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Less is More: Building Selective Anomaly Ensembles
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Ensemble learning for anomaly detection has been barely studied, due to difficulty in acquiring ground
truth and the lack of inherent objective functions. In contrast, ensemble approaches for classification and
clustering have been studied and effectively used for long. Our work taps into this gap and builds a new
ensemble approach for anomaly detection, with application to event detection in temporal graphs as well
as outlier detection in no-graph settings. It handles and combines multiple heterogeneous detectors to yield
improved and robust performance. Importantly, trusting results from all the constituent detectors may dete-
riorate the overall performance of the ensemble, as some detectors could provide inaccurate results depend-
ing on the type of data in hand and the underlying assumptions of a detector. This suggests that combining
the detectors selectively is key to building effective anomaly ensembles—hence “less is more”.

In this paper we propose a novel ensemble approach called SELECT for anomaly detection, which au-
tomatically and systematically selects the results from constituent detectors to combine in a fully unsuper-
vised fashion. We apply our method to event detection in temporal graphs and outlier detection in multi-
dimensional point data (no-graph), where SELECT successfully utilizes five base detectors and seven con-
sensus methods under a unified ensemble framework. We provide extensive quantitative evaluation of our
approach for event detection on five real-world datasets (four with ground truth events), including En-
ron email communications, RealityMining SMS and phone call records, New York Times news corpus, and
World Cup 2014 Twitter news feed. We also provide results for outlier detection on seven real-world multi-
dimensional point datasets from UCI Machine Learning Repository. Thanks to its selection mechanism, SE-
LECT yields superior performance compared to the individual detectors alone, the full ensemble (naively
combining all results), an existing diversity-based ensemble, and an existing weighted ensemble approach.
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1. INTRODUCTION
Ensemble methods utilize multiple algorithms to obtain better performance than
the constituent algorithms alone and produce more robust results [Dietterich 2000].
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Thanks to these advantages, a large body of research has been devoted to ensemble
learning in classification [Hansen and Salamon 1990; Preisach and Schmidt-Thieme
2007; Rokach 2010; Valentini and Masulli 2002] and clustering [Fern and Lin 2008;
Ghosh and Acharya 2013; Hadjitodorov et al. 2006; Topchy et al. 2005]. On the other
hand, building effective ensembles for anomaly detection has proven to be a challeng-
ing task [Aggarwal 2012; Zimek et al. 2013a]. A key challenge is the lack of ground-
truth; which makes it hard to measure detector accuracy and to accordingly select ac-
curate detectors to combine, unlike in classification. Moreover, there exist no objective
or ‘fitness’ functions for anomaly mining, unlike in clustering.

Existing attempts for anomaly ensembles either combine outcomes from all the con-
stituent detectors [Gao et al. 2012; Gao and Tan 2006; Kriegel et al. 2011; Lazarevic
and Kumar 2005], or induce diversity among their detectors to increase the chance
that they make independent errors [Schubert et al. 2012; Zimek et al. 2013b]. How-
ever, as our prior work [Rayana and Akoglu 2014] suggests, neither of these strate-
gies would work well in the presence of inaccurate detectors. In particular, combining
all, including inaccurate results would deteriorate the overall ensemble performance.
Similarly, diversity-based ensembles would combine inaccurate results for the sake of
diversity. Moreover, using weighted aggregation approach to combine the constituent
detectors as proposed by Klementiev et al. [Klementiev et al. 2007] also get hurt by
the inaccurate detectors which we show in our experiments.

In this work, we tap into the gap between anomaly mining and ensemble methods,
and propose SELECT, one of the first selective ensemble approaches for anomaly detec-
tion. As the name implies, the key property of our ensemble is its selection mechanism
which carefully decides which results to combine from multiple different methods in
the ensemble. We summarize our contributions as follows.

— We identify and study the problem of building selective anomaly ensembles in a fully
unsupervised fashion.

— We propose SELECT, a new ensemble approach for anomaly detection, which utilizes
not only multiple heterogeneous detectors, but also various consensus methods under
a unified ensemble framework.

— SELECT employs two novel unsupervised selection strategies that we design to choose
the detector/consensus results to combine, which render the ensemble not only more
robust but improve its performance further over its non-selective counterpart.

— Our ensemble approach is general and flexible. It does not rely on specific data types,
and allows other detectors and consensus methods to be incorporated.

— We provide theoretical evidence for our SELECT approach to achieve better accuracy
compared to the base detectors and other baseline approaches.

We apply our ensemble approach to the event detection problem in temporal graphs
as well as outlier detection problem in multi-dimensional point data (no-graph), where
SELECT utilizes five heterogeneous event/outlier detection algorithms and seven dif-
ferent consensus methods. Extensive evaluation on datasets with ground truth shows
that SELECT outperforms the average individual detector, the full ensemble that
naively combines all results, the diversity-based ensemble in [Schubert et al. 2012],
as well as the weighted ensemble approach in [Klementiev et al. 2007].

2. BACKGROUND AND PRELIMINARIES
2.1. Anomaly Mining
Anomalies are points in the data that do not conform to the normal behavior. As such
anomaly detection refers to the problem of finding unusual points in the data that de-
viate from usual behavior. These non-conforming unusual points are often referred to
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as anomalies, outliers, exceptions, rare events etc. Most often, anomalies and outliers
are two terms used interchangeably in various application domains. In this work, we
propose an ensemble approach for anomaly detection with application to (i) event de-
tection in temporal graphs, and (ii) outlier detection in multi-dimensional point data
(no-graph). In the following two sections we provide description of both event and out-
lier detection problems.

2.1.1. Event Detection Problem. Temporal graphs change dynamically over time in
which new nodes and edges arrive or existing nodes and edges disappear. Many dy-
namic systems can be modeled as temporal graphs, such as computer, trading, trans-
action, and communication networks.

In this work, we consider temporal anomalies as events. Here, temporal anomalies
are those time points at which the graph structure changes significantly. Event detec-
tion in temporal graph data is the task of finding the points in time at which the graph
structure notably differs from its past. These change points may correspond to signifi-
cant events; such as critical state changes, anomalies, faults, intrusion, etc. depending
on the application domain. Formally, the problem can be stated as follows.
Given a sequence of graphs {G1, G2, . . . , Gt, . . . , GT };
Find time points t′ s.t. Gt′ differs significantly from Gt′−1.

2.1.2. Outlier Detection Problem. A well known characterization of an outlier is given by
Hawkins as, ”an observation which deviates so much from other observations as to
arouse suspicion that it was generated by a different mechanism” [Hawkins 1980]. A
popular formulation of outlier detection is to find unusual points in multi-dimensional
data by their distance to the neighboring points. Based on this notion there exist two
most famous approaches for outlier detection (i) distance based, and (ii) density based
methods. Specifically, distance outlier detection problem is to find data points which
are far from the rest of the data and density based methods find the points which reside
in a lower density region compared to its nearest neighbors. Formally, the problem can
be stated as follows.
Given a multi dimensional data D with n individual points and d dimensions;
Find points which are far from the rest of the data or reside in a lower density region.

2.2. Motivation for Ensembles
Several different methods have been proposed for the above problems, survey of which
are given in [Akoglu et al. 2014; Chandola et al. 2009]. To date, however, there ex-
ists no single method that has been shown to outperform all the others. The lack of a
winner technique is not a freak occurrence. In fact, it is unlikely that a given method
could perform consistently well on different data of varying nature. Further, differ-
ent techniques may identify different classes or types of anomalies depending on their
particular formulation. This suggests that effectively combining the results from vari-
ous different detection methods (detectors from here onwards) could help improve the
detection performance.

2.3. Motivation for Selective Ensembles
Ensembles are expected to perform superior to their average constituent detector, how-
ever a naive ensemble that trusts results from all detectors may not work well. The
reason is, some methods may not be as effective as desired depending on the nature
of the data in hand, and fail to identify the anomalies of interest. As a result, combin-
ing accurate results with inaccurate ones may deteriorate the overall ensemble per-
formance [Rayana and Akoglu 2014]. This suggests that selecting which detectors to
assemble is a critical aspect of building effective and robust ensembles—which implies
that “less is more”.
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Fig. 1. Anomaly scores from five detectors (rows) for the Enron Inc. time line. Red bars depict
top 20 anomalous time points.

To illustrate the motivation for (selective) ensemble building further, consider the
event detection example in Figure 1. The rows show the anomaly scores assigned by
five different detectors to time points in the Enron Inc.’s time line. Notice that the
scores are of varying nature and scale, due to different formulations of the detec-
tors. We realize that the detectors mostly agree on the events that they detect; e.g.,
‘J. Skilling new CEO’. On the other hand, they assign different magnitude of anoma-
lousness to the time points; e.g., the top anomaly of methods varies. These suggest that
combining the outcomes could help build improved ranking of the anomalies. Next no-
tice the result provided by “Probabilistic Approach” which, while identifying one major
event also detected by other detectors, fails to provide a reliable ranking for the rest;
e.g., it scores many other time points higher than ‘F. Cooper new CEO’. As such, in-
cluding this detector in the ensemble is likely to deteriorate the overall performance.

In summary, inspired by the success of classification and clustering ensembles and
driven by the limited work on anomaly ensembles, we aim to systematically combine
the strengths of accurate detectors while alleviating the weaknesses of the less accu-
rate ones to build selective ensembles for anomaly mining. While we build ensembles
for the event and outlier detection problems in this paper, our approach is general and
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can directly be employed on a collection of detection methods for other anomaly mining
problems.

2.4. Important Notations
Table I lists the important notations used throughout this paper.

Table I. Symbols used in this work.

