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Abstract
The function and performance of networks rely on their
robustness, defined as their ability to continue functioning
in the face of damage (targeted attacks or random failures) to
parts of the network. Prior research has proposed a variety
of measures to quantify robustness and various manipulation
strategies to alter it. In this paper, our contributions are two-
fold. First, we critically analyze various robustness measures
and identify their strengths and weaknesses. Our analysis
suggests natural connectivity, based on the weighted count
of loops in a network, to be a reliable measure. Second,
we propose the first principled manipulation algorithms that
directly optimize this robustness measure, which lead to
significant performance improvement over existing, ad-hoc
heuristic solutions. Extensive experiments on real-world
datasets demonstrate the effectiveness and scalability of our
methods against a long list of competitor strategies.

1 Introduction
Robustness, which generally speaking, measures the re-
silience of a network in response to the external perturba-
tions (e.g., intentional attacks or random failures), is a fun-
damental property for a variety of networks, such as social,
information, communication, biological networks and so on.
Networks that sustain their functionality and responsiveness
under such changes (targeted or random) are considered to
be more robust than others that fail to do so.

In the past few decades, research on robustness has been
concerned with measuring the robustness of a given network
[1, 11, 12], tracking its dynamics when the network evolves
over time [21], manipulating its structure (e.g., by removing
nodes) to alter its robustness [1, 3, 15], and comparing the
robustness of different networks under a certain type of
perturbation [1, 4, 7].

In particular, a vast majority of prior works have focused
on quantifying robustness and thanks to those efforts we now
have a variety of different robustness measures, e.g., size of
largest connected component, inverse shortest distances, al-
gebraic connectivity, etc. In principle, the common ingre-
dient/component of these measures is the level of network
connectivity. While each of these robustness measures has
its own emphasis and rationality, as we discuss in the next

section, many measures have several shortcomings in cap-
turing the desired connectivity and resilience properties of
networks. For example shortest distances are quite sensitive
to small alterations, algebraic connectivity does not change
monotonically, etc. (see §2.1 for more details).

Ideally, a fully connected network is the most robust;
however it is not feasible to design such real-world networks
due to constraints in physical space, budget, etc. Alter-
natively, building redundant (i.e., alternative) paths among
the network agents (i.e., nodes) helps improve the resilience
against damage in the network. The more and shorter these
alternative paths are, the better the resilience would be. Thus,
several other measures [19, 27] are built on the so-called sub-
graph centrality, which measures the total (weighted) count
of loops in the network.

While most prior research focused on robustness mea-
sures, little has been done on how to manipulate the ro-
bustness of a given network by modifying its underlying link
structure. For instance, how can we enhance the robustness
of a power grid network by carefully introducing a few new
power lines? How can we break down a disease network
by removing (say by an operation) some of its most impor-
tant cells? How can we maximally break down an adversary
network (e.g., a terrorist network) by cutting out some of
its most important communication channels? To date, little,
except a few ad-hoc solutions has been proposed to answer
these kinds of questions (see §2.2 for more details).

In this paper, we focus on two problems; (1) quantify-
ing, and (2) manipulating the robustness in large networks.
In particular, we address the following questions: (Q1) Ro-
bustness measure: While there exist many different robust-
ness measures, it is unclear for the practitioner which mea-
sure should s/he choose. What is a good robustness measure
that captures the desired resilience properties of a graph?
(Q2) Manipulation algorithms: Given such a desired mea-
sure, how can we design effective and scalable algorithms
that directly optimize it for manipulating robustness?

We start by carefully choosing natural connectivity [27]
as a reliable robustness measure. Next we propose a novel
framework called MIOBI (for Make It or Break It) for
controlling the robustness of a given graph by modifying
its topology. First, we focus on the problem of maximally



decreasing the robustness of a given network by deleting
nodes or links. Second, we study the problem of maximally
increasing the robustness by carefully introducing a set of
new links. A unique feature of our methods is that they aim
to directly optimize the corresponding robustness measure,
which leads to significant performance improvement over the
existing, ad-hoc solutions. The proposed methods scale to
large graphs, with near-linear complexity in time and space.
We summarize our main contributions as follows:
• Assessment of robustness measures: We analyze sev-

eral measures in the literature for their capabilities of
capturing desired resilience properties of graphs. We
conclude that natural connectivity, that accounts for al-
ternative paths, proves to be a reliable measure.

• Principled robustness manipulation algorithms: We
formulate manipulation problems to degrade graph ro-
bustness via edge/node removal (resp. called MIOBI-
BREAKEDGE/MIOBI-BREAKNODE) or to improve it
via edge addition (MIOBI-MAKEEDGE) operations.
We propose effective and scalable algorithms to identify
the best operations for a given budget. Our algorithms
are based on theoretical bases and provide the first prin-
cipled, rather than ad hoc, solutions. Prior research has
discrepancy between robustness measures considered
and manipulation algorithms used (e.g., largest con-
nected component size as measure vs. degree-based re-
moval). We bridge this gap by directly optimizing our
chosen robustness measure under manipulation.

