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Abstract
Given a graph with node attributes, how can we find mean-
ingful patterns such as clusters, bridges, and outliers? At-
tributed graphs appear in real world in the form of social
networks with user interests, gene interaction networks with
gene expression information, phone call networks with cus-
tomer demographics, and many others. In effect, we want to
group the nodes into clusters with similar connectivity and
homogeneous attributes. Most existing graph clustering al-
gorithms either consider only the connectivity structure of
the graph and ignore the node attributes, or require several
user-defined parameters such as the number of clusters. We
propose PICS, a novel, parameter-free method for mining at-
tributed graphs. Two key advantages of our method are that
(1) it requires no user-specified parameters such as the num-
ber of clusters and similarity functions, and (2) its running
time scales linearly with total graph and attribute size. Our
experiments show that PICS reveals meaningful and insight-
ful patterns and outliers in both synthetic and real datasets,
including call networks, political books, political blogs, and
collections from Twitter and YouTube which have more than
70K nodes and 30K attributes.

1 Introduction

Real graphs often have nodes with attributes, in addi-
tion to connectivity information. For example, social
networks contain both the friendship relations as well
as user attributes such as interests and demographics.
Both types of information can be described by a graph
in which nodes represent the objects, edges represent
the relations between them, and attribute vectors asso-
ciated with the nodes represent their attributes. Such
graph data is often referred to as an attributed graph.

Given such an attributed graph how can we find
meaningful patterns, clusters of nodes, clusters of at-
tributes, and anomalies? For example, consider the
case of YouTube in which graph nodes represent users
and YouTube-group memberships represent attributes.
Given the who-friends-whom and who-belongs-to-which
YouTube groups information, how can we summarize
and make sense out of it?

We propose PICS for mining attributed graphs.
Specifically, PICS finds cohesive clusters of nodes that
have similar connectivity patterns and exhibit high at-
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Figure 1: PICS on YOUTUBE finds clusters of users with
similar connectivity and attribute coherence. Left: the
adjacency matrix (users-to-users); right: the attribute
matrix (users-to-YouTubeGroups). Both matrices are
carefully arranged by PICS, revealing patterns: e.g., the
anime fans are heavily connected, and they focus on the
same YouTube-groups. See §4.2.1.

tribute homogeneity. PICS additionally groups the node
attributes into attribute-clusters. These patterns fur-
ther help us to spot anomalies and bridges. A key char-
acteristic of PICS is that it is parameter-free; it can re-
cover the number of necessary clusters without any user
intervention. For example, our algorithm automatically
finds coherent user clusters and YouTube-group clus-
ters as shown in Figure 1. As a first observation, the
algorithm automatically discovers clusters of users who
like the ‘anime’ genre and form a so-called ‘core and
periphery’ pattern: the core consists of the users in the
bottom-right dark square of the blue square labeled as
‘2’; also notice that the anime fans overwhelmingly be-
long to a coherent set of YouTube-groups (blue square
labeled as ‘A2’). As we show in Table 3, those groups
include anime4ever, narutoholics, and crazyforanime.
More discussion on YouTube results is given in experi-
ments, §4.2.1.

The contributions of this paper are the following:

1. Algorithm design: We introduce PICS, a novel
clustering method to summarize graphs with node
attributes. In effect, it groups the nodes with



similar connectivity patterns into cohesive clusters
that have high attribute homogeneity. Besides, it
also clusters the attributes into attribute-clusters.

2. Automation: PICS does not require any user-
specified input such as the number of clusters, sim-
ilarity functions or any sort of thresholds.

3. Scalability: The run time of PICS grows linearly
with the total input graph and attribute size.

4. Effectiveness: We evaluate our method on a diverse
collection of real data sets with thousands of nodes
and attributes. Our results show that PICS suc-
cessfully recovers cohesive node clusters, reveals the
bridge and outlier nodes, and groups attributes into
meaningful clusters.

2 Related Work

We first highlight the main challenges associated with
simply extending traditional clustering algorithms to
solve our problem, followed by related work and com-
parison. An overview is depicted in Table 1.

