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Abstract

Discovering anomalies is an important and challenging taskfor many settings, from network intru-
sion to fraud detection. However, most work to date has focused on clouds of multi-dimensional
points, with little emphasis on graph data; even then, the focus is on un-weighted, node-labeled
graphs. Here we proposeOddBall , an algorithm to detect anomalous nodes in weighted graphs.
The contributions are the following: (a) we carefully choose features, that easily reveal nodes
with strange behavior; (b) we discover several new rules (power laws) in density, weights, ranks
and eigenvalues that seem to govern the so-called “neighborhood graphs” and we show how to
use them for anomaly detection; (c) we empirically show thatour method scales linearly with the
number of edges in the graph, and (d) we report experiments onmany real graphs with up to1.5
million nodes, whereOddBall indeed spots unusual nodes that agree with intuition.
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1 Introduction

Given a real graph, with weighted edges, which nodes should we consider as “strange”? Appli-
cations of this setting abound: For example, in network intrusion detection, we have computers
sending packets to each other, and we want to know which nodesmisbehave (e.g., spammers, port-
scanners). In a who-calls-whom network [33], strange behavior may indicate defecting customers,
or telemarketers, or even faulty equipment dropping connections too often. In a social network,
like FaceBook and LinkedIn, again we want to spot users whosebehavior deviates from the usual
behavior, such as people adding friends indiscriminately,in “popularity contests”.

The list of applications continues: Anomalous behavior could signify irregularities, like credit
card fraud, calling card fraud, campaign donation irregularities, accounting inefficiencies or fraud
[6], extremely cross-disciplinary authors in an author-paper graph [34], suspicious cargo shipments
[16], electronic auction fraud [12, 31], and many others.

In addition to revealing suspicious, illegal and/or dangerous behavior, anomaly detection is
useful for spotting rare events, as well as for the thankless, but absolutely vital task of data cleans-
ing [14, 15]. Moreover, anomaly detection is intimately related with the pattern and law discovery:
unless the majority of our nodes closely obey a pattern (say,a power law), only then can we confi-
dently consider as outliers the few nodes that deviate [9].

Most anomaly detection algorithms focus on clouds of multi-dimensional points, as we de-
scribe in the survey section. Our goal, on the other hand, is to spot strange nodes in agraph, with
weighted edges. What patterns and laws do such graphs obey? What features should we extract
from each node? We answer all these questions.

Main contributions of this work are:

1. Feature extraction: We propose to focus on neighborhoods, that is, a sphere, or aball (hence
the nameOddBall ) around each node(theego): that is, for each node, we consider the
induced subgraph of its neighboring nodes, which is referred to as theegonet. Out of the
huge number of numerical features one could extract from theegonet of a given node, we
give a carefully chosen list, with features that are both fast to compute, as well as effective
in revealing outliers. Thus, every node becomes a point in a low-dimensional feature space.

2. Egonet patterns: We show that egonets obey some surprising patterns (like theEgonet Den-
sity Power Law(EDPL), EWPL, ELWPL, andERPL), which gives us confidence to declare
as outliers the ones that deviate. We support our observations by showing that theERPL
yields theEWPL.

3. Our hybrid algorithm: Based on those patterns, we proposeOddBall , a novel, hybrid
method for outlier node detection. The method works well forgraphs withmillionsof nodes,
and it scaleslinearly with number of edges. Moreover, we propose several approximations
that improve its speed, with small or zero impact on its accuracy.

4. Application on real data: We applyOddBall to numerous real graphs (DBLP, political
donations, and other domains) and we show that it indeed spots nodes that a human would
agree are strange and/or extreme.

Jumping ahead, the major types of anomalous nodes we can spotare as follows (see Fig.1 for
examples).
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1. Near-cliquesand stars: Detecting those nodes whose neighbors are very well connected
(near-cliques) or not connected (stars) turn out to be “strange”: in most social networks,
friends of friends are often friends, but either extreme (clique/star) is suspicious.

