
Learning On-the-Job to Re-rank Anomalies from Top-1 Feedback

Hemank Lamba
School of Computer Science
Carnegie Mellon University

hlamba@cs.cmu.edu

Leman Akoglu
H. John Heinz III College

Carnegie Mellon University
lakoglu@andrew.cmu.edu

Abstract
In many anomaly mining scenarios, a human expert verifies
the anomaly at-the-top (as ranked by an anomaly detector)
before they move on to the next. This verification produces
a label—true positive (TP) or false positive (FP). In this
work, we show how to leverage this label feedback for
the top-1 instance to quickly re-rank the anomalies in an
online fashion. In contrast to a detector that ranks once
and goes offline, we propose a detector called OJRANK
that works alongside the human and continues to learn
(how to rank) on-the-job, i.e., from every feedback. The
benefits OJRANK provides are two-fold; it reduces (i) the
false positive rate by ‘muting’ the anomalies similar to FP
instances; as well as (ii) the expert effort by elevating to the
top the anomalies similar to a TP instance. We show that
OJRANK achieves statistically significant improvement on
both detection precision and human effort over the offline
detector as well as existing state-of-the-art ranking strategies,
while keeping the per feedback response time (to re-rank)
well below a second.

1 Introduction
Given an anomaly mining setting in which a human expert
needs to verify the anomalousness of instances as ranked by
a detection algorithm, starting at the top of the ranked list,
how can we leverage the labels they produce along the way
to re-rank the anomalies? How can we update the ranking
fast, without stalling the expert?

Anomaly detection has been mainly considered a stand-
alone task that precedes any action-taking. In most applica-
tions, however, post-hoc human validation is either manda-
tory or necessary. For example, in auditing systems for insur-
ance claims, expense invoices, tax returns, etc., the anoma-
lies may be indicative of errors or fraud. However, one can-
not automatically decline to pay-back the anomalous cases—
errors must be located and fraudulent activities must be veri-
fied by human experts. For surveillance systems such as user
behavior tracking or systems monitoring, anomalies may be
indicative of malicious activities, however it may be undesir-
able to automatically shut down the anomalous user accounts
or the running processes before verification. Similarly for

Figure 1: Illustration of OJRANK. Filled instances are true
anomalies, unfilled are nominals, color depicts similarity.
Upon each feedback, OJRANK re-ranks the instances, aim-
ing to (a) push up similar True-Positives (red filled) & (b)
‘mute’ similar False-Positives (orange unfilled); (a) helps re-
duce expert effort, and both (a,b) increase true positive rate.

knowledge discovery tasks, such as spotting new objects in
sky images or novelties in particle physics experiments, it is
also necessary for the human expert to validate the anoma-
lies before claiming a discovery. In these types of anomaly
mining settings, the human expert essentially produces a la-
bel (true or false positive) through verification of each next,
yet-unverified top-1 instance.

In this work, our aim is to leverage each label feedback
to update our detection model to produce a new ranking. The
idea is to interleave each feedback provided by the expert
with a re-ranking by the updated model, which potentially
also changes the top-1 instance the expert sees next. As such,
this is a setting in which the detection model works alongside
the expert, and learns to (re)rank on the job or in other words
learns while the expert is working.

The goals of the re-ranking are two-fold. First is
to improve the detection performance within the expert’s
verification budget. For example, if an auditor has the
capacity and time to validate b invoices in a given day,
the goal is to reach as high precision at b as possible.
Intuitively, the more the number of detected anomalies, the
higher is the return (i.e., savings from error and fraud) on
investment (i.e., a day’s of expert’s work). Second goal is
to reduce the expert’s verification effort, which we define in

Copyright c� 2019 by SIAM
Unauthorized reproduction of this article is prohibited

(a) Average rank of seven comparison methods over two sets of
data; (left) BENCHMARK and (right) CLUSTERED; with respect to
two metrics of interest; precision@b and expert effort.

Metric Baselines /
Datasets

AAD
[1]

OMD
Lin[2]

OMD
LLH[2]

OJR
MO

OJR
ALL

pr
ec

.
@

b BENCHMARK 0.015 0.5 0.5 0.005 0.008
CLUSTERED 0.003 0.007 0.027 0.003 0.003

ex
pe

rt
ef

fo
rt BENCHMARK 0.001 0.010 0.024 1e� 4 0.014

CLUSTERED 0.027 0.007 0.012 0.004 0.004

(b) p-values for Wilcoxon signed ranked test between OJRANK and
baseline methods for precision@b and expert effort over two sets
of data. Note that except two cases (shaded in gray), performance
gains are significant at 0.05.

Figure 2: OJRANK outperforms simple as well as state-of-
the-art baselines significantly for two metrics - precision@b
and expert effort. (See §5 for details)

terms of the similarity between consecutive instances expert
gets to verify. Intuitively, the more similar instances they
see in sequence, the lower would be the context switch
and hence their verification effort. Besides those goals,
the requirement is to update the ranking fast so as not
to stall the expert waiting to be presented with the next
top-1 instance. To these ends, we propose an On-the-
Job (online) re-RANKing technique called OJRANK that
employs a ‘more-like-this’ strategy upon a true positive
feedback and ‘less-like-this’ strategy on encountering a false
positive feedback, as illustrated in Figure 1 (see caption).

There exist related work on learning to rank from top-1
feedback for information retrieval tasks [3, 4]. However, due
to the applications being different, their goals differ. Specif-
ically, these work aim to learn from all the feedback to im-
prove the performance of their final model. As such, they
focus on metrics on the quality of the post-feedback ranked
list whereas we aim to maximize precision on the instances
labeled/verified by the expert. The two most related state-of-
the-art work on feedback-based anomaly ranking are AAD
[1, 5] and OMD [2]. They have used various loss functions
and optimization algorithms for re-ranking anomalies based
on top-1 feedback, toward improving precision at the budget,
but without any emphasis on expert effort. OJRANK em-

ploys the same underlying tree-based ensemble detector as
in these work and outperforms both AAD and OMD in terms
of both precision and (especially) expert effort, as shown in
Figure 2. We provide more details about the datasets and
baselines in Section 5. To summarize, the contributions of
this paper can be outlined as follows.
• On-the-Job Learning to Re-rank Anomalies: We ad-

dress the problem of learning to re-rank anomalies on
the job, i.e. while the expert is working toward ver-
ifying the top-ranked anomalies. Each verification of
the top-1 instance produces a label, which our proposed
OJRANK uses to update the ranking presented to the
expert next. To this end, we employ a pairwise learning
to rank objective coupled with a carefully-designed on-
line gradient descent learning, where the update equa-
tion has a clear interpretation for the detection task.