2.1 Why not simple extensions?

E1 Represent the relations of the objects as additional
attributes, and then perform flat clustering on this
extended feature space. The challenges with this
approach are two-fold: First, it leads to a very
large number of features and thus is faced with the
curse of dimensionality [3]. Second, it yields two
separate types of attributes where it is not clear
how to weigh those different sets for clustering.

E2 Represent the attributes of the objects as addi-
tional nodes in the graph, introduce new edges from
the original nodes to the attribute nodes they ex-
hibit, and then perform graph clustering on this
extended graph. Again, there are two challenges
with this approach: First, the graph grows with
new nodes and edges, which may be quite numer-
ous. Additionally, it is not clear how to do cluster-
ing in this heterogeneous graph which contains two
types of nodes and edges.

E3 Introduce edges between all pairs of nodes where
edges are weighted by the existence of connectivity
and attribute similarity: This approach requires
quadratic computation of pair-wise similarities and
is thus untractable for large graphs. It also requires
a careful choice of a similarity function.

In summary, clustering attributed graphs by applying
traditional clustering approaches presents several non-
trivial challenges.

2.2 Clustering graphs Graph partitioning has been
well studied in the literature. The top-performing meth-
ods include METIS [17] and spectral clustering [22].

However, these as well as many other graph partitioning
methods [2, 10, 11] work with the connectivity structure
of the graph and cannot be directly applied to attributed
graphs. More importantly, they require the number of
partitions and a measure of imbalance between any two
partitions as input. These are usually hard for the user
to specify, especially for large graphs, and require exper-
imentation to get good results. For example, for spec-
tral partitioning the user needs to choose from several
measures such as the ratio cut [6], normalized cut [24],
or the min-max cut [8].

The idea of using (lossy) compression for graph clus-
tering is introduced in [7]. The information-theoretic co-
clustering algorithm simultaneously clusters rows and
the columns of a normalized contingency table which is
treated as a two-dimensional joint probability distribu-
tion. The algorithm, however, requires the number of
row and column clusters as input.

In terms of parameter-free graph clustering algo-
rithms, Autopart [4] and cross-associations [5], and their
extension to time-evolving [25] and k-partite graphs [15]
are the most representative. These methods use the
minimum description length (MDL) principle [12] to au-
tomatically choose the number of clusters. However,
they do not apply to attributed graphs simply because
they operate on the adjacency matrix of the graph,
and thus consider only the connectivity structure of the
graph.

2.3 Clustering attributed graphs Compared to
the wide range of work on graph clustering, there has
been much less focus on clustering attributed graphs.
[14] transforms the graph and the attributes to a com-
bined distance metric and then applies flat clustering.
This and other similar methods [26] achieve homogene-
ity of attributes for the nodes in the same cluster, how-
ever they tend to yield low intra-cluster connectivity.
[29, 30] transforms the attributes to additional nodes in
the graph, where original nodes are linked to attribute
nodes if they exhibit the particular attribute. Again,
all these methods require the number of clusters to be
exclusively specified.

Recently, [21, 13] propose methods to extract co-
hesive subgraphs from an attributed graph rather than
partitioning the entire graph. The subgraphs exhibit
high density and homogeneity in a subset of their at-
tributes. In these methods other types of parameters
need to be set by the user; these include the subspace
dimensionality and density thresholds, as well as the
minimum number of nodes in each cluster.

The spectral relational clustering algorithm [19]
performs collective factorization of related matrices for
multi-type relational data clustering. Although the
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Flat clustering [18, 28] (e.g. k-means) X X
METIS [17], Spectral [22] and Co-clustering [7] X X

Spectral relational clustering [19], SA-Cluster [29] X X
CoPaM [21], Gamer [13] X X ?,X

Autopart [4], Cross-associations [5] X X X
PICS [this paper] X X X X

method is applicable to graph data with attributes, the
user intervention there is two-fold; besides the number
of clusters for each type of nodes, reasonable weights
for different type of relations or attributes also need to
be specified. In addition, it is not easy to do spectral
clustering on directed graphs with attributes (there
exists spectral clustering for plain directed graphs,
although it is much more complicated than those for
un-directed graphs). In contrast, PICS can naturally
handle directed graphs.

Despite their success, all existing clustering meth-
ods lack one or more of the properties listed in Table 1.
PICS is the first to address all at the same time.

