements, and the computation rule describes the
action of the elimination rule on the constructors of the type.
A simple example for higher inductive type is the interval
type I . It consists of two point constructors 0I and 1I and a
path constructor seg : 0I =I 1I . The following declaration1

specifies the introduction rule for I .

1

2 data I : Set where
3 -- point constructors

1In this paper, we have given a reduced declaration of higher inductive types
for better understanding. In Agda, we use Dan Licata’s method [9] to define
higher inductive types where we specify the path constructors as postulates.

4 0I : I
5 1I : I
6 -- path constructors
7 seg : 0I =I 1I

8

The non-dependent elimination rule or the recursion prin-
ciple of I states that when given a type C along with
constructors c0, c1 : C and cseg : c0 =C c1, there is a
function f : I → C such that f(0I) = c0, f(1I) = c1 and
apf (seg) = cseg where apf defines the action of functions
on paths. The equalities f(0I) = c0, f(1I) = c1 and
apf (seg) = cseg are the computation rules for the type I . The
computational rules for the point constructors 0I and 1I hold
definitionally, but the computation rule for path constructor
seg holds only propositionally, and we specify it as an axiom
which is a limitation of homotopy type theory.

Similarly, the dependent eliminator or the induction princi-
ple of I states that when given a type D : I → U along with
constructors d0 : D(0I), d1 : D(1I) and dseg : d0 =D

seg d1,
there is a dependent function f :

∏
(x:I) D(x) with computa-

tion rules f(0I) = d0, f(1I) = d1 and apdf (seg) = dseg.
Here dseg is a heterogeneous path transported over seg and
apdf defines the action of functions on heterogenous paths
[7].

Another important concept of homotopy type theory which
is central to understand the idea proposed in this paper is that
the functions behave functorially on paths. It means that a
function f : A → B respects equality and it preserves the
path structure in the mapping from type A to type B. Now
we can give the type of apf which defines the action of non-
dependent functions on paths as follows.

apf : (x =A y)→ (f(x) =A f(y)) (9)

The following equation gives the action of dependent functions
of type f :

∏
(x:A) B(x) on paths.

apdf :
∏

p:x=y

(p∗(f(x)) =B(y) f(y)) (10)

In (10), p∗(f(x)) lying in space B(y) can be thought of
as an endpoint of a path obtained by lifting p from f(x) to a
path in the total space

∑
(x:A) B(x) → A [7]. The following

equation gives the type of p∗ also known as transport.

transportBp : B(x)→ B(y) (11)

where p : x = y for x, y : A.
In section 3 we will give an example of encoding a crypto-

graphic scheme using higher inductive type and explain how
to map this higher inductive type to a concrete implementation
of the scheme in the universe. In section 4 we will discuss how
to design higher dimensional paths to enforce restrictions on
the implementation of a cryptographic protocol.

III. HIGHER INDUCTIVE TYPE FRONT-END FOR OTP

In this section, we will discuss an encoding of the one-time
pad using a higher inductive type with a path constructor to

specify the encryption function 2. We will construct a proof for
an equivalence which reflects the encryption path of the higher
inductive type in the universe. The functional correctness
property, which states that decryption inverts encryption, will
be part of the construction of the proof for the equivalence. We
will then map this higher inductive type, with the encryption
path, to a concrete implementation of the one-time pad, with
the equivalence reflecting the encryption path, in the universe.
The encryption and the decryption functions are then projected
from the concrete implementation in the universe using the
higher inductive type which acts as a front-end. By accessing
the concrete implementation of the one-time pad through a
higher inductive type, we can get a certificate or a guarantee on
the functional correctness of the system. Some other property
such as homomorphic encryption requires introducing higher-
dimensional paths to act as a certificate. We will discuss
higher-dimensional paths in section 4.

A. One-time Pad

The following Agda code gives the higher inductive type
encoding of the one-time pad.

