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Abstract. Graph-regularized semi-supervised learning has been effectively used
for classification when (i) data instances are connected through a graph, and (ii)
labeled data is scarce. Leveraging multiple relations (or graphs) between the in-
stances can improve the prediction performance, however noisy and/or irrele-
vant relations may deteriorate the performance. As a result, an effective weighing
scheme needs to be put in place for robustness.
In this paper, we propose iMUNE, a robust and effective approach for multi-
relational graph-regularized semi-supervised classification, that is immune to noise.
Under a convex formulation, we infer weights for the multiple graphs as well as
a solution (i.e., labeling). We provide a careful analysis of the inferred weights,
based on which we devise an algorithm that filters out irrelevant and noisy graphs
and produces weights proportional to the informativeness of the remaining graphs.
Moreover, iMUNE is linearly scalable w.r.t. the number of edges. Through ex-
tensive experiments on various real-world datasets, we show the effectiveness of
our method, which yields superior results under different noise models, and under
increasing number of noisy graphs and intensity of noise, as compared to a list of
baselines and state-of-the-art approaches.

1 Introduction

Given (i) a network with multiple different relations between its nodes, and (ii) labels
for a small set of nodes, how can we predict the labels of the unlabeled nodes in a robust
fashion? Robustness is a key element especially when the data comes from sources with
varying veracity, where some relations may be irrelevant or noisy for the prediction task.

This abstraction admits various real-world applications. For example, in fraud de-
tection one may try to classify individuals as fraudulent or not based on the phone-call,
SMS, etc. interactions. In biology, genes are classified as whether or not they perform a
certain function through various similarity and interaction relations between them.

Accomplishing the above task requires addressing two main problems: (1) identi-
fying and filtering out irrelevant and noisy relations, and (2) automatically weighing
other relations by their informativeness for the task. Existing methods either are vastly
affected in the presence of noise [1], produce locally optimal solutions due to their
non-convex objective formulations [2–4], use only the labeled data [5–7], or are too
expensive to compute [8–11].

In this work we introduce iMUNE, a robust, scalable, and effective graph-regularized
semi-supervised classification approach for MUlti-relational NEtworks. In the example
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Fig. 1: A synthetic multi-relational graph (n = 100 nodes, m = 5 views), with 3 informative
(top) and 2 noisy (bottom) graphs. Shown are adjacency matrices; red dots: cross-edges between
nodes from two different classes, black dots: within-class edges. G1–G3 are in order of informa-
tiveness. G4 depicts random noise. G5 contains adversarial noise. Inferred weights (all graphs):
[25.17, 16.54, 12.79, 17.82, 27.68], Average Precision (AP) = 0.734. Weights after noisy graphs
removed: [0.5000, 0.3003, 0.1997, 0, 0], AP = 0.974.

shown in Fig. 1, iMUNE recognizes and removes G4 and G5 as irrelevant/noisy, and
estimates weights for relations G1-G3 so as to combine them effectively to achieve
improved performance. Our contributions are as follows.

– Model formulation: Under a convex formulation, we simultaneously estimate weights
for the multiple relations (also graphs or views) as well as a solution (labeling) that
utilizes a weighted combination of them. (Sec. 2)

– Analysis of weights: We show that in the presence of noise, the inferred weights re-
flect the impact of different relations on the solution, where both dense informative
and irrelevant/noisy graphs receive large weights. (Sec. 2.3)

– Robust algorithm: Analysis of weights enable us to devise a robust algorithm
that filters out irrelevant/noisy graphs, so as to produce weights proportional to the
informativeness of graphs and yield improved performance. (Sec. 3)

– Scalability: Our proposed approach scales linearly w.r.t. the number of edges in
the combined graph. (Sec. 3.1)

– Effectiveness: We show the efficacy of iMUNE on real-world multi-networks with
(i) varying number of relevant/noisy graphs, (ii) under different noise models, and
(iii) varying intensity of noise; where it outperforms six baseline approaches in-
cluding the state-of-the-art. (Sec. 4)

– Reproducibility: We share the code of iMUNE and all datasets in experiments at
http://www3.cs.stonybrook.edu/%7ejuyye/semi/semi.html.