2. Heavy vicinities: If personi has contactedn distinct people in a who-calls-whom network,
we would expect that the number of phonecalls (weight) wouldbe proportional ton (say,
3xn or 5xn). Extreme total weight would be suspicious, indicating, e.g., faulty equipment
that forces redialing.

3. Dominant heavy links: In the who-calls-whom scenario above, a very heavy single link in
the 1-step neighborhood of personi is also suspicious, indicating, e.g., a stalker that keeps
on calling only one of his/her contacts an excessive count oftimes.

(a) Near-star (b) Near-clique (c) Heavy vicinity (d) Dominant edge

Figure 1: Types of anomalies thatOddBall detects. Top row: toy sketches of
egonets (ego shown in larger, red circle). Bottom row: actual anomalies spotted in real
datasets. (a) A near-star inPostnet: Instapundit, on Hurricane Katrina relief agencies
(instapundit.com/archives/025235.php ): An extremely long post, with many up-
dates, and numerous links to diverse other posts about donations. (b) A near-clique inPostnet:
sizemore.co.uk , who often linked to its own posts, as well as to its own posts in other blogs.
(c) A heavy vicinity inPostnet: blog.searchenginewatch.com/bloghas abnormally high weight wrt
the number of edges in its egonet. (d) Dominant Edge(s) inCom2Cand: In FEC 2004, George
W. Bush received a huge donation from a single donor committee: Democratic National Commit-
tee (̃$87M) (!) - in fact, this amount wasspent againsthim; Next heaviest link (˜$25M): from
Republican National Committee.

The rest of the paper is organized as follows: Section 2 givesthe survey. Section 3 describes
the datasets we studied to spot outlier nodes. Section 4 gives the primary observations and the
description ofOddBall . Section 5 shows experimental results, and finally Section 6concludes.
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2 Related Work

2.1 Outlier Detection

Outlier detection has attracted wide interest, being a difficult problem, despite its apparent simplic-
ity. Even the definition of the outlier is hard to give: For instance, Hawkins [20] defines an outlier
as “an observation that deviates so much from other observations as to arouse suspicion that it was
generated by a different mechanism.” Similar, but not identical, definitions have been given by
Barnett and Lewis [5], and Johnson [21].

Outlier detection methods form two classes,parametricandnon-parametric. Statistical para-
metric methods assume there exists a standard underlying distribution of the observations that fit
the data [20, 5]. The latter class includesdistance-basedanddensity-baseddata mining methods.
These methods typically define as an outlier the (n-D) point that is too far away from the rest, and
thus lives in a low-density area [23]. Typical methods include LOF [8] and LOCI [32]. These
methods not only flag a point as an outlier but they also give outlierness scores; thus, they can sort
the points according to their “strangeness”.

Many otherdensity-basedmethods that perform well in detecting outliers in very large datasets
of high dimension are proposed in [1, 4, 13, 19, 29, 36, 22]. Feature bagging [24] also proves to
be useful to tackle high dimensionality, where features arerandomly grouped into multiple sets
of different sizes and outlier detection algorithms are performed on each different set after which
the scores are combined. Finally, most clustering algorithms [19, 29, 36, 22] reveal outliers as a
by-product.

2.2 Anomaly Detection in Graph Data

Noble and Cook [30] detect anomalous sub-graphs using variants of theMinimum Description
Length(MDL) principle. Eberle and Holder [17] also use the MDL principle as well as other
probabilistic measures to detect several types of anomalies (e.g. unexpected/missing nodes/edges).
Liu et. al [26] detect noncrashing bugs in software using frequent execution flow graphs combined
with classification. Chakrabarti [10] uses MDL to spot anomalous edges. Sun et al. [34] use
proximity and random walks, to assess the normality of nodesin bipartite graphs. OutRank and
LOADED [18, 28] use similarity graphs of objects to detect outliers.

In contrast to the above, we work withunlabeledgraphs. We explicitly focus on nodes, while
interactions are also considered implicitly as we studyneighborhood subgraphs. Finally, we con-
sider both bipartite and unipartite graphs as well as edgeweights.