Symbol Description
t, t′ time points
T total time points
Gt snapshot of the graph G at time point t
D multi-dimensional point data
n number of nodes or number of data points
d dimension of point data
w window size for first base detector
u(t) eigen vector for time window t
r(t) summary of past eigen vectors at time t
Z Z-score (anomalousness score)
µt moving average
σt moving standard deviation
ri rank of a point by detector i
R set of anomaly rank lists by different base detectors
O target anomalies (pseudo ground truth)
fR aggregated final rank list
r sorted normalized rank vector
r̂ normalized ranks generated from uniform null distribution
r(l) normalized rank of a data point in list l ∈ R
pV als binomial probability matrix for normalized rank vectors
Ssort sorted index matrix for normalized rank vector

pl,m((r)) binomial probability of drawing at least l normalized rankings
uniformly from [0, 1] must be in the range [0, r(l)]

ρ minimum of p-values
S set of anomaly score lists by different base detectors
P set of probability of anomalousness lists by different base detectors

target pseudo ground truth
wP () weighted Pearson correlation function
E set of selected lists by SELECT for ensemble

class class labels, 1 for outliers and 0 for inliers
M set of class labels list by different base detectors
mind index of minimum p-value
F list of inaccurate detectors for target anomalies

count frequency of inaccurate detectors in F
Cl cluster of detectors with low count
Ch cluster of detectors with high count
wi relative weight of base detector i for ULARA

3. SELECT: SELECTIVE ENSEMBLE LEARNING FOR ANOMALY DETECTION
3.1. Overview
Our SELECT approach takes the input data, (i) for event detection a sequence of graphs
{G1, . . . , Gt, . . . , GT }, and outputs a rank list R of objects, in this case of time points
1 ≤ t ≤ T , and (ii) for outlier detection d dimensional point data in D, and outputs a
rank list of those data points, ranked from most to least anomalous.
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The main steps of SELECT are given in Algorithm 1. Step 1 employs (five) differ-
ent anomaly detection algorithms as base detectors of the ensemble. Each detector
has a specific and different measure to score the individual objects (time/point data)
by anomalousness. As such, the ensemble embodies heterogeneous detectors. As mo-
tivated earlier, Step 2 selects a subset of the detector results to assemble through a
proposed selection strategy. Step 3 then combines the selected results into a consen-
sus. Besides several different anomaly detection algorithms, there also exist various
different consensus finding approaches. In spirit of building ensembles, SELECT also
leverages (seven) different consensus techniques to create intermediate aggregate re-
sults. Similar to Step 2, Step 4 then selects a subset of the consensus results to as-
semble. Finally, Step 5 combines this subset of results into the final rank list of objects
using inverse rank aggregation (Section 3.3).

Algorithm 1 SELECT

Input: Data: graph sequence {G1, . . . , Gt, . . . , GT }
Output: Rank list of objects (time/point data) by anomaly

1: Obtain results from (5) base detectors
2: Select set E of detectors to assemble
3: Combine E by (7) consensus techniques
4: Select set C of consensus results to assemble
5: Combine C into final rank list

Different from prior works, (i) SELECT is a two-phase ensemble that not only lever-
ages multiple detectors but also multiple consensus techniques, and (ii) it employs
novel strategies to carefully select the ensemble components to assemble without any
supervision, which outperform naive (no selection) and diversity-based selection (Sec-
tion 5). Moreover, (iii) SELECT is the first ensemble method for event detection in tem-
poral graphs, although the same general framework as presented in Algorithm 1 can
be deployed for other anomaly mining tasks, e.g. outlier detection, where the base de-
tectors are replaced with a set of algorithms for the particular task at hand. As such we
also utilize SELECT for building outlier ensemble with multi-dimensional point data.

Next we fill in the details on the three main components of the proposed SELECT en-
semble. In particular, we describe the base detectors (Section 3.2), consensus tech-
niques (Section 3.3), and the selection strategies (Section 3.4).

3.2. Base Detectors
In this work SELECT employs five base detectors (Algorithm 1, Line 1) in the Anomaly
Ensemble. SELECT is a flexible approach, as such one can easily expand the ensem-
ble with other base detectors. There exists various approaches for outlier detection [?]
based on different aspects of outliers, or designed for distinct applications which re-
quire detection of domain specific outliers. In our work, we are interested about unsu-
pervised outlier detection approaches that assign outlierness scores to the individual
instances in the data, as such, allow ranking of instances based on outlierness.

There are a number of well known unsupervised approaches, e.g., “distance based”
and “density based” methods for outlier detection. Distance based methods [Knorr and
Ng 1997; Zhang et al. 2009] and its variants are mostly based on k nearest neighbor
(kNN ) distances between the instances, trying to find the global outliers far from the
rest of the data. On the other hand, density based methods [Breunig et al. 2000; Pa-
padimitriou et al. 2003] and its variants try to find the local outliers which are located
in a lower density region compared to their k nearest neighbors.
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In this work, for outlier ensemble with no-graph settings SELECT employs two dis-
tance based approaches (i) AvgKNN (average k nearest neighbor distance of individual
instances is used as outlierness score), (ii) LDOF [Zhang et al. 2009], and three density
based approaches (iii) LOF [Breunig et al. 2000], (iv) LOCI [Papadimitriou et al. 2003],
and (v) LoOP [Kriegel et al. 2009]. For brevity we skip the detailed description of these
well established outlier detection approaches.

Moreover, there exist various methods for the event detection problem in temporal
graphs [Akoglu et al. 2014]. SELECT utilizes five base detectors for event detection,
e.g., (1) eigen-behavior based event detection (EBED) from our prior work [Akoglu and
Faloutsos 2010], (2) probabilistic time series anomaly detection (PTSAD) we devel-
oped recently [Rayana and Akoglu 2014], (3) Streaming Pattern DIscoveRy in multIple
Time-Series (SPIRIT) by Papadimitriou et al. [Papadimitriou et al. 2005], (4) anoma-
lous subspace based event detection (ASED) by Lakhina et al. [Lakhina et al. 2004],
and (5) moving-average based event detection (MAED).

Event detection methods extract graph-centric features (e.g., degree) for all nodes
over time and detect events in multi-variate time series. We provide brief descriptions
of the methods in the following subsections.

3.2.1. Eigen Behavior based Event Detection (EBED). The multi-variate time series con-
tain the feature values of each node over time and can be represented as a n × t data
matrix, for n nodes and t time points. EBED [Akoglu and Faloutsos 2010] defines slid-
ing time windows of length w over the series and computes the principal left singular
vector of each n × w matrix W . This vector is the same as the principal eigenvector of
WWT and is always positive due to the Perron-Frobenius theorem [Perron 1907]. Each
eigenvector u(t) is treated as the “eigen-behavior” of the system during time window t,
the entries of which are interpreted as the “activity” of each node.

To score the time points, EBED computes the similarity between eigen-behavior u(t)
and a summary of past eigen-behaviors r(t), where r(t) is the arithmetic average of
u(t′)’s for t′ < t. The anomalousness score of time point t is then Z = 1−u(t)·r(t) ∈ [0, 1],
where high value of Z indicates a change point. For each anomalous time point t̄, EBED
performs attribution by computing the relative change |ui(t̄)−ri(t̄)|

ui(t̄)
of each node i at t̄.

The higher the relative change, the more anomalous the node is.

3.2.2. Probabilistic Time Series Anomaly Detection (PTSAD) . A common approach to time
series anomaly detection is to probabilistically model a given series and detect anoma-
lous time points based on their likelihood under the model. PTSAD models each series
with four different parametric models and performs model selection to identify the
best fit for each series. Our first model is the Poisson, which is used often for fitting
count data. However, Poisson is not sufficient for sparse series with many zeros. Since
real-world data is frequently characterized by over-dispersion and excess number of
zeros, we employ a second model called Zero-Inflated Poisson (ZIP) [Lambert 1992] to
account for data sparsity.

We further look for simpler models which fit data with many zeros and employ the
Hurdle models [Porter and White 2012]. Rather than using a single but complex dis-
tribution, Hurdle models assume that the data is generated by two simple, separate
processes; (i) the hurdle and (ii) the count processes. The hurdle process determines
whether there exists activity at a given time point and in case of activity the count
process determines the actual (positive) counts. For the hurdle process, we employ
two different models. First is the independent Bernoulli and the second is the first
order Markov model which better captures the dependencies, where an activity in-
fluences the probability of subsequent activities. For the count process, we use the
Zero-Truncated Poisson (ZTP) [Cameron and Trivedi 1998].

ACM Transactions on Knowledge Discovery from Data, Vol. X, No. X, Article X, Publication date: April 2016.



X:8 S. Rayana and L. Akoglu

Overall we model each time series with four different models: Poisson, ZIP,
Bernoulli+ZTP and Markov+ZTP. We then employ Vuong’s likelihood ratio test [Vuong
1989] to select the best model for individual series. Note that the best-fit model for
each series may be different.

To score the time points, we perform a single-sided test to compute a p-value for
each value x in a given series; i.e., P (X ≥ x) = 1 − cdfH(x) + pdfH(x), where H is the
best-fit model for the series. The lower the p-value, the more anomalous the time point
is. We then aggregate all the p-values from all the series per time point by taking the
normalized sum of the p-values and inverting them to obtain scores ∈ [0, 1] (s.t. higher
is more anomalous). For each anomalous time point t̄, attribution is done by sorting
the nodes (i.e., the series) based on their p-values at t̄.

3.2.3. Streaming Pattern DIscoveRy in multIple Time-Series (SPIRIT) . SPIRIT [Papadim-
itriou et al. 2005] can incrementally capture correlations, discover trends, and dynam-
ically detect change points in multi-variate time series. The main idea is to represent
the underlying trends of a large number of numerical streams with a few hidden vari-
ables, where the hidden variables are the projections of the observed streams onto the
principal direction vectors (eigenvectors). These discovered trends are exploited for
detecting change points in the series.

The algorithm starts with a specific number of hidden variables that capture the
main trends of the data. Whenever the main trends change, new hidden variables are
introduced or several of existing ones are discarded to capture the change. SPIRIT
can further quantify the change in the individual time series for attribution through
their participation weights, which are the entries in the principal direction vectors. For
further details on the algorithm, we refer the reader to the original paper by Papadim-
itriou et al. [Papadimitriou et al. 2005].

3.2.4. Anomalous Subspace based Event Detection (ASED). ASED [Lakhina et al. 2004] is
based on the separation of high-dimensional space occupied by the time series into two
disjoint subspaces, the normal and the anomalous subspaces. Principal Component
Analysis is used to separate the high-dimensional space, where the major principal
components capture the most variance of the data and hence, construct the normal
subspace and the minor principal components capture the anomalous subspace. The
projection of the time series data onto these two subspaces reflect the normal and
anomalous behavior. To score the time points, ASED uses the squared prediction error
(SPE) of the residuals in the anomalous subspace. The residual values associated with
individual series at the anomalous time points are used to measure the anomalousness
of nodes for attribution. For the specifics of the algorithm, we refer to the original paper
by Lakhina et al. [Lakhina et al. 2004].

3.2.5. Moving Average based Event Detection (MAED). MAED is a simple approach that
calculates the moving average µt and the moving standard deviation σt of each time
series corresponding to each node by extending the time window one point at a time.
If the value at a specific time point is more than three moving standard deviations
away from the mean, then the point is considered as anomalous and assigned a non-
zero score. The anomalousness score is the difference between the original value and
(µt + 3σt) at t. To score the time points collectively, MAED aggregates their scores
across all the series. For each anomalous time point t̄, attribution is done by sorting
the nodes (i.e., the series) based on the individual scores they assign to t̄.

3.3. Consensus Finding
Our ensemble consists of heterogeneous detectors. That is, the detectors employ dif-
ferent anomaly scoring functions and hence their scores may vary in range and in-
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terpretation (see Figure 1). Unifying these various outputs to find a consensus among
detectors is an essential step toward building an ensemble.

