Ranking in Heterogeneous Networks with Geo-Location Information

Abhinav Mishra
Amazon

Leman Akoglu
CMU
Ranking in networks

- Which nodes are the most important, central, authoritative, etc.?
 - Pagerank [Brin&Page, ‘98]
 - HITS [Kleinberg, ’99]
 - Objectrank [Balmin+, ’04]
 - Poprank [Nie+, ’05]
 - Rankclus [Sun+, ’09]
 - …
Ranking in rich networks

- How to rank nodes in a directed, weighted graph with multiple node types and location information?

- Different types of nodes ranked separately
Example

Weighted medical referral network (directed)
Example

Weighted medical referral network (directed) + physician expertise
Weighted medical referral network (directed) + physician expertise + location (distance)
Example

Ranking Problem: Which are the top k nodes of a certain type?

e.g.: Who are the best cardiologists in the network, in my town, etc.?
Goal: ranking in directed heterogeneous information networks (HIN) with geo-location

- HINside model
- Parameter estimation
 - via learning to rank
- Experiments
Outline

Goal: ranking in directed heterogeneous information networks (HIN) with geo-location

HINside model

1. Relation strength
2. Relation distance
3. Neighbor authority
4. Authority transfer rates
5. Competition
 - Closed form solution

- Parameter estimation
- Experiments
HINside model

- Relation Strength and Distance
 - edge weights
 \[W(i, j) = \log(w(i, j) + 1) \]
 - pair-wise distances
 \[D(i, j) = \log(d(l_i, l_j) + 1) \]

(3.1) \[M = W \odot D \]
HINside model

- In-neighbor authority

\[
(3.2) \quad r_i = \sum_{j \in \mathcal{V}} M(j, i) \ r_j
\]

\(r_i \): authority score of node \(i \)

- Authority Transfer Rates (ATR)

\[
(3.3) \quad r_i = \sum_{j \in \mathcal{V}} \Gamma(t_j, t_i) \ M(j, i) \ r_j
\]

\(t_i \): type of node \(i \)
HINside model

- **Competition**

\[N(u, v) = \begin{cases}
 g(d(l_u, l_v)) & u, v \in V, u \neq v \\
 0 & u = v
\end{cases} \]

for monotonically decreasing \(g(z) = e^{-z} \)

\[(3.4) \quad r_i = \sum_j \Gamma(t_j, t_i) M(j, i) (r_j + \sum_{v: t_v = t_i} N(v, j) r_v) \]
Closed-form solution

- Authority scores vector \mathbf{r} written in closed form as (& computed by power iterations)

$$
\mathbf{r} = \left[L' + (L'N' \odot E) \right] \mathbf{r} = \mathbf{H} \mathbf{r}
$$

- $L = M \odot (T \Gamma T')$
- T (n x m) where $T(i, c) = 1$ if $t_i = T(c)$
- Γ (m x m) authority transfer rates (ATR)
- where $E(u, v) = \begin{cases}
1 & \text{if } t_u = t_v \\
0 & \text{otherwise}
\end{cases}$

$$
E = TT'
$$

n: #nodes m: #types
Outline

Goal: ranking in directed heterogeneous information networks (HIN) with geo-location

- HINside model
- Parameter estimation
 - via learning-to-rank objectives
- Experiments
Parameter estimation

- HINside’s parameters consist of the m^2 authority transfer rates (ATR)

\[(3.4) \quad r_i = \sum_j \Gamma(t_j, t_i) M(j, i) \left(r_j + \sum_{v: t_v = t_i} N(v, j) r_v \right)\]

- r_i as a vector-vector product

\[
\begin{align*}
 r_i &= \sum_t \Gamma(t, t_i) \left[\sum_{j: t_j = t} M(j, i) \left(r_j + \sum_{v: t_v = t_i} N(v, j) r_v \right) \right] \\
 &= \sum_t \Gamma(t, t_i) X(t, i) \\
 &= \Gamma'(t_i, :) \cdot X(:, i) = \Gamma'_{t_i} \cdot x_i \\
 &= f(x_i) = \langle w, x_i \rangle
\end{align*}
\]
An alternating optimization scheme:

$$\begin{align*}
\Gamma & \rightarrow r \rightarrow X^{\text{estimate}} \rightarrow \Gamma
\end{align*}$$