3 Proposed Method

3.1 Problem Description In this paper, we address
the problem of finding cohesive clusters in an attributed
graph. Specifically, given a graph with n nodes and their
binary connectivity information, where nodes are asso-
ciated with f binary attributes (interchangeably, fea-
tures), our goal is to group the nodes into k, and group
the features into l disjoint clusters such that the nodes in
the same cluster have “similar connectivity” and also ex-
hibit high “feature coherence” (interchangeably we also
use the term feature similarity). Informally, a set of
nodes have “similar connectivity” if the set of nodes in
the graph they connect to “highly” overlap. Similarly,
a set of nodes have high “feature coherence” if the set
of features they exhibit “highly” overlap.

3.1.1 Synthetic Graph Example To elaborate on
the terminology, we give an example in Figure 2.
PICS detects 5 node-clusters and 3 feature-clusters in
this example graph. Notice that the nodes in the
same cluster agree on their features to a high extent,
i.e. have high feature coherence; for example nodes in
node-cluster 1 exhibit features in feature-clusters 2 and
3, nodes in node-cluster 2 exhibit features in feature-
clusters 1 and 2, and so on. In addition, notice the
nodes in the same cluster having similar connections

among themselves as well as to the rest of the graph.
For example, nodes in node-cluster 2 (similarly node-
cluster 3) are densely connected among themselves but
scarcely to the rest, nodes in node-cluster 4 are densely
connected to nodes in node-cluster 5 (and vice versa)
and scarcely to the rest, and so on.

Note that the nodes in a cluster that PICS finds may
not necessarily be densely connected among themselves.
In fact, the nodes in node-cluster 1 in the example
graph are not connected to each other at all! They,
however, share the same set of features and still have
similar connectivity to the graph. Simply put, they are
“familiar strangers”. Similarly, nodes in node-clusters 4
and 5 are not connected within the clusters but across
each other, forming a “bipartite core”.

We would like to point out that while the traditional
graph clustering algorithms would recover node-clusters
2 and 3, PICS can find additional type of clusters such as
familiar strangers and bipartite cores, providing a richer
analysis of a given graph. This derives from our more
general cluster definition of nodes with “similar”, rather
than “dense”, connectivity.

3.2 Problem Formulation The main questions
that arise given the above problem definition are: How
should we decide the number of node and feature clus-
ters, i.e., k and l, respectively? How can we assign the
nodes and the features to their “proper” clusters? How
much overlap of the features is “high” enough? In this
paper, we address these questions without making the
users have to set any parameters such as the number
of clusters, feature similarity thresholds or make them
have to choose from a large collection of similarity func-
tions. In fact, automation is exactly one of the main
contributions of our approach.

Our starting point is data compression. Specifically,
we want to compress two, inter-related matrices simulta-
neously. The first matrix is the n×n binary connectivity
matrix A, and the second is the n×f binary feature ma-
trix F (note that although we consider binary graphs in
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(a) Original A and F (b) PICS A and F

Figure 2: PICS on a synthetic dataset with n=900 nodes and f=180 features. Notice 5 node and 3 feature
clusters. Nodes in the same cluster exhibit high feature homogeneity and have similar connectivity patterns. Note
that similar connectivity does not only imply but also includes dense connectivity; while node-clusters 2 and 3 are
densely connected within the clusters, node-clusters 1, 4, and 5 are not. See §3.1 for more details.

this paper, similar ideas can also be applied to weighted
graphs). Our goal then is to compress (conceptually,
summarize) these matrices simultaneously by looking
at partitions/clusters/groups (i.e. homogeneous, rect-
angular “blocks”) of both low and high densities. The
reason for operating on the matrices simultaneously is
simply that the two matrices are inter-related: the node
groups should be homogeneous in both the connectivity
matrix A as well as in the feature matrix F.

The natural question is, how many rectangular
blocks should we have in each matrix A and F? To com-
press these matrices efficiently, we need to have several
highly homogeneous blocks. On the other hand, having
more clusters allows us to obtain more homogeneous
blocks (at the very extreme, we can have n× n + n× f
blocks, each having perfect homogeneity of 0 or 1). The
best compression model should achieve a proper trade-
off between these two factors of homogeneity (data de-
scription complexity) and the number of blocks (model
description complexity). To achieve this goal we use the
MDL principle [12], a model selection criterion based on
lossless compression principles –we design a cost crite-
rion that we aim to minimize in which costs are based on
the number of bits required to transmit both the “sum-
mary” of the structure (model) as well as each rectan-
gular block (data) within the structure.