2.3 Real-world graph properties

Several properties of real-world unweighted graphs have been discovered, surveyed in [11]. In our
study, we explicitly concentrate on anomalous node detection in weightedgraphs, adding to laws
of weighted graphs discovered in [2, 27] and relying on theseobservations to detect anomalies.
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Name |V | |E| Weights Structure Description
Blognet 27K 126K Yes Unipartite Network of blogs based on citations
Postnet 223K 217K Yes Unipartite Network of posts based on citations
Auth2Conf 421K 1M Yes Bipartite DBLP Author/Conference associa-

tions
Com2Cand 6K 125K Yes Bipartite 2004 US FEC Committee to Candidate

donations
Don2Com 1,6M 2M Yes Bipartite 2004 US FEC Donor to Committee do-

nations
Enron 36K 183K No Unipartite Email associations at Enron
Oregon 11K 38K No Unipartite AS peering connections

Table 1: Datasets studied in this work.

3 Data Description

We studied several unipartite/bipartite, weighted/unweighted large real-world graphs in a variety
of domains, described in detail in Table 1. Particularly, unipartite networks include the follow-
ing: Postnetcontains post-to-post links in a set of blogs[25],Blognetcontains blog-to-blog links
in the same set,Enroncontains emails at Enron collected from about 1998 to 2002 (made pub-
lic by the Federal Energy Regulatory Commission during its investigation), andOregoncontains
AS peering information inferred from Oregon route-views BGP data. Bipartite networks include
the following: Auth2Confcontains the publication records of authors to conferencesfrom DBLP,
andDon2ComandCom2Candare from the U.S. Federal Election Commission in 20041, a public
record of donations between donors and committees and between committees and political candi-
dates, respectively.

For Don2ComandCom2Cand, the weights on the edges are actual weights representing do-
nation amounts in dollars. For the remaining weighted datasets, the edge weights are simply the
number of occurrences of the edges. For instance, if blogi containsk posts with links to another
blog j, the weight of the edgeei,j is set tok.

In our study, we specifically focused on undirected graphs, but the ideas can easily be general-
ized to directed graphs.

4 Proposed Method

Borrowing terminology from social network analysis (SNA),“ego” is an individual node.
Informally, an ego (=node) of a given network is anomalous if its neighborhood significantly

differs from those of others. The basic research questions are: (a)what features should we use to
characterize a neighborhood?and (b)what does a ‘normal’ neighborhood looks like?

1Parsed dataset from all cycles may be found atwww.cs.cmu.edu/ ˜ mmcgloho/fec/data/fec data.html
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Both questions are open-ended, but we give some answers below. First, let’s define terminol-
ogy: the “k-step neighborhood” of nodei is the collection of nodei, all itsk-step-away nodes, and
all the connections among all of these nodes – formally, thisis the “induced subgraph”. In SNA,
the 1-step neighborhood of a node is specifically known as its“egonet”.

How should we choose the value ofk steps to study neighborhoods? Given that real-world
graphs have small diameter [3], we need to stay with small values ofk, and specifically, we recom-
mendk=1. We report our findings only fork=1, because usingk > 1 does not provide any more
intuitive or revealing information, while it has heavy computational overhead, possibly intractable
for very large graphs.

4.1 Feature Extraction

The first of our two inter-twined questions iswhich statistics/features to extractfrom a neighbor-
hood.

Intuitively, we should select easy-to-compute features which help spot the type of anomalies
we are interested in. Types of anomalies we want to find and related features are the following:
(1) for near-cliqueandstars, we want to see the relation between the number of entities and the
number of links between them, as strange patterns among “friends of friends” would arise suspi-
cion; (2) for heavy vicinities, or a highly active egonet, total weight should significantly surpass
the number of links; and (3) fordominant heavy link, or a single highly active link in an egonet, the
eigenvalue of the weighted adjacency matrix of the egonet should be very close to the total weight.
To accommodate detection of all of these anomalies, we propose to use the following features in
our study.