1

2 data OTP (n : Nat) : Set where
3 -- point constructors
4 message : OTP n
5 cipher : OTP n
6

7 -- path constructors
8 otp-encrypt : {n : Nat} → (key : Vec Bit n) →
9 message {n} ≡ cipher {n}

10

The higher inductive type OTP has two point constructors
message and cipher representing the plain-text and the
cipher-text respectively. The path constructor otp-encrypt
represents the encryption function of the one-time pad. We
parameterize the type OTP with the length n of the data.
otp-encrypt uses the same length parameter n to specify
the length of the key which encodes another restriction, namely
the length of the key for the one-time pad should be equal to
the length of the message, which is crucial for the security of
the one-time pad.

The following code gives the recursion principle and its
action on constructors or the computation rules for OTP.

1

2 otp-rec : {n : Nat} →
3 (B : Set) →
4 (b-msg : B) →
5 (b-cipher : B) →
6 (b-encrypt : (key : Vec Bit n) → b-msg ≡ b-cipher) →
7 OTP n → B
8 otp-rec B b-msg b-cipher b-encrypt message = b-msg
9 otp-rec B b-msg b-cipher b-encrypt cipher = b-cipher

10

11 postulate
12 B-otp-rec : {n : Nat} →
13 (B : Set) →
14 (b-msg : B) →

2See https://github.com/pavenvivek/FCS-2018

15 (b-cipher : B) →
16 (b-encrypt : (key : Vec Bit n) → b-msg ≡ b-cipher) →
17 {key : Vec Bit n} →
18 ap (otp-rec B b-msg b-cipher b-encrypt)
19 (otp-encrypt key) ≡ (b-encrypt key)
20

The recursion principle otp-rec states that when given
a type B with point constructors b-msg and b-cipher
and path constructor b-encrypt, there exists a function of
type OTP n → B. otp-rec maps message and cipher
to b-msg and b-cipher respectively. B-otp-rec gives
the action of otp-rec on the path (otp-encrypt key)
which maps it to the path (b-encrypt key). Equation
(9) gives the type of ap. The computation rules for point
constructors message and cipher are given as definitional
equalities specified as part of otp-rec. The computation
rule for the path otp-encrypt is postulated as propositional
equality.

The following code gives the induction principle and its
computation rules for OTP.

1

2 otp-ind : {n : Nat} →
3 (B : OTP n → Set) →
4 (b-msg : B (message)) →
5 (b-cipher : B (cipher)) →
6 (b-encrypt : (key : Vec Bit n) →
7 transport B (otp-encrypt key) b-msg ≡ b-cipher) →
8 (x : OTP n) → B x
9 otp-ind B b-msg b-cipher b-encrypt message = b-msg

10 otp-ind B b-msg b-cipher b-encrypt cipher = b-cipher
11

12 postulate
13 B-otp-ind : {n : Nat} →
14 (B : OTP n → Set) →
15 (b-msg : B (message)) →
16 (b-cipher : B (cipher)) →
17 (b-encrypt : (key : Vec Bit n) →
18 transport B (otp-encrypt key) b-msg ≡ b-cipher) →
19 {key : Vec Bit n} →
20 apd (otp-ind B b-msg b-cipher b-encrypt)
21 (otp-encrypt key) ≡ (b-encrypt key)
22

The induction rule otp-ind states that when given a type
B : OTP n → Set along with points b-msg, b-cipher
and path b-encrypt, there exists a dependent function
(x : OTP n) → B x. The computation rule for path
b-encrypt is postulated as propositional equality. Equation
(10) gives the type of apd and equation (11) gives the type of
transport where p is the path (otp-encrypt key).

B. Implementation of one-time pad in the universe
The functional programming aspect of homotopy type the-

ory allows us to implement any cryptographic schemes. In
this section, we will develop a concrete model for the higher
inductive type OTP described in section 3.1. The encryption
function for the one-time pad is straightforward, and it is
implemented using xor. The encryption of one-time pad is
defined using the following function.