• Extensive experiments: We evaluate our methods on
several real-world datasets across different domains for
effectiveness and scalability. We show that i) proposed
methods outperform a long list of ad hoc strategies, and
ii) successfully scale to large graphs with the empirical
running time growing near-linearly in graph size.

2 Related Work
The function and performance of networks rely on their
robustness, defined as their ability to continue functioning in
face of damage to parts of the network. We organize related
work on robustness into two sections: (1) work on proposing
measures to quantify robustness, and (2) work on studying
the effects of network manipulation on robustness.

2.1 Measuring Robustness Simple and effective mea-
sures of robustness are essential in the areas of network de-
sign and monitoring. In graph theory, robustness can com-
prise of properties ranging from redundancy and diversity,
to concepts such as the ability to operate under perturbation
or the efficiency of feedback mechanisms. In principle, the
graph connectivity is a fundamental measure of robustness.

In [1] network robustness is defined as the critical re-
moval fraction of nodes (or edges) from the network that
causes its sudden disintegration. To monitor disintegration,
they propose to track the diameter, relative size of the largest

connected component (LCC), and average size of isolated
clusters. Intuitively, as the fraction of removed nodes/edges
increases, the performance of the network eventually col-
lapses at a critical fraction f that corresponds to the network
robustness; the larger f is, the more robust the network is.
However, while can be computed analytically for special net-
work structures [7, 4], f in general needs to be computed via
simulations. Moreover, component sizes do not fully reflect
the level of connectedness of a given network.

Other prior works have proposed mathematically com-
pact representations to quantify robustness. These measures
include connectivity based on minimum node/edge cut [12],
average inverse shortest path (geodesic) distances of con-
nected components [1, 3, 15], and algebraic connectivity
based on the second smallest (or first non-zero) eigenvalue
of the Laplacian [11]. However, these measures only partly
reflect the ability of graphs to retain connectedness after ma-
nipulation, and fail to exhibit the variation of robustness sen-
sitively [27]. In particular, shortest paths are prone to change
drastically with simple alterations and do not capture redun-
dancies (i.e., alternative paths). Moreover, algebraic con-
nectivity takes the value of zero for all disconnected graphs
which makes it a measure that is too coarse for complex net-
works, and it does not change monotonically with the addi-
tion/deletion of more edges [27].

Related to geodesic distance, [21] propose a modified
measure for time-varying graphs called shortest temporal
distance. [19] incorporate the spectral gap related to spectral
expansion properties [9] as well as subgraph centralities of
the nodes in the network, to quantify network robustness.
Other measures include toughness [6], scattering number
[16], tenacity [18], integrity [2], fault diameter [17], and
isoperimetric number (related to node/edge expansion) [20].
These take into account the cost as well as the magnitude
of damage to a network. However, they are combinatorial
measures for general graphs.

In summary, while all these and several other measures
capture graph connectivity one way or another, they have
one or more of the following shortcomings: i) prone to dras-
tic changes by small graph alterations, ii) partially capturing
connectivity or alternative paths, iii) combinatorial to com-
pute efficiently, iv) meaningful only for connected graphs,
and v) non-monotonically changing by more modifications.
Thus, we adopt natural connectivity [27] as our measure,
which successfully avoids these pitfalls (details in §3).

2.2 Manipulating Robustness One can study the change
in robustness under i) few and random node/edge failures, or
ii) many or targeted failures (or attacks). In their study, [1]
showed that scale-free graphs are resilient to random failures
but sensitive to targeted attacks, while for random networks
there is smaller difference between the two. As such, re-
searchers proposed and studied different manipulation strate-
gies for targeted attack scenarios for real-world networks.



The most frequently studied strategy to degrade robust-
ness has been the removal of most connected (i.e., highest
degree) nodes [1, 3, 15]. Further, [15] compared this strat-
egy to node/edge removals based on betweenness centrality
and showed that betweenness yields better results, especially
for removal of edges. Different from most, and similar to our
MIOBI-MAKEEDGE, [3] investigated modification schemes
to improve network robustness. In particular, they studied
(1) edge rewiring, and (2) edge addition strategies based on
i) random, or ii) preferential schemes. They concluded that
in general preferential edge additions, i.e. connecting lowest
degree nodes, yield the best result.

Finally, designing networks that are optimal with respect
to some survivability criteria [12, 23] is a related but different
research topic. These consider building a network from
scratch, whereas we aim at modifying an existing network as
effectively as possible under a given budget, without causing
substantial changes to its existing structure.

We remark that all prior research revolves around ad-
hoc manipulation techniques. They either use simulations,
assume special network models/structures (e.g., random
graphs), or develop heuristic edge/node elimination strate-
gies, and compare them across each other (e.g., betweenness
versus degree based removals). In contrast, we propose a
principled framework for network manipulation.

