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Abstract

How do real, weighted graphs change over time? What
patterns, if any, do they obey? Earlier studies focus on un-
weighted graphs, and, with few exceptions, they focus on
static snapshots. Here, we report patterns we discover on
several real, weighted, time-evolving graphs. The reported
patterns can help in detecting anomalies in natural graphs,
in making link prediction and in providing more criteria
for evaluation of synthetic graph generators. We further
propose an intuitive and easy way to construct weighted,
time-evolving graphs. In fact, weprove that our genera-
tor will produce graphs which obey many patterns and laws
observed to date. We also provide empirical evidence to
support our claims.

1 Introduction

Static, unweighted graphs have attracted a lot of inter-
est recently, with several fascinating discoveries, such as
small diameters [19], power-law degree distributions [2, 6],
skewed eigenvalues and eigenvector scores. Numerous gen-
erators also try to mimick these patterns. Very recently,
time-evolving graphs have attracted some attention, with
the ‘densification’ power law, shrinking diameters [10], and
related generators.

However, graphs that are both weighted and dynamic
have been relatively unexplored. Here we focus on
weighted graphs - both static snapshots of them, as well
as dynamic properties. Just as the edges and nodes in
a network have different meanings in different contexts,
edge weightsalso have different meanings. For instance,
in a network of computers, nodes may be IP addresses
(sender/receiver), an edge may indicate a transaction of
packets, and the “weight” on each edge may represent the
total number of packets shipped. Alternatively, the size of
the packet may be used, depending on what sort of knowl-
edge one wants to extract from the graph.

Given a set of edge weights on a graph, a few questions
come to mind. What patterns do the weights obey? Do they
follow a Gaussian distribution, for a given snapshot in time?
How, if at all, is the edge weight related to the popularity of

its adjacent nodes? Which of these static patterns persist
over time?

In this work, we answer all these questions, and we show
that there are some unexpected patterns. In summary, the
contributions are the following:

1. We present several new patterns for weighted, time-
evolving graphs.

2. We give a simple generative model (RTM, for Recur-
sive Tensor Multiplication) that generates weighted,
time-evolving graphs that obey all the old and new
properties.

3. We also prove thatRTMproduces several desired char-
acteristics.

The most striking patterns we discover here are: (a) the
first eigenvalueλ1,w(t) of theweightedadjacency matrix at
time t, follows a power law with respect to the total num-
ber of edgesE(t) at time t, for several time-ticks. (b) a
similar power law holds for the first eigenvalueλ1(t) of the
0-1 adjacency matrix, with different slope, of course. (c)
for a given time snapshot, the weightwi,j for edge(i, j) is
closely related to the total weightswi andwj of its adjacent
nodesi andj.

Our experiments on multiple, real datasets show that
these patterns hold; they also confirm that the edge-addition
and the weight-addition follow a self-similar, bursty traffic
pattern, as was observed earlier for blog activity [13].

The rest of the paper is organized as follows: Section
2 surveys the earlier work. Section 3 provides preliminary
background material as well as description of the datasets
we used. Section 5 describes ourRTM generator and pro-
vides proofs showing that it reproduces several properties
observed in real weighted graphs. Section 6 lists experi-
mental results. We conclude in Section 7.

2 Related Work

We next list static and temporal properties that most real-
world graphs were found to have in common, followed by a
survey of earlier work on graph generators.



Real-world graph properties: One of the most impres-
sive patterns that real-world graphs obey is a small diameter,
which is also known as “small-world phenomenon” or “six
degrees of separation” [1]. Diameter is defined as the mini-
mum number of hops that will connect all of the nodes. The
effective diameter, then, is the minimum number of hops
in which90% of connected node pairs can be reached; this
measure is often used as a less computationally-intense es-
timate. Surprising recent work showed that not only is the
diameter of graphs small, but it alsoshrinksand thenstabi-
lizesover time [10].