1

2 OTP-encrypt : {n : Nat} →

3 (key : Vec Bit n) →
4 (message : Vec Bit n) → Vec Bit n
5 OTP-encrypt {n} key message = message xorBits key
6

where xorBits perform xor on two vectors of equal length.

Similar to keys, we have chosen to use the type Vec
Bit n to represent the point constructors message and
cipher of the higher inductive type OTP in the universe.
Therefore, the path otp-encrypt should be mapped to
an equivalence formed by the function OTP-encrypt
between types Vec Bit n and Vec Bit n. To create
an equivalence for the function OTP-encrypt, we need a
proof element of type given by equation (5). To construct
a proof element of (5), we need a function g : Vec Bit
n → Vec Bit n, a proof element of f◦g ∼ id, and
a proof element of g◦f ∼ id. For the one-time pad, the
encryption function is also its inverse. So both f and g
are represented by OTP-encrypt in this case. Therefore,
the types f◦g ∼ id and g◦f ∼ id are definitionally the
same. The equivalence formed by OTP-encrypt is defined
as follows.

1

2 OTP-equiv : {n : Nat} →
3 (key : Vec Bit n) →
4 Vec Bit n ' Vec Bit n
5 OTP-equiv key = ((OTP-encrypt key) ,
6 equiv1 (mkqinv (OTP-encrypt key)
7 (α-OTP key) (α-OTP key)))
8

9 (α-OTP key) : (OTP-encrypt key (OTP-encrypt key msg))
10 ≡ msg
11

In the above code, (OTP-equiv key) is of the type
given by equation (2). equiv1 forms a proof element of the
type given by equation (3). The type of mkqinv is given by
equation (6) which takes an element of (5) as input and gives
an element of (3) as output. (α-OTP key) is a proof which
says the encryption of msg, implemented by OTP-encrypt,
followed by its decryption, which is also implemented by
OTP-encrypt in this case, is the same as msg.

C. Mapping OTP into the universe

The higher inductive type OTP defined in section 3.1
can now be mapped into the universe using univalence.
The abstract nature of higher inductive types also means
that we can map the same type to more than one concrete
implementation in the universe whenever compatible. The
equivalence (OTP-equiv key) respects the path structure
specified by the constructor otp-encrypt. Because of this,
a path formed by univalence given by (ua (OTP-equiv
key)) represents the path structure of otp-encrypt in the
universe. This correspondence allows us to define a mapping
I-OTP which maps the points message, cipher of OTP to
type Vec Bit n and a mapping I-OTP-path which maps
the path (otp-encrypt key) to (ua (OTP-equiv
key)).

1

2 I-OTP : {n : Nat} →
3 OTP n → Set
4 I-OTP {n} bits = otp-rec Set
5 (Vec Bit n)
6 (Vec Bit n)
7 (ń key → ua (OTP-equiv key)) bits
8

9 I-OTP-path : {n : Nat} →
10 (key : Vec Bit n) →
11 ap I-OTP (otp-encrypt {n} key)
12 ≡ ua (OTP-equiv key)
13 I-OTP-path {n} key = B-otp-rec Set
14 (Vec Bit n)
15 (Vec Bit n)
16 (ń k → ua (OTP-equiv k))
17

I-OTP is defined using the recursion principle otp-rec
of the higher inductive type OTP. It maps the points of
OTP to the type Vec Bit n in the universe represented by
Set. I-OTP-path maps the path (otp-encrypt key)
to (ua (OTP-equiv key)) using B-otp-rec. Now we
can define an interpreter function ITP using coe given by
equation (7) as follows.

1

2 ITP : {n : Nat} →
3 {a b : OTP n} →
4 (p : a ≡ b) →
5 (I-OTP a) → (I-OTP b)
6 ITP {n} {a} {b} p = coe (ap I-OTP p)
7

When we give the path otp-encrypt as input, the inter-
preter ITP returns the encryption function OTP-encrypt.
By accessing a concrete implementation in the universe using
a higher inductive type, we get the certificate or guarantee
specified by the path structures of the higher inductive type.
In the case of OTP, the functional correctness property is part
of the equivalence (OTP-equiv key) given by (α-OTP
key), and the path otp-encrypt will reflect this through
the mapping specified by I-OTP-path.