Given: graph G, (partial) lists ranking a subset of nodes of a certain type

- Randomly initialize $\Gamma^0, k = 0$
- Compute authority scores r using Γ^0
- **Repeat**
 - $X^k \leftarrow$ compute feature vectors using r
 - $\Gamma^{k+1} \leftarrow$ learn new parameters by learning-to-rank
 - compute authority scores r using Γ^{k+1}
- **Until** convergence
An alternating optimization scheme:

\[\begin{align*}
\Gamma & \rightarrow r \\
& \rightarrow X \xrightarrow{\text{estimate}} \Gamma
\end{align*} \]

Given: graph \(G \), (partial) lists ranking a subset of nodes of a certain type

- Randomly initialize \(\Gamma^0, k = 0 \)
- Compute authority scores \(r \) using \(\Gamma^0 \)
- **Repeat**
 - \(X^k \) \(\leftarrow \) compute feature vectors using \(r \)
 - \(\Gamma^{k+1} \) \(\leftarrow \) learn new parameters by learning-to-rank
 - compute authority scores \(r \) using \(\Gamma^{k+1} \)
- **Until** convergence
RankSVM formulation

- Given partial ranked lists;
 - create all pairs \((u, v)\)
 - add training data \(\{(x_d, y_d)\}\)

\[
\{(x_u, x_v), 1\} \quad \text{if } u \text{ ranked ahead of } v
\]
\[
\{(x_u, x_v), -1\} \quad \text{otherwise}
\]

- for each type \(t\), solve:

\[
\min_{\Gamma_t} \|\Gamma_t\|_2^2 + \gamma \sum_{d \in D} \epsilon_d
\]

s.t. \(\Gamma'_t(x_d^1 - x_d^2)y_d \geq 1 - \epsilon_d, \forall d \in D\) and \(t_{x_d^1}, t_{x_d^2} = t\)

\[
\epsilon_d \geq 0, \forall d \in D
\]

\[
\Gamma_t(c) \geq 0, \forall c = 1, \ldots, m
\]
Outline

Goal: ranking in directed heterogeneous information networks (HIN) with geo-location

- HINside model
- Parameter estimation
 - via learning-to-rank objectives

Experiments
Experiments I

- Q1: How well does ATR estimation work?
- 2 dataset samples
 - G1: n = 446 physicians of m=3 types, 8537 edges
 - G2: n = 3979 physicians of m=7 types, 93432 edges
- 15 experiments with randomly chosen ATR for G1
- 10 experiments with randomly chosen ATR for G2
- Simulate results based on HINside
 - 1/3 nodes of each type (training), rest as test
Table 1: Mean

<table>
<thead>
<tr>
<th>Method</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD-I-NN</td>
<td>0.8852</td>
<td>0.9358</td>
<td>0.9182</td>
<td></td>
</tr>
<tr>
<td>GD-II-NN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSVM-NC</td>
<td>0.0745</td>
<td>0.0183</td>
<td>0.1818</td>
<td></td>
</tr>
<tr>
<td>GD-I-NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GD-II-NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG</td>
<td>0.0464</td>
<td>0.0852</td>
<td>0.0711</td>
<td></td>
</tr>
<tr>
<td>RO</td>
<td>0.0739</td>
<td>0.0180</td>
<td>0.0643</td>
<td></td>
</tr>
<tr>
<td>INW</td>
<td>0.0852</td>
<td>0.0745</td>
<td>0.0739</td>
<td></td>
</tr>
<tr>
<td>PRANKW</td>
<td>0.0464</td>
<td>0.0183</td>
<td>0.0643</td>
<td></td>
</tr>
</tbody>
</table>

We first investigate the relation of the HIN matrices with small differences inbetween (i.e., swaps in the constraints often estimated a non-negative)

The baselines are unable to capture the ranking by the HIN, despite the increased parameter size (49 vs. 9), where

Interestingly, the ratios of ATR values in this column...
G2 Test Accuracy - AP@20

