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Abstract its adjacent nodes? Which of these static patterns persist
over time?

How do real, weighted graphs change over time? What In this work, we answer all these questions, and we show
patterns, if any, do they obey? Earlier studies focus on un-that there are some unexpected patterns. In summary, the
weighted graphs, and, with few exceptions, they focus oncontributions are the following:
static snapshots. Here, we report patterns we discover on
several real, weighted, time-evolving graphs. The regbrte 1. We present several new patterns for weighted, time-
patterns can help in detecting anomalies in natural graphs, evolving graphs.
in making link prediction and in providing more criteria
for evaluation of synthetic graph generators. We further ) et -
propose an intuitive and easy way to construct weighted, sive Tensor Multiplicatiopthat generates weighted,
time-evolving graphs. In fact, werovethat our genera- time-evolving graphs that obey all the old and new
tor will produce graphs which obey many patterns and laws properties.
observed to date. We also provide empirical evidence to
support our claims.

2. We give a simple generative mod&TM, for Recur-

3. We also prove th&®TMproduces several desired char-
acteristics.

) The most striking patterns we discover here are: (a) the
1 Introduction first eigenvalue\, ,,(t) of theweightedadjacency matrix at
time ¢, follows a power law with respect to the total num-
Static, unweighted graphs have attracted a lot of inter- ber of edgesf(t) at timet, for several time-ticks. (b) a
est recently, with several fascinating discoveries, sugh a similar power law holds for the first eigenvalig(t) of the
small diameters [19], power-law degree distributions [2,6 0-1 adjacency matrix, with different slope, of course. (c)
skewed eigenvalues and eigenvector scores. Numerous gerfor a given time snapshot, the weight ; for edge(s, ) is
erators also try to mimick these patterns. Very recently, closely related to the total weights andw; of its adjacent
time-evolving graphs have attracted some attention, with nodesi and;.
the ‘densification’ power law, shrinking diameters [10]dan Our experiments on multiple, real datasets show that
related generators. these patterns hold; they also confirm that the edge-additio
However, graphs that are both weighted and dynamic and the weight-addition follow a self-similar, bursty fiaf
have been relatively unexplored. Here we focus on pattern, as was observed earlier for blog activity [13].
weighted graphs - both static snapshots of them, as well  The rest of the paper is organized as follows: Section
as dynamic properties. Just as the edges and nodes in syrveys the earlier work. Section 3 provides preliminary
a network have different meanings in different contexts, packground material as well as description of the datasets
edge weightslso have different meanings. For instance, we used. Section 5 describes &ifM generator and pro-
in a network of computers, nodes may be IP addressesyides proofs showing that it reproduces several properties
(sender/receiver), an edge may indicate a transaction ofgpserved in real weighted graphs. Section 6 lists experi-

packets, and the “weight” on each edge may represent thanental results. We conclude in Section 7.
total number of packets shipped. Alternatively, the size of

the packet may be used, depending on what sort of knowl-
edge one wants to extract from the graph. 2 Related Work

Given a set of edge weights on a graph, a few questions
come to mind. What patterns do the weights obey? Do they = We next list static and temporal properties that most real-
follow a Gaussian distribution, for a given snapshotin ttme world graphs were found to have in common, followed by a
How, if at all, is the edge weight related to the popularity of survey of earlier work on graph generators.



Real-world graph properties: One of the mostimpres-  such as the “small-world” and “forest fire” models [19, 10].
sive patterns that real-world graphs obey is a small diamete In addition, recursive models using Kronecker multiplica-
which is also known as “small-world phenomenon” or “six tion have proved useful for generating self-similar preper
degrees of separation” [1]. Diameter is defined as the mini- ties of graphs [9]. Chakrabarti et. al. provide a detailed
mum number of hops that will connect all of the nodes. The survey on graph generators in [3].
effective diameterthen, is the minimum number of hops In our study, we explicitly concentrate on the first (prin-
in which90% of connected node pairs can be reached; this cipal) eigenvalue of real-world graphs and how it changes
measure is often used as a less computationally-intense essver time with the growing size of the graph. We find a
timate. Surprising recent work showed that not only is the correlation between the weight of ed@e;j) and the total
diameter of graphs small, but it alsbrinksand therstabi- weightsw; andw; of its adjacent nodes. While previous
lizesover time [10]. work has often failed to match patterns for weighted time-