We will consider an example of using ITP to extract OTP-
encrypt and its application on a vector.

1

2 pf : (ITP
3 (otp-encrypt (1b :: (0b :: [])))
4 (1b :: (1b :: [])))
5 ≡ (0b :: (1b :: []))
6

In the above code, ITP takes otp-encrypt as input
with key (1b :: (0b :: [])) and plain-text (1b ::
(1b :: [])) and returns the cipher-text (0b :: (1b
::[])) as output.

IV. ENCODING PROPERTIES AS HIGHER DIMENSIONAL
PATHS

The path otp-encrypt described in the previous sec-
tion is one-dimensional. We can also encode domain-specific
cryptographic properties as higher dimensional paths. In this

section, we will design properties of a database model with
multi-layered encryptions in the style of cryptDB [10] as
higher dimensional paths. CryptDB has different layers of
encryption known as onion layers of encryption. The idea of
cryptDB is to allow computation on top of encrypted data
without the need to decrypt them. For example, homomorphic
encryption can be used to implement addition, and determinis-
tic encryption can be used to perform equality comparison on
top of encrypted data. Similarly, order-preserving encryption
can be used to implement inequality comparisons on encrypted
data. A higher inductive type can be used to define the
computational behavior of cryptDB. We will consider the
following higher inductive type specification to discuss encod-
ing domain-specific laws of cryptDB as higher dimensional
paths 3. CryptDB involves non-bijective functions, and can
be implemented using singleton types [12]. In this section, we
will not be focusing on the implementation details or mapping
types into the universe.

1

2 data encDB : Set where
3 -- point constructors
4 tab : encDB
5 tabDET : encDB
6 tabHOM : encDB
7 tabOPE : encDB
8

9 -- one-dimensional paths
10 hom-enc : tab ≡ tabHOM
11 det-enc : tab ≡ tabDET
12 ope-enc : tab ≡ tabOPE
13

The higher inductive type encDB specifies a lot of restric-
tions and a mapping to a concrete implementation should
respect those restrictions. For example, it says that homo-
morphic encryption is a function that takes a plain-text table
tab as input and gives an encrypted version of the table
tabHOM as output. The inverse path (! hom-enc) specifies
the decryption function. Similarly, the paths det-enc and
ope-enc specifies the deterministic and order-preserving
encryption schemes respectively. The higher inductive type
encDB acts as a single interface giving a lot of information
on underlying implementation of a cryptographic setting. It
provides us with a graphical model composed of points, paths,
paths between paths or higher dimensional paths to specify
about correctness properties and various domain-specific laws
of a cryptographic construction. In the remainder of this
section, we will discuss homotopies or path between paths
describing properties specific to homomorphic encryption,
deterministic encryption, and order-preserving encryption.

A. Homomorphic Encryption

Homomorphic encryption can be used to perform compu-
tations on cipher-text. In cryptDB, homomorphic encryption

3We have simplified the higher inductive type encDB for ease of under-
standing. Many details have been omitted from the specification given in this
paper. Please refer to https://github.com/pavenvivek/FCS-2018 for detailed
implementation of cryptDB.

tabHOM tabHOM

tabtab

encincrement

increment

 paillierhomhomenc ! homenc

Figure 1. Homotopy representing the homomorphic property of paillier
cryptosystem. The path hom-enc concatenated with enc-increment and
(! hom-enc) is equal to the path increment.

is implemented using paillier cryptosystem. According to the
homomorphic property of paillier cryptosystem [11], the ad-
dition of two plain-texts will be equal to the multiplication of
their corresponding cipher-text. We can express this property
as a two-dimensional path saying homomorphic encryption of
a plain-text concatenated with a path expressing homomorphic
multiplication concatenated with homomorphic decryption is
the same as the regular addition performed on the plain-text.