Many other patterns regarding power laws have been dis-
covered. A power law relation between two variablesx
and y can be defined asy ∝ xa, wherea is the power
law exponent. Time-evolving graphs follow the “Densifi-
cation Power Law” with the equationE(t) = cN(t)a [10].
Degree distribution of graphs also obey a power law of the
form Nd = cd−a, with a > 0, andNd being the number of
nodes with degreed. Such power law relations as well as
many more have been reported in [4, 6, 8, 15].

There have been studies on spectral properties of power-
law graphs in [7, 11, 14, 16]. Faloutsos et al. [16] examined
the spectrum of the adjacency matrix of the Autonomous
System (AS) Internet topology and they reported that the
20 or so largest eigenvalues of the Internet graph are power-
law distributed with exponent between .45 and .5. Michail
et al. [14] later provided an explanation for the eigenvalue
law phenomenon, showing that Eigenvalues Power Law is
a consequence of the Degree Power Law. Farkas et al. [7]
studied the numerical and analytical properties of the ad-
jacency matrices of complex networks and reported sur-
prising results on the spectra of adjacency matrices corre-
sponding to several models of real-world graphs. More-
over, Chung et al. [11] analyzed the eigenvalues of random
graphs for which the number of nodes of degreed follow
a power law and reported bounds on the first and second
eigenvalues of such graphs for certain parameters.

Graph generators: Modeling real-world graphs suc-
cessfully is an elusive task. A vast majority of earlier graph
generators have focused on modeling a small number of
common properties, but fail to mimic others. The very first
generative model was proposed by Erdos& Renyi [5]. The
model begins with a fixed number of nodes, and adds edges,
where any pair of nodes has the same and independent prob-
ability of being linked by an edge. While it has some in-
teresting provable properties, it fails to produce a number
of realistic properties, most notably the heavy-tailed de-
gree distribution. Another striking generator is thepref-
erential attachmentmodel, where at each time step nodes
are added and ‘prefer’ to link to high-degree nodes. This in
turn leads to small diameter and heavy-tailed degree distri-
butions; however, this and related models lack theshrinking
diameterproperty. There exists a group of other generators

such as the “small-world” and “forest fire” models [19, 10].
In addition, recursive models using Kronecker multiplica-
tion have proved useful for generating self-similar proper-
ties of graphs [9]. Chakrabarti et. al. provide a detailed
survey on graph generators in [3].

In our study, we explicitly concentrate on the first (prin-
cipal) eigenvalue of real-world graphs and how it changes
over time with the growing size of the graph. We find a
correlation between the weight of edge(i, j) and the total
weightswi andwj of its adjacent nodes. While previous
work has often failed to match patterns for weighted time-
evolving graphs, we propose a generative model for which
we can show that the resulting graphs will exhibit certain
laws such as bursty edge/weight additions and the Weight
Power Law, as well as many other patterns discovered to
date.

3 Background

Throughout this paper we will use the graph representa-
tion of the datasets we study. A weighted graphG = (V , E)
consists of a set of nodesV , connected by a set of undi-
rected, weighted edgesE . No multiple edges between two
nodes are allowed - however, we will account for repeated
edges in edge weights. By nature, none of the datasets we
study contain self-loops.

In a weighted graphG, letei,j be the edge between nodei
and nodej. We shall refer to these two nodes as the‘neigh-
boring nodes’or ‘incident nodes’of edgeei,j . Let wi,j be
the weight on edgeei,j .

The total weightwi of nodei is defined as the sum of
weights of all its incident edges, that iswi =

∑di

k=1 wi,k,
wheredi denotes its degree. As we show later, there is a
relation between a given edge weightwi,j and the weights
of its neighboring nodeswi andwj .

A graphG can be represented by its adjacency matrix
A(G), which is a symmetric matrix withAij = 1, if nodes
i andj are connected, or 0, otherwise. For bipartite graphs
with anN × M adjacency matrixA, we will define a new
symmetric square matrixB = [A 0; 0 AT ] and compute the
first eigenvalue of this new matrixB, which would be the
same as the first singular value of the original matrixA.

A complete list of the symbols used throughout text is
listed in Table 1.