2 Problem Formulation

In this work we consider real-world problem settings in which (1) the problem is cast
as a binary classification task, (2) data objects are related through multiple different re-
lationships, and (3) ground-truth class labels are scarce. The data can be represented as
a multi-graph, in which the nodes represent data objects and multiple sets of undirected
edges capture associations implied by different relationships.

Using various relationships between data objects may provide more information for
a given classification task, especially when input labels are scarce. Collectively, more
accurate predictions can be made by combining these multiple association networks.
However, it is not realistic to assume that all available relationships (i.e., graphs) would
be equally, if at all, relevant for a given prediction task. Filtering irrelevant/intrusive
relations is especially important when the data sources cannot be carefully controlled—
for example, when data is collected from various repositories with varying veracity.
In addition, the input graphs may have varying degree of relevance for a task, which
necessitates a careful weighing scheme.

Overall, it is essential to build robust classification models that can effectively lever-
age multiple relationships by carefully weighing relevant graphs while filtering out the
intrusive ones. Our work addresses this problem of Robust Semi-supervised Classifi-
cation for MUlti-NEtworks (RSC-MUNE): Given a binary classification task, a multi-
graph, and a small set of labeled objects, the goal is to build an effective classifier that is
robust to noisy and irrelevant data. We give the formal problem definitions as follows.

Definition 1. MULTI-GRAPH: A multi-relational graph (or a multi-graph) G(V, E)
consists of a set of graphs (or relations) {G1(V,E1), G2(V,E2), . . . , Gm(V,Em)},
on the same node set V , |V | = n. Undirected (weighted) edges E = {E1, . . . , Em}
correspond to links implied bym different types of relations, where we denote |G| = m.

Definition 2. RSC-MUNE PROBLEM: Given a multi-graph G(V, E), |G| = m, and a
set of labeled seed nodes L ⊂ V ; devise a learning procedure to infer the labels of
unlabeled nodes V \L, which assigns a list of weights w = {w1, . . . , wm} to individual
graphs such that (i) intrusive graphs are filtered (i.e., wk = 0), and (ii) relevant graphs
receive weights relative to their informativeness.

2.1 Graph-based Semi-supervised Learning

There exist various objective formulations for graph-regularized semi-supervised clas-
sification provided a single graph [13–17]. Generalizing from those traditional semi-
supervised learning objectives to multi-graphs, we can write

argmin
f ,w

‖f − y‖22 + λ
∑
k

f>wkLkf

s.t. wk ≥ 0,
∑
k

wk = 1
(1)

where λ is a regularization parameter, Lk is the normalized Laplacian matrix of kth
graph,wk is the weight of Lk, y is the input vector of known labels and f is the solution.



This objective function, however, is non-convex in both f and w. To get around this,
several previous approaches have proposed alternating optimization schemes for similar
objectives [2, 4]. However, these methods only produce locally optimal solutions.

2.2 Objective Formulation

In this work, inspired by the TSS approach [1], we introduce a scheme that infers f and
w together under a convex setup. The graph weights we infer (i.e., wk’s) capture the
impact that each graph has on the solution f . Building on this interpretation, we devise
a learning procedure that estimates f which is robust to intrusive graphs.

Our objective function is defined as in Equ. (2).

min
f ,ξ

(f − y)>(f − y) + c0

m∑
k=1

ξk

s.t. f>Lkf ≤ c+ ξk, ξk ≥ 0 ,∀k = 1, . . . ,m

(2)

The dual form of Equ. (2) that estimates the graph weights as well as the final
solution are respectively given in Equ. (3) and (4) (derivations are omitted for brevity).

min
w

y>(I+
∑
k

wkLk)
−1y + c‖w‖1

s.t. c0 ≥ wk ≥ 0 ,∀k = 1, . . . ,m

(3)

f = (I+
∑
k

wkLk)
−1y (4)

