
Shape Analysis with Plate Notation

Samir Jindel
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Logan C. Brooks
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract—Shape analysis is the project of extracting in-
formation about the run-time shape of data structures in a
program through static analysis. In this project we evaluate a
new approach to shape analysis that uses an idea from graphical
models to represent the object graph of a program compactly at
compile time while retaining the relevant information about it.

INTRODUCTION

Motivation

Shape analysis has many potential applications; one is
compile-time garbage collection (CTGC): approximating the
lifetime of objects at compile-time to remove the burden of
garbage collection from a run-time system. CTGC systems
range from identifying the lifetimes of almost all objects (cite
as in Rust), to only objects that have a very short lifetime
and can be allocated within a stack frame (cite as in escape
analysis).

Related Work

Most previous approaches at compile-time garbage col-
lection have focused either on functional languages [1] or
languages that encode lifetime information in their type system
though ownership types [2] [3], affine types [4], or similar
systems. CTGC is easier for functional languages because they
generally disallow heap mutation, making lifetime analysis at
compile time significantly easier than in imperative languages.
However, approaches designed for these languages are useless
for popular imperative languages like Java, C++, or Go. Lan-
guages with lifetime information encoded in their type system
are also easier to analyze because their type systems invalidate
programs that whose object graphs can not be modeled in the
type system, but this restricts their applicability to existing
code in languages without these type systems. Some other
approaches target existing languages, but have serious flaws,
such as being unable to identify the lifetimes of objects within
recursive structures [5].

Our Approach

Unlike [5], we aim not to insert allocation and deallocation
statements directly into the transformed code, but rather to
identify which structures in the program are cyclic, so that the
rest may be handled with a simple reference-counting system
and not a garbage collector.

To this end, we have designed and implemented a whole-
program shape analysis system that models the object graph
of the program at every point in the program in a compressed
fashion that allows us to represent acyclic data structures

correctly that requires only modest annotations from the pro-
grammer. The information provided by the analysis is more
than enough to implement a CTGC using it, although we have
not yet implemented it.

Our technical contribution is the shape analysis algorithm
and its C++ implementation.

PLATE NOTATION

A graphical model represents a system of random variables
by a graph that indicates the relationships between the vari-
ables. Plate notation is a notation used within graphical models
to indicate that parts of that graph that appear multiple times
repeat together. Our approach is similar in spirit to the use
of plate notation in graphical models, but the exact semantics
of plates are very different in our system. We use a graph
to represent the possible configurations of the heap of the
program at runtime – each node corresponds to a set of objects
in the heap and edges between the nodes correspond to points-
to relationships between these objects. Since the object graph
of a program can be arbitrarily large, we can not represent it
precisely at compile time, so we use plate notation to encode
which parts of the graph recur together within a single data
structure.

REPRESENTING THE OBJECT GRAPH

Our compile-time representation of the object graph of the
program, which we term the compressed object graph (COG),
has two types of nodes: concrete nodes and plate nodes. A
concrete node represents one or more exact objects in the
program’s heap, whereas a plate node represents a type of
subgraph that has been elided in the representation of the object
graph.

Each concrete node is labeled with its type and Boolean
values indicating whether it singular, i.e., whether it corre-
sponds to only one object in the heap or possibly several
and a Boolean indicating whether it is fixed, i.e., whether
it corresponds to a stack variable or an object that is only
referenced indirectly by stack variables. Each plate node is
labeled with a description of its plate, as described in the next
section.

There is only one type of edge in the COG, but it is labeled
with the field of the pointer in the struct of its head to which it
corresponds and a Boolean flag indicating whether it represents
at most one edge in the runtime object graph or several.