The encoding of cryptDB in homotopy type theory involves
non-bijective queries. Mapping a non-bijective query into the
universe is not possible in the current type-theoretic setting.
However, we can map a non-bijective path to singleton types in
the universe [12]. Such a mapping holds because any function
between singleton types is automatically a bijection.

B. Deterministic Encryption

Deterministic encryption generates the same cipher-text on
multiple encryptions of the same plain-text. In cryptDB, a
deterministic encryption scheme is used to perform equality
comparisons on encrypted data. The correctness property of
deterministic encryption requires DET (m1) ≡ DET (m2)
when m1 ≡ m2. We can specify this property as a het-
erogenous path over a path of type m1 ≡ m2. For example,
when tab and det-enc encode the plain-text as an implicit
argument given by tab : {m} → encDB and det-enc
: {m} → tab ≡ tabDET respectively, we can define the
following two-dimensional path.

1

2 det-correctness : (p : m1 ≡ m2) →
3 transport (ń x → tab {x} ≡ tabDET) p (det-enc {m1})
4 ≡
5 (det-enc {m2})
6

where det-correctness says that the path (det-enc

{m1}) ≡ (det-enc {m2}) lies over p : m1 ≡ m2.

C. Order-Preserving Encryption

Order-preserving encryption [13] allows inequality compar-
isons on encrypted data without the need to decrypt them.
Order-preserving encryption requires, for plain-texts x and y,
if (x < y) then OPE(x) < OPE(y). We cannot specify

this property in the style of det-correctness because
inequality relation does not form paths. However, we can
use a different approach to model this restriction in a higher
inductive type. For example, consider a function bigE (m1,
m2) which returns the biggest of two elements. When there
exists a path p’ : bigE(m1, m2) ≡ bigE(c1, c2),
where c1 and c2 are the OPE cipher values of m1 and m2
respectively, lying in the space encDB, we can design a two-
dimensional path saying ope-encrypt is the same path as
p’. This two-dimensional path will hold only when the order-
preserving encryption respects the inequality relation between
the plain-texts.

The two-dimensional paths discussed above capture dif-
ferent domain-specific laws that should be respected by any
concrete implementation of a multi-layered database in the
style of cryptDB. By specifying the above paths as con-
structors of encDB and by mapping encDB to a concrete
implementation in the universe similar to OTP in section 3,
we can achieve various guarantees on the correctness of the
implementation. The mapping of the higher inductive type into
the universe alone is enough to guarantee on the correctness
of properties specified by the path constructors because of
univalence and functoriality. By having a higher inductive type
front-end for a cryptographic implementation, we eliminate
the need to generate individual proofs for different domain-
specific properties. Also in a higher inductive type framework,
we have a way to relate proofs of different properties because
of the encoding of proofs as paths or higher dimensional paths
of a single type.

V. LIMITATIONS AND FUTURE WORK

A limitation of homotopy type theory is that the univalence
can be added only as an axiom. This limitation weakens
the good computational properties of type theory. We would
like to develop the framework described in this paper using
cubical type theory [14]. In cubical type theory, the univalence
computes and is no longer an axiom.

Another limitation is that the mapping of higher inductive
type into the universe requires the functions represented by
paths to be bijective. We cannot specify all functions as
bijections. In the case of cryptDB, functions implementing
queries like insert and delete are not bijective and therefore
cannot be encoded as paths in a higher inductive type. The
functions with simple retractions are not acceptable. Every
function should have inverses to be expressed as paths. One
way to work around this problem is to encode functions as
mappings between singleton types in the universe [12]. Any
function mapping between two singleton types is automatically
a bijection. So a path representing a non-bijective function in a
higher inductive type can be mapped to bijection formed by a
function between singleton types in the universe. Future work
in this direction would be to characterize mapping of partial
bijections to paths using the tools of homotopy theory. Another
direction is to develop type theory with non-symmetric paths
based on directed type theory [15]. In the current setting,
since homotopy type theory is also a functional programming

language, the non-bijective functions can be used along with
higher inductive types. So the benefits of having a higher
inductive type representing bijective functions can still be
achieved. Homotopy type theory also allows us to postulate
bijections as axioms and work with them. When we have a
proof that a function is bijective in a different setting, then
the function can be postulated as a bijection in homotopy type
theory and can be encoded using a higher inductive type.

