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Abstract

Discovering anomalies is an important and challenging tassknany settings, from network intru-
sion to fraud detection. However, most work to date has fedus clouds of multi-dimensional
points, with little emphasis on graph data; even then, tleeigas on un-weighted, node-labeled
graphs. Here we propo$&ddBall , an algorithm to detect anomalous nodes in weighted graphs.
The contributions are the following: (a) we carefully chedeatures, that easily reveal nodes
with strange behavior; (b) we discover several new rulesvgrvdaws) in density, weights, ranks
and eigenvalues that seem to govern the so-called “neigbbdrgraphs” and we show how to
use them for anomaly detection; (c) we empirically show thatmethod scales linearly with the
number of edges in the graph, and (d) we report experimentsamy real graphs with up tb.5
million nodes, wher®©ddBall indeed spots unusual nodes that agree with intuition.
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1 Introduction

Given a real graph, with weighted edges, which nodes shoeldamsider as “strange”? Appli-
cations of this setting abound: For example, in networkusion detection, we have computers
sending packets to each other, and we want to know which nodd®ehave (e.g., spammers, port-
scanners). In a who-calls-whom network [33], strange bemarnay indicate defecting customers,
or telemarketers, or even faulty equipment dropping cotioes too often. In a social network,
like FaceBook and LinkedIn, again we want to spot users whebavior deviates from the usual
behavior, such as people adding friends indiscriminabtel§popularity contests”.

The list of applications continues: Anomalous behaviornd®ignify irregularities, like credit
card fraud, calling card fraud, campaign donation irregti&s, accounting inefficiencies or fraud
[6], extremely cross-disciplinary authors in an authopgregraph [34], suspicious cargo shipments
[16], electronic auction fraud [12, 31], and many others.

In addition to revealing suspicious, illegal and/or dawger behavior, anomaly detection is
useful for spotting rare events, as well as for the thanklaegisabsolutely vital task of data cleans-
ing [14, 15]. Moreover, anomaly detection is intimatelyateld with the pattern and law discovery:
unless the majority of our nodes closely obey a pattern éspgwer law), only then can we confi-
dently consider as outliers the few nodes that deviate [9].

Most anomaly detection algorithms focus on clouds of mdiltitensional points, as we de-
scribe in the survey section. Our goal, on the other hana, $pott strange nodes ingaaph, with
weighted edges. What patterns and laws do such graphs obég? f@éatures should we extract
from each node? We answer all these questions.

Main contributions of this work are:

1. Feature extractionWe propose to focus on neighborhoods, that is, a sphereyalt éhence
the nameOddBall ) around each node(thegg: that is, for each node, we consider the
induced subgraph of its neighboring nodes, which is reteteeas theegonet Out of the
huge number of numerical features one could extract frometfenet of a given node, we
give a carefully chosen list, with features that are both fasompute, as well as effective
in revealing outliers. Thus, every node becomes a point awadimensional feature space.

2. Egonet patternsWe show that egonets obey some surprising patterns (IkEgonet Den-
sity Power Law(EDPL), EWPL, ELWPL, andERPL), which gives us confidence to declare
as outliers the ones that deviate. We support our obsensabyg showing that thERPL
yields theEWPL

3. Our hybrid algorithm Based on those patterns, we prop@&dBall , a novel, hybrid
method for outlier node detection. The method works welbi@phs withmillions of nodes,
and it scaledinearly with number of edges. Moreover, we propose several appratkoms
that improve its speed, with small or zero impact on its aacwr

4. Application on real data We applyOddBall to numerous real graphs (DBLP, political
donations, and other domains) and we show that it indeed syates that a human would
agree are strange and/or extreme.

Jumping ahead, the major types of anomalous nodes we caargpas follows (see Fig.1 for
examples).



1. Near-cliquesandstars Detecting those nodes whose neighbors are very well coatec
(near-cliques) or not connected (stars) turn out to be figig& in most social networks,
friends of friends are often friends, but either extremeg(ed/star) is suspicious.