• Higher Precision, Lower Effort: We demonstrate that
OJRANK employs a ‘more-like-this’ update strategy
upon receiving a true positive (TP) feedback, and a
‘less-like-this’ strategy upon a false positive (FP) feed-
back. Both help achieve higher detection precision as
they respectively boost TPs and mute FPs. At the same
time, ‘more-like-this’ updates enable similar anomalies
to be pushed up in the rank order and shown consecu-
tively, which helps reduce expert effort.

• Time and Space Efficiency: OJRANK updates ranking
after every label feedback, during which the user stalls
to be presented with the next top-1 instance to verify.
We show that OJRANK’s online updates take constant-
time in complexity and are near-instantaneous empiri-
cally, where the re-ranking is done within one fifth of a
second on average. Moreover, OJRANK requires only
linear space on the number of instances.

The code, datasets used in the experiments and supplemen-
tary information is available at https://ojrank.github.
io.

2 Related Work
We discuss related work in two categories: active sampling
(which carefully selects the instances to be labeled) versus
top-1 feedback (which simply selects the top instance—no
strategy is involved). We note that active learning (AL)
and rare category discovery (RCD) fall under the former
category, while on-the-job learning (OJL) is different and
falls under the latter. Table 1 shows a quick comparison
between OJRANK and various active sampling and top-1
feedback methods. Detailed discussion follows.

Active Sampling: AL is the task of selecting a small
budget of most informative instances to be queried for la-
bels, such that a model trained on those labeled instances
achieves high performance. AL for classification has em-
ployed various selection/sampling strategies such as uncer-
tainty, query-by-committee, variance reduction, etc. for the

Copyright c� 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Table 1: Qualitative comparison between OJRANK and related methods.

Properties Methods
AL [6–11] RCD [12–14] Ghani and Kumar [15] Top-1 L2R [3, 4] AAD [1, 5] OMD [2] OJRANK

Top-1 Feedback 7 7 7 3 3 3 3

Online Model Updates 7 7 7 3 7 3 3

Precision @ Budget 7 7 3 7 3 3 3

Expert Effort 7 7 3 7 7 7 3

details of which we refer to a survey by Settles [16]. Oth-
ers studied active sampling for learning-to-rank [6–9] and
for anomaly detection [10–12]. A key difference is in how
the queries are selected: In active sampling they are strate-
gically and carefully chosen; in OJL the query is always
the top-most yet-unlabeled instance (i.e., there is no active
selection). The goals also differ: active sampling aims to
maximize the label-incorporated model’s final performance
on unlabeled examples, i.e. performance is measured after
querying; in contrast OJL aims to maximize the number of
anomalous instances presented to user during querying.

Active sampling techniques have also been studied for
rare category discovery (RCD) [12–14], which is a set-
ting where anomalies are assumed to form multiple micro-
clusters (i.e. rare categories). The goal is also notably dif-
ferent from OJL’s, where they aim to identify at least one
example from each rare category by (strategically) querying
the expert for as few labels as possible in total.

Ghani and Kumar [15] studied interactively detecting er-
rors in insurance claims, while also aiming to reduce con-
text switching costs for experts. They use a query selection
heuristic that first clusters the top-scoring instances based on
similarity and ranks the clusters based on a combination of
measures. Instances from top-ranked cluster is then shown
to the expert (helping reduce context switch) until precision
falls below a threshold upon which instances from the next
cluster are presented. Their model is never updated. In con-
trast, OJRANK boosts up instances similar to a true-positive
feedback in an online fashion.

Top-1 Feedback: Compared to active sampling, there
has been relatively limited work on learning-to-rank (L2R)
problems where feedback is only given for the topmost
instance of the ranked list. Chaudhuri et al. [3, 4] proposed
algorithms for well-known L2R loss functions from the
pointwise, pairwise and listwise families. However, they aim
to maximize the resulting performance over the entire ranked
list after all feedback is collected, unlike in our setting, where
our goal is to maximize the overall number of anomalies
presented to the expert during feedback.

On the anomaly ranking side, Das et al. [1] proposed
AAD (Active1 Anomaly Discovery) that partly share the

1Here, their use of the term ‘active’ is misleading, as AAD does
not employ any active sampling strategy for querying—always the top-1
instance is labeled. We find OJL to be a more suitable name, as the expert
verifies the next top-1 instance sequentially as part of their job.

same goal as OJRANK, that is to maximize the number of
anomalies presented at the top (and partly not, as we also
care about expert effort). After each feedback, AAD solves
an optimization program involving constraints between all
of the previous expert-labeled anomalies and nominals (i.e.,
updates are not online). As the number of pairs grows along
with each feedback round, the all-pairs constraints increase
the running time. The initial AAD method was intended to
work with LODA [17], a projection-based ensemble detec-
tion algorithm, which is later extended [5] for tree-based en-
sembles like iForest [18] and HS-Trees [19]. AAD is also
sped up by intelligently replacing the all-pairs constraints by
those relative to the instance ranked at the ⌧ th-quantile.

Most recently, Siddiqui et al. [2] proposed to optimize
pointwise loss functions in an online fashion upon each feed-
back via online mirror descent (OMD). AAD and OMD (and
variants) all aim to maximize the number of true anomalies
shown to the expert. However, they do not put any empha-
sis on expert effort, which takes into account the effort con-
sumed while verifying instances that is likely to decrease if
the instances shown consecutively are similar.

3 Preliminaries and Problem Definition
3.1 Learning on-the-job Setup: We are given a dataset
containing n instances D = {x1, . . . ,xn} in d dimensions,
as well as an anomaly detection model M that provides
scores for the input instances {s1, . . . , sn}, the higher the
more anomalous. The instances are ranked in descending
order of these scores.

The procedure of learning on-the-job proceeds in
rounds. In each round, (a) the expert verifies the top-1 in-
stance with the highest score and reveals a label and (b) our
OJRANK algorithm uses this feedback to update the detec-
tion model M and hence the ranking of the instances. In the
next round, the expert is presented with the top-1 instance
based on the updated ranking and so on. This procedure
continues for b rounds, where b specifies the expert’s budget
(e.g., the number of invoices an auditor has the capacity to
analyze within a day’s work).

3.2 Family of Detection Models: Our proposed work can
subsume any ensemble anomaly detection model M , where
each ensemble component provides a separate score and the
overall anomalousness score of an instance is the sum (or
average) of those scores across components. Many state-
of-the-art detectors fall into this category such as LOF with

Copyright c� 2019 by SIAM
Unauthorized reproduction of this article is prohibited

feature bagging [20], LODA [17] with 1-d projections, and
various tree-based ensembles including iForest [21], HS-
Trees [19], and RS-Forest [22].