<table>
<thead>
<tr>
<th>Method</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
<th>Type 5</th>
<th>Type 6</th>
<th>Type 7</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSVM-NN</td>
<td>0.8367</td>
<td>0.9030</td>
<td>0.9401</td>
<td>0.9639</td>
<td>0.9753</td>
<td>0.9568</td>
<td>0.9362</td>
<td>0.9303</td>
</tr>
<tr>
<td>RSVM-NC</td>
<td>0.8605</td>
<td>0.9361</td>
<td>0.9701</td>
<td>0.9429</td>
<td>0.8829</td>
<td>0.9330</td>
<td>0.9590</td>
<td>0.9263</td>
</tr>
<tr>
<td>GD-I-NN</td>
<td>0.7193</td>
<td>0.8830</td>
<td>0.9074</td>
<td>0.9357</td>
<td>0.8482</td>
<td>0.8812</td>
<td>0.8906</td>
<td>0.8665</td>
</tr>
<tr>
<td>GD-I-NC</td>
<td>0.6999</td>
<td>0.8663</td>
<td>0.9030</td>
<td>0.9015</td>
<td>0.9143</td>
<td>0.8838</td>
<td>0.8710</td>
<td>0.8628</td>
</tr>
<tr>
<td>GD-II-NN</td>
<td>0.8161</td>
<td>0.8978</td>
<td>0.9574</td>
<td>0.9485</td>
<td>0.9441</td>
<td>0.9239</td>
<td>0.9074</td>
<td>0.9136</td>
</tr>
<tr>
<td>GD-II-NC</td>
<td>0.7617</td>
<td>0.8896</td>
<td>0.9465</td>
<td>0.9599</td>
<td>0.9557</td>
<td>0.9177</td>
<td>0.9024</td>
<td>0.9048</td>
</tr>
<tr>
<td>RG</td>
<td>0.5358</td>
<td>0.6483</td>
<td>0.6871</td>
<td>0.6653</td>
<td>0.6796</td>
<td>0.6602</td>
<td>0.6240</td>
<td>0.6429</td>
</tr>
<tr>
<td>RO</td>
<td>0.0029</td>
<td>0.0109</td>
<td>0.0240</td>
<td>0.0494</td>
<td>0.0357</td>
<td>0.0301</td>
<td>0.0326</td>
<td>0.0265</td>
</tr>
<tr>
<td>PRANKW</td>
<td>0.0180</td>
<td>0.0739</td>
<td>0.0464</td>
<td>0.0852</td>
<td>0.0745</td>
<td>0.0183</td>
<td>0.1818</td>
<td>0.0711</td>
</tr>
<tr>
<td>INW</td>
<td>0.2143</td>
<td>0.2808</td>
<td>0.3053</td>
<td>0.1326</td>
<td>0.2725</td>
<td>0.3946</td>
<td>0.2555</td>
<td>0.2651</td>
</tr>
</tbody>
</table>

- A: RankSVM with non-negative (-NN) ATR constraints works well
Q2: How well does HINside reflect real world?

Dataset: author graph of collaborations from 4 areas publicly available at http://web.engr.illinois.edu/~mingji1/DBLP_four_area.zip

Crawled institution (location) for ~11K authors

- Locations from 72 unique countries, 6 continents

No agreed-upon ranking of researchers (even within the same area)

Compare/contrast HINside, Pagerank, h-index

- Pagerank: no location, just co-authorship
- h-index: not co-authorship but citations
HINside, Pagerank, h-index

Example cases for which model differ significantly:

<table>
<thead>
<tr>
<th>Name</th>
<th>Area</th>
<th>Institution</th>
<th>h</th>
<th>P</th>
<th>HIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moshe Vardi</td>
<td>DB</td>
<td>Rice U.</td>
<td>87</td>
<td>165</td>
<td>17</td>
</tr>
<tr>
<td>Michael R. Lyu</td>
<td>IR</td>
<td>CUHK</td>
<td>67</td>
<td>83</td>
<td>1</td>
</tr>
<tr>
<td>Andreas Krause</td>
<td>ML</td>
<td>ETH Zurich</td>
<td>45</td>
<td>291</td>
<td>4</td>
</tr>
</tbody>
</table>

Carnegie Mellon
Summary

Goal: ranking nodes in directed heterogeneous information networks (HIN) with geo-location

- Designed **HINside model**, incorporating
 - (1) relation **strength**, (2) pairwise **distance**, (3) neighbors’ authority scores, (4) authority transfer rates (**ATR**) between different types of nodes, and (5) **competition** due to co-location
 - Location info dictates (2) and (5)
 - **Closed form formula**

- Derived **parameter (ATR) estimation algorithms**
 - HINside lends itself to learning the ATR via **learning-to-rank objectives**
 - Proposed and studied two: (i) RankSVM based, and (2) pairwise rank-ordered log likelihood
Thanks!

Paper, Code, Data, Contact info:
www.cs.cmu.edu/~lakoglu
https://github.com/abhimm/HINSIDE