3 Network Robustness
3.1 Notation We consider undirected unipartite irre-
ducible graphs G(V,E) with a vertex/node set V of size n
and an edge set E of size m. An (undirected) edge of G
between nodes p and r in V is written as (p, r) ∈ E. The
set of neighbors and degree of a node i ∈ V are denoted
by N (i) and di, respectively. We use uppercase bold letters
for matrices (e.g., A) and lowercase bold for vectors (e.g.,
a). Given a matrix A, A(i, j) corresponds to the element at
ith row and jth column of A. Moreover, A(i, :) and A(:, j)
represent the ith row and jth column of matrix A, respec-
tively. We denote the transpose with a prime (e.g., A′, a′).
The eigenvalue and associated eigenvector pairs of the adja-
cency matrix A are denoted by (λj ,uj). The ith element of
an eigenvector uj is represented by uij.

3.2 Our Robustness Measure In this paper, we adopt a
spectral measure of robustness in complex networks, called
natural connectivity [27], which can be written as follows.

(3.1) λ̄ = ln(
1

n

n∑
j=1

eλj )

which corresponds to an “average” eigenvalue of G(V,E),
where λ1 ≥ λ2 ≥ ... ≥ λn denote a non-increasing ordering
of the eigenvalues of its adjacency matrix A.

Natural connectivity not only has a simple mathemati-
cal formulation that can be interpreted as the average eigen-
value of the graph, but it also has clear physical and structural

meaning that can be tied to several connectivity properties of
networks. In particular, it explicitly characterizes the redun-
dancy of alternative paths in the network by quantifying the
weighted number of closed walks of all lengths.

A walk in G is an alternating sequence of nodes and
edges v0e1v1e2v2 . . . ekvk where vi ∈ V and ei(vi−1, vi) ∈
E. The walk is closed if v0 = vk. The number of walks
is an important measure for network robustness. Intuitively,
it captures the redundancy of routes between the nodes and
redundant routes ensure that connections between nodes
remain possible in face of damage to the network. Ideally,
robustness could consider the number of alternative routes of
different lengths for all pairs of nodes, however this measure
becomes intractable for very large graphs. Therefore, natural
connectivity focuses on the closed walks of the graph.

Closed walks can be directly related to the subgraphs of
a graph and derived from the sum of the subgraph centralities
of all the nodes in the graph. The subgraph centrality SC(i)
of a node i is determined based on the “weighted” sum of the
number of closed walks that it participates in. Therefore,

S(G) =

n∑
i=1

SC(i) =

n∑
i=1

∞∑
k=0

(Ak)ii
k!

=

n∑
i=1

n∑
j=1

uij
2eλj

=

n∑
j=1

eλj

n∑
i=1

uij
2 =

n∑
j=1

eλj

where (Ak)ii is the number of closed walks of length k
of node i. The k! scaling ensures that (i) the weighted sum
does not diverge, and (ii) longer walks count less. We note
that S(G) is also known as the Estrada index of the graph
[8]. As such, we can write

λ̄ = ln(
1

n

n∑
j=1

eλj ) = ln(
1

n
S(G))

Moreover, natural connectivity is closely related to self-
communicability [10] of nodes in the network. The general
communicability function between nodes p, q is written as

Cpq =

∞∑
k=0

ck(Ak)pq

and thus, subgraph centrality can be thought of as self-
communicability with factorial penalization of walk lengths.
The general communicability between any pair of nodes p, q
(again with factorial penalty) can be written as (using Taylor
series and the spectral decomposition of A)

Cpq =

n∑
j=1

upjuqje
λj .

The above arguments show that (1) natural connectiv-
ity exhibits characteristics about the communicability in the
network through alternative paths, which closely relate to ro-
bustness. It associates the robustness to network topology,



graph spectra, and dynamical properties. Moreover, it was
shown [22] that (2) natural connectivity has strong discrim-
ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
ity). Finally, (3) natural connectivity can be shown to change
strictly monotonically with the addition/deletion of more and
more nodes/edges [27], which agrees with intuition (unlike
e.g., node/edge connectivity, algebraic connectivity). These
indicate that the natural connectivity can measure the robust-
ness of complex networks stably even for very small sized
and disconnected networks. For these reasons, we choose
natural connectivity as our network robustness measure.

4 Manipulating Network Robustness
4.1 Problem Definitions We start by introducing the
problems we address to manipulate network robustness. Due
to space considerations, we briefly (but formally) describe
our problems below.1

PROBLEM 1. MIOBI-BREAKEDGE (Edge Deletion)
Given: A large network G (with n× n adjacency matrix

A) and an integer (budget) k;
Output: A set of k edges from A, the deletion of which

creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 2. MIOBI-BREAKNODE (Node Deletion)
Given: A large network G (with n× n adjacency matrix

A) and an integer (budget) k;
Output: A set of k nodes from A, the deletion of which

creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 3. MIOBI-MAKEEDGE (Edge Addition)
Given: A large network G (with n× n adjacency matrix

A) and an integer (budget) k;
Output: A set of k non-edges of A, the addition of which

creates the largest increase in the network robustness
(as given in Equ. (3.1)) of G.

A naive way to solve these problems is to enumer-
ate all possible subsets of size k and select the one that
yields the best result. However, this strategy is quite infeasi-
ble; with search space size

(
m
k

)
for MIOBI-BREAKEDGE,(

n
k

)
for MIOBI-BREAKNODE, and

((n
2)−m
k

)
for MIOBI-

MAKEEDGE (we refer to [5] for formal proofs related to
the hardness of these problems).