3.2.1 Notation Let k denote the desired number of
disjoint node-clusters and let l denote the desired num-
ber of disjoint feature-clusters. Let R : {1, 2, . . . , n} →
{1, 2, . . . , k} and C : {1, 2, . . . , f} → {1, 2, . . . , l} de-
note the assignments of nodes to node-clusters and fea-
tures to feature-clusters, respectively. We will refer to
(R,C) as a mapping. To better understand a mapping,
given the node-clusters and feature-clusters, let us rear-

range the rows and columns of the connectivity matrix
A such that all rows corresponding to node-cluster-1
are listed first, followed by rows in node-cluster-2, and
so on. We also rearrange the columns in the same fash-
ion. Note that the row and column arrangements for
A will be the same. One can imagine that such a
rearrangement sub-divides the matrix A into k2 two-
dimensional, rectangular blocks, which we will refer to
as BA

ij , i, j = 1, . . . , k.
Similarly, we can rearrange the rows of the feature

matrix F such that all rows corresponding to node-
cluster-1 are listed first, followed by rows in node-
cluster-2, and so on. One can realize that the row
arrangements of A and F matrices will be the same.
In a manner different than for A, we will rearrange
the columns of the feature matrix F such that all
columns corresponding to feature-cluster-1 are listed
first, followed by columns in feature-cluster-2, and so on.
As a result, we will obtain rectangular blocks denoted
as BF

ij , i = 1, . . . , k and j = 1 . . . , l for F. Finally, let

the dimensions of BF
ij and BA

ij be (ri, cj) and (ri, rj),
respectively.

3.3 Objective Function Formulation We now de-
scribe a two-part cost criterion for the (lossless) com-
pression of the connectivity and feature matrices A and
F. The compression cost can be thought of as the to-
tal number of bits required to transmit these matrices
over a network channel. The first part is the model
description cost that consists of describing the mapping
(R,C). The second part is the data description cost that
consists of encoding the sub-matrices (i.e., the “blocks”
Bij), given the mapping. Intuitively, a good choice of
(R,C) would simultaneously compress A and F well,



and as a result yield a low total description cost.
Next, we describe those two parts in more detail and

then give the total encoding cost (objective function).

3.3.1 Model Description Cost This part consists
of encoding the number of node and feature clusters as
well as the corresponding mapping.

• The number of nodes n and the number of features
f (i.e., matrix dimensions) require log? n + log? f
bits, where log? is the universal code length for
integers [23]. This term is independent of any
particular mapping.

• The number of node and feature clusters (k, l)
require log? k + log? l bits.

• The node and feature cluster assignments with
arithmetic coding require nH(P ) + fH(Q) bits,
where H denotes the Shannon entropy function, P
is a multinomial random variable with the probabil-
ity pi = ri

n and ri is the size of the i-th node cluster,
1 ≤ i ≤ k. Similarly, Q is another multinomial ran-
dom variable with the probability qj =

cj
f and cj is

the size of the j-th feature cluster, 1 ≤ j ≤ l.

3.3.2 Data Description Cost This part consists of
encoding the matrix blocks.

• For each block BA
ij , i, j = 1, . . . , k and BF

ij , i =
1, . . . , k, j = 1, . . . , l, n1(Bij), that is the number
of 1s in the sub-matrix, requires log? n1(Bij) bits.

• Having encoded the summary information about
the rectangular blocks, we next encode the ac-
tual blocks Bij . We can calculate the density
Pij(1) of 1s in Bij using the description code
above as Pij(1) = n1(Bij)/n(Bij), where n(Bij) =
n1(Bij) + n0(Bij) = ricj for F blocks (rirj for
A blocks), and n1(Bij) and n0(Bij) are the num-
ber of 1s and 0s in Bij , respectively. Then, the
number of bits required to encode each block using
arithmetic coding is
E(Bij) = −n1(Bij) log2(Pij(1))− n0(Bij) log2(Pij(0))

= n(Bij)H(Pij(1)).