2. Heavy vicinities If personi has contacted distinct people in a who-calls-whom network,
we would expect that the number of phonecalls (weight) wdnddproportional tan (say,
3xn or 5xn). Extreme total weight would be suspicious, indicating, gfaulty equipment
that forces redialing.

3. Dominant heavy linksIn the who-calls-whom scenario above, a very heavy singleih
the 1-step neighborhood of persors also suspicious, indicating, e.g., a stalker that keeps
on calling only one of his/her contacts an excessive coutibas.

(a) Near-star (b) Near-cliqgue (c) Heavy vicinity (d) Dommadge

Figure 1: Types of anomalies thaDddBall detects. Top row: toy sketches of
egonets (ego shown in larger, red circle). Bottom row: dca@omalies spotted in real
datasets. (a) A near-star iRostnet Instapundit, on Hurricane Katrina relief agencies
(instapundit.com/archives/025235.php ): An extremely long post, with many up-
dates, and numerous links to diverse other posts aboutidasat(b) A near-clique irPostnet
sizemore.co.uk , who often linked to its own posts, as well as to its own pasisther blogs.
(c) A heavy vicinity inPostnet blog.searchenginewatch.com/blogs abnormally high weight wrt
the number of edges in its egonet. (d) Dominant Edge(§)am2Cand In FEC 2004, George
W. Bush received a huge donation from a single donor comeniffemocratic National Commit-
tee {$87M) (1) - in fact, this amount waspent againshim; Next heaviest link-§2511): from
Republican National Committee.

The rest of the paper is organized as follows: Section 2 givesurvey. Section 3 describes
the datasets we studied to spot outlier nodes. Section 4 ¢ineprimary observations and the
description ofOddBall . Section 5 shows experimental results, and finally Secticor@ludes.



2 Related Work

2.1 Outlier Detection

Outlier detection has attracted wide interest, being aadiffpproblem, despite its apparent simplic-
ity. Even the definition of the outlier is hard to give: Fortaisce, Hawkins [20] defines an outlier
as “an observation that deviates so much from other obsengas to arouse suspicion that it was
generated by a different mechanism.” Similar, but not ittt definitions have been given by
Barnett and Lewis [5], and Johnson [21].

Outlier detection methods form two classparametricandnon-parametric Statistical para-
metric methods assume there exists a standard underlystrgpdtion of the observations that fit
the data [20, 5]. The latter class includ#istance-basednddensity-basedata mining methods.
These methods typically define as an outlier thd) point that is too far away from the rest, and
thus lives in a low-density area [23]. Typical methods ielLOF [8] and LOCI [32]. These
methods not only flag a point as an outlier but they also gitkayoess scores; thus, they can sort
the points according to their “strangeness”.

Many otherdensity-basedethods that perform well in detecting outliers in very ldatasets
of high dimension are proposed in [1, 4, 13, 19, 29, 36, 22htle bagging [24] also proves to
be useful to tackle high dimensionality, where featuresranelomly grouped into multiple sets
of different sizes and outlier detection algorithms arefqguened on each different set after which
the scores are combined. Finally, most clustering algor#il9, 29, 36, 22] reveal outliers as a
by-product.

2.2 Anomaly Detection in Graph Data

Noble and Cook [30] detect anomalous sub-graphs usingntariaf theMinimum Description
Length(MDL) principle. Eberle and Holder [17] also use the MDL priple as well as other
probabilistic measures to detect several types of anom@ig. unexpected/missing nodes/edges).
Liu et. al [26] detect noncrashing bugs in software usingdent execution flow graphs combined
with classification. Chakrabarti [10] uses MDL to spot antoua edges. Sun et al. [34] use
proximity and random walks, to assess the normality of naddspartite graphs. OutRank and
LOADED [18, 28] use similarity graphs of objects to detectligus.