We define a plate as a COG with an identified root node.
A plate corresponds to the internal structure of some pattern



mylist null
*

next

data

next

Linked List

Fig. 1. COG for a non-circular linked list, in which each linked list node l
has a non-null pointer to an external data node d, which l owns (i.e., there
are no other references to d besides the incoming edge from l)

root

null

*

left_child right_child

left_child right_child

Binary Tree

Fig. 2. COG for a binary tree with non-pointer-type data included within
each node

that appears arbitrarily often within a program’s object graph.
Any edge in a COG with a plate node as a tail represents an
edge from the head of the edge to the root node of the plate
corresponding to the plate node. However, whereas multiple
edges with a single concrete node as a tail represent multiple
pointers to the same object, every edge into a plate node points
to a distinct copy of the COG represented by the plate. This
gives a natural representation to recursive structures by plate
nodes in a cycle.

Figure 1 demonstrates how a linked-list of arbitrary length
with a particular format is represented within a COG. Here,
stack-allocated and global variables are represented using gray-
filled nodes, while heap-allocated objects are represented using
white-filled nodes. The abstract node null represents an
“object” of any type located at memory address 0x0. Plates
are drawn using rounded rectangles. In this diagram, linked
list nodes have two fields:

• a next field, which points either to another linked
list node or to null, with no possibility of a cycle; and

inst ::= x = y

| x = y.f

| x.f = y

| x = new τ

| y = f(x1, · · · , xn)

Fig. 3. Instructions that manipulate the COG

• a data field, which is non-null and points to an
external data object which is uniquely paired with (i.e.,
owned by) the linked list node.

Our implementation caches occurrences of the same plate
type across multiple program points, so the area within the
box will be represented by a single node within the analysis;
information about nodes within the box will exist in a separate
COG in a global store of plate types. Similarly, Figure 2
demonstrates how a tree is represented.

Each distinct subgraph (up to isomorphism) associated with
a plate type is stored in a global index of plate types, and every
instance of a subgraph associated with a plate type in a COG
at any program point is replace with a corresponding plate
node. Since there may be multiple edges leaving a plate from
different nodes within the plate, the possible fields leaving a
plate node are indexed by (n, f) pairs, where n is a node
within the subgraph of the plate type and f is a field leaving
n.

There are two important functions that act on the COG
alone: CONTRACT, described in Algorithm 1, lowers the size
of a COG by identifying copies of plate types that have been
registered in the global store and replacing these copies with
corresponding plate nodes. It also collapses multiple copies
of plate nodes that have identical sets of outgoing edges to
concrete nodes, which bounds the maximum number of plate
nodes in a COG by 2C , where C is the number of concrete
nodes in the COG.

FOLLOWEDGE, described in Algorithm 2, implements the
semantics of plate expansion; it “unfolds” a plate node into a
separate set of concrete nodes – this expansion is performed
when the program assigns multiple pointers to point to a node
which was formerly a plate node.

Last, MERGE, merges the points-to information from one
COG into another by copying all edges from the first into
the second. Each node in a COG is given a unique label that
identifies the same node between COGs in multiple program
points, nodes with the same label in the two COGs must
represent the program object (if they represent sets, the same
node in the new COG will represent the union of their sets).

INTRAPROCEDURAL ANALYSIS

Though C or C++ programs do not necessarily fit the
following format, we assume for simplicity in the presentation
of our analysis that the instructions relevant to our analysis
have one of the forms in Figures 1, 2, or 4, or some other
programmer-specified pattern. It should be possible to auto-
matically identify important structures by using information



Algorithm 1 CONTRACT(COG G)
Remove nodes in G unreachable from fixed nodes
for every plate type P in the plate registry do

if the COG of P is isomorphic to a subgraph S of G via
map µ then

if any nodes in S are fixed
or µ(root(P )) has more than one incoming edge
or µ(root(P )) does not dominate S
then

continue
end if
Let h be the head of the single edge e to µ(root(P ))
Replace S with a single plate node p of plate type P
Add an edge from h to p with field field(e)
Copy outgoing edges from S to p.
Restart contraction

end if
end for

for every subset S of concrete nodes in G do
if S 6= ∅
and plate nodes p and q have outgoing edges to exactly
the concrete nodes in S then

Merge p and q
end if

end for
for every plate node p with no outgoing edges to concrete
nodes do

Merge p with a neighbor plate node of the same plate
type

end for

Algorithm 2 FOLLOWEDGE(COG g, Edge e)
if head(e) is a concrete node then

continue
end if
Let p be the plate node at the tail of e
Create a copy of COG(platetype(p)) in g
Create an edge from head(e) to p with field field(e)
for each edge e′ leaving p with field (n, f) do

Create an edge from copy of n to tail(e) with field f
end for
Remove p from g

collected from a custom runtime, or incrementally build up
complex plate structures during compile-time analysis. Our
implementation makes some assumptions about the use of
pointers within the LLVM program under analysis so that the
operations we describe on these instructions accurately reflect
the implementation.