Probabilistic encryption schemes are not bijective. It might
not be possible to map them to singleton types in the universe
because they compute to different values during each execution
with overwhelming probability and does not uniquely identify
the contents of a singleton type. So the probabilistic encryption
schemes have to be encoded as regular mappings and can be
used along with higher inductive types. Another limitation
is the difficulty involved in deriving proofs for bijections.
This limitation increases development time and effort. But
after application development, we can achieve overwhelming
guarantee on the correctness of the application. In the real-
world applications, bug fixing has taken much more effort than
the original development effort [16] [17] [18]. So the cost of
the increase in development effort can be ignored considering
the benefits achieved. It can be very significant especially
when implementing cryptographic protocols because a flawed
implementation of cryptographic protocol leads to serious
security issues resulting in the compromise of the entire
application. Agda also has a robust reflection library which
can be used to automate the generation of proofs [19] and
elimination rules for higher inductive types. Automated code
generation can reduce the development effort to some extent.
In the future, we would like to encode the security properties of
a cryptographic scheme as paths in a higher inductive type and
explore how to achieve security guarantees using this setting.

VI. RELATED WORK

The work discussed in this paper takes a first step to-
wards formal specification of cryptographic protocols based
on higher inductive types. There are other works which
support formal specification of cryptographic constructions
using different settings for handling cryptographic primitives
including shared-key and public-key cryptography, signatures,
hash functions, message authentication codes etc. In this
section, we will review few of those works.

A. Foundational Cryptography Framework

The Foundational Cryptography Framework (FCF) [1] im-
plements a probabilistic programming language embedded
inside Coq [5] proof assistant. Unlike Agda, the Coq proof as-
sistant is based on the Calculus of InductiveConstruction.
However, the recent version of Coq allows the sort Set to be
predicative. The probabilistic programming language defined
by FCF enables the specification of cryptographic schemes,
security definitions, and hard problems. A shallow embedding
of the probabilistic language allows FCF to have access to the
capabilities of the metalanguage (Coq) including dependent
types and higher-order functions. It also allows any theory

developed in the host language accessible to the embedded
language. The technique described in this paper uses a higher
inductive type to specify cryptographic protocols in a formal
setting. Coq does not have a built-in mechanism to support
the definition of higher inductive types. However, we can still
work with higher inductive types in Coq [9] [5]. With further
work, the shallow embedding can make the constructions
involving higher inductive types visible to the Foundational
Cryptography Framework.

B. CryptoVerif

The work of [22] implemented in CryptoVerif provides
a mechanized prover for showing correspondence assertions
which are useful to express authentication properties for
cryptographic protocols in the computational model. The
proof construction follows the sequences of games approach
in cryptography. CryptoVerif is based on ProcessCalculus
extended with parametric events to serve in the definition
of correspondences. The work also discusses proving mutual
authentication and authenticated key exchange using cor-
respondences. CryptoVerif incorporates efficient automation
reducing the proof development effort but lacks interactive
proof development features which makes it more specific to
only a subset of cryptographic constructions when compared
to FCF or EasyCrypt.

C. ProVerif

ProVerif [23] is a cryptographic protocol verifier for the
automated reasoning of security properties based on Dolev-
Yao model. It can be used for proving secrecy, authentica-
tion, and equivalences between processes differing only by
terms. The input protocols to ProVerif are modeled using
PiCalculus and internally translated using Horn clauses. The
security properties which needs to be proved are translated
to derivability queries on these clauses. ProVerif can handle
different cryptographic primitives including shared-key and
public-key cryptography, hash functions, and Diffie-Hellman
key agreements.