3.3.3 Total Encoding Cost (Length in bits)

L(A,F;R,C) = log? n + log? f + log? k + log? l

−
k∑

i=1

ri log2(
ri
n

)−
l∑

j=1

cj log2(
cj
f

)

+

k∑
i=1

l∑
j=1

(
log? n1(BF

ij) + E(BF
ij)

)

+

k∑
i=1

k∑
j=1

(
log? n1(BA

ij) + E(BA
ij)

)
.

3.4 Proposed Algorithm PICS The total encoding
cost L(A,F;R,C) can point out the best model with
the minimum cost among many. It does not, however,
tell us how to find the best model. In fact, finding
the optimal solution that would minimize our cost
function is an NP-hard task, since even allowing only
column-reordering for a single matrix, a reduction to
the traveling salesman problem can be found [16].
As a result, we resort to a greedy iterative heuristic
solution. Our experiments show that the proposed
heuristic algorithm PICSperforms quite well in practice
for the real data sets used. The pseudo-code1 of PICS is
given in Algorithm 1.

Algorithm 1 PICS

Input: n×n link matrix A, n×f feature matrix F
Output: A heuristic solution towards minimizing total

encoding L(A,F;R,C): number of row and column
groups (k∗, l∗), associated mapping (R∗, C∗)

1: Set k0=l0=1 as we start with a single node and
feature cluster.

2: Set R0 := {1, 2, . . . , n} → {1, 1, . . . , 1}
3: Set C0 := {1, 2, . . . , f} → {1, 1, . . . , 1}
4: Let T denote the outer iteration index. Set T = 0.
5: repeat
6: CT+1, lT+1 := Split-FeatureGroup(F, CT , lT )
7: (RT+1, CT+1) := Shuffle(A, F, (RT , CT+1),

(kT , lT+1))
8: RT+1, kT+1 := Split-NodeGroup(A, F,

(RT+1, CT+1), (kT , lT+1))
9: (RT+1, CT+1) := Shuffle(A, F, (RT+1, CT+1),

(kT+1, lT+1))
10: if L(A,F;RT+1, CT+1)≥L(A,F;RT , CT ) then
11: return (k∗, l∗)=(kT , lT ), (R∗, C∗)=(RT , CT )
12: else
13: Set T = T + 1
14: end if
15: until convergence

PICS starts with a single node and a single feature
cluster (Lines 1-3) and iterates between two steps. At
each iteration, it first tries to increase the number of
feature clusters l by 1, by splitting the feature cluster
with the maximum entropy per feature into two clusters
(Line 6). Then, it shuffles the rows and columns of
A and F such that the new ordering (mapping) yields
a lower total encoding cost for the current number of
clusters (k, l) (Line 7). Next, it tries to increase the
number of node clusters k by 1, followed by another
shuffle step (Lines 8 and 9, respectively). The algorithm
halts when the total cost can not be reduced any further.

1Source code of PICS: www.cs.cmu.edu/~lakoglu/#pics



The implementation details for the proce-
dures Split-FeatureGroup, Split-NodeGroup and
Shuffle are given in pseudo-code in the Appendix, § 6.

3.4.1 Synthetic Graph Example In Figure 3, we
show the step-by-step operation of PICS on the syn-
thetic dataset in Figure 2. In Fig. 3(a), we see
the output A and F after Split-FeatureGroup and
Shuffle (Steps 6 and 7) are executed on the
original A and F shown in Fig. 2(a). Here,
Split-FeatureGroup increases the number of feature
groups to 2, and then Shuffle reorders the rows and
columns in both matrices. Next, Split-NodeGroup in-
creases the number of row groups to 2 (Step 8) and
Shuffle reorders the rows and columns that yields a
lower encoding cost (Step 9). This is also visually clear
in Fig. 3(b). PICS repeats the same steps in Fig. 3(c)
and (d). Notice that Split-FeatureGroup cannot
increase the number of feature groups above 3, and
thus Shuffle is called only after Split-NodeGroup in
Fig. 3(e) and (f), after which Split-NodeGroup also
stops finding new node groups for reduced cost and the
algorithm converges.