Handling class bias In semi-supervised learning, only part of the nodes are labeled for
training, and the rest are unlabeled (depicted with ‘0’). For each node type (‘+1’,‘0’,
‘−1’), we assign a different penalty coefficient, c+, cu, c− respectively. Let C be a
n × n diagonal matrix, called the class penalty matrix, where C(i, i) = c+ if yi = 1,
c− if yi = −1, and cu if yi = 0. As such, the criterion in Equ. (2) can be reformulated:

min
f ,ξ

(f − y)>C(f − y) + c0

m∑
k=1

ξk

The dual form and the solution are Equ. (5) and (6).

min
w

y>C(C−
∑
k

wkLk)
−1Cy + c‖w‖1

s.t. c0 ≥ wk ≥ 0 ,∀k = 1, . . . ,m

(5)

f∗ = (C+
∑
k

wkLk)
−1Cy . (6)

The dual program in Equ. (5) is convex and can be solved (e.g., using the projected
gradient descent method) to infer the graph weights w. One can then plug in those
weights directly into Equ. (6) to estimate f∗. However, this procedure as we show in the
experiments yields inferior results in the presence of irrelevant and noisy graphs.



2.3 Graph Weights Interpreted

Next we provide a detailed discussion on the interpretation of the inferred weights by
Equ. (3) (instead of Equ. (5) for brevity). In a nutshell, we show that in the presence
of intrusive graphs, the weights do not reflect the relative informativeness of individual
graphs—but rather the relative impact of each graph on the solution.

Ideally, we want to infer a weight wk for each graph Gk proportional to its infor-
mativeness for the task, where the weights for intrusive graphs are zero. For example,
in Fig. 1 we illustrate a toy multi-graph with five views. The ideal weights would be
w1 > w2 > w3 > w4 = w5 = 0. As we show in the following, however, the estimated
weights should be interpreted carefully when we have intrusive graphs.

Gk’s with larger f ′Lkf tend to get larger wk We have the dual problem d(w) in
(3) when learning the weights. We know from basic calculus that

∂

∂x
Y −1 = −Y −1( ∂

∂x
Y )Y −1 . (7)

Thus we derive the derivative of d(w) w.r.t wk as

∂d(w)

∂wk
= −y>(I+

m∑
i=1

wiLi)
−1Lk(I+

m∑
i=1

wiLi)
−1y + c (8)

Since f = (I+
∑m
i=1 wiLi)

−1y, we obtain

∂d(w)

∂wk
= −f>Lkf + c (9)

Based on (9), we make the following inference:

Both dense informative and intrusive graphs Gk has large f>Lkf—and hence
large wk Consider a graph with no noisy edges (i.e., no edges between nodes from
different classes) but with high edge density among nodes that belong to the same
class. For such a graph, f>Lkf =

∑
i,j∈V Wk(i, j)(

fi√
Dk(i,i)

− fj√
Dk(j,j)

)2 can be

large due to the numerous non-zero (although likely small) quadratic terms in the sum.
Importantly, it is not only the dense informative graphs that would have large f>Lkf ,
but also the intrusive graphs. This is due to the many cross-edges that irrelevant and
noisy graphs have between nodes from different classes, that would yield large quadratic
terms. We demonstrate this through the inferred weights on our example multi-graph
in Fig. 1. Notice that while the highly informative G1 and G2 receive large weight, the
noisy graphs G4 and G5 also obtain comparably large weights.