1We remark that we focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness. Another possible graph operation
is edge rewiring [3], where existing edges are rewired to connect different
pairs of nodes. A principled rewiring can also be done using similar meth-
ods to ours; in particular by removing an existing edge via reverse MIOBI-
BREAKEDGE, and adding it back via MIOBI-MAKEEDGE.

Next we describe our proposed approximation algo-
rithms to solve the problems formulated in this section. Note
that the first two problems aim at maximally decreasing (i.e.,
“breaking”) network robustness, whereas the third problem
aims at improving (i.e., “making”) the robustness.

4.2 “Breaking” Network Robustness

Problem 1: Edge Deletion First, we address the edge
deletion problem MIOBI-BREAKEDGE, which aims to find
the set of k edges to delete from the graph so that the
robustness is shrunk the most.

Let S denote the selected set of k edges to be removed.
Let us then write the new, updated robustness λ̄∆ as

(4.2) λ̄∆ = ln(
1

n

n∑
j=1

eλj+∆λj )

where ∆λj is the difference in λj after the adjustment to the
graph. To quantify the updated robustness of the graph in
face of change, we need to be able to efficiently update the
eigenvalues of A when the graph changes.
Updating the eigenvalues. Using the first order matrix
perturbation theory [25], we can compute changes to the
eigenvalues ∆λj efficiently.

Let (λj ,uj) be the jth (eigenvalue, eigenvector) pair
of the graph G with adjacency matrix A. Let ∆A and
(∆λj ,∆uj) denote the change in A and (λj ,uj) ∀j, respec-
tively (where ∆A is symmetric). Suppose after the adjust-
ment A becomes

Ã = A + ∆A

where (λ̃j , ũj) is written as

λ̃j = λj + ∆λj and ũj = uj + ∆uj

LEMMA 4.1. Given a perturbation ∆A to a matrix A, its
eigenvalues can be updated by

(4.3) ∆λj = uj
′∆Auj.

Proof. Omitted for brevity. See [5]. �

Using Lemma 4.1, perturbing A with any given edge
(p, r) affects the eigenvalues as

(4.4) ∆λj = uj
′∆Auj = −2upjurj

where ∆A(p, r) = ∆A(r, p) = −1 and 0 elsewhere.
As such, for Problem 1 we are interested in k edges that

will minimize λ̄∆ in Equ. (4.2), or equivalently

min . eλ1+∆λ1 + eλ2+∆λ2 + . . .+ eλn+∆λn

eλ1(e∆λ1 + e(λ2−λ1)e∆λ2 + . . .+ e(λn−λ1)e∆λn)

c1(e∆λ1 + c2e
∆λ2 + . . .+ cne

∆λn)(4.5)

where cj’s denote constant terms and cj ≤ 1, ∀j ≥ 2.
To find the k most effective edges, we follow a cautious

strategy which iteratively finds the best single edge to re-
move, for k steps. That is, every time an edge is removed,



the criterion/score that is used to find an edge to remove will
be updated for the remaining edges, since each removed edge
changes this score as it changes the robustness.

This cautious edge deletion strategy has been used in
prior research [15] where edge betweenness is used as cri-
terion to remove edges to decrease robustness. Instead of
choosing the top-k edges with the highest edge betweenness
in one shot, the idea is to remove a single edge in each step
after which the betweenness is updated for the remaining,
where this procedure is repeated for the next k steps. This
is often referred as the “re-calculated” strategy and has been
shown to perform better (i.e., affect robustness more) com-
pared to its top-k counterpart.

Therefore, following the re-calculated strategy and by
using Equ. (4.4) and (4.5) we will choose the edge (p, r)
that minimizes the following:
(4.6)

min
(p,r)∈E

c1

(
e−2up1ur1+c2e

−2up2ur2+. . .+cne
−2upnurn

)
Our criterion/score to select edges to remove as given

in Equ. (4.6) changes whenever an edge is removed, as the
graph structure and thus eigenvectors uj change. Thus, after
every step we also need to update the eigenvectors. The key
question is how to compute changes ∆uj efficiently. For
that, we again resort to matrix perturbation theory [25].
Updating the eigenvectors.
LEMMA 4.2. Given a perturbation ∆A to a matrix A, its
eigenvectors can be updated by

(4.7) ∆uj =

n∑
i=1,i6=j

(
ui
′∆Auj

λj − λi
ui

)
.

Proof. Omitted for brevity. See [5]. �

Finally, we remark that it is infeasible to compute all
the n eigenvalues of graphs with n nodes, for very large n.
Luckily, given the skewed spectrum of real-world graphs,
only the top few eigenvalues have large magnitudes which
implies that the cj terms in Equ.s (4.5, 4.6) become much
smaller for increasing j. Thus, compute the top t eigenvalues
to approximate the robustness of a graph in our experiments.