3.1 Burstiness and Entropy Plots

We will show that the addition of weights and edges in
our model is often bursty and self-similar. Among many
methods that measure self-similarity and burstiness, we use
theentropy plot[17], which plots entropyH(r) versus res-
olution r. The resolution, or the aggregation level, is the
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Symbol Description

G Graph representation of datasets
V Set of nodes for graphG
E Set of edges for graphG
N Number of nodes, or|V |
E Number of edges, or|E|
ei,j Edge between nodei and nodej
wi,j Weight on edgeei,j

wi Weight of nodei (sum of weights of incident edges)
A 0-1 Adjacency matrix of the un-weighted graph
Aw Real-value adjacency matrix of the weighted graph
ai,j Entry in matrixA
λ1 Principal eigenvalue of unweighted graph
λ1,w Principal eigenvalue of weighted graph
A,B, C Tensors used to illustrate recursive tensor product
ai,j,k Entry of a tensor
I Initial tensor inRTMmodel
GA t-graph (time-evolving graph) represented by tensorA

Dt tth slice of final tensorD in RTM
st Total weight ofDt

et Number of edges ofDt

WD Total weight of a tensorD, or
∑

t
st

sD,r Temporal profile ofD at resolutionr
pD,r Normalized temporal profile ofD at resolutionr

Table 1. Table of symbols used in notation.

scale - that is, for resolutionr, we divide our time inter-
val into 2r equal sub-intervals. For instance, suppose we
would like to measure the entropy of weight additions -
that is, the total weight of all edges added at each time
t (this sum will be denoted∆W (t)). For each resolu-
tion r, we sum the weight-additions∆W (t) in each sub-
intervalk, for k = 1 . . . 2r, normalize into fractionspk (=
∆W (t)/Wtotal), and compute the Shannon entropy of the
sequencepk: H(r) = −

∑

k pk log2 pk. If the plotH(r) is
linear in some range of resolutions, the corresponding time
sequence is said to befractal in that range, and the slope of
the plot is defined as theintrinsic (or fractal) dimensionD
of the time sequence. Notice that a uniform edge/weight-
addition distribution yieldsD=1; a lower value ofD corre-
sponds to a more bursty time sequence with a single burst
having the lowestD=0.

3.2 Data Description

We studied several large real-world weighted graphs de-
scribed in detail in Table 2. In particular,BlogNetcontains
blog-to-blog links, NetworkTraffic records IP-source/IP-
destination pairs, along with the number of packets sent.
Bipartite networksAuth-Conf, Keyw-Conf, andAuth-Keyw
are all from DBLP and have the submission records of au-
thors to conferences with specified keywords.Campaig-
nOrg is from the U.S. Federal Election Commission, a pub-
lic record of donations between political candidates and or-
ganizations.

For NetworkTraffic and CampaignOrg datasets, the
weights on the edges are actual weights representing num-

ber of packets and donation amounts, respectively. For the
remaining datasets, the edge weights are simply the number
of occurences of the edges. For instance, if authori submits
a paper to conferencej for the first time, the weight ofei,j

is set to1. If the same author later submits another paper to
the same conference, the edge weight becomes2.

4 Laws and Observations

4.1 LPL: Principal eigenvalue over time

Plotting the largest(principal) eigenvalue of the0-1 ad-
jacency matrix of our datasets over time, we notice that
the principal eigenvalue grows following a power law with
increasing number of edges. This observation is true es-
pecially after thegelling point. The ‘gelling point’ is de-
fined to be the point at which a giant connected component
(GCC) appears in real-world graphs - after this point, prop-
erties such as densification and shrinking diameter become
increasingly evident. See [10] for details.

Observation 1 (λ1 Power Law (LPL)) In real graphs, the
principal eigenvalueλ1(t) and the number of edgesE(t)
over time follow a power law with exponent less than 0.5,
especially after the ‘gelling point’. That is,

λ1(t) ∝ E(t)α, α ≤ 0.5

We report the power law exponents in Fig. 1. Note that
we fit the given linesafter the gelling point which is shown
by a vertical line for each dataset. Notice that the given
slopes are less than 0.5, with the exception of theCampaig-
nOrgdataset, with slope≈ 0.53.