Many other patterns regarding power laws have been dis-evolving graphs, we propose a generative model for which
covered. A power law relation between two variables ~We can show that the resulting graphs will exhibit certain
andy can be defined ag «x z*, wherea is the power laws such as bursty edge/weight additions and the Weight
law exponent. Time-evolving graphs follow the “Densifi- Power Law, as well as many other patterns discovered to
cation Power Law” with the equatioB(¢) = ¢N(¢)* [10]. date.

Degree distribution of graphs also obey a power law of the
form Ny = cd—®, with a > 0, and N, being t_he number of 3 Background
nodes with degred. Such power law relations as well as

many more have been reported in [4, 6, 8, 15]. h h hi il h h
There have been studies on spectral properties of power- roughout this paper we will use the graph representa-

law graphsin [7, 11, 14, 16]. Faloutsos et al. [16] examined tion of the datasets we study. A weighted grgpk (v, £)

. : consists of a set of nodasg, connected by a set of undi-
the spectrum of the adjacency matrix of the Autonomous rected, weighted edge® No multiple edges between two
System (AS) Intemet topology and they reported that the nodes,are allowed - however, we will account for repeated
20 or so largest eigenvalues of the Internet graph are power-edges in edge weights. By n:ature none of the datasets we
law distributed with exponent between .45 and .5. Michalil study contain self-loopé '
et al. [14] later provided an explanation for the eigenvalue In aweighted grapB I.ete- be the edae between node
law phenomenon, showing that Eigenvalues Power Law is nd nod 'gWe sr?alleeléertolﬁﬂese WO n%des as theioh-

a consequence of the Degree Power Law. Farkas et al. [7]20rin ngdes’or incident nodesof edaee, - Let w. -gbe
studied the numerical and analytical properties of the ad—the w?ai ht on edge. - geci- "I
jacency matrices of complex networks and reported sur- 9 0985 . .

prising results on the spectra of adjacency matrices corre- Thetotal W.e'ghtufi of nodei is def'f‘ed as tﬂe sum of
sponding to several models of real-world graphs. More- xﬁfrzt;- O(Iearilc)ltt(-:?sl?tgdciimr:gge:s’ tvr\;:tgﬁov:v Etg?ltﬁéﬁé i a
over, Chung et al. [11] analyzed the eigenvalues of random lati Zb aeg d. : d th T h
graphs for which the number of nodes of degiemllow relation between a given edge weight; and the weights

a power law and reported bounds on the first and secondOf its neighboring nodes; andw;. , ) .
eigenvalues of such graphs for certain parameters. A graph§ can be represented by its adjacency matrix

Graoh tors: Modeli | id h A(G), which is a symmetric matrix with\;; = 1, if nodes
rapn generators. hodeling real-world graphs suc- 1 andj are connected, or 0, otherwise. For bipartite graphs
cessfully is an elusive task. A vast majority of earlier drap

tors h f d dell I b fWith an N x M adjacency matriA, we will define a new
generators have focused on modeiling a smatl number o symmetric square matrig = [A 0;0 A”] and compute the

common properties, but fail to mimic others. The very first first eigenvalue of this new matrig, which would be the

generauve.mod-el was proposed by Erdo&enyi [5]. The same as the first singular value of the original ma#ix
model begins with a fixed number of nodes, and adds edges, A complete list of the symbols used throughout text is

where any pair of nodes has the same and independent proh- :

ability of being linked by an edge. While it has some in- qISted in Table 1.