D. EasyCrypt

CertiCrypt [21], a framework built upon the Coq proof assis-
tant, enables machine-checked construction and verification of
cryptographic schemes. The proof development in CertiCrypt
is time-consuming, and EasyCrypt [20] was developed to
address this limitation by speeding up the construction of
proofs using automation based on SMT solvers. Both Cer-
tiCrypt and EasyCrypt has a deep embedding of a probabilistic
programming language which is used for proof construction.
The deep embedding makes them inaccessible to the cozy
features of the host language (Coq) such as dependent-types,
higher-order functions, modules, etc.

E. Verypto

Verypto [24], a framework implemented in Isabelle proof-
assistant [25], provides a formal language for the specifica-
tion and verification of game-based cryptographic security

proofs. Verypto includes a probabilistic higher-order functional
programming language with recursive types, references, and
events to express constructs of a game-based security proof.
The language handles stateful higher-order objects such as
oracles, arbitrary data types and supports event-based reason-
ing patterns. Like CertiCrypt and EasyCrypt, the probabilistic
programming language used for proof construction in Verypto
follows a deep embedding.

VII. CONCLUSION

We have shown how to implement a cryptographic scheme
using the tools of homotopy type theory. The higher inductive
type acts as a front-end and provides us with a graphical
computational model. The points, paths, and paths between
paths are mapped to concrete implementation in the universe
using univalence. The groupoid laws come for free [12], and
we don’t have to prove them explicitly. We use the elimination
rule of the higher inductive type for mapping them into the
universe. Because of the functoriality of functions, the two-
dimensional paths describing the domain-specific properties
related to homomorphic encryption, deterministic encryption,
and order-preserving encryption are realized by equivalences
or bijections respecting the corresponding properties. The
higher inductive type front-end can be used to project functions
from the underlying computational model by providing paths
using coercion. By having a higher inductive type front-end,
we can achieve various guarantees on the correctness of the
underlying cryptographic implementation.

The limitations of homotopy type theory, namely having
univalence only as an axiom and the requirement for functions
to have inverses has restricted us to only a subset of crypto-
graphic schemes to be benefitted by the model described in this
paper. Nevertheless, there is a lot of work going on to improve
type theory to allow for univalence to compute and mapping
of non-bijective functions into the universe which can reduce
the restrictions and enable us to encode more interesting
cryptographic constructions using the higher inductive type
model. However, this paper introduces the tools of homotopy
type theory to the cryptographic community and also acts as a
precursor of more interesting type theoretical settings to follow
which can significantly improve the framework described in
this paper.

REFERENCES

[1] Petcher, A., Morrisett, G.: The foundational cryptography framework.
In: Focardi R., Myers A. (eds) Principles of Security and Trust (POST).
Lecture Notes in Computer Science, vol 9036. Springer, Berlin, Heidel-
berg (2015)

[2] Berg, M.: Formal verification of cryptographic security proofs. Ph.D.
thesis, Saarland University (2013) http://www.infsec.cs.uni-saarland.de/
~berg/publications/thesis-berg.pdf

[3] Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li,
F., Weaver, N., Amann, J., Beekman, J., Payer, M., Paxson, V.: The
matter of Heartbleed. In: Proceedings of the 2014 Conference on Internet
Measurement Conference. Vancouver, BC, Canada (2014)

[4] Lazar, D., Chen, H., Wang, X., Zeldovich, N.: Why does cryptographic
software fail?: a case study and open problems. In: Proceedings of 5th
Asia-Pacific Workshop on Systems (APSys). Beijing, China (2014)

[5] Coq Development Team. The Coq proof assistant reference manual,
version 8.2. INRIA (2009). http://coq.inria.fr/

[6] Norell, U.: Towards a practical programming language based on de-
pendent type theory. PhD thesis, Chalmers University of Technology,
Sweden (2007)