3.5 Convergence The stopping criterion for
Shuffle is satisfied if and only if the total encoding
cost cannot be reduced any further by the new ordering.
Therefore, lines 7 and 9 in Algorithm 1 decreases the
objective criterion L(A,F;R,C). Since the objective
criterion, i.e. the total encoding cost in bits, has the
lower bound zero and the number of node and feature
clusters have respective upper bounds n and f , the
algorithm is guaranteed to converge.

3.6 Computational Complexity The computa-
tionally most demanding component of PICS is the
Shuffle procedure, which takes as input the A and
F matrices and the number of clusters (k, l), and finds
a new ordering of the rows and columns that gives a
lower encoding cost. It achieves this goal by iterating
between two steps: (1) shuffling the columns in F, and
(2) shuffling the rows in A and F, simultaneously.

One iteration of step (1) above is O(n1(F ) ∗ l),
where n1(F ) denotes the number of non-zeros in F,
as we access each column and compute its number
of non-zeros and consider l possible feature groups to
place it into. Similarly, one iteration of step (2) is
O((n1(F )+2n1(A))∗k). Therefore, the total complexity
of Shuffle is O([2n1(A)k + n1(F )(k + l)] ∗ t), where t
is the total number of inner iterations for Shuffle.

PICS calls Shuffle two times at each outer iteration
T (Lines 7 and 9 in Algorithm 1). T is equal to
max(k∗, l∗). Thus, the overall complexity of PICS is
O(max(k∗, l∗) ∗ [2n1(A)k∗ + n1(F )(k∗ + l∗)] ∗ t̂), where

t̂ denotes the maximum number of inner iterations.
Note that PICS scales linearly with respect to the total
number of non-zeros in A and F, the total number of
Shuffle iterations t̂ (typically t̂ � n1(A) + n1(F )),
and quadratically with respect to the number of clusters
(k∗, l∗), where k∗ and l∗ are usually small.

4 Empirical Study

4.1 Datasets In our experiments we studied six real-
world datasets from various domains which we describe
next. A summary is given in Table 2. In each case we are
able to use PICS to automatically discover interesting
node and attribute structures, with further investigation
providing explanations for their presence.

YOUTUBE data consists of users and Youtube-groups.
The links represent user-user friendships and node at-
tributes are the group memberships of each user. The
data is compiled by [20] in 2007.

TWITTER graph contains early-adopter users, with
links representing the who-mentioned-whom interac-
tions between them. The attributes are the hashtags
(tokens starting with a #) that the users used in their
messages (Tweets).

The PHONECALL and DEVICE graphs are constructed
using the Reality Mining data sets provided by the
MIT Media Lab [9]. The Reality Mining project
was conducted in 2004-05 with 94 human subjects
using mobile phones pre-installed with special software
that recorded data. PHONECALL is built using the call
logs, and represents the phone-call interactions between
the subjects. DEVICE is constructed using Bluetooth
device scans; an edge from i to j indicates person i’s
device discovered person j’s device within five meters
proximity. The affiliations of the subjects (e.g. grad,
undergrad, business student) are the node attributes.

POLBOOKS is a graph of books about U.S. politics
published during 2004 presidential election [27]; an edge
from i to j indicates that book i was frequently co-
purchased with book j by the same buyers. Similarly,
POLBLOGS is a directed graph of hyperlinks between web-
blogs on U.S. politics, compiled by [1] in 2005. In both
graphs, the nodes (books or blogs) are attributed as
being liberal or conservative.

The YOUTUBE and POLBOOKS graphs are undirected
and the rest of the graphs are directed.

4.2 Clusters, bridges, and outliers Next, as for
our real datasets no ground truth (if any) for “true”
clustering exists, we provide anecdotal and visual study.

4.2.1 YOUTUBE Dataset: PICS finds node and feature
clusters of various sizes in our largest dataset YOUTUBE,
as shown in Figure 1, § 1. In Table 3, we show example
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Figure 3: Step-by-step operation of PICS on the synthetic attributed graph in Figure 2.

Table 2: Dataset summary. n: number of nodes, f : number of features, n1(A) + n1(F ): number of non-zeros
(nnz), i.e. edges, in the connectivity matrix A plus the nnz in the feature matrix F. See §4.1 for more details.