teresting provable properties, it fails to produce a number .

of realistic properties, most notably the heavy-tailed de- 3.1 Burstiness and Entropy Plots

gree distribution. Another striking generator is theef-

erential attachmenmodel, where at each time step nodes  We will show that the addition of weights and edges in
are added and ‘prefer’ to link to high-degree nodes. This in our model is often bursty and self-similar. Among many
turn leads to small diameter and heavy-tailed degree distri methods that measure self-similarity and burstiness, \we us
butions; however, this and related models lackshenking theentropy plof{17], which plots entropyH () versus res-
diametermroperty. There exists a group of other generators olution . The resolution, or the aggregation level, is the



[ Symbol Description

Table 1. Table of symbols used in notation.

scale - that is, for resolution, we divide our time inter-

ber of packets and donation amounts, respectively. For the

g Sfap*f‘ fegresfe”taﬂon of datasets remaining datasets, the edge weights are simply the number
g Sgi = 2392: fg:gggg of occurences of the edges. For instance, if autisoibmits

N Number of nodes, div| a paper to conferencgfor the first time, t_he weight of; ;

E Number of edges, Ji| is set tol. If the same author later submits another paper to
ei,; | Edge between nodeand nodej the same conference, the edge weight becdmes

w; ;| Weight on edge; ;

w; Weight of nodei (sum of weights of incident edges) .

A 0-1 Adjacency matrix of the un-weighted graph 4 Laws and Observations

Aw Real-value adjacency matrix of the weighted graph

[, Entry in matrixA . o . . .

A1 Principal eigenvalue of unweighted graph 4.1 LPL: Principal eigenvalue over time

A1,w | Principal eigenvalue of weighted graph

A, B, C| Tensors used to illustrate recursive tensor product Plotting the largest(principal) eigenvalue of thd ad-
;w%k :Er:ttlz :’ef :S ger”ingM — jacency matrix of our datasets over time, we notice that
G4 [t-graph (ime-evolving graph) represented by tendor _the prln_C|paI eigenvalue grows foII_owmg a poyver_law with
D, 7T Slice of final tenso® in RTM increasing number (_)f edggs. This ob;ervatlpn is true es-
st Total weight ofD; pecially after thegelling point The ‘gelling point’ is de-

et Number of edges db¢ fined to be the point at which a giant connected component
Wp Pta' We'lght c;flatigsotn Orlzt:_t St (GCC) appears in real-world graphs - after this point, prop-
SD.r__ | ‘€mpora profiie ot at resolution: : erties such as densification and shrinking diameter become
pp,~ |Normalized temporal profile ab at resolutionr

increasingly evident. See [10] for details.

Observation 1 (\, Power Law (LPL)) In real graphs, the
principal eigenvalue\; () and the number of edgds(t)

val into 2" equal sub-intervals. For instance, suppose we gver time follow a power law with exponent less than 0.5,
would like to measure the entropy of weight additions - especially after the ‘gelling point’. That is,

that is, the total weight of all edges added at each time
t (this sum will be denoted\W (¢)).
tion r, we sum the weight-addition&1/ (¢) in each sub-
interval k, for k = 1...2", normalize into fractiong; (=

For each resolu-

M) x E(4)*, a<0.5

We report the power law exponents in Fig. 1. Note that

AW (t)/Wiorat), and compute the Shannon entropy of the We fit the given linesfter the gelling point which is shown

sequencey: H(r) = — >, prlog, py. If the plot H(r) is

by a vertical line for each dataset. Notice that the given

linear in some range of resolutions, the corresponding time slopes are less than 0.5, with the exception of@aenpaig-

sequence is said to actal in that range, and the slope of
the plot is defined as thatrinsic (or fractal) dimensionD

nOrg dataset, with slope: 0.53.
Given the theorem\,,..(G) < {2(1— &) E}* for a

of the time sequence. Notice that a uniform edge/weight- connected, undirected graghwithout self-loops and mul-

addition distribution yield9)=1; a lower value ofD corre-

tiple edges, withy edges andv nodes (See [20] for proof),

sponds to a more bursty time sequence with a single bursffor large N, s.t. + — 0, we expect the power law ex-
having the lowesD=0.