Without loss of this generality, this paper adopts the
iForest detector. We denote the number of components (i.e.,
iTrees) in the ensemble by m. Each iTree is constructed over
a random subsample of the input data D, by splitting the
data at each internal node over a randomly selected feature
and a threshold. As anomalies are fewer in number and
isolated from nominal instances, they require fewer splits to
reach a leaf node, hence are quickly isolated. Therefore,
anomalous instances are located at a shorter depth than
nominal instances on average over all the trees in the iForest.

We denote the number of leaves in tree t by Lt. Each
instance is placed in exactly one of the Lt leaves in each
tree. The score of an instance u by the t-th tree is given by

(3.1) s(t)
u

= 1/[pathlen(l(t)
u
) + h(cnt

l
(t)
u
)]

where l(t)u denotes the leaf in t which u falls into; pathlen
captures its depth from the root, cnt

l
(t)
u

is the total number
of instances it contains, and h function returns the expected
path length of unsuccessful searches in a Binary Search Tree
(BST) constructed with the given number of samples.

In this paper we work with the leaves representation
denoted by su = [s(1)u . . . s(m)

u] where s(t)u is a vector with
entries i = 1 . . . Lt where

(3.2) su[i] =

(
s(t)u , if i = l(t)u

0, otherwise

As such su is
P

m

t=1 Lt = l dimensional with exactly m
nonzeros. We denote by S 2 Rn⇥l the scores matrix. As
such, s = S · 1 contains all the anomaly scores.

3.3 Metrics of Interest and Problem Statement: In this
work, we aim to improve two different metrics of interest.

First is the total number of true anomalies verified
by the expert within their budget b. In auditing systems,
this would correspond to the number of erroneous (tax,
insurance, reimbursement) invoices caught among the ones
they could analyze within a day’s work—others that could
not be analyzed need to be paid in full—as such, the more
errors caught, the higher the savings could be. This metric is
essentially the precision at the budget, denoted precision@b.

The second metric of interest is related to the cognitive
burden the expert would have due to context switch. Intu-
itively, the more similar two instances analyzed in sequence
are, the lower the context switching costs would be for the
expert. Since expert effort is not as well-established a metric
as precision, we define it as follows.

Definition 1 (expert effort). : Given the sequence of b
instances {s⇡(1), . . . , s⇡(b)}, where ⇡(r) denotes the index

of the instance ranked at the top in round r, we define:

(3.3) expert effort =
b�1X

r=1

1� sim
�
s⇡(r), s⇡(r+1)

�
,

which is the similarity between consecutive instances veri-
fied by the expert. Here we employ cosine similarity in the
scoring space S . If two instances fall in the same leaves
with high scores (see Eq. (3.1)), these points are consid-
ered anomalous for the same reasons (in the same feature
subspaces). Intuitively, analyzing invoices containing simi-
lar type of anomalies would reduce verification effort.

One can also argue for similarity in the input space X .
This captures the insight that two similar-looking invoices
would be easier for the expert to process back to back. In
the experiments we show that OJRANK outperforms the
baselines w.r.t. both similarities.

Having outlined the preliminaries and goals, our prob-
lem statement can be given as follows:

Problem 1 (On-the-Job Re-ranking). For rounds 1 . . . b :
• Obtain label for the top-1 instance from expert
• Update the detection model based on the feedback and

re-rank instances
such that precision@b is maximized, total expert effort is
minimized, and updates are fast.

We set up the model update problem as learning a
ranking of the instances based on a weighted sum of leaf
scores. That is, we replace the sum s = S · 1 with

s = S ·w(3.4)

and aim to estimate w from expert feedback on-the-job.2

4 Proposed Approach: OJRANK

We formulate the on-the-job re-ranking problem as an online
learning-to-rank task. To this end, we adopt a pairwise
learning to rank objective with a convex cross entropy loss.

Given training examples h(u, v), puvi 2 T where puv
is the desired probability of instance u being ranked above
instance v, we aim to find the weight vector that minimizes
the cross entropy loss over all the training pairs:
(4.5)
min
w

f =
X

(u,v)2T

�puv log(bpuv)� (1� puv) log(1� bpuv)

where bpuv is the estimated probability based on our current
estimate of w, and is acquired using the logistic function:

(4.6) bpuv =
e(su�sv)

1 + e(su�sv)
, where su = s[u] = Su ·w

2Using leaves representation provides us with the capacity to weight l
different feature subspaces (that each leaf corresponds to) rather than m
different trees, the former allowing a larger granularity as l > m.

Copyright c� 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Updating w leads to updating estimated probability bpuv
and moving it closer to the desired probability puv .

OJRANK re-ranks the anomalies after obtaining the
feedback on top-1 instance u from the expert. It has two
major components: (1) Generating pairs - as the cross en-
tropy loss function is pairwise, we pair u for which we re-
ceived feedback with other instances, which we choose by
either sampling or using the historical instances labeled in
the previous rounds, and (2) Optimization - which involves
updating w via optimizing the loss function over the gener-
ated pairs, which is then used to re-compute the scores s in
the following round. The top-1 instance from the updated
ranking is presented to the expert for feedback. The steps of
the algorithm are given in Algorithm 1.

4.1 Generating pairs: After each round of feedback, we
obtain label from the expert for a single instance u - we pair
this instance with other instances v to create pairs.

Using history: We pair u with each previously labeled
instance v with an opposite label to that of u. This allows
us to establish a clear ordering amongst paired instances
- indicating which instance should be ranked higher. For
example, if u is anomalous (nominal), we pair it with
nominal (anomalous) instances v, hence we are certain that
u should be ranked higher (lower) than v.

By sampling: During initial feedback rounds, it is pos-
sible that there are no instances in the history that have op-
posite label to that of u. To handle such cases, we sample v
from unlabeled instances such that we maximize the prob-
ability of obtaining oppositely labeled instances. Specifi-
cally, we skew the probability of sampling from unlabeled
instances such that chances of getting oppositely labeled in-
stances increase. This is done by (i) truncating the sample
space – if u is anomalous (nominal), we sample from bottom
(top) half of the ranked list and (ii) sampling an instance with
probability inversely (directly) proportional to its score. In
particular, when u is anomalous we use the sampling prob-
ability proportional to 1/sv for instance v. If u is nominal,
we sample v (after normalizing the scores s̄v 2 [0, 1]) with
probability proportional to (cs̄v + 1)1/c with c = �0.99 to
increase the chances of sampling an anomalous v. The poly-
nomial scaling for the latter is to account for the fewer num-
ber of anomalies in the data.

We give priority to generating pairs using history rather
than sampling, as sampling could lead to pairing identically
labeled instances. Therefore, we place an upper limit k on
the number of sampled pairs and only when the number of
pairs generated from history is less than (small) k, we sample
the remaining pairs (lines 9, 14 in Algo. 1).