In contrast to the above, we work witnlabeledgraphs. We explicitly focus on nodes, while
interactions are also considered implicitly as we stodighborhood subgraph#inally, we con-
sider both bipartite and unipartite graphs as well as edgjghts

2.3 Real-world graph properties

Several properties of real-world unweighted graphs haes lakscovered, surveyed in [11]. In our
study, we explicitly concentrate on anomalous node detecdti weightedgraphs, adding to laws
of weighted graphs discovered in [2, 27] and relying on thedsservations to detect anomalies.



Name V| |E| | Weights | Structure | Description

Blognet 27K | 126K | Yes Unipartite | Network of blogs based on citations

Postnet 223K | 217K | Yes Unipartite | Network of posts based on citations

Auth2Conf | 421K | 1M Yes Bipartite | DBLP Author/Conference associa-
tions

Com2Cand 6K 125K | Yes Bipartite | 2004 US FEC Committee to Candiddte
donations

Don2Com | 1,6M | 2M Yes Bipartite | 2004 US FEC Donor to Committee do-
nations

Enron 36K | 183K | No Unipartite | Email associations at Enron

Oregon 11K | 38K | No Unipartite | AS peering connections

Table 1: Datasets studied in this work.

3 DataDescription

We studied several unipartite/bipartite, weighted/urghiged large real-world graphs in a variety
of domains, described in detail in Table 1. Particularlyjpantite networks include the follow-
ing: Postnetcontains post-to-post links in a set of blogs[2Blpgnetcontains blog-to-blog links
in the same set:-nron contains emails at Enron collected from about 1998 to 200&d@épub-
lic by the Federal Energy Regulatory Commission duringntgestigation), anédregoncontains
AS peering information inferred from Oregon route-views B@ata. Bipartite networks include
the following: Auth2Confcontains the publication records of authors to conferefroes DBLP,
andDon2ComandCom2Candare from the U.S. Federal Election Commission in 2Q@public
record of donations between donors and committees and bete@nmittees and political candi-
dates, respectively.

For Don2Comand Com2Cangthe weights on the edges are actual weights representing do
nation amounts in dollars. For the remaining weighted ddsashe edge weights are simply the
number of occurrences of the edges. For instance, if blmantainsk posts with links to another
blog j, the weight of the edge, ; is set tok.

In our study, we specifically focused on undirected grapbsthe ideas can easily be general-
ized to directed graphs.

4 Proposed Method

Borrowing terminology from social network analysis (SNAggo” is an individual node.
Informally, an ego £node) of a given network is anomalous if its neighborhoodidicantly
differs from those of others. The basic research questioes(a)what features should we use to

characterize a neighborhoodéhd (b)what does a ‘normal’ neighborhood looks like?

lparsed dataset from all cycles may be founahaitv.cs.cmu.edu/ ~ mmcgloho/fec/data/fec _data.html



Both questions are open-ended, but we give some answens.delst, let’'s define terminol-
ogy: the ‘k-step neighborhood” of nodés the collection of node¢, all its k-step-away nodes, and
all the connections among all of these nodes — formally,ighike ‘induced subgraph In SNA,
the 1-step neighborhood of a node is specifically known d®gsnet.

How should we choose the value bfsteps to study neighborhoods? Given that real-world
graphs have small diameter [3], we need to stay with smallesabfk, and specifically, we recom-
mendki=1. We report our findings only fot=1, because using > 1 does not provide any more
intuitive or revealing information, while it has heavy coutational overhead, possibly intractable
for very large graphs.

4.1 Feature Extraction

The first of our two inter-twined questionswghich statistics/features to extraitom a neighbor-
hood.