3.2 Data Description

N
ponent to be less than 0.5. By construction, there are no

multiple edges in our graphs (that is, we work with a binary
adjacency matrix), and the nodes do not have self-loops by
nature. Finally, we claim that the graphs behave as a sin-

We studied several large real-world weighted graphs de-gle connected component after the ‘gelling point’ at which

scribed in detail in Table 2. In particuldBlogNetcontains ~ Pointthe GCC dominates other connected components. The
blog-to-blog links, NetworkTraffic records IP-source/IP- ~ only slight exception to the power law, tt&ampaignOrg
destination pairs, along with the number of packets sent.graph, always has many number of disconnected compo-
Bipartite networksAuth-Conf Keyw-Conf andAuth-Keyw  nents as well as a GCC. Thus, we conclude that our obser-
are all from DBLP and have the submission records of au- vation follows early theory.
thors to conferences with specified keywordSampaig-
nOrgis from the U.S. Federal Election Commission, a pub- 4.2 LWWPL: Weighted principal eigenvalue
lic record of donations between political candidates and or over time
ganizations.

For NetworkTraffic and CampaignOrg datasets, the Given that unweighted){1) graphs follow the\; Power
weights on the edges are actual weights representing numktaw, one may ask if there is a corresponding law for



Name N, E, time Description

BlogNet 60K, 125K, 80 dayg Social network of blogs based on citations

NetworkTraffic 21K, 2M, 52 mo. Network traffic: packets sent from IP source to IP destimatio
AuthorConference | 17K, 22K, 25 yr. DBLP Author-to-Conference associations
KeywordConference 10K, 23K, 25 yr. DBLP Keyword-to-Conference associations
AuthorKeyword 27K, 189K, 25 yr. | DBLP Author-to-Keyword associations

CampaignOrg 23K, 877K, 28 yr. | U.S. electoral campaign donations (available from FEC)

Table 2. Weighted datasets studied in this work.

weighted graphs. To this end, we also compute the largesinodes; andj with weightsw; andw;, respectively,
eigenvalue\; ,, of theweightedadjacency matrid,,. The

entriesw; ; of A,, now represent the actual edge weight be- S <\/(w o) (s — _)>w
tween nodei andj. We notice that\, ,, increases with I v o
increasing number of edges following a power law with a
higher exponent than that of its; Power Law. We show
the experimental results in Fig. 2.

EWPL can be used in link prediction; that is, one can
estimate the probable weight of a future link between two
nodes of the graph, given their weights. Moreover, edges

Observation 2 (\, ., Power Law (LWPL)) Weighted real with weights deviating too.much. from the expected might
graphs exhibit a power law for the largest eigenvalue of the be flagged for further consideration.
weighted adjacency matrix; ., (¢) and the number of edges

E(t) over time. That s, 5 Generative Recursive Tensor Model (RTM)
Atw(t) o< E(t)” How could we have a simple generative model that will
. obey all the patterns we know so far, as well as the newly
In our experiments, the exponemtanged from.5 to 1.6. discovered ones for weighted graphs? Specifically, we

would like the model to exhibit:

4.3 EWPL: Edge Weights Power Law ] ) ]
1. SUGP: static unweighted graph properties:

- small diameter [19]