A number of different consensus finding approaches have been proposed in the lit-
erature, which can be categorized into two, as rank based and score based aggregation
methods. Without choosing one over the other, we utilize seven well-established meth-
ods as we describe below.
Rank based consensus. Rank based methods use the anomaly scores to order the
data points (time points for event detection) into a rank list. This ranking makes the
algorithm outputs comparable and facilitates combining them. Merging multiple rank
lists into a single ranking is known as rank aggregation, which has a rich history
in theory of social choice and information retrieval [Dwork et al. 2001]. SELECT em-
ploys three rank based consensus methods. Kemeny-Young [Kemeny 1959] is a voting
technique that uses preferential ballot and pair-wise comparison counts to combine
multiple rank lists, in which the detectors are treated as voters and the points as the
candidates they vote for. Robust Rank Aggregation (RRA) [Kolde et al. 2012] utilizes
order statistics to compute the probability that a given ordering of ranks for a point

Algorithm 2 RobustRankAggregation
Input: R := set of anomaly rank lists, O := target anomalies
Output: fR := aggregated final rank list

pV als := probability matrix for normalized rank vectors
Ssort := sorted index matrix for normalized rank vector

1: nR := ∅, m = length(R)/*total item in rank list*/
2: /* calculate normalized rank vector */
3: for each column l ∈ R do
4: /* Rank() finds the rank of items in the rank list l */
5: nR := nR ∪Rank(l)/m
6: end for
7: sR := ∅, Ssort := ∅
8: for each row l ∈ nR do
9: [sl, ind] = sort(l)/* ascending order */

10: sR := sR ∪ sl
11: Ssort = Ssort ∪ ind
12: end for
13: pV als := ∅
14: for each row r ∈ sR do
15: β = zeros(1,m)
16: for l := 1 . . .m do
17: pl,m(r) :=

∑m
t=l

(
m
t

)
rt(l)(1− r(l))

m−t

18: β(1, l) := β(1, l) + pl,m(r)
19: end for
20: ρ(r) = min(beta)
21: pV als := pV als ∪ β
22: end for
23: fR = sort(ρ)/*ascending order*/
24: if O 6= ∅ then
25: Ssort := Ssort(O, :)
26: pV als := pV als(O, :)
27: end if
28: return fR, Ssort, pV als
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across detectors is generated by the null model where the ranks are sampled from a
uniform distribution. The final ranking is done based on this probability, where more
anomalous points receive a lower probability. The steps of Robust Rank Aggregation
are given in Algorithm 2.

Given a set of anomaly rank lists R, we first calculate the normalized rank of each
data point by dividing its rank by the length of the rank list. For each data point,
we get the normalized rank vector (r ∈ sR) r = [r(1), . . . , r(m)], such that r(1) ≤ . . . ≤
r(m), where r(l) denotes the normalized rank of a data point in list l ∈ R. We also
store and return the sorted indices in Ssort (for its further use in SELECT described in
Section 3.4.2). We then compute the order statistics based on this sorted normalized
rank vectors to calculate the final aggregated rank list. Specifically, for each ordered
list l in a given r, we compute how probable it is to obtain r̂(l) ≤ r(l) when the ranks
ˆ(r) are generated from a uniform null distribution. This probability (pl,m(r)) can be

expressed as a binomial probability (in step 17) since at least l normalized rankings
drawn uniformly from [0, 1] must be in the range [0, r(l)]. The accurate lists rank the
anomalies at the top, and hence yield low normalized ranks r(l), so the probability
is expected to drop with the ordering (l ∈ 1, . . . ,m). We also store and return these
probabilities in pV als (for its further use in SELECT described in Section 3.4.2). As the
number of accurate detectors is not known, we define the final score ρ(r) in step 20 for
the normalized rank vector r as the minimum of p-values. Finally, we order the data
points in fR according to this ρ values, where lower values means more anomalous.

The third approach is based on Inverse Rank aggregation, in which we score each
point by 1

ri
where ri denotes its rank by detector i and average these scores across

detectors based on which we sort the points into a final rank list.
Score based consensus. Rank-based aggregation provides a crude ordering of the
data points, as it ignores the actual anomaly scores and their spacing. For instance,
quite different rankings can yield equal performance in binary decision. Score-based
aggregation approaches tackle the calibration of different anomaly scores and unify
them within a shared range. SELECT employs two score based consensus methods.
Mixture Modeling [Gao and Tan 2006] converts the anomaly scores into probabilities
by modeling them as sampled from a mixture of exponential (for inliers) and Gaussian
(for outliers) distributions. We use an expectation maximization (EM) algorithm to
minimize the negative log likelihood function of the mixture model to estimate the pa-
rameters. We calculate the final posterior probability with Bayes rule which represents
the probability of anomalousness of the data points. Mixture Modeling also provides a
binary decision (class) for the data points, where point with probability greater than
0.5 gets class 1 (for outliers) and 0 (for inliers) otherwise. Unification [Kriegel et al.
2011] also converts the scores into probability estimates through regularization, nor-
malization, and Gaussian scaling steps. The probabilities are then comparable across
detectors, which we aggregate by max or avg. This yields four score-based methods.

3.4. Proposed Ensemble Learning
Given different base detectors and various consensus methods, the final task remains
to utilize them under a unified ensemble framework. In this section, we discuss our
proposed approach for building anomaly ensembles. As motivated earlier in Section
2.3, carefully selecting which detectors to assemble in Step 2 may help prevent the
final ensemble from going astray, provided that some base detectors may fail to reli-
ably identify the anomalies of interest to a given application. Similarly, pruning away
consensus results that may be noisy in Step 4 could help reach a stronger final con-
sensus. In anomaly mining, however, it is challenging to identify the components with
inferior results given the lack of ground truth to estimate their generalization errors
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Algorithm 3 Vertical Selection
Input: S := set of anomaly score lists
Output: E := ensemble set of selected lists

1: P := ∅
2: /* convert scores to probability estimates */
3: for each s ∈ S do
4: P := P ∪ Unification(s)
5: end for
6: target := avg(P ) /*target vector*/
7: r := ranklist after sorting target in descending order
8: E := ∅
9: sort P by weighted Pearson (wP ) correlation to target

10: /* in descending order, weights: 1
r */

11: l := fetchF irst(P ), E := E ∪ l
12: while P 6= ∅ do
13: p := avg(E) /*current prediction of E*/
14: sort P by wP correlation to p /*descending order*/
15: l := fetchF irst(P )
16: if wP (avg(E ∪ l), target) > wP (p, target) then
17: E := E ∪ l /*select list*/
18: end if
19: end while
20: return E

externally. In this section, we present two orthogonal selection strategies that lever-
age internal clues across detectors or consensuses and work in a fully unsupervised
fashion: (i) a vertical strategy that exploits correlations among the results, and (ii) a
horizontal strategy that uses order statistics to filter out far-off results.

3.4.1. Strategy I: Vertical Selection. Our first approach to selecting the ensemble com-
ponents is through correlation analysis among the score lists from different methods,
based on which we successively enhance the ensemble one list at a time (hence verti-
cal). The work flow of the vertical selection strategy is given in Algorithm 3.

Given a set of anomaly score lists S, we first unify the scores by converting them
to probability estimates using Unification [Kriegel et al. 2011]. Then we average the
probability scores across lists to construct a target vector, which we treat as the “pseudo
ground-truth” (Lines 1-6).

We initialize the ensemble E with the list l ∈ S that has the highest weighted Pear-
son correlation to target. In computing the correlation, the weights we use for the list
elements are equal to 1

r , where r is the rank of an element in target when sorted in de-
scending order, i.e., the more anomalous elements receive higher weight (Lines 7-11).

Next we sort the remaining lists S\l in descending order by their correlation to the
current “prediction” of the ensemble, which is defined as the average probability of lists
in the ensemble. We test whether adding the top list to the ensemble would increase
the correlation of the prediction to target. If the correlation improves by this addition,
we update the ensemble and reorder the remaining lists by their correlation to the
updated prediction, otherwise we discard the list. As such, a list gets either included
or discarded at each iteration until all lists are processed (Lines 12-19).

3.4.2. Strategy II: Horizontal Selection. We are interested in finding the data points that
are ranked high in a set of accurate rank lists (from either base detectors or consensus
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methods), ignoring a (small) fraction of inaccurate rank lists. Thus, we also present an
element-based (hence horizontal) approach for selecting ensemble components.

To identify the accurate lists, this strategy focuses on the anomalous elements. It
assumes that the normalized ranks (defined in Section 3.3) of the anomalies should
come from a distribution skewed toward zero as the accurate lists are considered to
have the anomalies at high positions. Based on this, lists in which the anomalies are
not ranked sufficiently high (i.e., have large normalized ranks) are considered to be
inaccurate and voted for being discarded. The work flow of the horizontal selection
strategy is given in Algorithm 4.

Algorithm 4 Horizontal Selection
Input: S := set of anomaly score lists
Output: E := ensemble set of selected lists

1: M := ∅ , R := ∅ , F := ∅ , E := ∅
2: for each l ∈ S do
3: /* label score lists with 1 (outliers) & 0 (inliers) */
4: class := MixtureModel(l) , M := M ∪ class
5: R := R ∪ ranklist(l)
6: end for
7: O := majorityV oting(M) /*target anomalies*/
8: [Ssort, pV als] := RobustRankAggregation(R,O)
9: for each o ∈ O do

10: mind := min(pV als(o, :))
11: F := F ∪ Ssort(o, (mind + 1) : end)
12: end for
13: for each l ∈ S do
14: count := number of occurrences of l in F
15: end for
16: Cluster non-zero counts into two clusters, Cl and Ch

17: E := S \ {s ∈ Ch} /* discard high-count lists */
18: return E

Similar to the vertical strategy we first identify a “pseudo ground truth”, in this
case a list of anomalies. In particular, we use Mixture Modeling [Gao and Tan 2006]
to convert each score list in S into probability estimates by modeling them as sampled
from a mixture of exponential (for inliers) and Gaussian (for outliers) distributions. We
then generate binary lists from the probability estimates in which outliers are denoted
by 1 (for probabilities > 0.5), and inliers by 0 (otherwise). We then employ majority
voting across these binary lists to obtain a final set of target anomalies O (Lines 1-7).

Given that S contains m lists, we construct a normalized rank vector r =
[r(1), . . . , r(m)] for each anomaly o ∈ O, such that r(1) ≤ . . . ≤ r(m), where r(l) denotes
the rank of o in list l ∈ S normalized by the total number of elements in l. Following
similar ideas to Robust Rank Aggregation [Kolde et al. 2012] (in Section 3.3), we then
compute order statistics based on these sorted normalized rank lists to identify the
lists (inaccurate ones) that provide statistically large ranks for each anomaly.