3 iMUNE Algorithm

Our goal is to filter out the intrusive graphs. The main idea is to explore the search
space through simulated annealing by carefully removing large-weighted graphs one at



Algorithm 1 iMUNE (proposed algorithm for robust semi-supervised classification
for multi-graphs with noise)

Input: Multi-graph G = {G1, . . . , Gm}, labeled nodes L, initial temperature t, class
penalty matrix C

Output: Label estimations f
1: Init y with L;
2: bestf ← ∅, bestP = 0, m = |G|, Q← G
3: while Q is not empty do
4: GS ← dequeue(Q)
5: cvP = Compute cross validation performance of GS
6: if rand(0, 1) ≤ exp( cvP−bestP

tm−|GS|+1 ) then
7: wGS ← Solve (5) using GS and input C
8: fGS ← Compute solution using (6) and wGS
9: Cluster the weights: (Ws,Wl)← 2-means(wGS)

10: for each Gk ∈ GS for which wk ∈Wl do
11: v ← hash(GS\Gk)
12: if v is null then Q← Q ∪ GS\Gk
13: end for
14: if cvP > bestP then bestf ← fGS , bestP = cvP
15: end if
16: end while
17: return bestf

a time. Steps of our proposed algorithm is outline in Algorithm 1. We start with intro-
ducing a queue of graph-sets, which initially includes the set of all graphs (line 2). We
process the graph-sets in the queue one by one until the queue becomes empty (line 3).
For each graph-set GS that we dequeue (line 4), we compute its cross-validation perfor-
mance cvP on the labeled data (line 5). In our experiments, we use average-precision
(AP) as our performance metric. This metric is more meaningful than accuracy, espe-
cially in the face of class bias.

We record the best AP as bestP during the course of our search (line 14). With prob-
ability exp( cvP−bestP

tm−|GS|+1 ), we “process” the graph-set in hand (lines 7-13, which we will
describe shortly), otherwise we discard it. In line 6, t ≤ 1 is the temperature parameter
of simulated annealing and (m − |GS|) denotes the number of removed graphs from
the original set. If the graph-set GS in hand yields a cvP that is larger than bestP , we
always process the set further, since when (cvP − bestP ) ≥ 0, exp( cvP−bestP

tm−|GS|+1 ) ≥ 1.
On the other hand, if GS yields inferior performance, we still process it with some
probability that is proportional to the size of the graph-set. That is, the probability of
processing a set decreases as they have more graphs removed from the original set. The
probability is also inversely proportional to the performance distance (cvP − bestP ).
The larger the gap, the higher the chance that GS will be discarded.

Next we describe the steps to “process” a graph-set GS . We first solve the optimiza-
tion problem (5) using GS for the graph weights wGS and compute the solution using
wGS in (6) (lines 7-8). Next we cluster the weights into two groups, those with small



weights Ws and those with large weights Wl (line 9). We know, through the analysis
in §2.3, that intrusive graphs are among the large-weighted graphs. The issue is we do
not know in advance which ones, as dense informative ones are likely to also belong to
this group. As such, we create from GS candidate graph-sets that contain all but each
large-weighted graph and add those to the queue. Note that we maintain a hash table
of the candidate graph-sets (line 11), so that we avoid re-considering the same sets that
might be generated through different removal paths. At the end, we return the solution
bestf with the bestP .

3.1 Complexity Analysis

At each node of our “search tree”, we solve Equ. (5) using projected gradient descent,
where the main computation involves computing the gradient (See Equ. (8) in §2.3).
The gradient involves the term (I+

∑m
i=1 wiLi)

−1, i.e., the inverse of a (n×n) matrix
which is O(n3) if done naively. The same is true for the solution f which requires a
similar inverse operation (See Equ. (4) or Equ. (6)). Importantly, however, we do not
compute the inverse explicitly, because it always appears in vector form x = (I +∑m
i=1 wiLi)

−1y. We can obtain x as a solution of sparse linear systems [18], where
the computational cost of the derivative is linear w.r.t. the number of non-zero entries
of

∑m
i=1 wiLi, i.e., proportional to the number of edges in the multi-graph.

Computing the dual objective then takes O(s|E|) for s number of gradient steps.
All in all, total time complexity of an implementation that traverses each search path in
parallel is O(s|E|mu), which is linear on the total number of edges in the multi-graphs
with small mu (max. number of noisy graphs) and constant s.

4 Evaluation

4.1 Experiment Setup

Table 1: Four real-world multi-graph datasets.