The pseudo-code of our algorithm for the edge deletion
problem MIOBI-BREAKEDGE is given in Algorithm 1. For
a fixed budget k, MIOBI-BREAKEDGE is linear w.r.t the size
of the graph for both time and space cost.
LEMMA 4.3. Complexity of MIOBI-BREAKEDGE. The
time cost of Alg. 1 is O(kmt + knt2). The space cost of
Alg. 1 is O(m+ nt+ k).

Proof. Omitted for brevity. See [5]. �

Problem 2: Node Deletion Next, we address the node
deletion problem MIOBI-BREAKNODE, which aims to find
the set S of k nodes to delete from the graph so that the
robustness is reduced the most. Deletion of a node involves

Algorithm 1 MIOBI-BREAKEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be removed

1: S = ∅
2: Compute the top t (eigenvalue, eigenvector) pairs

(λj ,uj) of A, 1 ≤ j ≤ t
3: for step = 1 to k do
4: Select the edge (p̄, r̄) out of ∀(p, r) ∈ E that mini-

mizes Equ. (4.6) for top t eigenvectors, i.e.

min
(p,r)∈E

c1

(
e−2up1ur1+c2e

−2up2ur2+. . .+cte
−2upturt

)
where c1 = eλ1 and cj = e(λj−λ1) for 2 ≤ j ≤ t

5: S := S ∪ (p̄, r̄), E := E\(p̄, r̄)
6: Update A; A(p̄, r̄) = 0 and A(r̄, p̄) = 0
7: Update top t eigenvalues of A by Equ. (4.3)
8: Update top t eigenvectors of A by Equ. (4.7)
9: end for

10: Return S

deletion of the node as well as all its incident edges, i.e.
edges attached to it.

Similar to edge deletion, we can delete nodes from the
graph one by one (i.e., re-calculated strategy). To do so, we
need to find a score similar to Equ. (4.6) for each node to
quantify its effect of change on the graph spectrum. Again,
using ∆λj = uj

′∆Auj from Lemma 4.1, we will write
down a score for each node i where only the ith row and ith

column of ∆A contain non-zero entries; (i, v) = (v, i) =
−1, v ∈ N (i), for neighbors N (i) of i.

We can illustrate the node scoring with a toy example,
where say we are to remove a node i with 3 neighbors
indexed by n1, n2, n3. Let wj = uj

′∆A. We can see that
wn1j = wn2j = wn3j = −uij, and wij = −

∑
v∈N(i) uvj.

As such, ∆λj = wjuj = −uijun1j − uijun2j − uijun3j −∑
v∈N (i) uvjuij, equivalently ∆λj = −uij(un1j + un2j +

un3j +
∑
v∈N (i) uvj) = −2uij

∑
v∈N (i) uvj.

Thus, in general ∆λj for a removal of node i is given as

(4.8) ∆λj = uj
′∆Auj = −2uij

∑
v∈N (i)

uvj

For Problem 2 we are interested in selecting k nodes that
will minimize λ̄∆ in Equ. (4.2). As we will select the nodes
iteratively one by one, we will pick the node i that minimizes
the following at every step.
(4.9)

min
i∈V

c1

(
e
−2ui1

∑
v∈N(i)

uv1

+ . . .+ cne
−2uin

∑
v∈N(i)

uvn
)

where cj’s denote the constants as before. Note that we
will also consider only the top t eigenvectors to compute the
node selection scores in the experiments.



The algorithm for the node deletion problem MIOBI-
BREAKNODE follows similar lines as of the algorithm for
MIOBI-BREAKEDGE, where we use Equ. (4.9) instead of
Equ. (4.6) in Line 4 of Algorithm 1 (omitted for brevity).

LEMMA 4.4. Complexity of MIOBI-BREAKNODE. The
time cost of Alg. for MIOBI-BREAKNODE is O(kmt +
knt2). The space cost is O(m+ nt+ k).

Proof. Omitted for brevity. See [5]. �

4.3 “Making” Network Robustness

Problem 3: Edge Addition Finally we address the edge
addition problem MIOBI-MAKEEDGE; find k edges to
place to the graph so as to improve the robustness the most.

MIOBI-MAKEEDGE is a harder and computationally
more demanding problem than MIOBI-BREAKEDGE, since
there are O(n2) potential edges to add to a given graph
(compared to O(m) edges to remove). As for large graphs
quadratic operations are not desirable, we need to design an
algorithm that is fast and that scales well.

Similar to deletion, we will adopt the re-calculated
strategy for edge additions and find the k edges one by one
iteratively. As such, at every iteration, we are interested in
finding the edge that maximizes the following.
(4.10)

max
(p,r)/∈E
p∈V,r∈V

c1

(
e2up1ur1 + c2e

2up2ur2 + . . .+ cne
2upnurn

)
According to the Perron-Frobenius theorem [13], the

principal eigenvector associated with the largest eigenvalue
of non-negative irreducible matrices has all positive entries.
AsG(V,E) is a connected undirected graph, A is irreducible
and u1 is a positive vector. On the other hand other uj’s,
j > 1, might potentially have negative entries. This
makes finding the edge that maximizes Equ. (4.10) without
enlisting all O(n2) edges challenging.