Given the theoremλmax(G) ≤
{
2

(
1 − 1

N

)
E

} 1

2 for a
connected, undirected graphG without self-loops and mul-
tiple edges, withE edges andN nodes (See [20] for proof),
for large N , s.t. 1

N
→ 0, we expect the power law ex-

ponent to be less than 0.5. By construction, there are no
multiple edges in our graphs (that is, we work with a binary
adjacency matrix), and the nodes do not have self-loops by
nature. Finally, we claim that the graphs behave as a sin-
gle connected component after the ‘gelling point’ at which
point the GCC dominates other connected components. The
only slight exception to the power law, theCampaignOrg
graph, always has many number of disconnected compo-
nents as well as a GCC. Thus, we conclude that our obser-
vation follows early theory.

4.2 LWPL: Weighted principal eigenvalue
over time

Given that unweighted (0-1) graphs follow theλ1 Power
Law, one may ask if there is a corresponding law for
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Name N , E, time Description
BlogNet 60K, 125K, 80 days Social network of blogs based on citations
NetworkTraffic 21K, 2M, 52 mo. Network traffic: packets sent from IP source to IP destination
AuthorConference 17K, 22K, 25 yr. DBLP Author-to-Conference associations
KeywordConference 10K, 23K, 25 yr. DBLP Keyword-to-Conference associations
AuthorKeyword 27K, 189K, 25 yr. DBLP Author-to-Keyword associations
CampaignOrg 23K, 877K, 28 yr. U.S. electoral campaign donations (available from FEC)

Table 2. Weighted datasets studied in this work.

weighted graphs. To this end, we also compute the largest
eigenvalueλ1,w of theweightedadjacency matrixAw. The
entrieswi,j of Aw now represent the actual edge weight be-
tween nodei and j. We notice thatλ1,w increases with
increasing number of edges following a power law with a
higher exponent than that of itsλ1 Power Law. We show
the experimental results in Fig. 2.

Observation 2 (λ1,w Power Law (LWPL)) Weighted real
graphs exhibit a power law for the largest eigenvalue of the
weighted adjacency matrixλ1,w(t) and the number of edges
E(t) over time. That is,

λ1,w(t) ∝ E(t)β

In our experiments, the exponentβ ranged from0.5 to 1.6.

4.3 EWPL: Edge Weights Power Law

We observe that the weight of a given edge and weights
of its neighboring two nodes are correlated. Our observa-
tion is similar to Newton’s Gravitational Law stating that
the gravitational force between two point masses is propor-
tional to the product of the masses. Similarly, the tendency
of two nodes to interact often would be related to the “pop-
ularity” of both.

For each edge(i, j) at the final time step in the graph, we
plot

√
(wi − wi,j) ∗ (wj − wi,j) versus its weightwi,j as a

single point. Notice that we did not include the weight of
the edge itself in the total weight of its incident nodes. Next,
we fit a line to the median y-axis values after applying log-
arithmic binning on the x-axis and report the corresponding
slopes for each dataset in Fig. 3. Note that, we omit the
points which represent edges to avoid the confusion due to
overplotting. Instead, we show the75% and25%-tile of the
data with upper and lower vertical bars, respectively.

Observation 3 (Edge Weights Power Law(EWPL))
Given a real-world graphG, ‘communication’ defined as
the weight of the link between two given nodes has a power
law relation with the weights of the nodes. In particular,
given an edgeei,j with weightwi,j and its two neighbor

nodesi andj with weightswi andwj , respectively,

wi,j ∝

(√

(wi − wi,j) ∗ (wj − wi,j)

)γ

EWPLcan be used in link prediction; that is, one can
estimate the probable weight of a future link between two
nodes of the graph, given their weights. Moreover, edges
with weights deviating too much from the expected might
be flagged for further consideration.