We observe that the weight of a given edge and weights - power law degree distribution [2, 6]

of its neighboring two nodes are correlated. Our observa-
tion is similar to Newton’s Gravitational Law stating that 2. SWGP: static weighted graph properties:

the gravitational force between two point masses is propor- - the edge weight power law (EWPL) (Observation 3)
tional to the product of the masses. Similarly, the tendency - the snapshot power law (SPL) [12]
of two nodes to interact often would be related to the “pop-
ularity” of both. 3. DUGP: dynam_ic unweighted graph properties:
For each edgéi, j) at the final time step in the graph, we - the densification power law (DPL) [10]
plot \/(w; — w; ;) * (w; — w;,;) versus its weightv; ; as a - shrinking diameter [10] .
single point. Notice that we did not include the weight of - the A, power law (LPL)(Observation 1)
the edge itself in the total weight of its incident nodes. tyex - bursty edge additions [13]
we fit a Iin.e tq the median yjaxis values after applying qu— 4. DWGP: dynamic weighted graph properties:
arithmic binning on the x—_aX|s_and report the correspoqd|ng _the \; ,, power law (LWPL)(Observation 2)
sIo_pes for_ each dataset in Fig. 3. I\_lote that, we omit the ) burst)} weight additions [12]
points Whlch represent edges to avoid the con_fu5|on due to - the weight power law (WPL) [12].
overplotting. Instead, we show thi§% and25%-tile of the
data with upper and lower vertical bars, respectively. At the high level, our idea is to use recursion, in con-
junction with tensors{-dimensional extension of matri-
Observation 3 (Edge Weights Power Law(EWPL)) ces). Recursion and self-similarity naturally leads to mod

Given a real-world graphg, ‘communication’ defined as lar network behavior (“communities-within-communiti¢s”
the weight of the link between two given nodes has a powerand power laws [9]; it also leads to bursty traffic [18]. Ear-
law relation with the weights of the nodes. In particular, lier work used self-similarity to generate static snapstudt
given an edge; ; with weightw; ; and its two neighbor  unweighted graphs [4].
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Here, we show how to build a generator that will match Note thatRTM works for directed and/or bipartite t-
all of the properties listed. The idea is to use recursion not graphs. A bipartite t-graph can be represented byn<
only on the adjacency matrix, but also on tirae dimen- M x ) tensor. For simplicity, we focus on unipartite graphs
sion. Specifically, we start with a small tensbrthat has in our work.

3 sides (‘modes’): (a) senders (b) recipients and (c) time. We propose to us®ecursive Tensor Multiplicatioto

We call the graph represented by a tensor a ‘t-graph’ thatproduce a time-evolving graph. Our method extends Kro-
evolves over time (See Fig. 4(a-b)). Then, we recursively necker product of two matrices by adding a third ‘mode’.
substitute every cells, j,¢) of the original tensofZ, with Kronecker product of two matrices is defined as follows:
a copy of itself, and multiply it with the value; ; . (See Given two matricesA and B of sizes(N x M) and
Fig. 4(c) for illustration and Definition 1 for full details) (N’ x M), respectively, the Kronecker product Afand
Thanks to the self-similarity of the construct, we expeetth B, namely matrixC of dimension(N « N') x (M * M') is

resulting tensor to have all the properties we want. given by

First, we give the details of the construction. Secondly,
we provide proofs to show that our model will generate a11B  a12B ... a1 mB
graphs with desired properties. Finally, we give our experi az1B  a2B ... a2 B
mental results. C=AgB = : : :

. . aNJB aNgB aN,]uB

5.1 Description

For the construction, we choose an initial x N x 7) Definition 1 (Recursive Tensor Multiplication (RTM))

tensorZ with nonzero cell4s, 7, ) indicating an edge from ~ Given two te?sorslA of size (N x M x 7) and B of
nodei to node; at time tickt. We initialize the cells so that ~ Sizé (N’ x M’ x 7'), Recursive Tensor Multiplicatiod
the mlt.lal t-grqph(t- for time-evolvingyz represen.ted by . LUnfortunately, Kronecker produ€ of two matricesA andB is also
looks like aminiature reaI-vv_orId graph. We provide details ¢qjieq kronecker Tensor multiplication, despheB, C are matrices. To
for how to initializeZ in Section 5.3. disambiguate, we use the naR&@Mwhere.4, B, C are in fact tensors.