Next we introduce a fast approximation strategy to
pick edges to add without enlisting all possible edges. In
particular, we note that the second and onwards terms in
Equ. (4.10) keep getting smaller and smaller, due to the
skewed spectrum of large real-world graphs [19]. Therefore,
we focus on the first term, i.e. e2up1ur1 . We create a set
C ⊂ V of size dmax, where dmax denotes the maximum
node degree in G, that consists of the nodes with highest u1

entries. For all non-edges (p, r) of G, p ∈ C, r ∈ C, p 6= r,
we compute Equ. (4.10) considering the top t eigenvectors,
and we add the edge (p̄, r̄) with the maximum value. We
repeat this procedure k times. Algorithm 2 gives the steps of
our proposed edge addition algorithm in detail.

LEMMA 4.5. Complexity of MIOBI-MAKEEDGE. The
time cost of Alg. 2 is O(mt + kd2

maxt + knt2). The space
cost is O(m+ nt+ k).

Proof. Omitted for brevity. See [5]. �

Algorithm 2 MIOBI-MAKEEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be added

1: S = ∅
2: Compute the top t (eigenvalue, eigenvector) pairs

(λj ,uj) of A, 1 ≤ j ≤ t
3: for step = 1 to k do
4: Compute the largest degree dmax of A
5: Find the candidate subset C of dmax nodes with the

highest u1 eigen-scores
6: Select the edge (p̄, r̄) out of ∀(p, r) /∈ E, p ∈ C, r ∈

C, p 6= r, that maximizes Equ. (4.10) for top t
eigenvectors, i.e.

max
(p,r)/∈E
p∈C,r∈C

c1

(
e2up1ur1+c2e

2up2ur2+. . .+cte
2upturt

)
7: S := S ∪ (p̄, r̄), E := E ∪ (p̄, r̄)
8: Update A; A(p̄, r̄) = 1 and A(r̄, p̄) = 1
9: Update top t eigenvalues of A by Equ. (4.3)

10: Update top t eigenvectors of A by Equ. (4.7)
11: end for
12: Return S

5 Experimental Evaluation
We evaluate our algorithms with respect to (1) effectiveness
in manipulating graph robustness, and (2) running time and
scalability, on several real-world graphs. For each kind of
graph manipulation, i.e. problem setting, we compare to
several ad-hoc heuristic strategies that we compiled.
Datasets. We use the datasets shown in Table 1 (available
at http://snap.stanford.edu/data/) to evaluate
our methods. The Oregon Autonomous System (AS) graphs
are AS-level router networks inferred from Oregon route-
views, and were collected once a week, for 9 consecutive
weeks. Gnutella graphs are the peer-to-peer (P2P) connec-
tivity networks collected daily, over 5 consecutive days.
Evaluation criteria. For effectiveness, we report the relative
% change of robustness, i.e. 100|R − R̄|/R, where R and
R̄ respectively denote the initial and the final robustness
after k operations (the larger the change, the better). For
computational cost, we report the wall-clock time in seconds.
Set up. We use top t = 50 eigen-pairs for our methods.
For large perturbations to the graph (e.g., high degree nodes
removed for node deletions), the accumulated error for up-
dating eigen-pairs (using Equ.s (4.3)&(4.7)) might increase
rapidly and the performance could degrade. To overcome
this issue, we recompute the exact eigen-pairs of the per-
turbed graph every 50 operations2. We call our always-
update methods ‘Naive’ and recomputed ones ‘RC@50’.

2Sensitivity experiments showed that for a large set of recompute
intervals in [1, 1000], the results remained stable (omitted for brevity).

http://snap.stanford.edu/data/


Table 1: Dataset summary.
Dataset n m density

Oregon-A 633 1,086 0.0054
Oregon-B 1,503 2,810 0.0024
Oregon-C 2,504 4,723 0.0015
Oregon-D 2,854 4,932 0.0012
Oregon-E 3,995 7,710 0.0009
Oregon-F 5,296 10,097 0.0007
Oregon-G 7,352 15,665 0.0005
Oregon-H 10,860 23,409 0.0004
Oregon-I 13,947 30,584 0.0003

P2P-GnutellaA 6,301 20,777 0.0010
P2P-GnutellaB 8,114 26,013 0.0008
P2P-GnutellaC 8,717 31,525 0.0008
P2P-GnutellaD 8,846 31,839 0.0008
P2P-GnutellaE 10,876 39,994 0.0007

5.1 Effectiveness of Proposed MIOBI Framework We
first describe the heuristic strategies we compared our meth-
ods to, for each problem setting. These heuristics are not tied
to natural connectivity, in fact to any measure, hence they se-
lect nodes/edges irrespective of a robustness measure.
MIOBI-BREAKEDGE competitor strategies (11). (1)
‘rand’: randomly picked k edges (avg.’ed over 10 runs);
edges (p, r) with (2) ‘rich-rich’: highest dpdr; (3) ‘poor-
poor’: smallest dpdr; (4) ‘rich-poor’: highest |dp − dr|;
(5) ‘betw’: highest edge-betweenness; (6) ‘embed’: high-
est embeddedness [14]; (7) ‘resist’: highest effective resis-
tance [24]; (8) ‘netmelt’: highest up1ur1 [26]; (9) ‘line-
deg’: highest degree in the line graph;3 (10) ‘line-eig’: high-
est eigen-centrality in the line graph; and (11) ‘line-page’:
highest Pagerank score in the line graph.