5 Generative Recursive Tensor Model (RTM)

How could we have a simple generative model that will
obey all the patterns we know so far, as well as the newly
discovered ones for weighted graphs? Specifically, we
would like the model to exhibit:

1. SUGP: static unweighted graph properties:
- small diameter [19]
- power law degree distribution [2, 6]

2. SWGP: static weighted graph properties:
- the edge weight power law (EWPL) (Observation 3)
- the snapshot power law (SPL) [12]

3. DUGP: dynamic unweighted graph properties:
- the densification power law (DPL) [10]
- shrinking diameter [10]
- theλ1 power law (LPL)(Observation 1)
- bursty edge additions [13]

4. DWGP: dynamic weighted graph properties:
- theλ1,w power law (LWPL)(Observation 2)
- bursty weight additions [12]
- the weight power law (WPL) [12].

At the high level, our idea is to use recursion, in con-
junction with tensors (n-dimensional extension of matri-
ces). Recursion and self-similarity naturally leads to modu-
lar network behavior (“communities-within-communities”)
and power laws [9]; it also leads to bursty traffic [18]. Ear-
lier work used self-similarity to generate static snapshots of
unweighted graphs [4].
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Figure 1. Illustration of the LPL. 1st eigenvalue λ1(t) of the 0-1 adjacency matrix A versus number of
edges E(t) over time. The vertical lines indicate the gelling point.
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Figure 2. Illustration of the LWPL. 1st eigenvalue λ1,w(t) of the weightedadjacency matrix Aw versus
number of edges E(t) over time. The vertical lines indicate the gelling point.
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Figure 3. Illustration of the EWPL. Given the weight of a part icular edge in the final snapshot of real
graphs (x-axis), the multiplication of total weights(y-ax is) of the edges incident to two neighboring
nodes follow a power law. A line can be fit to the median values a fter logarithmic binning on the
x-axis. Upper and lower bars indicate 75% and 25% of the data, respectively.

Here, we show how to build a generator that will match
all of the properties listed. The idea is to use recursion not
only on the adjacency matrix, but also on thetime dimen-
sion. Specifically, we start with a small tensorI that has
3 sides (‘modes’): (a) senders (b) recipients and (c) time.
We call the graph represented by a tensor a ‘t-graph’ that
evolves over time (See Fig. 4(a-b)). Then, we recursively
substitute every cell(i, j, t) of the original tensorI, with
a copy of itself, and multiply it with the valueai,j,t (See
Fig. 4(c) for illustration and Definition 1 for full details).
Thanks to the self-similarity of the construct, we expect the
resulting tensor to have all the properties we want.

First, we give the details of the construction. Secondly,
we provide proofs to show that our model will generate
graphs with desired properties. Finally, we give our experi-
mental results.

5.1 Description

For the construction, we choose an initial(N × N × τ)
tensorI with nonzero cells(i, j, t) indicating an edge from
nodei to nodej at time tickt. We initialize the cells so that
the initial t-graph(t- for time-evolving)GI represented byI
looks like a miniature real-world graph. We provide details
for how to initializeI in Section 5.3.

Note thatRTM works for directed and/or bipartite t-
graphs. A bipartite t-graph can be represented by an(N ×
M×τ) tensor. For simplicity, we focus on unipartite graphs
in our work.

We propose to useRecursive Tensor Multiplicationto
produce a time-evolving graph. Our method extends Kro-
necker product1 of two matrices by adding a third ‘mode’.
Kronecker product of two matrices is defined as follows:
Given two matricesA and B of sizes (N × M) and
(N ′ × M ′), respectively, the Kronecker product ofA and
B, namely matrixC of dimension(N ∗ N ′) × (M ∗ M ′) is
given by

C = A ⊗ B =








a1,1B a1,2B . . . a1,MB
a2,1B a2,2B . . . a2,MB

...
...