Intuitively, we should select easy-to-compute featuregctvihelp spot the type of anomalies
we are interested in. Types of anomalies we want to find arede@lfeatures are the following:
(1) for near-cliqueandstars we want to see the relation between the number of entitidgtzan
number of links between them, as strange patterns amorentfsi of friends” would arise suspi-
cion; (2) forheavy vicinitiesor a highly active egonet, total weight should significarstlirpass
the number of links; and (3) fatominant heavy linkor a single highly active link in an egonet, the
eigenvalue of the weighted adjacency matrix of the egormilsibe very close to the total weight.
To accommodate detection of all of these anomalies, we g®pmuse the following features in
our study.

1. N;: number of neighbors (degree) of ego

2. E;: number of edges in egongt

3. W;: total weight of egonet,

4. )\, ;: principal eigenvalue of theeightedadjacency matrix of egonét

The next question is how to look for outliers, in suchvadimensional feature space, with one
point for each node of the graph. In our case4, but one might have more features depending
on the application and types of anomalies one wants to detegptiick answer to this would be to
use traditional outlier detection methods for clouds ofp®using all the features.

In our setting, we can do better. As we show next, we groupifeatinto carefully chosen pairs,
where we expect to find new patterns of normal behaviour. Vgetlase points that significantly
deviate from the discovered patterns as anomalous. Paieatfres we studied and the types of
anomalies each pair helps to detect are the following:

e F vs N: CligueStar detects near-cliques and stars
e IV vs E: HeavyVicinity detects many reoccurences of interactions
e )\, vsW: DominantPair detects single dominating heavy edge (strongly connquaé&dl

Here, we note that we studied other features such as thdiedfeadius of each node, number
of neighbors of degree 1, the principal eigenvalues of eggoméc. as well as triplets of features.
However, we do not show these results for the sake of brevity.
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4.2 Lawsand Observations

The second of our research questionsvizat do normal neighborhoods look likeThus, it is
important to find patterns (“laws”) for neighborhoods oflrgaphs, and then report the deviations,
if any. In this work, we report some new, surprising patterns

For a given graphg, nodei € V(G), and the egone§; of node i,

Observation 1 (EDPL: Egonet Density Power Law) the number of noded; and the number of
edgesF; of G; follow a power law.

Eix N*, 1<a<?.

In our experiments thEDPL exponenty ranged froml.10 to 1.66. Fig. 3 illustrates this observa-
tion, for several of our datasets. Plots shBywersus/; for every node (green points); the black
circles are the median values for each bucket of points (agguh by vertical dotted lines) after
appyling logarithmic binning on the-axis as in [27]; the red line is the least squares(LS) fit @ th
medians. The plots also show a blue line of slope 2, that spords to cliques, and a black line
of slope 1, that corresponds to stars. All the plots are inldggscales.

Observation 2 (EWPL: Egonet Weight Power Law) the total weight¥; and the number of edges
E; of G; follow a power law.
W o B, 3> 1.

In our experiments thEWPLexponent3 ranged up to 1.29 (See Fig. 4). Valuesof 1 indicate
superlinear growth in the total weight with respect to irsiag total edge count in the egonet.

Observation 3 (ELWPL: Egonet )\, Power Law) the principal eigenvalue of the weighted adja-
cency matrix\,, ; and the total weightV; of G; follow a power law.

)\UM' X VV:, 0.5 S Y S 1.

In our experiments th&LWPL exponenty ranged from 0.53 to 0.98 (See Fig. 5)=0.5 indi-
cates uniform weight distribution wheread indicates a dominant heavy edge, in which case the
weighted eigenvalue follows the maximum edge weightl if the egonet contains only one edge.

Observation 4 (ERPL: Egonet Rank Power Law) the rankR; ; and the weightV; ; of edgej in
g; follow a power law.

Zh]’

The ERPLsuggests that edge weights in the egonet have a skewedulisn. This is intuitive;
for example in a friendship network, a person could have nmatyso-close friends (small weight
links), but only a few close friends (heavy links). In Fig. 2 whow theERPLfor top three nodes
with the highest number of edges in their egonet fiBlognet— other datasets have similar results.

