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Research Question

Reference-counting garbage collection schemes typically need to be complemented with systems that collect
cyclical data structures at runtime, such as mark-and-sweep algorithms. Unfortunately, there are perfor-
mance drawbacks to the mark-and-sweep that limit utility in real-time applications, and incur memory and
runtime overhead over manual memory management. In general, reference counting is insufficient to free
cyclical data structures, and a runtime cycle detector is necessary to some extent. We intend to mitigate
the overhead of garbage-collection by minimizing the scope of the mark-and-sweep collector by using a data
reachability analysis at compile-time to identify which allocation sites within the program may or may not
spawn objects involved in cyclic data structures.

75% goal Data reachability analysis — identify a notable portion of all structures used in a
collection of test programs as acyclic

100% goal Also have a runtime system that implements the changes to memory management
described

125% goal Fine-tune garbage collection or analysis with the goal of improving on the results stated
in [2]

Logistics

Plan of Attack and Schedule: Table 1 shows our tentative schedule for work on major tasks.

Week Samir Logan
3/21–3/27 Formalize the analysis
3/28–4/3 Implement basic analysis Intraprocedural Interprocedural
4/4–4/10 Extend analysis to handle full Java Other hairy features Virtual function calls
4/11–4/17 Begin to implement runtime system Modified garbage collector Modified code generation
4/18–4/24 Finish implementing runtime system
4/25–4/30 Write up paper

Table 1: Proposed project schedule

Milestone: Achieve most of 75% goal, the static analysis. It should be able to handle basic Java programs,
and compute useful results for them.

Literature Search: We have examined a variety of papers that relate to compile-time garbage collection:

• Compile-time garbage collection for Java programs [2], which tries to replace heap memory man-
agement of certain objects using a garbage collector with malloc’s and free’s
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• Shape analysis which tries to identify whether certain data structures as a whole could contain
cycles [3]

• Related papers [1, 9, 8, 6, 11, 7, 5, 4, 10]

• If we are missing anything, we are unaware.

Resources Needed: We intend to use an existing Java optimization framework (such as Soot) as well as
open-source runtime (such as that in Jikes), but have not yet decided on which software to use. Such
software should be openly available. We already have access to the hardware and machines that should
be needed (personal/cluster computers, etc.). Except for the optimization framework and runtime as
noted above, we have all the resources needed to conduct this study.

Getting Started: We have an outline of the analysis algorithm and of the garbage collector. We do not
have any questions or constraints that would prevent us from continuing work immediately.
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