1. Ni: number of neighbors (degree) of egoi.
2. Ei: number of edges in egoneti.
3. Wi: total weight of egoneti,
4. λw,i: principal eigenvalue of theweightedadjacency matrix of egoneti.

The next question is how to look for outliers, in such ann-dimensional feature space, with one
point for each node of the graph. In our case,n=4, but one might have more features depending
on the application and types of anomalies one wants to detect. A quick answer to this would be to
use traditional outlier detection methods for clouds of points using all the features.

In our setting, we can do better. As we show next, we group features into carefully chosen pairs,
where we expect to find new patterns of normal behaviour. We flag those points that significantly
deviate from the discovered patterns as anomalous. Pairs offeatures we studied and the types of
anomalies each pair helps to detect are the following:

• E vsN : CliqueStar: detects near-cliques and stars
• W vsE: HeavyVicinity: detects many reoccurences of interactions
• λw vsW : DominantPair: detects single dominating heavy edge (strongly connectedpair)

Here, we note that we studied other features such as the effective radius of each node, number
of neighbors of degree 1, the principal eigenvalues of egonets, etc. as well as triplets of features.
However, we do not show these results for the sake of brevity.

5



4.2 Laws and Observations

The second of our research questions iswhat do normal neighborhoods look like. Thus, it is
important to find patterns (“laws”) for neighborhoods of real graphs, and then report the deviations,
if any. In this work, we report some new, surprising patterns:

For a given graphG, nodei ∈ V(G), and the egonetGi of node i,

Observation 1 (EDPL: Egonet Density Power Law) the number of nodesNi and the number of
edgesEi of Gi follow a power law.

Ei ∝ Nα
i , 1 ≤ α ≤ 2.

In our experiments theEDPLexponentα ranged from1.10 to 1.66. Fig. 3 illustrates this observa-
tion, for several of our datasets. Plots showEi versusNi for every node (green points); the black
circles are the median values for each bucket of points (separated by vertical dotted lines) after
appyling logarithmic binning on thex-axis as in [27]; the red line is the least squares(LS) fit on the
medians. The plots also show a blue line of slope 2, that corresponds to cliques, and a black line
of slope 1, that corresponds to stars. All the plots are in log-log scales.

Observation 2 (EWPL: Egonet Weight Power Law) the total weightWi and the number of edges
Ei of Gi follow a power law.

Wi ∝ E
β
i , β ≥ 1.

In our experiments theEWPLexponentβ ranged up to 1.29 (See Fig. 4). Values ofβ > 1 indicate
superlinear growth in the total weight with respect to increasing total edge count in the egonet.

Observation 3 (ELWPL: Egonet λw Power Law) the principal eigenvalue of the weighted adja-
cency matrixλw,i and the total weightWi of Gi follow a power law.

λw,i ∝ W
γ
i , 0.5 ≤ γ ≤ 1.

In our experiments theELWPLexponentγ ranged from 0.53 to 0.98 (See Fig. 5).γ=0.5 indi-
cates uniform weight distribution whereasγ̃ 1 indicates a dominant heavy edge, in which case the
weighted eigenvalue follows the maximum edge weight.γ=1 if the egonet contains only one edge.

Observation 4 (ERPL: Egonet Rank Power Law) the rankRi,j and the weightWi,j of edgej in
Gi follow a power law.

Wi,j ∝ Rθ
i,j , θ ≤ 0.

TheERPLsuggests that edge weights in the egonet have a skewed distribution. This is intuitive;
for example in a friendship network, a person could have manynot-so-close friends (small weight
links), but only a few close friends (heavy links). In Fig. 2 we show theERPLfor top three nodes
with the highest number of edges in their egonet fromBlognet– other datasets have similar results.