Next we show that if th&RPLholds, then th&aWPLalso holds. Given an egonet gragh
the total weightV; and the number of edgéds of G;, let VW, denote the ordered set of weights of
the edgesl|V; ; denote the weight of edge W,,,;, be the minimum edge weight, arf¢} ; denote
the rank of weightV; ; in setW,. Then,



-0.5106x + (1.8241) = y
+ .0.61054x + (1.9803) = y
- .0.50517x + (1.5443) = y

Figure 2: WeightiV; ; vs. RankR, ; for each edgg in the egonet of nodé Top three nodes
with the highest edgecount in their egonet fr&hognetare shown. LS line is fit in log-log scales
pointing out a power-law relatiorERPL).

Lemmal If W;,; oc R? ., 6 <0, then

1,5
W‘O(Eﬁ{ B=1,if-1<6<0

g>1,if0 < -1

Proof 1 For brevity, we give the proof fof < —1 — other cases are similar. Given tht; ; =
cRY .\, Woin = cE?,i.e.c = W, E7%. Then we can writél; as

(N
E; E;
j=1 J

=1
E;
Jj=1

1 1
= WminE'_e -
e )

For large E; and considering < —1, the second term in parenthesis goe$.t@herefore;

e E'—G j6+1
mini; 6+1

W; =~ JdE?

wherec’ = Xzin and since) < —1, 3 > 1.

4.3 Anomaly Detection

We can easily use the observations given in part 4.2 in anodeikction since anomalous nodes
would behave away from the normal pattern. To score the eyuthiss of a node, we take the
distance-to-fitting-line as a measure. Let us defineytialue of a node asy; and similarly, let
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x; denote ther-value of node for a particular feature paif (x, y). Given the power law equation
y = Ca2? for f(z,y), we define the outlierness score of nade be

max(y;, Cx?)

out-line(i) = xlog(|y; — C2?| + 1)

min(y;, Cz?)
Here we penalize the nodes with both thember of timeshat they deviate from their expected y-
value for their x-value and with the logarithm of thenountof deviation. This way, the minimum
outlierness score ig—for which the actual valug; is equal to the expected valdér?.

This simple and easy-to-compute method not only helps ieatieiy outliers, but also provides
away to sort the nodes according to their outlierness scétesever, this method is prone to yield
false positives for the following reason: Assume that tlexists some points that are far away from
the remaining points but that are still located close to ttimdj line. In our experiments with real
data, we observe that this is almost always the case for tagles ofz andy. For example, in
Fig. 3(a), the points marked with left-trianglés)) are almost on the fitting line even though they
are far away from the rest of the points.

We want to flag both types of points as outliers, and thus wpgse to combine our heuristic
with a density-based outlier detection technique. We ugef [8], which also assigns outlierness
scoreout-lof(i) to data points; but any other outlier detection method waolaidas long as it gives
such a score. To obtain the final outlierness score of a datd p@ne might use several methods
such as taking a linear function of both scores and re-rankie nodes according to the new
score, or merging the two ranked lists of nodes. In our work,simply used the sum of the two
normalized(by dividing by the maximum) scores, thabist-score(i)= out-line(i+out-lof(i).

5 Experimental Results

5.0.1 CliqueStar

Here, we are interested in the communities that neighboasrafde form. In particulacCliqueS-
tar detects anomalies having to do with near-cliques and rtaes-sUsingCliqueStar we were
successful in detecting many anomalies over the unipattitasets (although it is irrelevant for
bipartite graphs since by nature the egonet forms a “star”).

In social media dat&ostnetand Blognet we detected posts or blogs that had either all their
neighbors connected (cliques) or mostly disconnectedsjstawe show some illustrative ex-
amples along with descriptions froRostnetin Fig. 1. See Fig.3a for the detected outliers on
the scatter-plot from the same dataset. Bllogne{Fig.3b), the method detected several “link
blogs”, blogs devoted to posting links to a wide array of segrthat do not always have sim-
ilar content. For instancenfisn.com links to tech blogs, politics stories, and flash cartoons.
dev.upian.com/hotlinks also links to a wide range of other posts each day.