Specifically, for each ordered list l in a given r, we compute how probable it is to
obtain r̂(l) ≤ r(l) when the ranks r̂ are generated by a uniform null distribution. We
denote the probability that r̂(l) ≤ r(l) by pl,m(r). Under the uniform null model, the
probability that r̂(l) is smaller or equal to r(l) can be expressed as a binomial proba-
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bility since at least l normalized rankings drawn uniformly from [0, 1] must be in the
range [0, r(l)].

pl,m(r) =

m∑
t=l

(
m

t

)
rt(l)(1− r(l))

m−t,

For a sequence of accurate lists that rank the anomalies at the top, and hence that
yield low normalized ranks r(l), this probability is expected to drop with the ordering,
i.e., for increasing l ∈ {1 . . .m}. As with increasing ordering the probability of drawing
more normalized ranks uniformly from [0, 1] to be in a small range [0, r(l)] gets small.
An example sequence of p probabilities (y-axis) are shown in Figure 2 for an anomaly
based on 20 score lists. The lists are sorted by their normalized ranks of the anomaly
on the x-axis. The figure suggests that the 5 lists at the end of the ordering are likely
inaccurate, as the ranks of the given anomaly in those lists are larger than what is
expected based on the ranks in the other lists.
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Fig. 2. Normalized rank r(l) vs. probability p that r̂(l) ≤ r(l), where r̂ are drawn uniformly at
random from [0, 1].

Based on this intuition, we count the frequency that each list l is ordered after the list
with minl=1,...,m pl,m(r) among all the normalized rank lists r of the target anomalies
(Lines 8-15). We then group these counts into two clusters1 and discard the lists in the
cluster with the higher average count (Lines 16-17). This way we eliminate the lists
with larger counts, but retain the lists that appear inaccurate only a few times which
may be a result of the inherent uncertainty or noise in which we construct the target
anomaly set.

3.5. Existing/Alternative Ensemble Learning Approaches
In this section, we discuss three alternative existing approaches for building anomaly
ensembles, which differ in whether and how they select their ensemble components.
We compare to these methods in the experiments (Section 5).

3.5.1. Full ensemble. The full ensemble [Rayana and Akoglu 2014] selects all the de-
tector results (Step 2 of Alg.1) and later all the consensus results (Step 4 of Alg.1) to
aggregate at both phases of SELECT. As such, it is a naive approach that is prone to
obtain inferior results in the presence of inaccurate detectors.

1We cluster the counts by k-means clustering with k = 2, where the centroids are initialized with the
smallest and largest counts, respectively.
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3.5.2. Diversity-based ensemble. In classification, two basic conditions for an ensemble
to improve over the constituent classifiers are that the base classifiers are (i) accu-
rate (better than random), and (ii) diverse (making uncorrelated errors) [Dietterich
2000; Valentini and Masulli 2002]. Achieving better-than-random accuracy in super-
vised learning is not hard, and several studies have shown that ensembles tend to
yield better results when there is a significant diversity among the models [Brown
et al. 2005; Kuncheva and Whitaker 2003].

Following on these insights, Schubert et al. proposed a diversity-based ensemble
[Schubert et al. 2012], which is similar to our vertical selection in Alg. 3. The main dis-
tinction is the ascending ordering in Lines 9 and 14, which yields a diversity-favored,
in contrast to a correlation-favored, selection.2

Unlike classification ensembles, however, it is not realistic for anomaly ensembles
to assume that all the detectors will be reasonably accurate (i.e., better than random),
as some may fail to spot the (type of) anomalies in the given data. In the existence of
inaccurate detectors, the diversity-based approach would likely yield inferior results
as it is prone to selecting inaccurate detectors for the sake of diversity. As we show in
our experiments, too much diversity is in fact bound to limit accuracy for event and
outlier detection ensembles.

3.5.3. Unsupervised Learning Algorithm for Rank Aggregation (ULARA). In selective ensemble
approaches, base detectors and consensus approaches are selected in an unsupervised
way to generate the final result. In doing so the algorithms which are not selected are
discarded and do not contribute to the final result. An alternative way to using binary
selection criteria is estimating weights for detectors/consensus results and applying a
weighted rank aggregation technique to combine the results. [Klementiev et al. 2007]
proposed an unsupervised learning algorithm (called ULARA) for this kind of rank ag-
gregation, which adaptively learns a parameterized linear combination of ranklists to
optimize the relative influence of individual detectors on the final ranking by learning
relative weights wi for the individual ranklists (where,

∑n
i=1 wi = 1). Their approach

is guided by the principle that the relative contribution of an individual ranklist to the
final ranking should be determined by its tendency to agree with other ranklists in the
pool. Those ranklists that agree with the majority are given large relative weights and
those that disagree are given small relative weights. Agreement is measured by the to-
tal variance from the average ranking of individual data points. As a result, the goal is
to assign weights such that the total weighted variance is minimized. ULARA has two
different ways to estimate the detector weights, one based on additive and another
based on exponential weight updates. In evaluation, we experiment with both of them
and report the better performance for each dataset.

4. THEORETICAL FOUNDATIONS
In this section we present the theoretical underpinnings of our proposed anomaly en-
semble. Although, classification and anomaly detection problems are significantly dif-
ferent, the theoretical foundation of both the problems can be explained with bias-
variance tradeoff. We explain the theoretical analysis for our anomaly ensemble in
light of the theoretical foundations provided by Aggarwal et al. [Aggarwal and Sathe
2015] for outlier ensemble in terms of well known ideas from classification. In Sec-
tion 4.1 we describe the bias-variance trade-off for anomaly detection and in Section 4.2

2There are other differences between our vertical selection (Algorithm 3) and the diversity-based ensemble
in [Schubert et al. 2012], such as the construction of the pseudo ground truth and the choice of weights in
correlation computation.
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we present evidence for error reduction by reducing bias-variance for our proposed se-
lective anomaly ensemble approach SELECT.

4.1. Bias-Variance Tradeoff in Anomaly Detection
The bias-variance tradeoff is often explained in the context of supervised learning, e.g.,
in classification, as quantification of bias-variance requires labelled data. Although,
anomaly detection problems lack the existence of ground truth (hence solved using
unsupervised approaches), this bias-variance tradeoff can be quantified by treating
the dependent variable (actual labels) as unobserved.

Unlike classification, most anomaly detection algorithms output “anomalousness”
scores for the data points. We can consider these anomaly detection algorithms as two
class classification problems having a majority class (normal points) and a rare class
(anomalous points) by converting the anomalousness scores to class labels. The points
which achieve scores above a threshold are considered as anomalies and get label 1
(label 0 for normal points below threshold). Deciding this threshold is a difficult task
for heterogeneous detectors as they provide scores with different scaling and in dif-
ferent ranges. As such there exist unification approaches [Gao and Tan 2006; Kriegel
et al. 2009] which convert these anomalousness scores to probability estimates to make
them comparable with out changing the ranking of the data points.

Now that unsupervised anomaly detection problem looks similar like a classification
problem with only unobserved actual labels, we can explain the bias-variance tradeoff
for anomaly detection using ideas from classification. The expected error of anomaly
detection can be split into two main components reducible error and irreducible error
(i.e., noise). This reducible error can be minimized to maximize the accuracy of the de-
tector. Furthermore, the reducible error can be decomposed into (i) error due to squared
bias, and (ii) error due to variance. However, there is a tradeoff while minimizing both
these sources of errors.

Bias of a detector is the amount by which the expected output of the detector differs
from the true unobserved value, over the training data. On the other hand, variance
of a detector is the amount by which the output of a detector over one training set
differs from the expected output of the detector over all the training sets. The tradeoff
between bias and variance can be viewed as, (i) a detector which has low bias is very
flexible in fitting data well and it will fit each training set differently providing high
variance, and (ii) inflexible detectors will have low variance and might provide high
bias. Our goal is to improve the accuracy as much as possible by reducing both bias
and variance using selective anomaly ensemble approach SELECT.

4.2. Bias-Variance Reduction in Anomaly Ensemble
Most classification ensemble generalize directly to anomaly ensemble for variance re-
duction, but controlled bias reduction is rather difficult due to lack of ground truth. It
is evident from classification ensemble literature that combining results from multiple
heterogeneous base algorithms will decrease the overall variance of the ensemble [Ag-
garwal and Sathe 2015] which is also true for anomaly ensemble. On the other hand,
this combination does not provide enough ground for reducing bias in anomaly ensem-
ble. Moreover, our SELECT approach is designed based on the assumption that, there
exist inaccurate detectors which are able to hurt the overall ensemble if combined with
the accurate ones.

In this work, we present two selective approaches SelectV and SelectH which discard
these inaccurate detectors. For both the algorithms we utilize pseudo-ground truth
which can be viewed as a low-bias output because it averages the outputs for Se-
lectV and takes majority voting for SelectH across the diverse detectors, each of which
might have biases in different directions. By eliminating the detectors which do not
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agree with the pseudo-ground truth for SelectV and provide inaccurate ranking (com-
pared to others) of the target anomalies (pseudo-ground truth) in SelectH, we are ef-
fectively eliminating the detectors which have high bias. Furthermore, we are using
SELECT in two phases to reduce the bias. Therefore, by carefully selecting detectors
and combining their outputs in two phases we are reducing both bias and variance,
and thus improving accuracy.

The reason why the state-of-the-art approaches (Full, DivE, ULARA) might fail to
achieve better accuracy than SELECT can be describes with this bias-variance reduc-
tion. Full combines all the base detectors results including the ones with high bias and
thus hurt the final ensemble. Although ULARA calculates relative weights based on the
agreement between the detectors, it fails to totally discard the ones with high bias. For
the sake of diversity DivE selects the more diverse detectors and thus end up selecting
the ones with high bias, reducing the overall accuracy.

In selecting the detectors, SelectV utilizes the correlation between the ranklists pro-
vided by the base detectors. Therefore, SelectV considers all the data points to decide
which detectors to select and thus affected by the majority inliers class. On the other
hand, SelectH considers only the target anomalies to decide which detectors to select, as
in this approach we emphasize on the anomalies being misclassified by the detectors.
As a result, SelectV is sometimes prone to discarding accurate detectors and selecting
inaccurate ones. Section 5 provides results justifying the above explanation.

We consider our SELECT approach to be a heuristic one as it is not guaranteed to
provide optimal solution for different datasets. As such it can behave unpredictably
for pathological data sets (see Section 5). Bias reduction in unsupervised learning, e.g.,
anomaly detection, is a hard problem and using heuristic method is quite reasonable
to improve accuracy by achieving immediate goals.