(b) corresponding t-graph over time

Figure 4. (a) An example for the initial tensor

on the adjacency matrix at every other time step. (b) The corr
tensor in part (a). It changes according to the ‘t-slices’ ov
7 by itself, that is, the resulting

is given on the left. Recursive tensor product of
D =7 (®7Tis given on the right.

of A and B is obtained by replacing each cedl; ;; of
tensor.A with a; ;. * B. The resulting tenso€ is of size
(N« N")x (M« M") x (r+7") such that

C((i—1) N +i"), (= 1)« M+4),((k—1)er k') = Qi j.k * bir jr s

An example of the Recursive Tensor Multiplication of a
(3 x 3 x 3) tensor by itself is given in Fig. 4(c).

To generate a growing graph over time, we get‘tRe-
cursive Tensor Multiplicationdf the initial (N x N x 1)
tensorZ by itself k times as:

IF=D=T@®I® ... DI
N—_———

k times

and then we take the final tensbrto represent our data.
The data spans” number of time ticks withNV* nodes.
At every time stept (t = {1,2,...,7"}), we get the t-slice
(See Definition 2 belowp, of D, and for each nonzero
cell a; ; of D;, we add an edge between nadend nodej
with weighta; ;. If the edge already exists, we increase the
weightw; ; by the same amount.

After giving the details of the construction, next we give
proofs for the characteristics thaT Mwill generate. Before
that, we define the terms we use throughout the proofs.

Definition 2 (t-slice of a tensorZ ) Given a tensor7 of
size(N x M x 1), t-slice of7 is a matrixT; such that
T, =T(i,j,t), Vi,Vj, 1<i<N,1<j<M

Definition 3 ((Normalized) temporal (t-) profile of 7°)
Given a tensor7 of size(N x M x 1), let s; denote

mode 3
{
mode 1 t
—

—
mode 2

mode 1 (senders)

®IrMof a tensor by itself

T of size (4 x4 x 3). The ‘t-slices’ represent the changes

esponding graph represented by the
(3 x3x3)tensor T
(3% x 32 x 32) tensor

er time. (c) An example

the total weight of its t-slice. Then, the t-profile Bfis a
(1 x ) vector, such that

;5r)

Total weightWz of 7 can be written asy_,_, s;. Then,
normalized t-profile of is a(1 x 7) vector, such that

)

sT.0 = (s1,52,..-

S1 S92 St

W—T,W—T,...,WT

P70 = (

5.2 Theorems and Proofs

Recursive Tensor graphs can be shown to exhibit several
real-world graph properties. In particular, if we choose th
initial graph to be a miniature of a real graph, after reatesi
iterations of RTM, the resulting graph will follow similar
properties as of the initial graph due to self-similaritytioé
construction.

Theorem 1 (Self-similar and Bursty Edge/Weight Additions)
Let edge/weight additions fdf with pz o be self-similar
and bursty for which the slope of the entropy plot is

slope = H(pz,0) = — Y _ pzo(i)loga(pz,0(1)),
i=1
After k iterations of RTM, edge/weight arrivals over time
for D are also self-similar and bursty. The slope of the en-
tropy plot overall aggregation levels of D is equal to

slope = H(pp,r) = H(pz,0), Vr

whereH (pp ) is the slope of the entropy plot at aggrega-
tion level r. Furthermore, the slope does not change with
the value of;, that is, burstiness is independent of scale.