In Enron(Fig.3c), the node with the highest outlier score turns outé ‘Kenneth Lay, who
was the CEO and is best known for his role in the Enron scand2001. Our method reveals that
none of his over 1K contacts ever sent emails to each othe@régon(Fig.3d), the top outliers
are the three large ISPs\Wgrizor, “ Sprint’ and “AT&T").
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Figure 3: lllustration of the Egonet Density Power La#DPL), and the corresponding anomaly
CliqueStar with outliers marked with triangles. Edge count versusencolunt (log-log scale); red
line is the LS fit on the median values (black circles); dadbladk and blue lines have slopes 1
and 2 respectively, corresponding to stars, and cliqueg. oldlying points are enlarged. Most
striking outlier: Ken Lay (CEO of Enron), with a star-likeighborhood. See Section 5.1.1 for
more discussion and Fig.1 for example illustrations fiéostnet

5.0.2 HeawVicinity

HeavyVicinitydetects nodes that have considerably high total edge wedghpared to the number
of edges in their egonet. In our dataséieavyVicinitydetected “heavy egonets”, with anomalies
marked in Fig.4. InPostnefFig.4h), often anomalous posts were the ones that linkeshtdher
post repeated|¥ or were listed as the blog’s home page

In Blognet(Fig.4g), we detected blogs that linked to just a few otherses, either a single
post or multiple posts from the same blog. Interesting ari@sare ‘Automotive News Tod&;
which linked 241 times to the GM bl&gbut never to any other blog in our dataset. One political

?leados.blogs.com/blog/2005/08/overview _of _cia.html
3blog.searchenginewatch.com/blog
4www.automotive-news-today.com

Sfastlane.gmblogs.com



blog® had 1816 total in- and out-links, to only 30 other blogs. Qadther extreme,Bandeliet’
had an abnormally high number of edges, but a low weight upeh.eThe blog had a single post
in the dataset, so it was naturally uncommon for blogs totanthat blog multiple times.

HeavyVicinityrevealed interesting observations in bipartite graphsell spotting duplicates
and irregularities. IlCom2Cang@Fig.4a,b), we see thaDemocratic National Committégave
away a lot of money compared to the number of candidatesttdahated to. In addition,(John)
Kerry Victory 2004 donated a large amount to a single candidate, wheigagfty Congressional
Political Action Committeedonated a very small amount ($5) to a single candidate. Lmapht
theCandidatesplot for the same bipartite graph, we also flaggéaron Russg the lone recipient
of that PAC. (In fact, Aaron Russo is the founder of the Canstin Party which never ran any
candidates, and Russo shut it down after 18 months.)

In Don2ConfFig.4c,d), we see thaBush-Cheney '04 Int.received a lot of money from a
single donor. This is strange, as it was also listed as an alyamLoneStar having many degree
1 donors. Looking at the data, we notice that that commitidisted twice with two different IDs.

On the other hand, we notice that theerry Committeéreceived less money than would be
expected looking at the number of checks it received in tétafther analysis shows that most of
the edges in its egonet are of weighishowing that most of the donations to that committee have
actually been returned.

In Auth2Con{Fig.4e,f), “Averill M. Law’ published 40 papers to th&Vinter Simulation Con-
ferencé and nowhere else. This might be due to the fact that therg®r other conference that
would capture the interest of that author. In fact, undemeStay we saw that Winter Simulation
Conferencéwas one of those conferences with most of its authors witlrele 1, pointing to the
same possibility that it is a unique conference in a pardicatea.

Here, other interesting points ar&/i Wang and “Wei Li". Those authors have many pa-
pers, but they get them published to as many distinct conéexe probably once or twice to each
conference.