Next we show that if theERPLholds, then theEWPLalso holds. Given an egonet graphGi,
the total weightWi and the number of edgesEi of Gi, letWi denote the ordered set of weights of
the edges,Wi,j denote the weight of edgej, Wmin be the minimum edge weight, andRi,j denote
the rank of weightWi,j in setWi. Then,
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Figure 2: WeightWi,j vs. RankRi,j for each edgej in the egonet of nodei. Top three nodes
with the highest edgecount in their egonet fromBlognetare shown. LS line is fit in log-log scales
pointing out a power-law relation (ERPL).

Lemma 1 If Wi,j ∝ Rθ
i,j, θ ≤ 0, then

Wi ∝ E
β
i

{

β = 1, if −1 ≤ θ ≤ 0
β > 1, if θ < −1

Proof 1 For brevity, we give the proof forθ < −1 – other cases are similar. Given thatWi,j =
cRθ

i,j, Wmin = cEθ
i , i.e. c = WminE−θ

i . Then we can writeWi as

Wi = WminE
−θ
i

(

Ei
∑

j=1

jθ

)

≈ WminE
−θ
i

(
∫ Ei

j=1

jθdj

)

= WminE
−θ
i

(

jθ+1

θ + 1

∣

∣

∣

Ei

j=1

)

= WminE
−θ
i

(

1

−θ − 1
−

1

(−θ − 1)E−θ−1

i

)

For largeEi and consideringθ < −1, the second term in parenthesis goes to0. Therefore;

Wi ≈ c′E−θ
i

wherec′ = Wmin

−θ−1
, and sinceθ < −1, β > 1.

4.3 Anomaly Detection

We can easily use the observations given in part 4.2 in anomaly detection since anomalous nodes
would behave away from the normal pattern. To score the outlierness of a node, we take the
distance-to-fitting-line as a measure. Let us define they-value of a nodei asyi and similarly, let
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xi denote thex-value of nodei for a particular feature pairf(x, y). Given the power law equation
y = Cxθ for f(x, y), we define the outlierness score of nodei to be

out-line(i) =
max(yi, Cxθ

i )

min(yi, Cxθ
i )

∗ log(|yi − Cxθ
i | + 1)

Here we penalize the nodes with both thenumber of timesthat they deviate from their expected y-
value for their x-value and with the logarithm of theamountof deviation. This way, the minimum
outlierness score is0 –for which the actual valueyi is equal to the expected valueCxθ

i .
This simple and easy-to-compute method not only helps in detecting outliers, but also provides

a way to sort the nodes according to their outlierness scores. However, this method is prone to yield
false positives for the following reason: Assume that thereexists some points that are far away from
the remaining points but that are still located close to the fitting line. In our experiments with real
data, we observe that this is almost always the case for high values ofx andy. For example, in
Fig. 3(a), the points marked with left-triangles(⊳) are almost on the fitting line even though they
are far away from the rest of the points.

We want to flag both types of points as outliers, and thus we propose to combine our heuristic
with a density-based outlier detection technique. We used LOF [8], which also assigns outlierness
scoresout-lof(i) to data points; but any other outlier detection method woulddo, as long as it gives
such a score. To obtain the final outlierness score of a data point i, one might use several methods
such as taking a linear function of both scores and re-ranking the nodes according to the new
score, or merging the two ranked lists of nodes. In our work, we simply used the sum of the two
normalized(by dividing by the maximum) scores, that is,out-score(i)= out-line(i)+out-lof(i).

5 Experimental Results

5.0.1 CliqueStar

Here, we are interested in the communities that neighbors ofa node form. In particular,CliqueS-
tar detects anomalies having to do with near-cliques and near-stars. UsingCliqueStar, we were
successful in detecting many anomalies over the unipartitedatasets (although it is irrelevant for
bipartite graphs since by nature the egonet forms a “star”).

In social media dataPostnetandBlognet, we detected posts or blogs that had either all their
neighbors connected (cliques) or mostly disconnected (stars). We show some illustrative ex-
amples along with descriptions fromPostnetin Fig. 1. See Fig.3a for the detected outliers on
the scatter-plot from the same dataset. InBlognet(Fig.3b), the method detected several “link
blogs”, blogs devoted to posting links to a wide array of sources that do not always have sim-
ilar content. For instancemfisn.com links to tech blogs, politics stories, and flash cartoons.
dev.upian.com/hotlinks also links to a wide range of other posts each day.