5. EVALUATION
We evaluate our selective ensemble approach on the event detection problem using five
real-world datasets, both previously used as well as newly collected by us, including
email communications, news corpora, and social media. For four of these datasets we
compiled ground truths for the temporal anomalies, for which we present quantitative
results. We use the remaining data for illustrating case studies. Furthermore, we eval-
uate SELECT on the outlier detection problem using seven real-world datasets from
UCI machine learning repository.3

We compare the performance of SELECT with vertical selection (SelectV), and horizon-
tal selection (SelectH) to that of individual detectors, the full ensemble with no selection
(Full), the diversity-based ensemble (DivE) by [Schubert et al. 2012], and weighted en-
semble approach (ULARA) by [Klementiev et al. 2007]. This makes ours one of the few
works that quantitatively compares and contrasts anomaly ensembles at a scale that
includes as many datasets with ground truth.

In a nutshell, our results illustrate that (i) base detectors do not always all produce
accurate results, (ii) ensemble approach alleviates the shortcomings of the inaccurate
detectors, (iii) a careful selection of ensemble components increases the overall perfor-
mance, and (iv) introducing noisy results decreases overall ensemble accuracy where
the diversity-based ensemble is affected the most.

5.1. Dataset Description
5.1.1. Temporal Graph Datasets. In the following we describe the five real-world tem-

poral graph datasets we used in this work. Our datasets are collected from various
domains. Four datasets contain ground truth events, and the last dataset is used

3 http://archive.ics.uci.edu/ml/datasets.html
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for illustrating case studies. All our datasets can be found at http://shebuti.com/
SelectiveAnomalyEnsemble/, where we also share the source code for SELECT.
Dataset 1: EnronInc. We use four years (1999–2002) of Enron email communica-
tions. In the temporal graphs, the nodes represent email addresses and directed edges
depict sent/received relations. Enron email network contains a total of 80, 884 nodes.
We analyze the data with daily sample rate skipping the weekends (700 time points).
The ground truth captures the major events in the company’s history, such as CEO
changes, revenue losses, restatements of earnings, etc.
Dataset 2: RealityMining Reality Mining is comprised of communication and prox-
imity data of 97 faculty, student, and staff at MIT recorded continuously via pre-
installed software on their mobile devices over 50 weeks [Eagle et al. 2009]. From the
raw data we built sequences of weekly temporal graphs for three types of relations;
voice calls, short messages, and bluetooth scans. For voice call and short message
graphs a directed edge denotes an incoming/outgoing call or message, and for blue-
tooth graphs an edge depicts physical proximity between two subjects. The ground
truth captures semester breaks, exam and sponsor weeks, and holidays.
Dataset 3: TwitterSecurity We collect tweet samples using the Twitter Streaming
API for four months (May 12–Aug 1, 2014). We filter the tweets containing Depart-
ment of Homeland Security keywords related to terrorism or domestic security.4 After
named entity extraction and resolution (including URLs, hashtags, @ mentions), we
build entity-entity co-mention temporal graphs on daily basis (80 time ticks). We com-
pile the ground truth to include major world news of 2014, such as the Turkey mine
accident, Boko Haram kidnapping school girls, killings during Yemen raids, etc.
Dataset 4: TwitterWorldCup Our Twitter collection also spans the World Cup 2014
season (June 12–July 13). This time, we filter the tweets by popular/official World Cup
hashtags, such as #worldcup, #fifa, #brazil, etc. Similar to TwitterSecurity, we construct
entity-entity co-mention temporal graphs on 5 minute sample rate (8640 time points).
The ground truth contains the goals, penalties, and injuries in all the matches that
involve at least one of the renowned teams (specifically, at least one of Brazil, Germany,
Argentina, Netherlands, Spain, France).
Dataset 5: NYTNews This corpus contains all of the published articles in New York
Times over 7.5 years (Jan 2000–July 2007) (available from https://catalog.ldc.upenn.edu/
LDC2008T19). The named entities (people, places, organizations) are hand-annotated
by human editors. We construct weekly temporal graphs (390 time points) in which
each node corresponds to a named entity and edges depict co-mention relations in the
articles. The data contains around 320, 000 entities, however no ground truth events.

Table II. Summary of multi-dimensional point data sets

Data set Instances Attributes % of outliers
WBC 378 30 5.6
Glass 214 9 4.2

Lymphography 148 18 4.1
Cardio 1831 21 9.6
Musk 3062 166 3.2

Thyroid 3772 6 2.5
Letter 1600 32 6.25

5.1.2. Multi-dimensional point Datasets. In Table II we provide the summary of seven
real-world datasets that we utilize in outlier ensemble from UCI Machine Learning
Repository. For these datasets further preprocessing was required to adapt them in

4 http://www.huffingtonpost.com/2012/02/24/homeland-security-manual n 1299908.html
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outlier detection problem having a rare class (outliers) and a majority class (inliers).
WBC, Glass, Lymphography, Cardio, Musk and Thyroid datasets are the same as used
in [Aggarwal and Sathe 2015] and Letter dataset is same as used in [Micenkovä et al.
2014].

Table III. Significance of accuracy results compared to random ensembles with
same number of selected components as SELECTfor event detection. The ac-
curacy of the alterntive approaches (Full, DivE, and ULARA) are also given in
parentheses. These results show that (i) SELECT is superior to existing meth-
ods, and (ii) it selects significantly more important (i.e., accurate) detectors to
combine.

Accuracy significance
EnronInc. (10 comp.) (Full: 0.7082, DivE: 0.6276, ULARA: 0.3652)
(i) RandE (3/10, 3/7) 0.4804 (µ) 0.1757 (σ)
SelectV 0.7125 = µ+ 1.3210σ
(ii) RandE (5/10, 6/7) 0.5509 (µ) 0.1406 (σ)
SelectH 0.7920 = µ+ 1.7148σ

EnronInc. (20 comp.) (Full: 0.5420, DivE: 0.4697, ULARA: 0.2961)
(i) RandE (4/20, 2/7) 0.4047 (µ) 0.1732 (σ)
SelectV 0.7018 = µ+ 1.7154σ
(ii) RandE (15/20, 6/7) 0.5707 (µ) 0.0864 (σ)
SelectH 0.7798 = µ+ 2.4201σ

RM-VoiceCall (10 comp.) (Full: 0.7302, DivE: 0.8724, ULARA: 0.8125)
(i) RandE (2/10, 1/7) 0.7370 (µ) 0.1551 (σ)
SelectV 0.8370 = µ+ 0.6447σ
(ii) RandE (8/10, 6/7) 0.7653 (µ) 0.0714 (σ)
SelectH 0.9045 = µ+ 1.9496σ

RM-VoiceCall (20 comp.) (Full: 0.8011, DivE: 0.8335, ULARA: 0.8250)
(i) RandE (2/20, 2/7) 0.7752 (µ) 0.1494 (σ)
SelectV 0.8847 = µ+ 0.7329σ
(ii) RandE (17/20, 6/7) 0.8187 (µ) 0.0497 (σ)
SelectH 0.8949 = µ+ 1.5332σ

RM-Bluetooth (10 comp.) (Full: 0.8398, DivE: 0.7735, ULARA: 0.8437)
(i) RandE (4/10, 1/7) 0.8269 (µ) 0.1129 (σ)
SelectV 0.9193 = µ+ 0.8184σ
(ii) RandE (8/10, 6/7) 0.8410 (µ) 0.0322 (σ)
SelectH 0.8886 = µ+ 1.4783σ

RM-SMS (10 comp.) (Full: 0.9092, DivE: 0.8598, ULARA: 0.7937)
(i) RandE (4/10, 1/7) 0.8328 (µ) 0.0978 (σ)
SelectV 0.9283 = µ+ 0.9765σ
(ii) RandE (8/10, 6/7) 0.8976 (µ) 0.0620 (σ)
SelectH 0.9217 = µ+ 0.3887σ

RM-SMS (20 comp.) (Full: 0.9542, DivE: 0.8749, ULARA: 0.7312)
(i) RandE (2/20, 1/7) 0.7685 (µ) 0.1521 (σ)
SelectV 0.9294 = µ+ 1.0579σ
(ii) RandE (17/20, 5/7) 0.9217 (µ) 0.0296 (σ)
SelectH 0.9621 = µ+ 1.3649σ

TwitterSecurity (10 comp.) (Full: 0.5200, DivE: 0.4800, ULARA: 0.5733)
(i) RandE (4/10, 1/7) 0.5068 (µ) 0.0755 (σ)
SelectV 0.5467 = µ+ 0.5285σ
(ii) RandE (9/10, 3/7) 0.5198 (µ) 0.0538 (σ)
SelectH 0.5867 = µ+ 1.2435σ
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5.2. Event Detection Performance
Next we quantitatively evaluate the ensemble methods on detection accuracy. The final
result output by each ensemble is a rank list, based on which we create the precision-
recall (PR) plot for a given ground truth. We report the area under the PR plot, namely
average precision, as the measure of accuracy.

In Table III we report the summary of results for different datasets containing the
average precision values for SELECT and other existing ensemble approaches (Full, DivE,
and ULARA) to which we compare SELECT. To investigate the significance of the selec-
tions made by SELECT ensembles, we compare them to ensembles that randomly select
the same number of components to assemble at each phase. In Table III we also report
the average and standard deviation of accuracies achieved by 100 such random en-
sembles, denoted by RandE, and the gain achieved by SelectV and SelectH over their
respective random ensembles. We note that SELECT ensembles provide superior re-
sults to RandE, Full, DivE, and ULARA. Moreover, SelectH appears to be a better strategy
than SelectV, where it either provides the best result (6/8 in Table III) or achieves com-
parable accuracy when SelectV is the winner. Selecting results based on diversity turns
out to be a poor strategy for anomaly ensembles as DivE yields even worse results than
the Full ensemble (6/8 in Table III). Putting relative weight depending on the agree-
ment between base detector results does not even help according to our evaluation, as
such ULARA ensemble yields poor results even worse than DivE (6/8 in Table III).

Table IV. Accuracy of ensembles for EnronInc. (features: weighted in-/out-degree). ∗ depicts se-
lected detector/consensus results.