Dataset #Graphs #Nodes #Pos. #Neg.
RealityMining 4 78 27 51

Protein 5 3,588 306 3,282
Gene1 15 1,724 185 1,539
Gene2 15 3,146 214 2,932

Datasets. The multi-graphs
used in our work are pub-
licly available, and are listed
in Table 1. (i) RealityMin-
ing [19] is a dataset collected
through tracking activities on
cellphones. It contains 4 dif-
ferent relations between two
classes (MIT Sloan and CS stu-
dents): phone call, SMS, friendship, and Bluetooth scans that capture proximity rela-
tions. (ii) Protein [1] consists of Yeast proteins, associated through 5 different relations.
Those proteins with function transport facilitation constitute the positive class, and oth-
ers are negative. Gene1 and Gene2 contain different sets of Yeast genes, each associated
through 15 different genomic sources. The genes are labeled according to Gene Ontol-
ogy association file from the Saccharomyces Genome Database. For Gene1, we choose
the label with the maximum number of genes in Cellular Component (CC) domain as



positive class. We construct Gene2 in a similar way, where this time genes in Molecular
Function (MF) domain are labeled as positive. See [5] for more details on datasets.

Baselines. We compare iMUNE against four state-of-the-art: ClusDCA [20], TSS [1],
RobustLP [2], and GeneMania [5]. We also introduce two simple baselines, EqlWght
that assigns equal weight to all graphs and PerfWght that assigns weights proportional
to the cross-validation accuracy of individual graphs on labeled nodes. To make it a fair
game, we use the same class-bias penalties described in §4.2 for the compared methods.

Noise-testing. To test the robustness of the methods, we injected intrusive graphs with
varying level, model, and intensity of noise as described below.

– Number of intrusive graphs: We tested the effect of increasing noise level on clas-
sification performance by injecting 2, 4 and 6 intrusive graphs at a time.

– Noisy graph models: We adopted 3 strategies to generate intrusive graphs; (1)
Erdos-Renyi random graphs (ER), (2) edge-rewired original graphs (RW), and what
we call (3) adversarial graphs (AV) (where most edges are cross-edges between the
different classes).

– Noise intensity (Low/High): Intensity reflects injected graph density (L: 5%, H:
50%) for ER, ratio of within-class edges randomly rewired to become cross-edges
(L: 60%, H: 80%) for RW, and ratio of cross-edges (L: 60%, H: 80%) for AV model.

Overall, there are 3 different number of injected graphs, 3 noise models, and 2 noise
intensities. Overall, the “noise-testing” involves 18 (3*3*2) different settings.

4.2 Parameters

Our algorithm expects two hyper parameters; the initial simulated annealing tempera-
ture t, and the class penalty matrix C. We describe how we set these in the following.
Note that our objective function in Equ. (5) has two further (hyper) parameters c and
c0, which are chosen by cross-validation.

Initial temperature t. As we remove more and more graphs from the input multi-
graph, the probability of further considering a set with inferior performance should
decrease. That is when d = (cvP − bestP ) < 0, p = exp( d

tm−|GS|+1 ) should decrease
as r = (m − |GS| + 1) increases. As such, we need t ≤ 1. Assume that we have an
expected range [ml,mu] for the number of intrusive graphs in the data where ml and
mu respectively denote the minimum and maximum number. We would then want the
probability p = exp( dtr ) to approach zero as r gets closer tomu even for a considerably
small d. That is, as r → mu and 0 > d ≥ dmin for small dmin, we want pmax > p > 0
for small pmax. Since t = ( d

ln p )
1
r , the range for t satisfying the above constraints

can be given as t ∈ [( dmin

ln pmax
)

1
mu , ( dmin

ln pmax
)

1
ml ]. Empirically, we let dmin = −0.1

and pmax = 0.01. For example, if we expect ml = 5 and mu = 10, then the initial
temperature is chosen randomly from t ∈ [0.465, 0.682].