In Enron(Fig.3c), the node with the highest outlier score turns out to be “Kenneth Lay”, who
was the CEO and is best known for his role in the Enron scandal in 2001. Our method reveals that
none of his over 1K contacts ever sent emails to each other. InOregon(Fig.3d), the top outliers
are the three large ISPs (“Verizon”, “ Sprint” and “AT&T”).
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(a) Postnet (b) Blognet

(c) Enron (d) Oregon

Figure 3: Illustration of the Egonet Density Power Law (EDPL), and the corresponding anomaly
CliqueStar, with outliers marked with triangles. Edge count versus node count (log-log scale); red
line is the LS fit on the median values (black circles); dashedblack and blue lines have slopes 1
and 2 respectively, corresponding to stars, and cliques. Top outlying points are enlarged. Most
striking outlier: Ken Lay (CEO of Enron), with a star-like neighborhood. See Section 5.1.1 for
more discussion and Fig.1 for example illustrations fromPostnet.

5.0.2 HeavyVicinity

HeavyVicinitydetects nodes that have considerably high total edge weightcompared to the number
of edges in their egonet. In our datasets,HeavyVicinitydetected “heavy egonets”, with anomalies
marked in Fig.4. InPostnet(Fig.4h), often anomalous posts were the ones that linked toanother
post repeatedly2 or were listed as the blog’s home page3.

In Blognet(Fig.4g), we detected blogs that linked to just a few other sources, either a single
post or multiple posts from the same blog. Interesting anomalies are “Automotive News Today”4,
which linked 241 times to the GM blog5, but never to any other blog in our dataset. One political

2leados.blogs.com/blog/2005/08/overview of cia.html
3blog.searchenginewatch.com/blog
4www.automotive-news-today.com
5fastlane.gmblogs.com
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blog 6 had 1816 total in- and out-links, to only 30 other blogs. On the other extreme, “Bandelier”7

had an abnormally high number of edges, but a low weight upon each. The blog had a single post
in the dataset, so it was naturally uncommon for blogs to linkto that blog multiple times.

HeavyVicinityrevealed interesting observations in bipartite graphs as well, spotting duplicates
and irregularities. InCom2Cand(Fig.4a,b), we see that “Democratic National Committee” gave
away a lot of money compared to the number of candidates that it donated to. In addition, “(John)
Kerry Victory 2004” donated a large amount to a single candidate, whereas “Liberty Congressional
Political Action Committee” donated a very small amount ($5) to a single candidate. Looking at
theCandidatesplot for the same bipartite graph, we also flagged “Aaron Russo”, the lone recipient
of that PAC. (In fact, Aaron Russo is the founder of the Constitution Party which never ran any
candidates, and Russo shut it down after 18 months.)

In Don2Com(Fig.4c,d), we see that “Bush-Cheney ’04 Inc.” received a lot of money from a
single donor. This is strange, as it was also listed as an anomaly in LoneStar, having many degree
1 donors. Looking at the data, we notice that that committee is listed twice with two different IDs.

On the other hand, we notice that the “Kerry Committee” received less money than would be
expected looking at the number of checks it received in total. Further analysis shows that most of
the edges in its egonet are of weight0, showing that most of the donations to that committee have
actually been returned.

In Auth2Conf(Fig.4e,f), “Averill M. Law” published 40 papers to the “Winter Simulation Con-
ference” and nowhere else. This might be due to the fact that there exists no other conference that
would capture the interest of that author. In fact, underLoneStar, we saw that “Winter Simulation
Conference” was one of those conferences with most of its authors with degree 1, pointing to the
same possibility that it is a unique conference in a particular area.

Here, other interesting points are “Wei Wang” and “Wei Li”. Those authors have many pa-
pers, but they get them published to as many distinct conferences, probably once or twice to each
conference.