MIOBI-BREAKNODE competitor strategies (5). (1)
‘rand’: randomly picked k nodes (avg.’ed over 10 runs);
nodes i with (2) ‘max-deg’: highest degree; (3) ‘eig’: high-
est eigen-centrality; (4) ‘page’: highest Pagerank score; and
(5) ‘cluster’: highest local clustering coefficient.

MIOBI-MAKEEDGE competitor strategies (5). (1) ‘rand’:
edges between randomly picked nodes (avg.’ed over 10
runs); (2) ‘rich-rich’: edges between nodes with highest
degrees; (3) ‘poor-poor’: edges between nodes with lowest
degrees (same as ‘preferential addition’ in [3]); (4) ‘rich-
poor’: edges (p, r) /∈ E with highest |dp − dr|; and (5)
‘netgel’: edges (p, r) /∈ E with highest up1ur1 [26];

Results. Fig. 1 shows the performance results; % robustness
change vs. k for all methods on two selected datasets
(See [5] for plots on other datasets). Using RC@50, our

3 The line graph L(G) of a graph G is one where each edge in G
becomes a node in L(G), and there is an edge from one node to the other in
L(G) if the target of the former edge is the same as the source of the latter
edge in the original graph G [26].

methods outperform all other heuristics for all datasets we
considered. We further notice that ‘rich-rich’ performs well
for edge deletions, and ‘max-deg’ and ‘page’ achieve quite
close performance to our method for node deletions. For
edge additions, ‘rich-rich’ performs the next-best and our
method outperforms all competitors with a large margin.

To demonstrate performance on all datasets (fixed k),
we give Tables 2, 3, 4, resp. for all three problem settings.
We can see that our methods achieve the best performance
across almost all datasets, and all manipulation settings.

5.2 Scalability of Proposed MIOBI Framework We
used the Oregon A-I datasets, sorted by m, to evaluate the
scalability of the proposed algorithms. The run time results
are presented in Fig. 2 for various k.4 We can see that
the proposed methods empirically scale near-linearly wrt m,
which means that they are suitable for large graphs.

6 Conclusion
In this paper we studied graph robustness; in particular
problems related to its definition and manipulation in large
graphs. We first analyzed various definitions and measures
of robustness, and enlisted their capabilities of capturing de-
sired resilience properties and shortcomings. We identified
natural connectivity as a reliable measure, as it effectively
quantifies the existence of alternative paths in a network. We
formulated two new robustness manipulation problems, one
of which is to maximally decrease (or “break”) the robust-
ness with edge or node deletions, and another is to maxi-
mally improve (or “make”) the robustness with edge addi-
tions. We studied the hardness associated with these prob-
lems, and proposed effective, scalable, and adaptive algo-
rithms to solve them, which are founded on a principled
framework based on theoretical foundations. Finally, our ex-
periments showed the superiority of our methods compared
to a long list of heuristic, ad-hoc strategies.
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Figure 1: % robustness change (higher is better) vs. budget k for proposed MIOBI and various competing heuristics on two
datasets, (top) Oregon-G and (bottom) P2P-GnutellaD, for (a) edge deletions, (b) node deletions, and (c) edge additions.
Notice that our methods outperform all the heuristics at all ranges of k. (figures best viewed in color)

Table 2: Edge deletion performances: % robustness change (higher is better) for all graphs when k = 0.25m edges removed.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E

#Edges removed 543 1405 2362 2466 3855 5049 7833 11705 15292 5194 6503 7881 7960 9999
Random 41.16 42.02 37.48 37.18 39.31 38.45 40.32 40.38 39.65 24.71 24.86 28.00 27.05 27.79
Betweenness 29.49 24.53 24.41 23.56 24.74 25.53 27.99 28.44 29.12 4.51 3.62 13.82 7.46 11.00
Resistance 13.63 11.99 11.40 10.53 10.15 8.47 8.21 7.75 6.71 0.10 0.08 0.35 0.22 0.89
Embeddedness 54.76 56.04 52.92 55.03 56.63 55.82 57.31 60.50 61.07 67.90 62.60 45.24 43.62 26.82
LineDeg 41.10 42.52 43.67 57.95 54.63 55.33 53.18 64.58 67.91 73.94 74.24 63.57 67.67 50.29
LineEig 60.44 61.01 60.45 63.05 63.62 63.20 66.46 67.20 68.54 72.48 72.10 62.31 64.97 49.45
LinePage 41.10 42.52 43.67 57.95 53.77 55.33 53.18 64.58 66.17 73.91 74.15 63.71 67.60 50.00
NetMelt 60.99 61.22 61.38 73.17 68.33 68.86 72.58 75.36 72.47 71.58 71.51 62.36 64.47 48.78
Poor-Poor 13.97 10.67 8.61 2.66 4.80 3.27 3.53 2.55 2.09 0.02 0.02 0.20 0.09 0.59
Rich-Poor 35.78 38.93 40.93 48.52 49.99 46.81 43.98 57.95 64.05 73.26 72.75 62.25 64.45 45.85
Rich-Rich 63.50 64.35 64.30 74.48 74.95 70.12 75.16 79.07 76.01 75.84 76.11 68.95 70.89 55.80
MIOBI-Naive 57.26 64.84 65.00 66.86 70.59 74.88 78.62 79.59 81.66 75.19 74.60 66.88 69.40 50.01
MIOBI-RC@50 66.11 71.10 72.78 79.66 79.10 82.05 83.57 85.97 87.04 79.73 80.34 74.59 75.96 64.68