Proof We will prove for weight additions and similar ar-
guments apply for edge additions.
After k iterations ofRTM, total weight ofD becomes

WD:W§:(51—|—52—|—...—|—57)]€

At aggregation level (resolutiorl) we group slices by*—!
into 7 groups. ThenWWp can be written as

W’D:Sl*Wé;_l+82*W§_1+...+ST*W§_1
Thenforl <t <,

St

T Wz

spx Wt

= t
W pro(t)

pp,1(t)

At aggregation leveR, we group slices by*~2 into 72
groups. Then,

Wp = sl*(sl*W§_2+32*W§_2+...+3T*W§_2)
+ 52*(51*W§_2+52*W§_2+...+57*Wf_Q)
+
+ ST*(Sl*W§72+82*W§72+...+ST*W§72)

For any slice at levell andt at level2, 1 < t < 72,

S; * Sy * W§_2
k—1
S; * WI

St

=W

Pp,2(t) =pzo(t)

Finally, at aggregation level, we group slices by? into
7 groups as

Wp = (51)k71 x(s1+s24...+587)
+ (sl)k*Q*SQ*(sl—|—52+...—|—57)
+
+ (sT)k_l *(s1+s24+...+5s.)

For all combinations ofk — 1) slices at levels fronl to
(k — 1), let ¢; denote the corresponding coefficients<
j < %=1 and for any slice at levelk, 1 <t < 7%

Cj * S¢ -
Cj*WI

St

pok(t) = = pz,0(t)
We showed that normalized t-profilpp ., of D remains
the same at all aggregation leveland is equal to that of
the initial tensotZ. So, we conclude that bias of burstiness
for D is the same as that of for all values ofk, since
H(pp,) would not change forr. g

Starting with a(10 x 10 x 2) Z, where pz,(1)
pz.0(2) = 0.175 : 0.825; afterk = 3 iterations, the slope
of the entropy plot is obtained to 669, which is equal
to

H(pz,o) = .175 % loga(.175) + .825 x log2(.825)
See Fig. 5.2(c).

Theorem 2 (Weight Power Law (WPL)) If the initial
graph Gz exhibits the WPL [12] agll time ticks, that is,
number of edged(¢t) and total weightW (¢) over time
follow a power law with exponent, Gp shows the same
property at time ticksl, 7', 7%, ..., 7% with exactly the
same exponent.

Proof We are given the condition thgt follows theWPL
atall time ticks, that is,
e =s1,(e1te2)” = (s1+s2),. ., (Z ) = (Z St)-
t=1 1
After k iterations ofRTM, the resulting graph haB* =
(>;_, et)* edges andVk = (3°7_, ;)" total weight. At

t =1k,

E* =Wz = (B°)" =Wy = (B*)* = W;
At aggregation level, E* can be written as,
E* :el*Ek_l—i—eg*Ek_l—i—...—i—eT*Ek_l

Same argument holds féV}. So, att = 7*~!, number of
edges ige; * E*~1) and total weight igs, + W2~!). And,

(61 * Ekil)a = (61)a * (Ea)k71 = 871 * Wji—gil

In general, at every aggregation levehtt = 7", the graph
follows theWPLas

(6 x BY0)% = (e + (B = sf s WE

We observe that when we interpolate total weighit)
versus number of edge&(¢) at all time tickst ¢
{1,2,...,7F} forthe final graptgp, the resulting exponent
remains very close ta.. In Fig. 5.2(b), the user-specified
WPL exponent (See Section 5.3)1i$5, which is equal to
the slope when points at= {1,2,4,8} are used to fit a
line (k = 3). When all points are used, the slopd i47.

5.3 Initializing 7

In order to take advantage of the self-similarity property
of our construct, we want the initial gragh to be a realis-
tic graph itself. Basically, one can use any graph generator
in the literature that is known to produce realistic graphs
[5, 19, 10] to generatéy.

To our knowledge, sincBRTMis the firstweightedgraph
generator, we also take weights into consideration. Rartic
ularly, we force the initial graph to obey the WPL at all
time ticks. That is, when a link occurs between two nodes,
we put weight on the edge, so that number of edgés
and total weighi¥(¢) over time follow a power law, with a
user-specified exponeat

In our experiments, we used thgutterfly model[12]
with weights. Note that this generator is shown to gener-
ate realistic un-weighted graphs. See [12] for more details
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