. . .
...

aN,1B aN,2B . . . aN,MB








Definition 1 (Recursive Tensor Multiplication (RTM))
Given two tensorsA of size (N × M × τ) and B of
size (N ′ × M ′ × τ ′), Recursive Tensor MultiplicationC

1Unfortunately, Kronecker productC of two matricesA andB is also
called Kronecker Tensor multiplication, despiteA, B, C are matrices. To
disambiguate, we use the nameRTMwhereA, B, C are in fact tensors.
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(a) (4 × 4 × 3) tensor→ t-slices

(b) corresponding t-graph over time (c)RTMof a tensor by itself

Figure 4. (a) An example for the initial tensor I of size (4×4×3). The ‘t-slices’ represent the changes
on the adjacency matrix at every other time step. (b) The corr esponding graph represented by the
tensor in part (a). It changes according to the ‘t-slices’ ov er time. (c) An example (3× 3× 3) tensor I
is given on the left. Recursive tensor product of I by itself, that is, the resulting (32 × 32 × 32) tensor
D = I ©t I is given on the right.

of A and B is obtained by replacing each cellai,j,t of
tensorA with ai,j,t ∗ B. The resulting tensorC is of size
(N ∗ N ′) × (M ∗ M ′) × (τ ∗ τ ′) such that

c((i−1)∗N+i′),((j−1)∗M+j′),((k−1)∗τ+k′) = ai,j,k ∗ bi′,j′,k′ .

An example of the Recursive Tensor Multiplication of a
(3 × 3 × 3) tensor by itself is given in Fig. 4(c).

To generate a growing graph over time, we get the‘Re-
cursive Tensor Multiplication’of the initial (N × N × τ)
tensorI by itselfk times as:

Ik = D = I ©t I ©t . . . ©t I
︸ ︷︷ ︸

k times

and then we take the final tensorD to represent our data.
The data spansτk number of time ticks withNk nodes.
At every time stept (t = {1, 2, ..., τk}), we get the t-slice
(See Definition 2 below)Dt of D, and for each nonzero
cell ai,j of Dt, we add an edge between nodei and nodej
with weightai,j . If the edge already exists, we increase the
weightwi,j by the same amount.

After giving the details of the construction, next we give
proofs for the characteristics thatRTMwill generate. Before
that, we define the terms we use throughout the proofs.

Definition 2 (t-slice of a tensorT ) Given a tensorT of
size(N × M × τ), t-slice ofT is a matrixTt such that

Tt ≡ T (i, j, t), ∀i, ∀j, 1 ≤ i ≤ N, 1 ≤ j ≤ M

Definition 3 ((Normalized) temporal (t-) profile of T )
Given a tensorT of size (N × M × τ), let st denote

the total weight of its t-slice. Then, the t-profile ofT is a
(1 × τ) vector, such that

sT ,0 ≡ (s1, s2, . . . , sτ )

Total weightWT of T can be written as
∑τ

t=1 st. Then,
normalized t-profile ofT is a (1 × τ) vector, such that

pT ,0 ≡ (
s1

WT

,
s2

WT

, . . . ,
sτ

WT

)

5.2 Theorems and Proofs

Recursive Tensor graphs can be shown to exhibit several
real-world graph properties. In particular, if we choose the
initial graph to be a miniature of a real graph, after recursive
iterations ofRTM, the resulting graph will follow similar
properties as of the initial graph due to self-similarity ofthe
construction.

Theorem 1 (Self-similar and Bursty Edge/Weight Additions)
Let edge/weight additions forI with pI,0 be self-similar
and bursty for which the slope of the entropy plot is

slope = H(pI,0) = −

τ∑

i=1

pI,0(i)log2(pI,0(i)),

After k iterations ofRTM, edge/weight arrivals over time
for D are also self-similar and bursty. The slope of the en-
tropy plot overall aggregation levelsr ofD is equal to

slope = H(pD,r) = H(pI,0), ∀r

whereH(pD,r) is the slope of the entropy plot at aggrega-
tion level r. Furthermore, the slope does not change with
the value ofk, that is, burstiness is independent of scale.
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Proof We will prove for weight additions and similar ar-
guments apply for edge additions.
After k iterations ofRTM, total weight ofD becomes