Besides the pairs (u, v), we also need to provide desired
probability puv for each pair as input to the objective func-
tion in (4.5). For v that has been sampled from history and u
anomalous (nominal), we set puv to be the maximum (mini-
mum) of all the current estimated probability values among

Algorithm 1 Proposed OJRANK

Input Ensemble (in our implementation iForest) scores S 2 Rn⇥l; Initial
weights w 2 Rl; Budget b; Scale factor �; Num. pairs to sample k

1: s = S ·w; round = 0 . Initialize
2: while round < b do
3: yu label from expert for u := argmax(s) . Top-1 feedback

/* Setting Up (Generating Pairs)*/
4: a argmax(s), z argmin(s)
5: PH = ;, PS = ; . Historical and Sampled sets
6: if yu = 1 then . True anomaly (positive)
7: for v 2 HN do
8: add h(u, v), bpazi to PH

9: for v 2 sample(s, yu, (k � |HN |)+) do
10: add h(u, v), (1 + �)bpuvi to PS

11: else . False positive
12: for v 2 HA do
13: add h(u, v), (1� bpaz)i to PH

14: for v 2 sample(s, yu, (k � |HA|)+ do
15: add h(u, v), (1� �)bpuvi to PS

/* Optimization (Updating weights)*/
16: t = 0; wt = wt�1

 w . Initialize with w from last round
17: ⌘ = 0.1, � = 0.75, ✏ = 10�8, batch_size = 100, Tmax = 1000
18: repeat
19: ePH get_next_SGD_batch(PH , batch_size)
20: for h(u, v), puvi 2 ePH [PS do
21: if (u, v) 2 PS then c (Su > 0) else c [1 . . . l]
22: wt+1[c] wt[c]� �(wt[c]�wt�1[c])

� ⌘(Su[c]� Sv [c])(bpuv � puv)

23: t t+ 1
24: until t � Tmax OR f(wt+1)� f(wt) ✏
25: w := wt+1, s = S ·w . Rescore according to the updated w
26: if yu == 1 then HA := HA [u else HN := HN [u
27: round round + 1

all pairs (lines 8 and 13). For example, if u is anomalous (v
is nominal), we set puv = bpaz where a is the highest scored
instance and z is the lowest scored instance (line 4). Here,
we are certain about the ordering among the (u, v) instances,
thus we set the desired probability to maximum so as to push
u in the correct direction quickly. On the other hand, when v
is obtained by sampling, there is still a chance that we might
have generated identically labeled instances. In that case, we
aim to avoid the mistake of pushing u in opposite direction
by a high magnitude. Therefore, for sampled pairs we nudge
the current estimate of probability between u and v by only a
(small) factor of �, i.e., puv = (1±�)bpuv , the sign depending
on whether u is anomalous or nominal (lines 10, 15).

4.2 Optimization: We now have training instances in the
form of h(u, v), puvi 2 P = ePH [PS , generated using
history and via sampling as explained in the previous sub-
section. Next, we are interested in solving the optimization
problem in (4.5), i.e., find w such that the cross entropy loss
over all pairs in the training set is minimized. The gradient
update equation is written as

wt = wt�1 � ⌘ ·
X

(u,v)2P

(bpuv � puv)(Su � Sv) .(4.7)

Copyright c� 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Relation of gradient updates to precision and effort:
Importantly, these gradient updates are interpretable and
have clear impact on the expert effort and the true positive
rate. Consider the case where u is anomalous and v is
nominal: by construction, we know that puv > bpuv . Each
coordinate in w represents the relative importance of a
leaf (i.e., subspace) in a tree. Looking at the update, we
can observe that all the coordinates that are responsible
for making u anomalous, i.e., those with a magnitude in
Su significantly higher than those in Sv , will increase in
weight. Therefore, the updated w will push u, as well
as other anomalous instances similar to u (i.e., those that
share the same high-scoring leaves with u) higher to the
top; contributing to reduced effort and increased precision.
In contrast, puv < bpuv when u is nominal, in which case
updates will tend to push u and other similar instances down
in ranking, contributing to reduced false positive rate.

Coordinate selection: One caveat with the gradient
updates is the set of sampled pairs, which may contain
identically-labeled (u, v) pairs. In those cases, the updates
will nevertheless enforce a (wrong) ordering between them.
For example, if u is nominal and we sampled v nominal as
well, updates will tend to increase weights on coordinates of
v that have higher magnitude than those of u (e.g., different
leaf in the same tree), causing v (and nominals similar to v)
climb higher in the list, which is undesirable. We circumvent
this issue by updating only the non-zero coordinates of u for
sampled pairs (as shown in line 21).

Online updates and acceleration: Note that w0 is set
to the latest w from the previous round (lines 16, 25), and
the updates are only over the newly generated pairs P for the
top-1 labeled instance u in the current round (line 20). As
such, OJRANK stands on online gradient-based learning.

Specifically, we employ batch stochastic gradient de-
scent (SGD). Each batch is selected from the pairs that are
created using history (line 19) and combined with the (at
most k) sampled pairs. We also use the momentum-based
SGD to accelerate the descent (hence, the response time).
The momentum-based update equation (line 22) is similar
to Eq. (4.7), which is obtained by adding � fraction (mo-
mentum factor) of the gradient from the previous step to the
current gradient update vector. Finally, all relevant parame-
ters are listed in line 17 of Algo 1 and our implementation is
open-sourced at https://ojrank.github.io.

5 Evaluation
In this section, we evaluate our proposed OJRANK approach
in comparison with five baselines as listed in §5.1. Experi-
ments are conducted over two types of datasets, introduced
in §5.2. We then present the results with respect to three
performance metrics of interest in §5.3: precision@b, expert
effort and speed (i.e., online response time).

Table 2: Summary statistics for two sets of data used in
experiments: (left) BENCHMARK and (right) CLUSTERED.

BENCHMARK DATASETS CLUSTERED DATASETS
Name n Anom. % Name n Anom. %
abalone 1920 1.51 vowels 2821 1.77
ann 3251 2.24 optdigits 592 4.22
cardio 1700 2.64 letters 2433 2.05
ecoli 336 2.67 sensor 16257 0.92
glass 214 4.20 segment 1090 4.58
mammography 11183 2.32 statlog 1665 3.00
shuttle 12345 7.02 vehicle 495 6.06
wbc 378 5.56 svmguide 544 9.19
yeast 1191 4.61
lympho 148 4.05
musk 3062 3.16
thyroid 3772 2.46
wine 129 7.76
vertebral 240 12.5

5.1 Baselines: We compare OJRANK with two state-of-
the-art techniques that addressed the problem of online re-
ranking of anomalies from top-1 feedback, as discussed in
related work (§2). We also compare with the offline baseline
as well as two variants of OJRANK explained below.
• AAD [1]: See §2 and Table 1.
• OMD [2]: See §2 and Table 1. We compare to both

versions based on the type of loss used – (a) OMD-Lin
(linear loss) and (b) OMD-LLH (log-likelihood loss).