5.0.3 DominantPair

DominantPairmeasures whether there is a single dominant heavy edge in theegonet. In other
words, this method detected “bursty” if not exclusive edges. In Postnet(Fig.5h) nodes such as
“ThinkProgress”’s post on a leak scandal8 and “A Freethinker’s Paradise” post 9 linking several
times to the “ThinkProgress” post were both flagged. InBlognet(Fig. 5g), we detected a “Drudge”
blogger10, who had 298 links, all but 4 to another blogger in the same site 11. “Nocapital” also
appeared here, since it had around 300 links each to two otherblogs.

In Com2Cand(Fig.5a,b), “Democratic National Committee” is one of the top outliers. We
would guess that the single large amount of donation was madeto “John F. Kerry”. Counterintu-

6nocapital.blogspot.com
7www.bandelier.com
8www.thinkprogress.org/leak-scandal
9leados.blogs.com/blog/2005/08/overview of cia.html

10drudge.com/user/rcade
11drudge.com/user/gzlives
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(a) Com2Cand (b) Com2Cand (c) Don2Com

(d) Don2Com (e) Auth2Conf (f) Auth2Conf

(g) Blognet (h) Postnet

Figure 4: Illustration of the Egonet Weight Power Law (EWPL) and the weight-edge anomaly
HeavyVicinity. Plots show total weight vs. total count of edges in the egonet for all nodes(in log-
log scales). Detected outliers include Democratic National Committee and John F. Kerry (in FEC
campaign donations), and Averill M. Law in DBLP. See Section5.2.1 for more discussions, and
Fig.1 for an illustrative example fromPostnet.

itively, however, we see that that amount was spent for an opposing advertisement against “George
W. Bush”).

In Don2Com(Fig.5c,d), there exists points above the slope 1 line. Further inspection shows that
these points correspond to authorities having negative weighted edges due to returns. Points below
the fitting line, such as “Dean For America” on theCommitteesplot, correspond to authorities with
even weight distributions on the edges, without any particular dominant heavy link.

DominantPairflagged extremely focused authors (those publish heavily toone conference) in
the DBLP data, shown in Fig.4(e,f). For instance, “Toshio Fukuda” has 115 papers in 17 con-
ferences (at the time of data collection), with more than half (87) of his papers in one particular
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(a) Com2Cand (b) Com2Cand (c) Don2Com

(d) Don2Com (e) Auth2Conf (f) Auth2Conf

(g) Blognet (h) Postnet

Figure 5: Illustration of the Egonetλw Power Law (ELWPL) and dominant heavy link anomaly
DominantPair. Top anomalies are marked with triangles and labeled. See Section 5.2.2 for detailed
discussions for each dataset and Fig.1 for an illustrative example fromCom2Cand.

conference (ICRA). “Alberto-Sangiovanni Vincentelli” published 279 papers to 45 distinct con-
ferences, with 76 of his papers in DAC. On theConferencesplot, “Programming Languages and
Their Definition” has 21 papers from 6 authors, with 16 papers by one particular author (“Hans
Bekic”).

5.1 Scalability

Major computational cost of our method is in feature extraction. In particular, computing those
features, such as the total number of edges and total weight,for the egonets is the bottleneck as
one needs to find the induced 1-step neighborhood subgraphs for all nodes in the network.

The problem of finding the number of edges in the egonet of a given node can be reduced to the
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problem of triangle counting. One straightforwardlisting method for local triangle counting is the
Node-Iteratoralgorithm. Node-Iteratorconsiders each one of theN nodes and examines which
pairs of its neighbors are connected. Time complexity of thealgorithm isO(Nd2

max). Approximate
streaming algorithms for local triangle counting can be applied to reduce the time complexity to
O(E log N) with space complexityO(N) [7].