WD = W k
I = (s1 + s2 + . . . + sτ )k

At aggregation level (resolution)1, we group slices byτk−1

into τ groups. Then,WD can be written as

WD = s1 ∗ W k−1
I

+ s2 ∗ W k−1
I

+ . . . + sτ ∗ W k−1
I

Then for1 ≤ t ≤ τ ,

pD,1(t) =
st ∗ W k−1

I

W k
I

=
st

WI

= pI,0(t)

At aggregation level2, we group slices byτk−2 into τ2

groups. Then,

WD = s1 ∗ (s1 ∗ W k−2
I

+ s2 ∗ W k−2
I

+ . . . + sτ ∗ W k−2
I

)

+ s2 ∗ (s1 ∗ W k−2
I

+ s2 ∗ W k−2
I

+ . . . + sτ ∗ W k−2
I

)

+ . . .

+ sτ ∗ (s1 ∗ W k−2
I

+ s2 ∗ W k−2
I

+ . . . + sτ ∗ W k−2
I

)

For any slicei at level1 andt at level2, 1 ≤ t ≤ τ2,

pD,2(t) =
si ∗ st ∗ W k−2

I

si ∗ W k−1
I

=
st

WI

= pI,0(t)

Finally, at aggregation levelk, we group slices byτ0 into
τk groups as

WD = (s1)
k−1 ∗ (s1 + s2 + . . . + sτ )

+ (s1)
k−2 ∗ s2 ∗ (s1 + s2 + . . . + sτ )

+ . . .

+ (sτ )k−1 ∗ (s1 + s2 + . . . + sτ )

For all combinations of(k − 1) slices at levels from1 to
(k − 1), let cj denote the corresponding coefficients,1 ≤
j ≤ τk−1, and for any slicet at levelk, 1 ≤ t ≤ τk

pD,k(t) =
cj ∗ st

cj ∗ WI

=
st

WI

= pI,0(t)

We showed that normalized t-profile,pD,r, of D remains
the same at all aggregation levelsr and is equal to that of
the initial tensorI. So, we conclude that bias of burstiness
for D is the same as that ofI for all values ofk, since
H(pD,r) would not change for∀r.

Starting with a (10 × 10 × 2) I, where pI,0(1) :
pI,0(2) = 0.175 : 0.825; afterk = 3 iterations, the slope
of the entropy plot is obtained to be0.669, which is equal
to

H(pI,0) = .175 ∗ log2(.175) + .825 ∗ log2(.825)

See Fig. 5.2(c).

Theorem 2 (Weight Power Law (WPL)) If the initial
graphGI exhibits the WPL [12] atall time ticks, that is,
number of edgesE(t) and total weightW (t) over time
follow a power law with exponentα, GD shows the same
property at time ticks1, τ1, τ2, . . . , τk with exactly the
same exponentα.

Proof We are given the condition thatGI follows theWPL
at all time ticks, that is,

eα
1 = s1, (e1 +e2)

α = (s1 +s2), . . . , (

τ∑

t=1

et)
α = (

τ∑

1

st).

After k iterations ofRTM, the resulting graph hasEk =
(
∑τ

t=1 et)
k edges andW k

I
= (

∑τ

t=1 st)
k total weight. At

t = τk,

Eα = WI ⇒ (Eα)k = W k
I ⇒ (Ek)α = W k

I

At aggregation level1, Ek can be written as,

Ek = e1 ∗ Ek−1 + e2 ∗ Ek−1 + . . . + eτ ∗ Ek−1

Same argument holds forW k
I

. So, att = τk−1, number of
edges is(e1 ∗Ek−1) and total weight is(s1 ∗W k−1

I
). And,

(e1 ∗ Ek−1)α = (e1)
α ∗ (Eα)k−1 = s1 ∗ W k−1

I

In general, at every aggregation levelr, att = τr, the graph
follows theWPLas

(er
1 ∗ Ek−r)α = (eα

1 )r ∗ (Eα)k−r = sr
1 ∗ W k−r

I

We observe that when we interpolate total weightW (t)
versus number of edgesE(t) at all time ticks t ∈
{1, 2, . . . , τk} for the final graphGD, the resulting exponent
remains very close toα. In Fig. 5.2(b), the user-specified
WPL exponent (See Section 5.3) is1.5, which is equal to
the slope when points att = {1, 2, 4, 8} are used to fit a
line (k = 3). When all points are used, the slope is1.47.