• Offline: Static top-b instances based on the initial
ranking by the detector, no re-ranking over rounds.

• OJR-MO: Mistake-Only variant; we run online model
updates only when top-1 feedback is a false positive.

• OJR-ALL: All coordinates variant; we do not scale the
sampling probabilities–increases the risk of identically-
labeled pairs (ilp)–and perform no coordinate selec-
tion for sampled pairs–enforces a ranking among ilp.

All compared methods use the same underlying iForest
detectors. We report performance results averaged over 10
different runs of iForest. AAD and OMD are run with the
author-recommended parameters. We set budget b equal to
the number of true anomalies in each dataset.

5.2 Datasets: We evaluate performance over two types
of datasets as listed in Table 2; namely, (1) BENCHMARK
DATASETS: a set of 14 real-world datasets and (2) CLUS-
TERED DATASETS: 8 datasets generated from multi-class
classification datasets, as described below.
BENCHMARK DATASETS: The first data collection contains
14 real-world datasets from a publicly-available outlier de-
tection dataset repository [23].
CLUSTERED DATASETS: OJRANK learns well from feed-
back when there are other points similar to the feedback in-
stance, i.e., when instances form (micro)-clusters. Learning
from an extreme outlier would be very limited, as there are
no other points in the dataset that are similar to it, hence no
other instances can benefit from the feedback. To create such
a setting, we synthetically generate 8 datasets by modifying
multi-class datasets from the UCI repository.

Copyright c� 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Table 3: precision@b on BENCHMARK DATASETS. Per dataset rank provided in parentheses (the lower the better). Average
rank across datasets given in the last row. Symbols N and M denote the cases where OJRANK is significantly better than the
baseline w.r.t. the Wilcoxon signed rank test, respectively at (p<0.01) and (p<0.05).

Dataset OJRANK OJR-MO OJR-ALL AAD OMD-Lin OMD-LLH Offline
abalone 0.52 ± 0.00(5.0) 0.52 ± 0.00(5.0) 0.52 ± 0.00(5.0) 0.56 ± 0.02(1.0) 0.52 ± 0.01(3.0) 0.54 ± 0.02(2.0) 0.51 ± 0.02(7.0)

ann 0.75 ± 0.03(3.0) 0.73 ± 0.03(4.0) 0.52 ± 0.32(5.0) 0.39 ± 0.05(6.0) 0.78 ± 0.03(1.0) 0.76 ± 0.04(2.0) 0.19 ± 0.07(7.0)
cardio 0.64 ± 0.02(4.0) 0.65 ± 0.02(2.0) 0.60 ± 0.06(5.0) 0.55 ± 0.04(6.0) 0.65 ± 0.01(3.0) 0.69 ± 0.04(1.0) 0.38 ± 0.04(7.0)
ecoli 0.72 ± 0.06(1.0) 0.57 ± 0.08(3.0) 0.70 ± 0.10(2.0) 0.44 ± 0.05(6.0) 0.56 ± 0.09(4.0) 0.51 ± 0.10(5.0) 0.42 ± 0.04(7.0)
glass 0.11 ± 0.00(4.5) 0.11 ± 0.00(4.5) 0.17 ± 0.17(1.0) 0.11 ± 0.00(4.5) 0.11 ± 0.00(4.5) 0.11 ± 0.00(4.5) 0.11 ± 0.00(4.5)

mammography 0.58 ± 0.02(3.0) 0.56 ± 0.02(5.0) 0.56 ± 0.01(4.0) 0.41 ± 0.02(6.0) 0.60 ± 0.01(2.0) 0.62 ± 0.01(1.0) 0.25 ± 0.05(7.0)
shuttle 0.96 ± 0.04(5.0) 0.94 ± 0.03(6.0) 0.97 ± 0.01(4.0) 0.98 ± 0.00(1.0) 0.97 ± 0.01(3.0) 0.98 ± 0.00(2.0) 0.89 ± 0.03(7.0)

wbc 0.71 ± 0.06(1.0) 0.66 ± 0.03(3.0) 0.67 ± 0.05(2.0) 0.53 ± 0.05(6.0) 0.60 ± 0.03(4.0) 0.59 ± 0.05(5.0) 0.50 ± 0.03(7.0)
yeast 0.27 ± 0.05(5.0) 0.25 ± 0.05(6.0) 0.18 ± 0.04(7.0) 0.34 ± 0.02(3.0) 0.35 ± 0.01(2.0) 0.36 ± 0.04(1.0) 0.34 ± 0.01(4.0)

lympho 0.92 ± 0.08(6.0) 0.93 ± 0.08(3.0) 0.60 ± 0.11(7.0) 0.93 ± 0.08(3.0) 0.93 ± 0.08(3.0) 0.93 ± 0.08(3.0) 0.93 ± 0.08(3.0)
musk 1.00 ± 0.00(3.0) 0.99 ± 0.00(4.0) 0.99 ± 0.01(6.0) 0.99 ± 0.02(5.0) 1.00 ± 0.00(1.5) 1.00 ± 0.00(1.5) 0.97 ± 0.03(7.0)

thyroid 0.81 ± 0.02(4.0) 0.77 ± 0.01(5.0) 0.82 ± 0.02(2.0) 0.69 ± 0.03(6.0) 0.82 ± 0.02(3.0) 0.86 ± 0.01(1.0) 0.54 ± 0.03(7.0)
wine 0.42 ± 0.19(1.0) 0.27 ± 0.13(3.0) 0.28 ± 0.35(2.0) 0.09 ± 0.03(5.5) 0.09 ± 0.03(5.5) 0.09 ± 0.03(5.5) 0.09 ± 0.03(5.5)

vertebral 0.33 ± 0.04(1.0) 0.31 ± 0.06(2.0) 0.05 ± 0.05(4.0) 0.05 ± 0.02(3.0) 0.05 ± 0.02(5.5) 0.05 ± 0.02(5.5) 0.04 ± 0.02(7.0)
Avg. Rank 3.32 3.96N 4.00N 4.43M 3.21 2.86 6.21N

Table 4: precision@b on CLUSTERED DATASETS. Per dataset rank provided in parentheses (lower is better). Average rank
provided in the last row. Symbol N denote the cases where OJRANK is significantly better than the corresponding baseline
w.r.t. the Wilcoxon signed rank test at (p<0.01).