Full DivE ULARA(wi) SelectV SelectH

B
as

e
A

lg
or

it
hm

s

EBED (win) 0.1313 ∗ ∗
PTSAD (win) 0.1462 ∗
SPIRIT (win) 0.7032 ∗ ∗
ASED (win) 0.5470 ∗ ∗ ∗
MAED (win) 0.6670 ∗
EBED (wout) 0.2846 ∗
PTSAD (wout) 0.2118 ∗
SPIRIT (wout) 0.4563 ∗ ∗
ASED (wout) 0.0580 ∗
MAED (wout) 0.7328 ∗ ∗

C
on

se
ns

us

Inverse Rank ∗ 0.6829 ∗ 0.5660 – 0.6738 ∗ 0.8291
Kemeny-Young ∗ 0.4086 ∗ 0.3703 – ∗ 0.6586 ∗ 0.6334
RRA ∗ 0.6178 0.4871 – 0.5686 ∗ 0.6590
Uni (avg) ∗ 0.5292 ∗ 0.5511 – ∗ 0.6375 ∗ 0.6207
Uni (max) ∗ 0.3333 ∗ 0.3187 – 0.4314 ∗ 0.7353
MM (avg) ∗ 0.7513 ∗ 0.5726 – ∗ 0.7663 ∗ 0.7530
MM (max) ∗ 0.0218 ∗ 0.0218 – 0.2108 0.0224

Final Ensemble 0.7082 0.6276 0.3652 0.7125 0.7920

Table IV shows the accuracies for all five ensemble methods on EnronInc., along with
the accuracies of the base detectors and consensus methods. In Table IV the black bars
for ULARA are the representatives of weights where the length of the bars are pro-
portional to the relative weights assigned to corresponding detectors, we denote them
as weight bars for ULARA. Also ULARA is a single phase ensemble approach, as such
there is no second phase results. We note that some detectors yield quite low accuracy
(e.g., ASED (wout)) on this dataset. Further, MM (max) consensus provides low accuracy
across ensembles no matter which detector results are combined. SELECT ensembles
successfully filter out relatively inferior results and achieve higher accuracy. SelectV en-
semble provides sparser selection than SelectH ensemble, but SelectH provides better
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accuracy than SelectV, which indicates that SelectV possibly missing some valuable de-
tectors. We also note that ULARA andDivE yield lower performance than all, including
Full. The weight bars indicate that ULARA is putting high weights to relatively inaccu-
rate detectors.

We show the final anomaly scores of the time points provided by SelectH on EnronInc.
for visual analysis in Figure 3. The figure also depicts the ground truth events by
vertical (red) lines, which we note to align well with the time points with high scores.
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Fig. 3. Anomaly scores of time points by SelectH on EnronInc. align well with ground truth
(vertical red lines).

Table V. Accuracy of ensembles for EnronInc. (directed) (20 components) (features:
weighted in-/out-degree and unweighted in-/out-degree). ∗ depicts selected detec-
tor/consensus results.

Full DivE ULARA(wi) SelectV SelectH

B
as

e
A

lg
or

it
hm

s

EBED (win) 0.1313 ∗ ∗
PTSAD (win) 0.1462 ∗ ∗
SPIRIT (win) 0.7032 ∗ ∗
ASED (win) 0.5470 ∗ ∗ ∗
MAED (win) 0.6670 ∗
EBED (wout) 0.2846 ∗
PTSAD (wout) 0.2118 ∗ ∗
SPIRIT (wout) 0.4563 ∗
ASED (wout) 0.0580 ∗
MAED (wout) 0.7328 ∗ ∗
EBED (uin) 0.0892 ∗
PTSAD (uin) 0.1607 ∗ ∗
SPIRIT (uin) 0.3996 ∗ ∗
ASED (uin) 0.1395 ∗ ∗
MAED (uin) 0.4439 ∗ ∗
EBED (uout) 0.0225 ∗
PTSAD (uout) 0.2546 ∗
SPIRIT (uout) 0.1012 ∗ ∗
ASED (uout) 0.0870 ∗
MAED (uout) 0.4181 ∗

C
on

se
ns

us

Inverse Rank ∗ 0.7121 ∗ 0.5660 – 0.6577 ∗ 0.7496
Kemeny-Young ∗ 0.3033 ∗ 0.2495 – 0.5361 ∗ 0.5066
RRA ∗ 0.5948 ∗ 0.5348 – 0.4948 ∗ 0.5774
Uni (avg) ∗ 0.4838 ∗ 0.4325 – ∗ 0.6047 ∗ 0.5336
Uni (max) ∗ 0.3020 ∗ 0.2242 – 0.6633 ∗ 0.4280
MM (avg) ∗ 0.5673 ∗ 0.4662 – 0.6761 ∗ 0.7217
MM (max) ∗ 0.0216 ∗ 0.0216 – ∗ 0.5355 0.0222

Final Ensemble 0.5420 0.4697 0.2961 0.7018 0.7798
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Table IV shows results when we use weighted node in-/out-degree features on the di-
rected Enron graphs to construct the input time series for the base detectors. As such,
the ensembles utilize 10 components in the first phase. We also build the ensembles us-
ing 20 components where we include the unweighted in-/out-degree features. Table V
gives all the accuracy results, selections made and weight bars for ULARA, a summary
of which is provided in Table III. We notice that the unweighted graph features are
less informative and yield lower accuracies across detectors on average. This affects
the performance of Full, DivE, and ULARA, where the accuracies drop significantly, spe-
cially for ULARA. On the other hand, SELECT ensembles are able to achieve comparable
accuracies with increased significance under the additional noisy input.
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Fig. 4. EnronInc. average precision vs. detection delay using (left) 10 components and (right) 20 compo-
nents.

Thus far, we used the exact time points of the events to compute precision and recall.
In practice, some time delay in detecting an event is often tolerable. Therefore, we also
compute the detection accuracy when delay is allowed; e.g., for delay 2, detecting an
event that occurred at t within time window [t− 2, t+ 2] is counted as accurate. Figure
4 shows the accuracy for 0 to 5 time point delays (days) for EnronInc., where delay 0
is the same as exact detection. We notice that SELECT ensembles and Full can detect
almost all the events within 5 days before or after each event occurs.

Table VI. Accuracy of ensembles for RealityMining Voice Call (directed) (10 components)
(features: weighted in-/out-degree). ∗: selected detector/consensus results.

Full DivE ULARA(wi) SelectV SelectH

B
as

e
A

lg
or

it
hm

s

EBED (win) 0.3508 ∗
PTSAD (win) 0.6284 ∗
SPIRIT (win) 0.8309 ∗ ∗
ASED (win) 0.9437 ∗ ∗
MAED (win) 0.8809 ∗ ∗
EBED (wout) 0.4122 ∗
PTSAD (wout) 0.6273 ∗
SPIRIT (wout) 0.7346 ∗ ∗
ASED (wout) 0.9500 ∗
MAED (wout) 0.8758 ∗

C
on

se
ns

us

Inverse Rank ∗ 0.7544 0.6169 – 0.8880 ∗ 0.8222
Kemeny-Young ∗ 0.8221 ∗ 0.7708 – 0.8619 ∗ 0.9309
RRA ∗ 0.8154 0.5936 – 0.8901 ∗ 0.9416
Uni (avg) ∗ 0.7798 ∗ 0.6413 – ∗ 0.8370 ∗ 0.9098
Uni (max) ∗ 0.6704 0.5757 – 0.7786 ∗ 0.7833
MM (avg) ∗ 0.9190 ∗ 0.9162 – 0.8835 ∗ 0.9183
MM (max) ∗ 0.4380 ∗ 0.8934 – 0.7569 0.4380

Final Ensemble 0.7302 0.8724 0.8125 0.8370 0.9045
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Next we analyze the results for RealityMining. Similar to EnronInc., we build the en-
sembles using both 10 and 20 components for the directed Voice Call and SMS graphs.
Bluetooth graphs are undirected, as they capture (symmetric) proximity of devices, for
which we build ensembles with 10 components using weighted and unweighted degree
features. All the details on detector and consensus accuracies, weight bars for ULARA as
well as selections made are given in Table VI and Table VII for Voice Call, Table VIII
for Bluetooth, Table IX and Table X for SMS. We provide the summary of results in
Table III. We note that SELECT ensembles provide superior results to Full, DivE, and
ULARA.

Table VII. Accuracy of ensembles for RealityMining Voice Call (directed) (20 components)
(features: weighted in-/out-degree and unweighted in-/out-degree) ∗: selected detec-
tor/consensus results.

Full DivE ULARA(wi) SelectV SelectH

B
as

e
A

lg
or

it
hm

s

EBED (win) 0.3508 ∗
PTSAD (win) 0.6284 ∗
SPIRIT (win) 0.8309 ∗ ∗
ASED (win) 0.9437 ∗ ∗
MAED (win) 0.8809 ∗ ∗
EBED (wout) 0.4122 ∗
PTSAD (wout) 0.6273 ∗
SPIRIT (wout) 0.7346 ∗
ASED (wout) 0.9500 ∗
MAED (wout) 0.8758 ∗
EBED (uin) 0.4173
PTSAD (uin) 0.8636 ∗ ∗
SPIRIT (uin) 0.8313 ∗
ASED (uin) 0.9191 ∗
MAED (uin) 0.8706 ∗ ∗
EBED (uout) 0.4800 ∗
PTSAD (uout) 0.8665 ∗
SPIRIT (uout) 0.7480 ∗
ASED (uout) 0.9229 ∗ ∗
MAED (uout) 0.9115 ∗

C
on

se
ns

us

Inverse Rank ∗ 0.8035 0.7952 – 0.9240 ∗ 0.8681
Kemeny-Young ∗ 0.9064 0.9018 – 0.9076 ∗ 0.9158
RRA ∗ 0.8866 ∗ 0.7771 – 0.9013 ∗ 0.9311
Uni (avg) ∗ 0.8598 0.9192 – ∗ 0.8448 ∗ 0.9102
Uni (max) ∗ 0.6844 ∗ 0.6863 – 0.8517 ∗ 0.7611
MM (avg) ∗ 0.9321 ∗ 0.9083 – ∗ 0.8312 ∗ 0.9134
MM (max) ∗ 0.4380 ∗ 0.8858 – 0.8015 0.4380

Final Ensemble 0.8011 0.8335 0.8250 0.8847 0.8949

Figure 5 illustrates the accuracy-delay plots which show that SELECT ensembles for
Bluetooth and SMS detect almost all the events within a week before or after they
occur, while the changes in Voice Call are relatively less reflective of the changes in
the school year calendar.

Finally, we study event detection using Twitter. Table XI contains accuracy details
for detecting world news on TwitterSecurity, a summary of which is included in Table
III. Results are in agreement with prior ones, where SelectH outperforms the other
ensembles. This further becomes evident in Figure 6 (left), where SelectH can detect all
the ground truth events within 3 days delay.

The detection dynamics change when TwitterWorldCup is analyzed. The events in
this data such as goals and injuries are quite instantaneous (recall the 4 goals in 6
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Table VIII. Accuracy of ensembles for RealityMining Bluetooth (undirected) (10 com-
ponents) (feature: weighted and unweighted degree). ∗: selected detector/consensus
results.