Class penalty matrix C. As described in §2.2, we can normalize biased class dis-
tribution by assigning larger penalty to minority-class (‘+1’) mis-classification. Recall
that c+, cu, c− denote penalty coefficients for classes ‘+1’, ‘0’ (unlabeled), and ‘−1’,
respectively. We set these parameters as c+ = 1 + sign(1 − 2p) ∗ γ ∗max(p, 1 − p),



Table 2: iMUNE consistently outperforms competing methods across various real-
world and synthetic datasets. Dataset RM is injected with 2, 4, and 6 intrusive graphs
with various noise settings. Values depict mean Average Precision (10 runs).
Dataset #Graph Model Intensity iMUNE PerfWght EqlWght TSS RobustLP Mania ClusDCA

RM

4 —— —— 0.970 0.944 0.939 0.970 0.947 0.951 0.933
4+2 AV Low 0.970 0.707 0.554 0.525 0.851 0.470 0.894
4+2 AV High 0.970 0.611 0.484 0.554 0.809 0.359 0.898
4+2 RW Low 0.970 0.695 0.669 0.718 0.873 0.505 0.912
4+2 RW High 0.970 0.563 0.537 0.65 0.824 0.290 0.927
4+2 ER Low 0.970 0.905 0.841 0.657 0.928 0.773 0.918
4+2 ER High 0.970 0.942 0.920 0.895 0.930 0.883 0.936
4+4 AV Low 0.970 0.531 0.372 0.390 0.427 0.260 0.866
4+4 AV High 0.970 0.383 0.297 0.576 0.339 0.215 0.846
4+4 RW Low 0.930 0.610 0.503 0.561 0.505 0.319 0.870
4+4 RW High 0.907 0.437 0.349 0.542 0.334 0.217 0.899
4+4 ER Low 0.970 0.867 0.770 0.482 0.869 0.698 0.895
4+4 ER High 0.970 0.942 0.917 0.659 0.930 0.834 0.933
4+6 AV Low 0.970 0.389 0.277 0.354 0.284 0.217 0.822
4+6 AV High 0.970 0.257 0.223 0.577 0.225 0.197 0.817
4+6 RW Low 0.930 0.468 0.396 0.597 0.371 0.235 0.845
4+6 RW High 0.907 0.292 0.267 0.571 0.264 0.202 0.903
4+6 ER Low 0.970 0.860 0.756 0.494 0.810 0.645 0.882
4+6 ER High 0.970 0.937 0.896 0.621 0.907 0.773 0.931

Protein 5 —— —— 0.457 0.452 0.441 0.457 0.439 0.424 0.441
Gene1 15 —— —— 0.703 0.658 0.632 0.648 0.628 0.509 0.651
Gene2 15 —— —— 0.838 0.83 0.809 0.734 0.460 0.229 0.907

cu = 1, and c− = 1 + sign(2p− 1) ∗ γ ∗max(p, 1− p), where γ is a constant drawn
from [0.5, 1], and p is the proportion of class ‘+1’ instances in the labeled set. For e.g.,
for γ = 0.7 and p = 0.1, we would have c+ = 1.63, cu = 1, c− = 0.37.

4.3 Evaluation Results

To perform semi-supervised classification, we label 5% of the nodes in Protein, Gene1,
and Gene2 and 30% in RealityMining which is a smaller dataset. We randomly sample
the labeled set 10 times, and report the mean Average Precision (area under precision-
recall curve) in Table 2 (notice in Table 1 that the datasets are class-imbalanced, hence
accuracy is not a good measure to report). From the precision-recall plots in Fig. 2, we
see that our method outperform baselines in almost all cases, which is especially evident
in the presence of noise, when the performance of other methods degrade considerably.
Interestingly, the baselines appear to be more robust against random noise than the other
noise models.