5.3 Initializing I

In order to take advantage of the self-similarity property
of our construct, we want the initial graphGI to be a realis-
tic graph itself. Basically, one can use any graph generator
in the literature that is known to produce realistic graphs
[5, 19, 10] to generateGI .

To our knowledge, sinceRTM is the firstweightedgraph
generator, we also take weights into consideration. Partic-
ularly, we force the initial graph to obey the WPL at all
time ticks. That is, when a link occurs between two nodes,
we put weight on the edge, so that number of edgesE(t)
and total weightW (t) over time follow a power law, with a
user-specified exponentα.

In our experiments, we used theButterfly model[12]
with weights. Note that this generator is shown to gener-
ate realistic un-weighted graphs. See [12] for more details.
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Figure 5. Plots showing related laws that real-world graphs obey for BlogNet. First row shows previ-
ous laws while second row shows observations of this work.

1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

resolution

en
tr

op
y 

∆ 
W

 

 

0.66902x + (−0.66902) = y

(a) Densification Power Law (DPL) (b) Weight Power Law (WPL) (c) ∆W entropy

10
−1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

Wij

√

(W
i⋆
−

W
ij

)
×

(W
j
⋆
−

W
ij

)

 

 

0.33797x + (2.8092) = y

(d) λ1 Power Law (LPL) (e)λ1,w Power Law (LWPL) (f) Edge Weight Power Law (EWPL)

Figure 6. Plots showing related laws our RTM generator produced. Notice that they are very similar
in all the listed properties to those of BlogNet.
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6 Experimental Results

Having created the initial tensor, we take the Recursive
Tensor Multiplication ofI by itselfk times. The final tensor
D is a(Nk × Nk × τk) tensor spanningτk time ticks. At
every time tickt, we take the t-sliceDt of D. Next, we sim-
ply introduce an edge from nodei to nodej with weightai,j

for every nonzero entry ofDt. If nodei or nodej did not
exist, we introduce new node(s). If both the nodes and the
edge inbetween existed, we only increase the edge weight
by ai,j .

We did several experiments for different values ofN , τ
andk. Our model produced realistic graphs for a wide range
of parameters, the results being independent of the number
of iterationsk. In fact,k can be chosen as large as the size
of the graph that one needs to generate.

As a comparison with real-world data, we give the plots
showing reported laws forBlogNetin Fig.5. The plots our
model generated forN = 10, τ = 2 andk = 3 are shown
in Fig.6. In particular, we show (a) the Densification Power
Law (DPL); (b) the Weight Power Law (WPL); (c) bursty
weight additions; (d) theλ1 Power Law (LPL), (e) theλ1,w

Power Law and finally, (f) the Edge Weight Power Law
(EWPL). Other desired characteristics such as small and
shrinking diameter, the gelling point and the Degree Power
Law for degree distribution of nodes are also matched, but
omitted here for brevity.

Note that characteristics matched byRTM include both
those from previous work as well as additional patterns dis-
covered in this work.

7 Conclusion

This is one of the few papers that focus on real, weighted,
time-evolving graphs. The contributions are the following:

1. We discovered several patterns that such graphs fol-
low, like the eigenvalue (λ1) power law (LPL), and the
edge-weight power law (EWPL).

2. We gave a simple, recursive generator,Recursive Ten-
sor Model(RTM), that mimicks along list of the power
laws observed on weighted time-evolving graphs, as
well as on unweighted and/or static graphs.

3. We rigorously proved thatRTM produces several de-
sired characteristics.

Future work abounds: weighted time-evolving graphs have
only recently attracted attention. We believe that they will
obey several more, fascinating patterns. Such patterns will
help us understand the mechanism that make them evolve,
will help us spot anomalies (fraud, spam, hardware failures)
and they will help us do extrapolations, ‘what if’ scenarios,
and fill in missing values.
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