Full DivE ULARA(wi) SelectV SelectH

B
as

e
A

lg
or

it
hm

s
EBED (wdeg) 0.4363 ∗
PTSAD (wdeg) 0.5820 ∗ ∗
SPIRIT (wdeg) 0.9499 ∗ ∗
ASED (wdeg) 0.8601 ∗ ∗
MAED (wdeg) 0.8359 ∗ ∗
EBED (udeg) 0.4966 ∗
PTSAD (udeg) 0.8694 ∗ ∗
SPIRIT (udeg) 0.9162 ∗ ∗
ASED (udeg) 0.7662 ∗ ∗
MAED (udeg) 0.8788 ∗ ∗

C
on

se
ns

us

Inverse Rank ∗ 0.8646 ∗ 0.8255 – 0.8790 ∗ 0.8538
Kemeny-Young ∗ 0.9534 0.9169 – 0.9698 ∗ 0.9361
RRA ∗ 0.9413 0.8318 – 0.9693 ∗ 0.9684
Uni (avg) ∗ 0.9071 0.8654 – ∗ 0.9193 ∗ 0.9225
Uni (max) ∗ 0.6973 ∗ 0.6122 – 0.8270 ∗ 0.7126
MM (avg) ∗ 0.9407 ∗ 0.9340 – 0.8596 ∗ 0.8892
MM (max) ∗ 0.6461 ∗ 0.6374 – 0.8830 0.6461

Final Ensemble 0.8398 0.7735 0.8437 0.9193 0.8886

Table IX. Accuracy of ensembles for RealityMining SMS (directed) (10 components) (fea-
tures: weighted in-/out-degree). ∗: selected detector/consensus results.

Full DivE ULARA(wi) SelectV SelectH

B
as

e
A

lg
or

it
hm

s

EBED (win) 0.6117 ∗
PTSAD (win) 0.7003 ∗
SPIRIT (win) 0.9256 ∗ ∗
ASED (win) 0.6338 ∗ ∗
MAED (win) 0.9002 ∗ ∗
EBED (wout) 0.5595 ∗
PTSAD (wout) 0.7023 ∗ ∗
SPIRIT (wout) 0.8656 ∗ ∗
ASED (wout) 0.9102 ∗ ∗
MAED (wout) 0.9259 ∗ ∗

C
on

se
ns

us

Inverse Rank ∗ 0.8309 0.8174 – 0.8933 ∗ 0.8044
Kemeny-Young ∗ 0.9491 ∗ 0.8779 – 0.9511 ∗ 0.9386
RRA ∗ 0.8761 ∗ 0.8424 – 0.9578 ∗ 0.9516
Uni (avg) ∗ 0.8531 0.8247 – ∗ 0.9283 ∗ 0.8684
Uni (max) ∗ 0.8205 ∗ 0.7632 – 0.8829 ∗ 0.8678
MM (avg) ∗ 0.9276 ∗ 0.9487 – 0.9492 ∗ 0.9084
MM (max) ∗ 0.8907 ∗ 0.8577 – 0.9410 0.9011

Final Ensemble 0.9092 0.8598 0.7937 0.9283 0.9217

minutes by Germany against Brazil), where we use a sample rate of 5 minutes. More-
over, such events are likely to be reflected on Twitter with some delay by social media
users. As such, it is extremely hard to pinpoint the exact time of the events by the en-
sembles. As we notice in Figure 6 (right), the initial accuracies at zero delay are quite
low. When delay is allowed for up to 288 time points (i.e., one day), the accuracies in-
cline to a reasonable level within half a day delay. In addition, all the detector and
consensus results seem to contain signals in this case where most of them are selected
by the ensembles, hence comparable accuracies. In fact, DivE selects all of them and
performs the same as Full. Here, ULARA and SelectV perform quite closely.
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Table X. Accuracy of ensembles for RealityMining SMS (directed) (20 components)
(features: weighted in-/out-degree and unweighted in-/out-degree). ∗: selected detec-
tor/consensus results.

Full DivE ULARA(wi) SelectV SelectH

B
as

e
A

lg
or

it
hm

s
EBED (win) 0.6117 ∗ ∗
PTSAD (win) 0.7003 ∗
SPIRIT (win) 0.9256 ∗
ASED (win) 0.6338 ∗ ∗
MAED (win) 0.9002 ∗
EBED (wout) 0.5595 ∗
PTSAD (wout) 0.7023
SPIRIT (wout) 0.8656 ∗
ASED (wout) 0.9102 ∗
MAED (wout) 0.9259 ∗ ∗
EBED (uin) 0.4407 ∗
PTSAD (uin) 0.7809 ∗ ∗
SPIRIT (uin) 0.7841 ∗
ASED (uin) 0.6248 ∗ ∗
MAED (uin) 0.8297 ∗ ∗
EBED (uout) 0.3246
PTSAD (uout) 0.9157 ∗ ∗
SPIRIT (uout) 0.8744 ∗
ASED (uout) 0.9150 ∗
MAED (uout) 0.8005 ∗

C
on

se
ns

us

Inverse Rank ∗ 0.9135 0.6751 – 0.9634 ∗ 0.9230
Kemeny-Young ∗ 0.9286 ∗ 0.7567 – 0.9094 ∗ 0.9325
RRA ∗ 0.9568 0.6465 – 0.9418 ∗ 0.9583
Uni (avg) ∗ 0.8791 0.6499 – ∗ 0.9294 ∗ 0.9156
Uni (max) ∗ 0.7173 ∗ 0.6696 – 0.9342 0.8650
MM (avg) ∗ 0.9107 ∗ 0.8942 – 0.8519 ∗ 0.9138
MM (max) ∗ 0.8895 ∗ 0.8480 – 0.9307 0.8895

Final Ensemble 0.9542 0.8749 0.7312 0.9294 0.9621
Table XI. Accuracy of ensembles for TwitterSecurity (undirected) (10 components) (fea-
tures: weighted and unweighted degree). ∗: selected detector/consensus results.

Full DivE ULARA(wi) SelectV SelectH

B
as

e
A

lg
or

it
hm

s

EBED (wdeg) 0.4000 ∗ ∗
PTSAD (wdeg) 0.5400 ∗ ∗
SPIRIT (wdeg) 0.4467 ∗ ∗ ∗
ASED (wdeg) 0.6200 ∗ ∗ ∗
MAED (wdeg) 0.4933 ∗
EBED (udeg) 0.4133 ∗ ∗ ∗
PTSAD (udeg) 0.5467 ∗ ∗
SPIRIT (udeg) 0.3867 ∗ ∗
ASED (udeg) 0.5400 ∗ ∗
MAED (udeg) 0.4533 ∗

C
on

se
ns

us

Inverse Rank ∗ 0.4467 0.4267 – 0.5133 ∗ 0.4667
Kemeny-Young ∗ 0.5667 0.5333 – 0.5333 0.5800
RRA ∗ 0.5867 ∗ 0.5333 – 0.5467 ∗ 0.5933
Uni (avg) ∗ 0.5600 0.5000 – ∗ 0.5467 ∗ 0.6000
Uni (max) ∗ 0.4533 ∗ 0.4400 – 0.5800 0.4533
MM (avg) ∗ 0.5333 ∗ 0.5667 – 0.5267 0.5600
MM (max) ∗ 0.3667 ∗ 0.3667 – 0.5533 0.5733

Final Ensemble 0.5200 0.4800 0.5733 0.5467 0.5867
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Fig. 5. RealityMining average precision vs. detection delay for (left to right) Voice Call (10
comp.), Voice Call (20 comp.), Bluetooth (10 comp.), SMS (10 comp.), and SMS (20 comp.).
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Fig. 6. Average precision vs. detection delay for (left) Twitter Security and (right) Twitter World-
Cup 2014.

5.3. Noise Analysis
Provided that selecting which results to combine would especially be beneficial in the
presence of inaccurate detectors, we design experiments where we introduce increas-
ing number of noisy results into our ensembles. In particular, we create noisy results
by randomly shuffling the rank lists output by the base detectors and treat them as
additional detector results. Figure 7 shows accuracies (avg.’ed over 10 independent
runs) on all of our datasets for 10 component ensembles . Results using 20 components
are similar, and provided in Figure 8. We notice that SELECT ensembles provide the
most stable and effective performance under increasing number of noisy results. More
importantly, these results show that DivE degenerates quite fast in the presence of
noise, i.e., when the assumption that all results are reasonably accurate fails to hold.
We note that ULARA remains stable in the presence of noise for RealityMining and
TwitterSecurity, but degrade in performance for EnronInc.

5.4. Case Studies
In this section we evaluate our ensemble approach qualitatively using the NYTNews
corpus dataset, for which we do not have a compiled list of ground truth events. Figure
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Fig. 7. Ensemble accuracies drop when increasing number of random results are added, where
decrease is most prominent for DivE.
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Fig. 8. Analysis of accuracy when increasing number of random base results are introduced for
ensembles with 20 components. Decline in accuracy under noise is most prominent for DivE.

9 shows the anomaly scores for the 2000-2007 time line, provided by the five base
detectors using weighted degree feature (we have demonstrated a similar figure for
EnronInc. in Figure 1 for additional qualitative analysis).

Top three events by SelectH are marked within boxes in the figure, and corresponds
to major events such as the 2001 elections, 9/11 WTC attacks, and the 2003 Columbia
Space Shuttle disaster. SelectH also ranks entities by association to a detected event for
attribution. We note that for the Columbia disaster, NASA and the seven astronauts
killed in the explosion rank at the top. The visualization of the change in Figure 10
shows that a heavy clique with high degree nodes emerges in the graph structure at the
time of the event. We also note that for the 9/11 WTC terrorist attacks in 2001, heavily
linked entities e.g. World Trade Center, New York City, Washington (DC), George W.
Bush, White House, Congress are rank at the top. The visualization of the change in
Figure 11 shows that the heavy links emerge between the top ranked entities in the
graph right after the event has occurred.
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Fig. 9. Anomaly scores from five base detectors (rows) for NYT news corpus. red bars: top 20
anomalous time points per detector, green boxes: top 3 events by the final ensemble.

Husband,  

Rick D. (Col) 

Chawla,  

Kalpana (Dr) 

Clark, Laurel  

Salton (Dr) 

Brown,  

David M (Capt) 

Mccool,  

William C (Cmdr) 

Anderson, Michael  

P (Lt Col)  

Ramon,  

Ilan (Col) 

NASA 

United States 

New York City 

Bush, George W (Pres) 

Iraq 

Husband,  

Rick D. (Col) 

Chawla,  

Kalpana (Dr) 

Clark, Laurel  

Salton (Dr) 

Brown,  

David M (Capt) 

Mccool,  

William C (Cmdr) 

Anderson, Michael  

P (Lt Col)  

Ramon,  

Ilan (Col) 

NASA 

United States 

New York City 

Bush, George W (Pres) 

Iraq 

Time tick 161 Time tick 162 

Fig. 10. During 2003 Columbia disaster a clique of NASA and the seven killed astronauts
emerges from time tick 161 to 162.
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Fig. 11. During 2001, 9/11 terrorist attacks in WTC heavy links emerge between top ranked
entities from time tick 89 to 90.