We further investigate the effect of noise using RealityMining as a running example,
as in the absence of noise all methods perform similarly on this multi-graph. Fig. 3
(left) shows how the performance of the methods change with increasing number of
intrusive graphs (under rewiring and low-intensity). Fig. 3 (right) shows the same with
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Fig. 2: Noise hinders existing methods notably, whereas iMUNE remains near-stable. Precision
vs. Recall of competing methods in four real-world multi-graphs: (a) RealityMining (4 views),
(b) Protein (5 views), (c) Gene1 (15 views), and (d) Gene2 (15 views). Inset plot in (a) shows
performance when 6 rewired graphs with low intensity are injected to RealityMining
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Fig. 3: iMUNE performs better than all competitors by (left) increasing number of
intrusive graphs, and (right) increasing intensity of noise.
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Fig. 4: iMUNE filters out all noisy graphs, and gives large weights to most informative
graphs. Competing methods are indifferent to noise and assign near-uniform weights.
Inferred graph weights on RealityMining (+6 injected noisy graphs G5-G10 under AV
and high-intensity).
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Fig. 5: iMUNE is robust under vary-
ing level (#graphs), intensity (low/high),
models (ER,RW,AV) of noise.
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Fig. 6: Performance vs. % labeled nodes.
iMUNE maintains high performance with
different ratio of training data.

different noise intensity (under rewiring, 6 intrusive graphs). These show that iMUNE’s
performance remains near-stable, while the competing methods are relatively hindered
by noise. In fact, as Fig. 5 shows iMUNE is robust under all settings: increasing level
and intensity as well as different noise models.

We also analyze the inferred weights by each method (except ClusDCA, which
adopts matrix factorization instead of learning graph weights). Fig. 4 shows the normal-
ized weights on RealityMining with 6 injected graphs, under AV with high intensity.

Notice that all competing methods give non-zero weights to all the injected graphs
G5-G10, which hinders their performance. In contrast, iMUNE puts non-zero weight
only on the informative graphsG1-G4, particularly large weights on the first two. These
are in fact the well-structured and denser informative graphs.

Finally in Fig. 6 we show how the performance of the methods change when we
increase the labeled set percentage in RealityMining from 30% up to 90% (6 injected
graphs, under rewiring with low intensity; results are avg’ed over 10 runs).

As expected the performance improves for all methods with increasing labeled data.
However, most competing methods cannot achieve improved robustness and reach the
same performance level by iMUNE, even when they are provided 90% of the data la-
beled. While ClusDCA achieves comparable performance when 50% of data is labeled,
it is not as robust to noise as iMUNE as shown in Table 2.

5 Conclusion

In this work we introduced iMUNE, for robust, scalable, and effective semi-supervised
transductive classification for multi-relational graphs. The proposed method employs
a convex formulation that estimates weights for individual graphs, along with a solu-
tion that utilizes a weighted combination of them. Based on the analysis of weights,
we devise a new scheme that iteratively discards intrusive graphs to achieve robust
performance. Moreover, iMUNE is linearly scalable w.r.t. the size of the combined
graph. Extensive experiments on real-world multi-graphs show that iMUNE produces
competitive results under varying level, intensity, and models of noise. It also outper-
forms several baselines and state-of-the-art methods, which are notably hindered by the
presence of noise where iMUNE remains immune.
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12. Barberá, P.: Birds of the same feather tweet together. bayesian ideal point estimation using
twitter data. Political Analysis 23(1) (2015) 76–91

13. Macskassy, S., Provost, F.: Classification in networked data: A toolkit and a univariate case
study. Journal of Machine Learning Research 8 (2007) 935–983

14. Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph mincuts. In:
ICML. (2001) 19–26

15. Zhu, X., Ghahramani, Z., Lafferty, J., et al.: Semi-supervised learning using gaussian fields
and harmonic functions. In: ICML. (2003)

16. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global
consistency. In: NIPS. (2003)

17. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semi-supervised learning on large
graphs. In: COLT. (2004)

18. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In: STOC, ACM (2004) 81–90

19. Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by using mobile
phone data. PNAS 106(36) (2009)

20. Wang, S., Cho, H., Zhai, C., Berger, B., Peng, J.: Exploiting ontology graph for predicting
sparsely annotated gene function. Bioinformatics 31(12) (2015) i357–i364