5.0.3 DominantPair

DominantPairmeasures whether there is a single dominant heavy edge iegtheet. In other
words, this method detected “bursty” if not exclusive edgés PostnefFig.5h) nodes such as
“ThinkProgresss post on a leak scandéland “A Freethinker’'s Paradisepost® linking several
times to the ThinkProgresspost were both flagged. IBlogne{Fig. 5g), we detected &rudge’
blogger®, who had 298 links, all but 4 to another blogger in the same!sit “Nocapital’ also
appeared here, since it had around 300 links each to two blbgs.

In Com2CandFig.5a,b), Democratic National Committées one of the top outliers. We
would guess that the single large amount of donation was natilhn F. Kerry. Counterintu-

Snocapital.blogspot.com

“www.bandelier.com

8www.thinkprogress.org/leak-scandal
9leados.blogs.com/blog/2005/08/overview _of _cia.html
0drudge.com/user/rcade

1drudge.com/user/gzlives
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Figure 4: lllustration of the Egonet Weight Power LaWPL) and the weight-edge anomaly
HeavyVicinity Plots show total weight vs. total count of edges in the egtmreaall nodes(in log-
log scales). Detected outliers include Democratic NatiQmnmittee and John F. Kerry (in FEC
campaign donations), and Averill M. Law in DBLP. See Secto®.1 for more discussions, and
Fig.1 for an illustrative example frofRostnet

itively, however, we see that that amount was spent for amsipg advertisement againsséorge
W. Bush).

In Don2ConfFig.5c,d), there exists points above the slope 1 line.Heulihspection shows that
these points correspond to authorities having negativghwed edges due to returns. Points below
the fitting line, such asDean For Americaon the Committeeplot, correspond to authorities with
even weight distributions on the edges, without any padicdominant heavy link.

DominantPairflagged extremely focused authors (those publish heavibheoconference) in
the DBLP data, shown in Fig.4(e,f). For instancdoshio Fukudahas 115 papers in 17 con-
ferences (at the time of data collection), with more tharf (&) of his papers in one particular
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Figure 5: lllustration of the Egonet, Power Law ELWPL and dominant heavy link anomaly
DominantPaitr Top anomalies are marked with triangles and labeled. Seteo8é.2.2 for detailed
discussions for each dataset and Fig.1 for an illustratteengple fromCom2Cand

conference (ICRA). Alberto-Sangiovanni Vincentéllpublished 279 papers to 45 distinct con-
ferences, with 76 of his papers in DAC. On t@enferenceplot, “Programming Languages and
Their Definitior! has 21 papers from 6 authors, with 16 papers by one partieuthor (‘Hans
Bekic).

51 Scalability

Major computational cost of our method is in feature eximact In particular, computing those
features, such as the total number of edges and total wdahtie egonets is the bottleneck as
one needs to find the induced 1-step neighborhood subgraphB hodes in the network.

The problem of finding the number of edges in the egonet of @giode can be reduced to the
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problem of triangle counting. One straightforwdisting method for local triangle counting is the
Node-Iteratoralgorithm. Node-Iteratorconsiders each one of thé nodes and examines which
pairs of its neighbors are connected. Time complexity oftlgerithm isO(Nd?, ). Approximate

streaming algorithms for local triangle counting can beli@gpto reduce the time complexity to
O(FElog N) with space complexitp (N) [7].

ENROCN , NDCG TOP-100
14r 10
Node Iterator No pruning
12H —#— Eigen Triangle(30) -+ -Pruning d <1
—e—Eigen Triangle{10) -+ Pruning d < 2 Node Iterato;
’G 101 —=—Eigen Triangle(2) ’C; " \;_
o O EigenTriangle{30) /;’
&2 L N
Q | D ‘;/
g g 10° ]
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Figure 6: (a) Computation time of computing egonet featusesiumber of edges iBnron Effect
of pruning degree-1 and degree-2 nodes on computation tirneumting triangles. Solid(-): no
pruning, dashed{—): pruningd < 1, and dotted(...): pruning < 2 nodes. Computation time
increases linearly with increasing number of edges, wiseitedecreases with pruning. (b) Time
vs. accuracy. Effect of pruning on accuracy of finding topraabes as in the original ranking
before pruning. New rankings are scored using Normalizesh@ative Discounted Gain. Pruning
reduces time for botNode-IteratorandEigen-Trianglefor different number of eigenvalues while
keeping accuracy at as high-asand-.9, respectively.