5.5. Outlier Detection Performance
Next we quantitatively evaluate the ensemble methods on outlier detection accuracy.
Here again we utilize the average precision, as the measure of accuracy. We utilize dif-
ferent values of the parameter k (number of nearest neighbors) for the individual based
detectors to provide 25 base components for the outlier ensemble. For Cardio dataset
we use k = 5, 10, 50, 100, 500, and for all the other datasets we use k = 5, 10, 15, 20, 25.

In Table XII we report the summary of results for different multi-dimensional point
datasets containing the average precision values for SELECT and other existing en-
semble approaches (Full, DivE and ULARA) to which we compare SELECT. Similar to the
event detection results we further investigate the significance of SELECT and provide
the results for random ensemble (RandE) where we randomly select the same num-
ber of components to assemble at each phase. We note that SELECT ensemble either
SelectHor SelectVprovides superior results to RandE, Full, DivE, and ULARA. Moreover, Se-
lectH appears to be a better strategy than SelectV, as in most cases it provides the best
result(in Table XII). Whereas, in some cases SelectV fall short to even beat Full, DivE,
and ULARA. For brevity we skip the detailed accuracy tables and noise analysis plots
as provided for event detection results.

6. RELATED WORK
Event detection in temporal data and outlier detection in multi-dimensional point data
are fundamental research problems that find numerous applications in the real world.
As such, a large body of research has focused on building effective techniques for these
problems. For information on such techniques we refer the reader to detailed surveys
[Akoglu et al. 2014; Chandola et al. 2009; Gupta et al. 2014] and devote this section to
discuss related work on ensemble learning, which is the main focus of our work.

Ensemble techniques leverage multiple different methods to obtain better perfor-
mance than the individual methods in the ensemble [Rokach 2010]. This is achieved
by combining the strengths of accurate methods and alleviating the weaknesses of the
less accurate ones. For example, boosting [Schapire 1990] and stacking [Wolpert 1992]
directly integrate accuracy estimation within their iterative ensemble learning. Oth-
ers assign expertise weights proportional to the accuracy of independent learners and
externally combine their results [Hoeting et al. 1999; Juditsky et al. 2008; Monteith
et al. 2011; Tsybakov 2004]. Ensembles are also known to produce more robust results.
For example, bootstrap aggregating (or bagging) tends to reduce problems related to
over-fitting to the training data [Breiman 1996].
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Table XII. Significance of accuracy results compared to random ensem-
bles with same number of selected components as SELECTfor outlier
detection. The accuracy of the alterntive approaches (Full, DivE, and
ULARA) are also given in parentheses. These results show that (i) SE-
LECT is superior to existing methods, and (ii) it selects significantly
more important (i.e., accurate) detectors to combine.

Accuracy significance
WBC (25 comp.) (Full: 0.3283, DivE: 0.2416, ULARA: 0.2439)
(i) RandE (19/25, 6/7) 0.3209 (µ) 0.0091 (σ)
SelectV 0.2950 = µ− 2.8462σ
(ii) RandE (21/25, 6/7) 0.3256 (µ) 0.0093 (σ)
SelectH 0.3840 = µ+ 6.2796σ

Glass (25 comp.) (Full: 0.2134, DivE: 0.1326, ULARA: 0.2022)
(i) RandE (19/25, 3/7) 0.2032 (µ) 0.0224 (σ)
SelectV 0.2079 = µ+ 0.2098σ
(ii) RandE (21/25, 5/7) 0.2136 (µ) 0.0060 (σ)
SelectH 0.2194 = µ+ 0.9667σ

Lympho (25 comp.) (Full: 0.7287, DivE: 0.7593, ULARA: 0.7121)
(i) RandE (15/25, 1/7) 0.6199 (µ) 0.1334 (σ)
SelectV 0.6347 = µ+ 0.1109σ
(ii) RandE (24/25, 6/7) 0.7488 (µ) 0.0291 (σ)
SelectH 0.7843 = µ+ 1.2199σ

Musk (25 comp.) (Full: 0.1195, DivE: 0.0981, ULARA: 0.1106)
(i) RandE (14/25, 6/7) 0.1228 (µ) 0.0233 (σ)
SelectV 0.1355 = µ+ 0.5451σ
(ii) RandE (18/25, 5/7) 0.1162 (µ) 0.0239 (σ)
SelectH 0.1138 = µ− 0.1004σ

Cardio (25 comp.) (Full: 0.3202, DivE: 0.2932, ULARA: 0.2331)
(i) RandE (11/25, 6/7) 0.2709 (µ) 0.0185 (σ)
SelectV 0.2767 = µ+ 0.3135σ
(ii) RandE (19/25, 6/7) 0.3193 (µ) 0.0185 (σ)
SelectH 0.4389 = µ+ 6.4649σ

Thyroid (25 comp.) (Full: 0.0815, DivE: 0.0773, ULARA: 0.0925)
(i) RandE (1/25, 0/7) 0.1445 (µ) 0.1036 (σ)
SelectV 0.2342 = µ+ 0.9765σ
(ii) RandE (20/25, 4/7) 0.1054 (µ) 0.0213 (σ)
SelectH 0.1412 = µ+ 1.6808σ

Letter (25 comp.) (Full: 0.4292, DivE: 0.4335, ULARA: 0.4298)
(i) RandE (25/25, 6/7) 0.4303 (µ) 0.0043 (σ)
SelectV 0.4286 = µ− 0.3953σ
(ii) RandE (18/25, 6/7) 0.4489 (µ) 0.0110 (σ)
SelectH 0.5504 = µ+ 9.2273σ

Thanks to these advantages, ensemble learning has spurned a large body of work
devoted to the study of ensemble classification and clustering [Dietterich 2000; Fern
and Brodley 2003; Fern and Lin 2008; Ghosh and Acharya 2013; Hadjitodorov et al.
2006; Hansen and Salamon 1990; Preisach and Schmidt-Thieme 2007; Topchy et al.
2005; Valentini and Masulli 2002; Verma and Rahman 2012; Zaman and Hirose 2011].
On the other hand, building effective ensembles for anomaly detection has remained
to be a challenging task, due to lack of ground truth and inherent objective functions
[Aggarwal 2012; Zimek et al. 2013a]. As such, there exist only a handful of mostly
recent works on building anomaly ensembles [Gao et al. 2012; Gao and Tan 2006;
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Kriegel et al. 2011; Lazarevic and Kumar 2005; Rayana and Akoglu 2014; Schubert
et al. 2012; Vu et al. 2010; Zimek et al. 2013b].

Feature bagging [Lazarevic and Kumar 2005] is the earliest work formalizing an
outlier ensemble. It uses the same base algorithm (i.e., LOF [Breunig et al. 2000])
on different feature subsets and employs a rank based merging to create the final
consensus. Feature bagging is better calibrated by [Gao and Tan 2006; Kriegel et al.
2011] which convert the outlier scores to probability estimates and use score based
merging. Different from those, [Gao et al. 2012; Rayana and Akoglu 2014; Schubert
et al. 2012; Vu et al. 2010; Zimek et al. 2013b] utilize heterogeneous detectors (e.g.,
LOF [Breunig et al. 2000], LOCI [Papadimitriou et al. 2003], k-distance, etc.).

Specifically, [Gao et al. 2012; Rayana and Akoglu 2014] unify and combine results
from all detectors, [Vu et al. 2010] uses accuracy on synthetically generated datasets
to assign weights to the detectors, [Klementiev et al. 2007] calculates relative weights
for the ranklists returned by the base detectors in an unsupervised way and [Schubert
et al. 2012; Zimek et al. 2013b] select the most diverse set of results to combine. Most
of these methods are designed for outlier detection in clouds of data points. There ex-
ist very few anomaly ensemble approaches for data represented as graphs [Gao et al.
2011; Rayana and Akoglu 2014]. In [Gao et al. 2011] Jing et al. proposed a weighted
ensemble approach by iteratively maximizing the probabilistic consensus among the
output of the base detectors. In our previous work [Rayana and Akoglu 2014] we com-
bine all the results from the base detectors uniformly which reveals the fact that too
much diversity among the base detectors hurts the final ensemble. Similar problem
can occur in data fusion where web data from different sources are combined to build
a knowledge base. Too much noise in several individual sources hurts the knowledge
base. Srivastava et al. [Dong et al. 2013] provide a greedy approach to select the corre-
lated data sources for data fusion to remove the erroneous data sources.

7. CONCLUSION
In this work we have proposed SELECT, a new selective ensemble approach for anomaly
mining, and applied it to the event detection problem in temporal graphs and outlier
detection problem in multi-dimensional point data (no-graph). SELECT is a two-phase
approach that combines multiple detector results and then multiple consensuses, re-
spectively. Motivated by our earlier observations [Rayana and Akoglu 2014] that in-
accurate detectors may deteriorate overall ensemble accuracy, we designed two unsu-
pervised selection strategies, SelectV and SelectH, which carefully choose which detec-
tor/consensus outcomes to assemble. We compared SELECT to Full, the ensemble that
combines all results, DivE, an existing ensemble [Schubert et al. 2012] that combines di-
verse, i.e., least correlated results, and ULARA, a weighted rank aggregation approach
[Klementiev et al. 2007].

Our quantitative evaluation for both event and outlier ensemble on real-world
datasets with ground truth show that building selective ensembles is effective in boost-
ing detection performance. SelectH appears to be a better strategy than SelectV, where
it either provides the best result (6/8 in Table III and 5/7 in Table XII) or achieves com-
parable accuracy when SelectV is the winner. Selecting results based on diversity turns
out to be a poor strategy for anomaly ensembles as DivE yields even worse results than
the Full ensemble (6/8 in Table III and 5/7 in Table XII). Noise analysis for event detec-
tion further corroborates the fact that DivE selects inaccurate/noisy results for the sake
of diversity and declines in accuracy much faster than the rest. Table III and XII also
show that ULARA is worse than Full in 4/8 cases and in 5/7 cases respectively, suggesting
no clear winner. In comparison, SelectV and SelectH respectively outperform Full in 7/8
and 8/8 cases for event detection, 6/7 and 2/7 cases for outlier detection. This suggests
that while the Full ensemble is inferior in the presence of inaccurate detectors, as a
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selective ensemble SELECT, specifically SelectH is superior to existing approaches like
DivE and ULARA.

Future work will investigate how to go beyond binary selection and estimate appro-
priate weights for the detector/consensus results. One can also continue to enhance
SELECT with other detectors and consensus methods as they become available.

All source code of our methods and datasets used in this work are shared openly at
http://shebuti.com/SelectiveAnomalyEnsemble/.
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