Dataset OJRANK OJR-MO OJR-ALL AAD OMD-Lin OMD-LLH Offline
vowels 0.78 ± 0.09(2.0) 0.58 ± 0.09(4.0) 0.09 ± 0.26(7.0) 0.45 ± 0.04(5.0) 0.77 ± 0.06(3.0) 0.80 ± 0.05(1.0) 0.17 ± 0.06(6.0)

optdigits 0.08 ± 0.13(1.0) 0.07 ± 0.13(2.0) 0.01 ± 0.03(7.0) 0.04 ± 0.03(5.0) 0.06 ± 0.04(3.0) 0.05 ± 0.03(4.0) 0.03 ± 0.02(6.0)
letters 0.62 ± 0.12(1.0) 0.51 ± 0.12(3.0) 0.21 ± 0.28(5.0) 0.16 ± 0.06(6.0) 0.53 ± 0.12(2.0) 0.47 ± 0.17(4.0) 0.05 ± 0.01(7.0)
sensor 0.95 ± 0.04(1.0) 0.95 ± 0.03(2.0) 0.48 ± 0.38(6.0) 0.52 ± 0.12(5.0) 0.95 ± 0.03(4.0) 0.95 ± 0.03(3.0) 0.14 ± 0.08(7.0)

segment 0.48 ± 0.20(1.0) 0.40 ± 0.14(2.0) 0.00 ± 0.00(6.5) 0.02 ± 0.02(5.0) 0.25 ± 0.15(3.0) 0.04 ± 0.03(4.0) 0.00 ± 0.00(6.5)
statlog 0.93 ± 0.02(2.0) 0.91 ± 0.01(5.0) 0.92 ± 0.01(4.0) 0.90 ± 0.01(6.0) 0.93 ± 0.01(1.0) 0.92 ± 0.01(3.0) 0.87 ± 0.03(7.0)
vehicle 0.31 ± 0.14(1.0) 0.29 ± 0.07(2.0) 0.12 ± 0.03(4.0) 0.11 ± 0.03(6.0) 0.13 ± 0.04(3.0) 0.11 ± 0.03(5.0) 0.09 ± 0.02(7.0)

svmguide 0.12 ± 0.04(1.0) 0.11 ± 0.01(2.0) 0.10 ± 0.03(3.0) 0.10 ± 0.00(5.5) 0.10 ± 0.00(5.5) 0.10 ± 0.00(5.5) 0.10 ± 0.00(5.5)
Avg. Rank 1.25 2.75N 5.31N 5.44N 3.06N 3.69N 6.50N

From each multi-class dataset, we first select two classes
at random, with the intuition that the instances within each
class would be clustered. Instances from the remaining
classes are designated as nominals. In case of too many
remaining classes, 3 of them are randomly selected. We
next downsample the selected two classes to equal number
so that the percentage is consistent with the usual anomaly
detection settings. We designate the downsampled instances
from the first class as “anomalies” and those from the other
as “rare nominals”. The detector is likely to rank both as
anomalous, yet from the expert’s point of view, they would
correspond to true and false positives, respectively. Here,
“rare nominals” represent rare yet uninteresting group of
instances. This setup allows us to directly test the ability of
the methods in learning to boost/mute instances from these
respective classes upon expert feedback.

Summary statistics for the CLUSTERED DATASETS are
given in Table 2. Details for the mapping of classes to above
categories are provided in Table 7 of Supplementary. We also
share these generated datasets at our aforementioned URL.
5.3 Results : We analyze performance results over both
datasets w.r.t. (a) precision@b, (b) expert effort and (c)
runtime per update. We also present a sensitivity analysis
of OJRANK w.r.t. two input parameters in Algo. 1; � and k.
Precision@b: Table 3 and Table 4 provide precision across
BENCHMARK DATASETS and CLUSTERED DATASETS, re-

spectively. On each dataset, we show the average preci-
sion and standard deviation over 10 different runs of iForest.
Rank of each method per dataset is in parentheses (in case of
ties, average of the ranks are assigned to each tied method).
Finally, the last row gives the average rank per method across
all datasets (lower is better).

The precision magnitudes differ quite a bit among
datasets, therefore we perform a rank test to compare the
methods statistically. Specifically, the Wilcoxon signed
rank test between OJRANK and each baseline shows that
OJRANK significantly outperforms its two variants and the
offline baseline at p<0.01 on both BENCHMARK and CLUS-
TERED datasets. (Actual p-values can be found in Figure 2
(b) in Section 1.) In fact, notice that Offline is ranked at the
bottom in both setups, demonstrating the value of learning
on-the-job. OJRANK is also superior to AAD, respectively
at p<0.05 and p<0.01. We find no significant difference
(p=0.5) between OMD variants and OJRANK on BENCH-
MARK DATASETS. On the other hand, OJRANK significantly
outperforms all baselines including OMD on CLUSTERED
DATASETS, showcasing its ability to learn from feedback on
clustered instances.

We illustrate how the number of true discovered anoma-
lies change over rounds with the expert on several datasets
from BENCHMARK DATASETS and CLUSTERED DATASETS
in Figure 6 and Figure 7, respectively (See Supplementary).

Copyright c� 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Table 5: Expert effort on BENCHMARK DATASETS. Per dataset rank shown in parentheses (lower is better). Average rank
is in the second last row (effort in S space). Average rank for effort in X space also given in last row. Symbols N(p<0.01)
and M(p<0.05) denote the cases where OJRANK is significantly better than the baseline w.r.t. Wilcoxon signed rank test.

Dataset OJRANK OJR-MO OJR-ALL AAD OMD-Lin OMD-LLH Offline
abalone 0.59 ± 0.02(3.0) 0.65 ± 0.02(7.0) 0.60 ± 0.03(5.0) 0.60 ± 0.08(4.0) 0.54 ± 0.04(1.0) 0.56 ± 0.03(2.0) 0.65 ± 0.03(6.0)

ann 0.49 ± 0.02(1.0) 0.70 ± 0.02(5.0) 0.65 ± 0.21(4.0) 0.92 ± 0.02(7.0) 0.60 ± 0.02(3.0) 0.60 ± 0.02(2.0) 0.92 ± 0.02(6.0)
cardio 0.69 ± 0.01(1.0) 0.83 ± 0.03(5.0) 0.72 ± 0.03(2.0) 0.89 ± 0.03(6.0) 0.77 ± 0.02(4.0) 0.73 ± 0.03(3.0) 0.90 ± 0.03(7.0)
ecoli 0.96 ± 0.02(1.0) 1.10 ± 0.02(7.0) 0.98 ± 0.02(2.0) 1.09 ± 0.02(5.0) 1.07 ± 0.02(4.0) 1.07 ± 0.04(3.0) 1.10 ± 0.02(6.0)
glass 1.12 ± 0.00(7.0) 1.12 ± 0.00(6.0) 1.09 ± 0.07(1.0) 1.12 ± 0.00(3.5) 1.12 ± 0.00(3.5) 1.12 ± 0.00(3.5) 1.12 ± 0.00(3.5)