Dataset n f n1(A)+n1(F ) Connectivity and Attribute Description
YOUTUBE 77381 30087 994542 User friendships and group memberships
TWITTER 9654 10000 81770 User ‘mention’s and hashtag usages
PHONECALL 94 7 391 Phone calls and affiliations
DEVICE 94 7 5233 Bluetooth device scans and affiliations
POLBOOKS 92 2 840 Book co-purchases and politic inclinations
POLBLOGS 1490 2 20580 Blog citations and political inclinations

YouTube-groups in major feature clusters; notice that
these clusters can be human-labeled as ‘porn’, ‘music’,
‘anime’, and ‘special interest’.

With respect to node clusters, PICS finds a very
sparse group of ‘familiar strangers’ in cluster ‘1’ with
high feature coherence but scarce connections to the
rest of the graph. These users belong to arbitrarily
many and mostly same YouTube-groups labeled as ‘A1’,
yet are not well-connected among themselves. Node
clusters in the blue square labeled as ‘2’ exhibit dense
connectivity among each other as well as high feature
homogeneity as seen in the ‘anime’ groups labeled as
‘A2’. The node clusters in the blue square labeled
as ‘4’ mostly belong to YouTube groups associated
with ‘porn and music’ labeled as ‘A4’. Notice that
the nodes in each of these clusters have quite similar
connectivity to the graph. The node cluster ‘3’ contains
nodes with connections across many clusters, behaving
like ‘bridges’. They also mostly belong to the same
YouTube-groups, labeled as ‘A3’. Finally, the small
node clusters constitute the outliers, with arbitrarily
many connections across clusters. All in all, by using
PICS we are able to understand and summarize the
YOUTUBE graph in a completely unsupervised fashion.

Table 3: Examples of YouTube-groups in feature clusters
found by PICS. See Figure 1.

porn music anime interest

hotmodels poptastic anime4ever streetboarders

upskirt raphiphop narutoholics modelcooks
lesbokiss guitarsolos crazyforanime poetryandmusic
men4men metallovers animefreak1 mexicogrupero
gayestgay classicalmusic AnimeDaisuki bodypainting

bootyshake xtinaaguilera SailorMoon nflfans

sexysolo heavymetal Tsyukomi chelseafcfans

4.2.2 TWITTER Dataset: Our Twitter dataset con-
sists of directed edges (i, j) between users if i directs
a message to j at least three times. Attributes in our
network are the hashtags used at least three times by a
user. In Figure 4, PICS finds a group of ‘casual users’ in
node cluster ‘1’ with few connections and few number
of hastags used. Node cluster ‘2’ is the most promi-
nent: this is a dense group of users (mostly tech blog-
gers) all from Italy who extensively mention each other
but do not frequently message other users. They also
use common and distinctive hashtags in Italian such as
‘#terremoto’ and ‘#partigi’. The two clusters in blue
square (labeled as ‘4’) are the so-called ‘heavy-hitters’



who use overwhelmingly many different hashtags (la-
beled as ‘A4’). PICS also reveals a ‘core-periphery’ pat-
tern within these users. The clusters in blue square la-
beled as ‘5’ form dense diagonal blocks with dense con-
nections within. The smaller clusters also correspond
to the so-called ‘bridges’, with many connections across
clusters. Notice that the bridge-nodes are mostly men-
tioned by others but do not themselves mention others.
Upon further inspection of users in this group, we dis-
cover Jeffrey Zeldman, a well known author, as well as
Jack Dorsey and Ev Williams, the two founders of Twit-
ter. We also observe that users in groups labeled as ‘3’
and ‘5’ have never used the hashtags in the rightmost
feature cluster of Figure 4.
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Figure 4: PICS on TWITTER finds a tight group of users
from Italy and reveals groups of casual users, heavy-
hitters, and bridges. Left: user-mentions-user adja-
cency matrix; right: users-to-hashtags feature matrix.

4.2.3 PHONECALL Dataset: PICS finds 3 major node
clusters as shown in Figure 5. The first cluster corre-
sponds to the group of casual subjects who make phone
calls to only a few people. The next two clusters, which
are relatively densely connected, are a group of business
and a group of grad students, respectively.