Each object held by a stack variable is given a unique fixed
node in the COG – stack variables which are pointers may
then point to objects via the special field ?. The procedures
for updating a COG per a program instruction are given in
Algorithms 3, 4, 5, and 6.

Dataflow Analysis

Even though the COGs do not form a lattice under the
MERGE operation described above, we can still apply the

Algorithm 3 Process assignment x = y in COG G

if x is singular then
Remove edges leaving x

end if
Let s be the concrete node for variable y
for every edge e leaving s do

FOLLOWEDGE(e, G)
Copy edge e with head x

end for

Algorithm 4 Process assignment x = y.f in COG G

if x is singular then
Remove edges leaving x

end if
for every edge e leaving y with field ? do

FOLLOWEDGE(e, G)
Let s be the concrete node for variable tail(e)
for every edge e′ leaving y do

FOLLOWEDGE(e’, G)
Copy create an edge from x to tail(e′) with field ?

end for
end for

dataflow analysis framework, but the analysis is not guaranteed
to converge. However, if all object types that may be part of
a recursive structure are given plates, then the analysis should
converge because objects of those types will be contracted
into plates, and the number of plate nodes is bounded by
the number of concrete nodes. We check equality between
COGs in the dataflow analysis by graph isomorphism, so that
iterations through of the dataflow analysis through a loop with
the same structure but different exact nodes converges.

INTERPROCEDURAL ANALYSIS

Since most function calls pass data structures of similar
shape to the function, we cache COGs of the parameters to
functions. This is the only mechanism we have of summarizing

Algorithm 5 Process assignment x.f = y in COG G

for every edge e leaving x with field ? do
Let z = tail(e)
if z is singular and e is the only edge leaving x then

for every edge e′ leaving z with field(e′) = f do
Remove e′ from G

end for
end if
Create an edge from z to y with field f

end for

Algorithm 6 Process assignment x = NEW τ in COG G

Create a singular, concrete node z of type τ
if x is singular then

for every edge e leaving x do
Remove e from G

end for
end if
Create an edge from x to z with field ?



ret null
*

pred

pred

Peano Numeral

Fig. 4. COG for a Peano numeral, or linked list with non-pointer-type data
contained within each node

functions; otherwise, our interprocedural analysis re-analyzes
each function for different COGs that relate its parameters; the
algorithm for processing function calls is given in Algorithm 7.
Results of these analyses are cached, which speeds up analysis
of multiple similar calls to the same function, and is a step
towards enabling analysis of recursive function calls, provided
that the appropriate plate models are provided, or that the
object graph is trimmed (losing precision) to fit within a given
size limit.

Algorithm 7 Process assignment y = f(x1, · · · , xn) in COG
G

Mark all nodes in G other than x1, · · · , xn as not fixed
Remove all nodes in G not reachable from fixed nodes
for i ∈ [n] do

Let the ith parameter to f be z
Assign the node for xi in G to z

end for
Process f with COG G, with return value node w
Assign the node for w in G to y

EXPERIMENTAL SETUP

We implemented the analysis within the LLVM compiler
framework. [6] Our analysis currently targets C and C++
programs that do not use certain language constructs that defeat
our analysis. Since it implemented for the LLVM, our imple-
mentation may be able to handle LLVM code generated by
compilers for other high-level languages. Our analysis requires
that the plates necessary to represent the data structures in the
program be specified to the analysis.

EVALUATION

Our analysis is able to handle several small C and C++
programs, such as the one in Figure 5, on which it correctly
identifies linked-list structure shown in Figure 4.