Table 3: Node deletion performances: % robustness change (higher is better) for all graphs when k=0.025n nodes removed.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E

#Nodes removed 16 38 63 71 100 132 184 272 349 158 203 218 221 272
Random 4.21 2.58 3.70 1.92 1.71 1.07 2.85 2.50 1.54 0.43 1.74 5.74 1.24 1.35
ClusterCoef 2.28 2.47 2.31 3.05 2.44 2.60 1.62 1.40 0.92 13.66 11.64 12.16 13.49 0.89
PageRank 93.06 91.47 93.69 92.20 92.93 92.22 93.19 93.21 93.63 75.26 74.58 62.96 65.29 45.91
1stEigVecCentrality 89.89 86.96 88.59 82.54 81.45 85.57 84.63 85.20 81.93 70.53 68.44 54.23 57.89 34.41
MaxDegree 92.25 90.80 93.44 92.36 92.81 92.35 93.18 93.06 93.55 75.56 74.85 63.52 65.86 46.68
MIOBI-Naive 92.38 82.55 89.82 82.20 83.92 83.30 70.22 71.72 69.03 36.60 51.39 59.65 54.67 38.48
MIOBI-RC@50 92.50 91.51 93.92 92.47 93.49 93.15 94.04 94.24 92.08 76.19 75.69 64.19 66.75 47.24



Table 4: Edge addition performances: % robustness change (higher is better) for all graphs when k = 0.01n edges added.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E

#Edges added 6 15 25 29 40 53 74 109 139 63 81 87 88 109
Random 0.03 0.01 0.03 0.01 0.15 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.04 0.05
NetGel 1.79 2.70 2.42 2.40 2.58 3.57 4.20 4.73 4.98 5.48 6.84 12.29 11.84 18.85
Poor-Poor 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38
Rich-Poor 0.55 0.47 0.58 0.77 0.64 0.55 0.42 0.44 0.45 0.26 0.22 0.08 0.31 1.58
Rich-Rich 3.38 3.97 3.58 3.86 3.66 5.24 5.94 6.76 6.86 9.58 12.52 14.94 18.70 24.29
MIOBI-Naive 3.49 4.37 4.10 4.05 4.14 5.60 6.59 7.36 7.75 10.38 13.13 22.62 20.74 34.25
MIOBI-RC@50 3.49 4.37 4.10 4.05 4.14 5.62 6.61 7.41 7.81 10.49 13.20 23.16 21.40 35.84

0 1 2 3 4 5 6 7

x 10
4

0

20

40

60

80

100

120

Number of Edges

T
im

e 
(in

 S
ec

on
ds

)

Oregon: MIOBIBreakEdge Running times Naive and RC@50

 

 
K=10 RC@50
K=10 Naive
K=50 RC@50
K=50 Naive
K=100 RC@50
K=100 Naive
K=500 RC@50
K=500 Naive
K=1000 RC@50
K=1000 Naive

Student Version of MATLAB

0 1 2 3 4 5 6 7

x 10
4

0

2

4

6

8

10

Number of Edges

T
im

e 
(in

 S
ec

on
ds

)

Oregon: MIOBIBreakNode Running times Naive and RC@50

 

 
K=1 RC@50
K=1 Naive
K=3 RC@50
K=3 Naive
K=6 RC@50
K=6 Naive
K=10 RC@50
K=10 Naive
K=20 RC@50
K=20 Naive

Student Version of MATLAB

0 1 2 3 4 5 6 7

x 10
4

0

100

200

300

400

500

Number of Edges

T
im

e 
(in

 S
ec

on
ds

)

Oregon: MIOBIMakeEdge Running times Naive and RC@50

 

 
K=10 RC@50
K=10 Naive
K=50 RC@50
K=50 Naive
K=100 RC@50
K=100 Naive
K=200 RC50
K=200 Naive
K=350 RC@50
K=350 Naive

Student Version of MATLAB

(a) MIOBI-BREAKEDGE (b) MIOBI-BREAKNODE (c) MIOBI-MAKEEDGE

Figure 2: Scalability of proposed methods: all three algorithms scale near-linearly wrt graph size. (figures best in color)
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