mammography 0.57 ± 0.01(2.0) 0.70 ± 0.01(5.0) 0.60 ± 0.01(3.0) 0.82 ± 0.02(6.0) 0.60 ± 0.02(4.0) 0.57 ± 0.02(1.0) 0.83 ± 0.02(7.0)
shuttle 0.20 ± 0.03(2.0) 0.65 ± 0.04(5.0) 0.20 ± 0.01(1.0) 0.81 ± 0.02(7.0) 0.35 ± 0.01(4.0) 0.26 ± 0.01(3.0) 0.70 ± 0.03(6.0)

wbc 0.91 ± 0.02(1.0) 1.00 ± 0.01(5.0) 0.92 ± 0.02(2.0) 1.00 ± 0.01(6.0) 0.99 ± 0.01(4.0) 0.98 ± 0.01(3.0) 1.00 ± 0.01(7.0)
yeast 0.86 ± 0.03(4.0) 0.91 ± 0.03(6.0) 0.91 ± 0.02(7.0) 0.81 ± 0.03(3.0) 0.77 ± 0.01(2.0) 0.77 ± 0.02(1.0) 0.88 ± 0.01(5.0)

lympho 1.20 ± 0.00(2.0) 1.20 ± 0.00(5.0) 1.19 ± 0.00(1.0) 1.20 ± 0.00(5.0) 1.20 ± 0.00(5.0) 1.20 ± 0.00(5.0) 1.20 ± 0.00(5.0)
musk 0.20 ± 0.01(1.0) 0.47 ± 0.03(5.0) 0.22 ± 0.01(2.0) 0.48 ± 0.03(7.0) 0.26 ± 0.02(4.0) 0.24 ± 0.01(3.0) 0.48 ± 0.02(6.0)

thyroid 0.48 ± 0.02(2.0) 0.66 ± 0.04(5.0) 0.48 ± 0.02(1.0) 0.80 ± 0.03(7.0) 0.59 ± 0.03(4.0) 0.51 ± 0.03(3.0) 0.76 ± 0.02(6.0)
wine 1.06 ± 0.04(1.0) 1.10 ± 0.01(3.0) 1.06 ± 0.05(2.0) 1.11 ± 0.00(7.0) 1.11 ± 0.00(5.0) 1.11 ± 0.00(6.0) 1.10 ± 0.00(4.0)

vertebral 0.89 ± 0.06(1.0) 0.95 ± 0.02(2.0) 1.00 ± 0.02(3.0) 1.02 ± 0.00(5.0) 1.02 ± 0.00(7.0) 1.02 ± 0.00(6.0) 1.02 ± 0.00(4.0)
Avg. Rank 2.07 5.07N 2.57M 5.61N 3.89M 3.18M 5.61N

Avg. Rank (Orig. Space) 2.00 4.75N 3.07M 5.57N 3.86M 3.11M 5.64N

Table 6: Expert effort on CLUSTERED DATASETS. Per dataset rank provided in parentheses (lower is better). Average rank
is in the second last row. Average rank for effort in X space also given in last row. Symbols N(p<0.01), M(p<0.05) and
O(p<0.1) denote the cases where OJRANK is significantly better than the baseline w.r.t. Wilcoxon signed rank test.

Dataset OJRANK OJR-MO OJR-ALL AAD OMD-Lin OMD-LLH Offline
vowels 0.63 ± 0.06(1.0) 0.85 ± 0.03(4.0) 0.97 ± 0.13(7.0) 0.90 ± 0.02(5.0) 0.69 ± 0.02(3.0) 0.67 ± 0.02(2.0) 0.94 ± 0.01(6.0)

optdigits 1.02 ± 0.03(2.0) 1.03 ± 0.01(7.0) 1.03 ± 0.01(4.0) 0.99 ± 0.02(1.0) 1.03 ± 0.00(6.0) 1.03 ± 0.00(5.0) 1.02 ± 0.01(3.0)
letters 0.72 ± 0.06(1.0) 0.89 ± 0.04(4.0) 0.91 ± 0.14(5.0) 0.92 ± 0.04(6.0) 0.84 ± 0.06(2.0) 0.86 ± 0.07(3.0) 0.98 ± 0.01(7.0)
sensor 0.45 ± 0.05(1.0) 0.65 ± 0.06(4.0) 0.72 ± 0.22(5.0) 0.92 ± 0.01(7.0) 0.55 ± 0.05(3.0) 0.52 ± 0.06(2.0) 0.88 ± 0.05(6.0)

segment 0.71 ± 0.14(1.0) 0.83 ± 0.07(3.0) 1.01 ± 0.01(7.0) 0.80 ± 0.03(2.0) 0.88 ± 0.07(4.0) 0.95 ± 0.02(6.0) 0.95 ± 0.03(5.0)
statlog 0.52 ± 0.01(1.0) 0.66 ± 0.03(5.0) 0.54 ± 0.02(2.0) 0.69 ± 0.03(6.0) 0.60 ± 0.02(4.0) 0.56 ± 0.02(3.0) 0.69 ± 0.03(7.0)
vehicle 0.88 ± 0.07(1.0) 0.95 ± 0.04(3.0) 0.99 ± 0.01(7.0) 0.94 ± 0.02(2.0) 0.97 ± 0.02(5.0) 0.97 ± 0.02(4.0) 0.98 ± 0.02(6.0)

svmguide 0.95 ± 0.04(5.0) 0.97 ± 0.01(7.0) 0.95 ± 0.02(6.0) 0.88 ± 0.01(1.0) 0.94 ± 0.01(4.0) 0.92 ± 0.01(3.0) 0.91 ± 0.02(2.0)
Avg. Rank 1.62 4.62N 5.38N 3.75M 3.88N 3.50M 5.25N

Avg. Rank (Orig. Space) 2.25 4.12N 4.38O 4.00O 4.12O 3.88O 5.25M

Expert effort: Next we analyze the results on expert effort
on BENCHMARK DATASETS in Table 5 and on CLUSTERED
DATASETS in Table 6. The differences between OJRANK
and baselines become apparent especially on this metric.
Notice that OJRANK yields significantly better expert effort
than all of the baselines at p<0.05. (See Figure 2 (b) in
Section 1 for the actual p-values.)