Our analysis is currently unable to handle programs that
use virtual functions, pointer arithmetic, recursion, or stack
allocated objects. In addition, it is a whole-program analysis,
so the entire program must be provided to the analysis within
a single LLVM compilation unit.

The lack of support for virtual functions and stack allocated
objects is a technical limitation that could be implemented with
few changes to the existing system, but were not addressed
due to time limitation. Pointer arithmetic defeats our analysis

typedef struct Peano {
struct Peano *pred;
float data;

} Peano;

Peano *build() {
Peano *result = (Peano*)malloc(sizeof(Peano));
result->pred = NULL;

unsigned i = 0;
do {
Peano *temp = (Peano*)malloc(sizeof(Peano));
temp->pred = result;
result = temp;

} while(++i < 100);

return result;
}

int main() {
Peano *asdf = build();
return 0;

}

Fig. 5. C program constructing a linked list with data internal to the linked
list nodes, in a cons-cell fashion

for the obvious reason; the inability of our system to handle
recursion is its most significant issue.

It is unclear if our approach for finding fixpoints of loops
though the dataflow framework could be extended to recursive
functions. Certainly recursive functions with a single tail-call
could be handled (as they are equivalent to loops), but it is
not clear how we could find a fixpoint for recursive functions
with multiple recursive calls or groups of mutually recursive
functions.

SURPRISES

We were pleasantly surprised to discover that our system
has a similarity to existing ownership type systems: edges that
enter plates correspond to “ownership” in these systems, and
edges that leave plates correspond to “borrowing”. However,
unlike in these systems, not all pointers must be characterized
in this way; our analysis can reason about constant-size data
structures that do not follow this pattern in an ad hoc manner.

However, we were unpleasantly surprised to discover that
determining what plate types a program needs was much more
difficult than we expected, and we are not yet sure how to do
this. Further, we were disappointed that our checking algorithm
seemed rather brittle and ad hoc; while it was worked on the
examples we have tried, it does not seem very general, and we
are uncertain that it will work on larger programs.

CONCLUSION

We have designed and implemented a new algorithm for
shape analysis that uses ideas from graphical models to repre-
sent recursive data structures in a program compactly. Given
simple annotations that describe the internal structure of the
recursive structures, the analysis is able to compactly model
the object graph of the program at every program point, which
provides sufficient information for compile-time garbage col-
lection. Logan and I believe we both put approximately equal
time into this project.



REFERENCES

[1] N. Mazur, P. Ross, G. Janssens, and M. Bruynooghe, “Practical
aspects for a working compile time garbage collection system for
mercury,” in Logic Programming, ser. Lecture Notes in Computer
Science, P. Codognet, Ed. Springer Berlin Heidelberg, 2001, vol.
2237, pp. 105–119. [Online]. Available: http://dx.doi.org/10.1007/3-540-
45635-X 15

[2] W. Huang, W. Dietl, A. Milanova, and M. Ernst, “Inference and
checking of object ownership,” in ECOOP 2012 Object-Oriented
Programming, ser. Lecture Notes in Computer Science, J. Noble, Ed.
Springer Berlin Heidelberg, 2012, vol. 7313, pp. 181–206. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-31057-7 9

[3] A. Poetzsch-Heffter, K. Geilmann, and J. Schfer, “Infering ownership
types for encapsulated object-oriented program components,” in Program
Analysis and Compilation, Theory and Practice, ser. Lecture Notes in
Computer Science, T. Reps, M. Sagiv, and J. Bauer, Eds. Springer
Berlin Heidelberg, 2007, vol. 4444, pp. 120–144. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-71322-7 6

[4] Mozilla. (2014) The Rust programming language. [Online]. Available:
http://www.rust-lang.org

[5] S. Cherem and R. Rugina, “Compile-time deallocation of
individual objects,” in Proceedings of the 5th International
Symposium on Memory Management, ser. ISMM ’06. New
York, NY, USA: ACM, 2006, pp. 138–149. [Online]. Available:
http://doi.acm.org/10.1145/1133956.1133975

[6] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization, ser. CGO ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 75–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673