In our experiments, we udeigen-Triangle proposed in [35], which uses eigenvalues/vectors
to approximate the number of paths of length three, i.e.llw@angle counts, without performing
actual counting. We compare its performanceNtode-Iterator which gives exact counts. To
improve speed even more, we propose pruning low degree ndblidige that removing degree-1
nodes has no effect on the number of triangles in the graphal¥éetry removing degree-2 nodes;
this would remove some triangles but hopefully would notrd®the relative number of triangles
across nodes drastically and still reveal similar outliers

In Figure 6a, we show computation time fhiode-Iterator(green), and folEigen-Triangle
using2(red), 10(blue), and0(black) eigenvalues versus graph size in terms of numbedgé&for
Enron(E =180K). Solid(-), dashed{—), and dotted(. ..) lines are for no pruning, after pruning
d < 1, andd < 2 nodes, respectively. We empirically note that computatilme grows linearly
with increasing graph size and also reduces with pruningp€Ements ran on a Pentium class
workstation, with 16GB of RAM, running Linux Fedora Core. aocount for possible variability
due to system state, each run is repeated 10 times and exetiute results are averaged. Error
bars show the variance across repeated runs.)

Pruning low-degree nodes and usiBigen-Trianglereduces computation time, however, they
only provide approximate answers. In order to quantifythecuracy, we compare the rank list of
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outliers returned byode-Iteratorto the rank list of outliers returned by each approximatehoet
To measure how rankings changed with approximation conap@aréhe original rankings, we use
Normalized Dicounted Cumulative Gain(NDCG) which is préagly used in Information Re-
trieval for measuring the effectiveness of search engifdse premise of NDCG is that highly
ranked items in the original list appearing lower in the apgmated list are penalized logarithmi-
cally proportional to their positions in the approximatesd.|

Figure 6b shows time vs. NDCG scores figen-Triangleusing2, 5, 10 and30 eigenvalues,
and alsaNode-Iteratorfor top £ anomalies. For brevity, we only show ranking scoreskfet00.
* +, and o symbols represent no pruning, prunihg 1, andd < 2 nodes, respectively. We notice
that while reducing computation time, pruning low degreda®as well as usingigen-Triangle
keeps the accuracy at as high &dor Eigen-Triangl€30), and abov@.55 for Eigen-Triangl€2).

6 Conclusion

This is one of the few papers that focus on anomaly detectigraph data, including weighted
graphs. The major contributions are the following:

1. Proposing to work with “egonets”, that is, the induced-gudph of the node of interest and
its neighbors; we give a small, carefully designed list ofnewical features for egonets.

2. Discovery of new patterns that egonets follow, such akep® in density (Obs.1EDPL),
weights (Obs.2EWPL), principal eigenvalues (Obs.ELWPL), and ranks (Obs.ZERPL).
Proof of Lemma 1, linking th&RPLto theEWPL

3. OddBall , afast, hybrid, unsupervised method to detect abnormasiomdveighted graphs.
Possible approximations in feature extraction that presisbeed-up, keeping accuracy at as
high as-.9.

4. Experiments on real graphs of over 1M nodes, wi@delBall reveals nodes that indeed
have strange or extreme behavior.

Future work could generaliz&ddBall to time-evolving graphs, where the challenge is to find
patterns that neighborhood sub-graphs follow and to eixtetures incrementally over time.
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