As given in Def.n 3.3, expert effort utilizes similarity
in the anomaly scoring space S . Recall that one could also
argue for similarity in the original input space X . To this
end, we also report (only) the average rank (for brevity) per
method across all datasets based on effort utilizing similarity
in X space, shown in the last row of Tables 5 and 6. Here,
we observe the same trends on BENCHMARK DATASETS.
OJRANK also outperforms all the baselines on CLUSTERED
DATASETS at (a slightly higher) p<0.1. The somewhat better
effort the baselines achieve in this setup is because they
show consecutive instances from the “rare nominal” cluster
or from the same larger nominal clusters. This querying
of similar instances achieves reduced effort, however at the
expense of poor precision (as observed from Table 4).
Overall comparison: The ideal method for on-the-job re-
ranking is the one that achieves high precision and enables
low effort at the same time. To compare all the methods
in both grounds, Figure 2 (a) presents a scatter plot of the
avg. rank w.r.t. precision@b versus avg. rank w.r.t. expert

effort for each setup. It is easy to see that OJRANK is
closest to the top (denoted by the target symbol on the plots),
especially on CLUSTERED DATASETS, where the differences
are significant as discussed in the previous subsections.
Response time to update: An important requirement for the
kind of applications considered in this work is fast response
time; since the expert is to wait between feedbacks to be
presented with the updated top-1 instance. In Figure 3, we
show the distribution of per-round update time (avg.’ed over
10 iForests) over all rounds with boxplots. For brevity, re-
sults for a subset of BENCHMARK DATASETS are shown (oth-
ers are similar and can be seen in Figure 5 of Supplemen-
tary). Moreover, only the state-of-the-art baselines (AAD
and OMD) and OJRANK are compared.

The key take-aways are two: OJRANK takes less than
one fifth of a second to provide a model update on average
– which would be near instantaneous for a human expert.
In addition, the update time has low variance from round to
round and from dataset to dataset (unlike e.g., AAD).
5.4 Sensitivity Analysis: We conclude experiments with
an analysis of OJRANK’s sensitivity to its input parameters;
scaling factor � and number of pairs k to sample. We tested
over small values of the parameters so as not to stray far
away from the original ranked list upon a single feedback.
As shown in Figure 4, performance remains nearly stable for
most datasets. We use and recommend � = 0.1 and k = 5.

Copyright c� 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 3: Avg. runtime per update on several (left) BENCH-
MARK & (right) CLUSTERED datasets. OJRANK’s response
time is less than one fifth of a second, with low variance.

Figure 4: precision@b remains reasonably stable upon vary-
ing (left) � and (right) k (2 input parameters to OJRANK).
Each line corresponds to one of all 14+8 datasets in Table 2.

6 Conclusion
In this work we addressed the problem of how to leverage the
label revealed by an expert on the top-1 instance to quickly
re-rank the anomalies in an online fashion. The proposed
approach OJRANK works alongside the expert and continues
to learn on-the-job from every top-1 feedback. To this end,
OJRANK leverages a cross entropy based pairwise learning
to rank objective along with accelerated online gradient
updates. These updates correspond to a ‘more-like-this’
strategy on true positive feedback – boosting other similar
instances up the list, and a ‘less-like-this’ strategy on false
positive feedback – muting other similar false positives. We
show that OJRANK not only increases precision but also
decreases expert effort over two different classes of datasets,
and significantly outperforms the offline and state-of-the-art
baselines over both metrics. Finally, OJRANK has constant
time complexity with instantaneous response time to update,
and linear space requirement on the number of instances.

Acknowledgments
This research is sponsored by NSF CAREER 1452425 and
IIS1408287. Conclusions expressed in this material are of the au-
thors and do not necessarily reflect the views, expressed or implied,
of the funding parties.

References
[1] S. Das, W.-K. Wong, T. Dietterich, A. Fern, and A. Emmott.

Incorporating expert feedback into active anomaly discov-
ery. In IEEE ICDM, pages 853–858, 2016.

[2] M. A. Siddiqui, A. Fern, T. G. Dietterich, R. Wright, A.
Theriault, and D. W. Archer. Feedback-guided anomaly
discovery via online optimization. In KDD. ACM, 2018.

[3] S. Chaudhuri and A. Tewari. Online ranking with top-1
feedback. In AISTATS, pages 129–137, 2015.

[4] S. Chaudhuri and A. Tewari. Online learning to rank with
feedback at the top. In AISTATS, pages 277–285, 2016.

[5] S. Das, W.-K. Wong, A. Fern, T. G. Dietterich, and M. A.
Siddiqui. Incorporating feedback into tree-based anomaly
detection. arXiv preprint arXiv:1708.09441, 2017.

[6] P. Donmez and J. G. Carbonell. Optimizing estimated loss
reduction for active sampling in rank learning. In ICML,
2008.

[7] K. Hofmann, S. Whiteson, and M. d. Rijke. Balancing
exploration and exploitation in listwise and pairwise on-
line learning to rank for information retrieval. Inf. Retr.,
16(1):63–90, 2013.

[8] B. Long, J. Bian, O. Chapelle, Y. Zhang, Y. Inagaki, and Y.
Chang. Active learning for ranking through expected loss
optimization. IEEE TKDE, 27(5):1180–1191, 2015.

[9] R. M. Silva, G. Gomes, M. S. Alvim, and M. A. Gonçalves.
Compression-based selective sampling for learning to rank.
In CIKM. ACM, 2016.

[10] N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld. Toward
supervised anomaly detection. J. Artif. Intell. Res., 46, 2013.

[11] N. Nissim, A. Cohen, R. Moskovitch, A. Shabtai, M. Edry,
O. Bar-Ad, and Y. Elovici. ALPD: active learning frame-
work for enhancing the detection of malicious pdf files. In
JISIC, pages 91–98. IEEE, 2014.

[12] D. Pelleg and A. W. Moore. Active learning for anomaly and
rare-category detection. In NIPS, pages 1073–1080, 2004.

[13] J. He and J. G. Carbonell. Nearest-neighbor-based active
learning for rare category detection. In NIPS, 2007.

[14] J. He and J. G. Carbonell. Rare class discovery based on
active learning. In ISAIM, 2008.

[15] R. Ghani and M. Kumar. Interactive learning for efficiently
detecting errors in insurance claims. In KDD. ACM, 2011.

[16] B. Settles. Active learning. Synthesis Lectures on AI and
ML, 6(1):1–114, 2012.

[17] T. Pevný. Loda: lightweight on-line detector of anomalies.
Machine Learning, 102(2):275–304, 2016.

[18] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In
ICDM, pages 413–422, 2008.

[19] S. C. Tan, K. M. Ting, and F. T. Liu. Fast anomaly detection
for streaming data. In T. Walsh, editor, IJCAI. AAAI, 2011.

[20] A. Lazarevic and V. Kumar. Feature bagging for outlier
detection. In KDD, pages 157–166. ACM, 2005.

[21] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation-based
anomaly detection. TKDD, 6(1):3, 2012.

[22] K. Wu, K. Zhang, W. Fan, A. Edwards, and P. S. Yu.
Rs-forest: a rapid density estimator for streaming anomaly
detection. In ICDM, pages 600–609. IEEE, 2014.

[23] S. Rayana. ODDS library, 2016. URL: http://odds.
cs.stonybrook.edu.

Copyright c� 2019 by SIAM
Unauthorized reproduction of this article is prohibited