[7] The Univalent Foundations Program, Institute for Advanced Study.
Homotopy Type Theory: Univalent foundations Of Mathematics (2013).
Available from homotopytypetheory.org/book

[8] Duan, J., Hurd, J., Li, G., Owens, S., Slind, K., Zhang J.: Functional
correctness proofs of encryption algorithms. In: Proceedings of the
12th international conference on Logic for Programming, Artificial
Intelligence, and Reasoning, pp. 519–533. Jamaica (2005)

[9] Licata, D.: Running circles around (In) your proof assistant; or, Quo-
tients that Compute (2011). Unpublished. http://homotopytypetheory.
org/2011/04/23/running-circles-around-in-your-proof-assistant

[10] Popa, R.A., Redfield, C.M.S, Zeldovich, N., Hari Balakrishnan, H. :
CryptDB: Protecting confidentiality with encrypted query processing.
In: Proceedings of the 23rd ACM Symposium on Operating Systems
Principles (SOSP), Cascais, Portugal (2011)

[11] Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Proceedings of the 18th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT). Prague, Czech Republic (1999).

[12] Anguili, C., Morehouse, E., Licata, D., Harper, R.: Homotopical patch
theory. In: International Conference on Functional Programming (ICFP),
Gothenburg, Sweden (2014)

[13] Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y.: Order preserving
encryption for numeric data. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data. Paris, France (2004).

[14] Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical Type The-
ory: a constructive interpretation of the univalence axiom. In: Leibniz
International Proceedings in Informatics. pp. 1–33. Germany (2015)

[15] Licata, D., Harper, R.: 2-dimensional directed type theory. In: Mathe-
matical Foundations of Programming Semantics (MFPS). (2011)

[16] Ben Othmane, L., Chehrazi, G., Bodden, E., Tsalovski, P., Brucker,
A.D., Miseldine, P.: Factors impacting the effort required to fix security
vulnerabilities. In: Lopez J., Mitchell C. (eds) Information Security
(ISC). Lecture Notes in Computer Science, vol 9290. Springer, Cham
(2015)

[17] Hamill, M., Goseva-Popstojanova, K.: Software faults fixing effort: anal-
ysis and prediction. In: Technical report 20150001332, NASA Goddard
Space Flight Center. Greenbelt, MD United States (2014)

[18] Cornell, D.: Remediation statistics: what does fixing application vulner-
abilities cost? In: Proceedings of the RSAConference. San Fransisco,
CA, USA (2012)

[19] Kokke, P., Swierstra, W.: Auto in Agda. In: Hinze R., Voigtländer J.
(eds) Mathematics of Program Construction (MPC). Lecture Notes in
Computer Science, vol 9129. Springer, Cham (2015)

[20] Barthe, G., Grégoire, B., Heraud, S., Zanella Béguelin, S.: Computer-
aided security proofs for the working cryptographer. In: Advances in
Cryptology - CRYPTO 2011. Lecture Notes in Computer Science, vol.
6841, pp. 71–90. Springer (2011)

[21] Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of
code-based cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2009. pp.
90–101. ACM (2009)

[22] Blanchet, B.: Computationally sound mechanized proofs of correspon-
dence assertions. In: 20th IEEE Computer Security Foundations Sym-
posium (CSF’07). pp.97–111. IEEE, Venice, Italy (Jul 2007)

[23] Blanchet, B.: Modeling and Verifying Security Protocols with the
Applied Pi Calculus and ProVerif. In: Foundations and Trends in Privacy
and Security. vol. 1, num. 1-2, pp.1–135. (Oct 2016)

[24] Berg, M.: Formal Verification of Cryptographic Security Proofs. Ph.D.
thesis. Saarland University (2013) http://www.infsec.cs.uni-saarland.de/
~berg/publications/thesis-berg.pdf

[25] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. In: Lecture Notes in Computer Science, vol.
2283. Springer (2002).

