
Compile-Time Construction of Plate-Based Object Graphs

Samir Jindel Logan Brooks

Abstract
Suboptimal memory management continues to cause errors and
inefficiency in both languages with manual deallocation and those with
automated systems such as a garbage collector. Ideally, a compiler
would be able to

identify mistakes in manual approaches, and

when possible, replace garbage collection with less costly schemes,
such as reference counting or explicit malloc-free pairs.

We present a system that enables some such checks and optimizations
by building a graph representing the structure of objects on the heap.
Since the object graph can be arbitrarily large, we use a simplified
version of plate models (from Bayesian network literature) to represent
and reason about recursive structures.

Representing object graphs with plates
Compressed object graphs (COGs) consist of

concrete nodes, representing a single or multiple location in memory
with type and other information;

edges, representing possible points-to information for node fields; and

plate nodes, representing a copy of a template COG.

In the figures, white-filled nodes are heap-allocated nodes. Gray-filled
nodes are nodes for stack and global variables. Node null represents
the abstract “object” of any type at 0x0. Edge labels correspond to
field names. Bounded boxes represent plate node boundaries. An edge
that crosses the boundary of a plate, pointing into that plate, should be
viewed as pointing to a node in a new copy of the contents of the plate.

mylist null
*

next

data

next

Linked List

Figure : Plate representation of a pointer, mylist, to a linked list; each linked list
node points to a unique, “owned”, non-null data element.

root

null

*

left child right child

left child right child

Binary Tree

Figure : COG for a binary tree with non-pointer-type data included within each node

Checks, Optimizations, and Information from the Object Graph
Checks:

Detect possible/definite dereferences of null/freed/uninitialized
pointers: “compile-time valgrind”.

Optimizations:

Reference-count acyclical recursive structures.

Compile-time garbage collection on the compressed object graph can
be used to generate custom destructors.

Ownership information:

All incoming pointers to a simplified plate must point to the same
“generative node”.

The generative node of a plate owns all other nodes within the plate.

Special Node and Edge Types
Labeled node: node directly accessible in program (stack/args/globals)
Singular node: node with a single possible location in memory
Generative node of a plate: node to which all incoming edges to the
plate must point; owns all other nodes in a plate
Fixed node: nodes, such as labeled nodes for the current function and
its call-ancestors, that should not be collapsed into a plate node
Singular edge: represents a single possible edge in the full object graph

Some Operations on Compressed Object Graphs
Plate recognition: identification of unlabeled subgraphs that are
isomorphic to a known plate pattern; candidate generative node must
dominate rest of subgraph
Plate contraction: combination of two matching plate nodes with
identical outgoing edges into a single plate node
Plate expansion: generation of fresh unlabeled nodes according to
plate node; potentially generates new plate nodes
Edge following: plate expansion to ensure that an edge points to a
nonplate node
Graph merge: union of node and edge sets of a set of graphs
Node contraction: combination of two nodes into a nonsingular node,
copying incoming and outgoing edges (possibly losing precision)
Graph pruning: removal of heap nodes unreachable from labeled nodes

Relating Two Compressed Object Graphs
Isomorphism: bijection f between all nodes in graph A and all those
in graph B preserving

node labels, singularity, fixation, edge direction, as well as

edge direction, field labeling, and singularity.

Subisomorphism: isomorphism between a graph A (e.g., a plate
template) and a subgraph B′ of another graph B

One Object Graph Construction Routine

Algorithm 1 Process assignment x = y.f in COG G
if x is singular then

Remove edges leaving x
end if
for every edge e leaving y with field ? do
FollowEdge(e, G)
Let s be the concrete node for variable tail(e)
for every edge e′ leaving y do
FollowEdge(e’, G)
Copy create an edge from x to tail(e′) with field ?

end for
end for

Module Analysis
Intraprocedural analysis: For intraprocedural analysis, we use the
usual dataflow algorithm. However, COGs do not follow a lattice
structure, so the normal approach to proving termination is
unsuccessful. Provided that we have a suitable database of plate
templates or contract nodes to stay within a size limit, the algorithm
should still terminate, though.
Interprocedural analysis: When calling a function, we copy the
current object graph, replace the current labeling with labels of the
current function arguments and globals, and prune. On exit, we perform
a similar graph restriction on the return value. The inputs and outputs
are cached for efficiency and as a step towards more complicated
interprocedural analysis handling recursive calls.

Example Code and Output

typedef struct Peano {

struct Peano *pred;

float data;

} Peano;

int main() {

Peano *asdf = build();

return 0;

}

ret null
*

pred

pred

Peano Numeral

Peano *build() {

Peano *result = (Peano*)malloc(

sizeof(Peano));

result->pred = NULL;

unsigned i = 0;

do {

Peano *temp = (Peano*)malloc(

sizeof(Peano));

temp->pred = result;

result = temp;

} while(++i < 100);

return result;

}

Figure : C program constructing a linked list with data internal to the linked list nodes,
in a cons-cell fashion, and corresponding COG returned from build