Figure 6: (a) Computation time of computing egonet featuresvs. number of edges inEnron. Effect
of pruning degree-1 and degree-2 nodes on computation time of counting triangles. Solid(–): no
pruning, dashed(−−): pruningd ≤ 1, and dotted(. . . ): pruningd ≤ 2 nodes. Computation time
increases linearly with increasing number of edges, whereas it decreases with pruning. (b) Time
vs. accuracy. Effect of pruning on accuracy of finding top anomalies as in the original ranking
before pruning. New rankings are scored using Normalized Cumulative Discounted Gain. Pruning
reduces time for bothNode-IteratorandEigen-Trianglefor different number of eigenvalues while
keeping accuracy at as high as˜1 and̃ .9, respectively.

In our experiments, we useEigen-Triangle, proposed in [35], which uses eigenvalues/vectors
to approximate the number of paths of length three, i.e. local triangle counts, without performing
actual counting. We compare its performance toNode-Iterator, which gives exact counts. To
improve speed even more, we propose pruning low degree nodes. Notice that removing degree-1
nodes has no effect on the number of triangles in the graph. Wealso try removing degree-2 nodes;
this would remove some triangles but hopefully would not change the relative number of triangles
across nodes drastically and still reveal similar outliers.

In Figure 6a, we show computation time forNode-Iterator(green), and forEigen-Triangle
using2(red),10(blue), and30(black) eigenvalues versus graph size in terms of number of edges for
Enron(E =̃ 180K). Solid(–), dashed(−−), and dotted(. . . ) lines are for no pruning, after pruning
d ≤ 1, andd ≤ 2 nodes, respectively. We empirically note that computationtime grows linearly
with increasing graph size and also reduces with pruning. (Experiments ran on a Pentium class
workstation, with 16GB of RAM, running Linux Fedora Core. Toaccount for possible variability
due to system state, each run is repeated 10 times and execution time results are averaged. Error
bars show the variance across repeated runs.)

Pruning low-degree nodes and usingEigen-Trianglereduces computation time, however, they
only provide approximate answers. In order to quantify their accuracy, we compare the rank list of
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outliers returned byNode-Iteratorto the rank list of outliers returned by each approximate method.
To measure how rankings changed with approximation compared to the original rankings, we use
Normalized Dicounted Cumulative Gain(NDCG) which is prevailingly used in Information Re-
trieval for measuring the effectiveness of search engines.The premise of NDCG is that highly
ranked items in the original list appearing lower in the approximated list are penalized logarithmi-
cally proportional to their positions in the approximated list.

Figure 6b shows time vs. NDCG scores forEigen-Triangleusing2, 5, 10 and30 eigenvalues,
and alsoNode-Iteratorfor top k anomalies. For brevity, we only show ranking scores fork=100.
*, +, and o symbols represent no pruning, pruningd ≤ 1, andd ≤ 2 nodes, respectively. We notice
that while reducing computation time, pruning low degree nodes as well as usingEigen-Triangle
keeps the accuracy at as high as˜.9 for Eigen-Triangle(30), and above0.55 for Eigen-Triangle(2).

6 Conclusion

This is one of the few papers that focus on anomaly detection in graph data, including weighted
graphs. The major contributions are the following:

1. Proposing to work with “egonets”, that is, the induced sub-graph of the node of interest and
its neighbors; we give a small, carefully designed list of numerical features for egonets.

2. Discovery of new patterns that egonets follow, such as patterns in density (Obs.1:EDPL),
weights (Obs.2:EWPL), principal eigenvalues (Obs.3:ELWPL), and ranks (Obs.4:ERPL).
Proof of Lemma 1, linking theERPLto theEWPL.

3. OddBall , a fast, hybrid, unsupervised method to detect abnormal nodes in weighted graphs.
Possible approximations in feature extraction that provides speed-up, keeping accuracy at as
high as̃ .9.

4. Experiments on real graphs of over 1M nodes, whereOddBall reveals nodes that indeed
have strange or extreme behavior.

Future work could generalizeOddBall to time-evolving graphs, where the challenge is to find
patterns that neighborhood sub-graphs follow and to extract features incrementally over time.
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