With respect to outliers, notice a cluster of size 1,
an outlier subject who does not belong to any of the
clusters. This subject, whose affiliation is not given
in the dataset, does not make any outgoing calls but
receives calls from almost everyone, which is presumably
a call service center in the campus. Another outlier we
can spot is a 1st year grad student who is in the same
cluster with the business students in cluster 2; he/she
neither calls nor gets called by other grad students but
some business students.

With respect to bridges, we notice one grad student
in cluster 3 who is in mutual contact with two business
students. Notice that none of the other subjects has
phone call interactions with the business students.
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Figure 5: PICS on PHONECALL. Notice 3 major node
groups of casual users, business and grad students,
respectively as well as a group of size 1, receiving many
calls, probably a call service center.

4.2.4 DEVICE Dataset: In Figure 6, we observe 3
major dense clusters; clusters 1, 3 and 5. These three
clusters involve mostly the grad, business and undergrad
students, respectively. The reason these clusters form
near-cliques, i.e. are almost fully connected, may be due
to the Bluetooth scans occurring when these groups of
students sit in the same classroom all within five meters.

In this dataset, the sparser clusters are also of
interest. For instance, cluster 2 is a group of subjects
whose devices seem to report far less scan results.
This might be due to powered-off devices or turned-off
Bluetooth functionality.

In cluster 3 of business students, we also notice a
column consisting of almost all zeros. This corresponds
to a subject whose device can scan other devices, but
somehow it does not get detected by others. This is
interesting, and may be due to a malfunctioning device
or missing data.
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Figure 6: PICS on DEVICE finds 3 major dense node
groups of grad, business and undergrad students, respec-
tively, as well as anomalies, probably missing data.



Table 4: Examples of “core” liberal and conservative books.

Liberal Conservative

–Lies and the Lying Liars Who Tell Them: A Fair and
Balanced Look at the Right

–Persecution: How Liberals Are Waging War Against
Christianity

–Big Lies: The Right-Wing Propaganda Machine and
How It Distorts the Truth

–Deliver Us from Evil: Defeating Terrorism, Despo-
tism, and Liberalism

–The Lies of George W. Bush –Tales from the Left Coast
–Dude, Where’s My Country? –A National Party No More

4.2.5 POLBOOKS Dataset: The POLBOOKS dataset
consists of liberal and conservative books which might
be thought as two major clusters. In Figure 7,
PICS gives more information about the cluster structure
by finding 4 node clusters. The denser clusters (clus-
ters 2 and 4) correspond to the “core” conservative and
liberal books, respectively, which are often purchased
together. Clusters 1 and 3 are then the corresponding
“peripheral” books. Table 4 gives a list of several books
in each “core”. Notice that the “core” books do seem
to lie at the two extremes of the political spectrum.

In cluster 1, we also observe 3 bridging books,
namely Bush at War, The Bushes: Portrait of a Dy-
nasty, and Rise of the Vulcans: The History of Bush’s
War Cabinet, which are co-purchased with both some
liberal and conservative books. These books are human-
labeled as conservative although they seem to have more
of a historical perspective. Notice that the bridge nodes
reside in the “periphery” rather than in the “core”.
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Figure 7: PICS on POLBOOKS finds 4 node groups corre-
sponding to “core” and “peripheral” liberal and conser-
vative books, as well as several bridge-books, with histor-
ical content and not extremely liberal or conservative.

4.2.6 POLBLOGS Dataset: In Figure 9, we observe
7 major node clusters in POLBLOGS. The first and the
largest cluster contains liberal and conservative blogs
which do not have many citations. Clusters 2-4 consist
of conservative and 5-7 consist of liberal blogs. Here,
PICS seems to also reveal the “core” and “periphery”

structure for the political blogs. In particular, cluster
3 is a core conservative group with a fanatic follower
group (cluster 4), and a less fanatic follower group
(cluster 2) of other conservative blogs, which often cite
the blogs in cluster 3. Examples to “core” conservative
blogs include rightwingnews.com, georgewbush.com, and
conservativeeyes.blogspot.com. Similarly, cluster 6 is a
core liberal group with cluster 7 being its more fanatic,
and cluster 5 being its less fanatic follower group of
other liberal blogs, with many citations to cluster 6.
The blogs in the liberal “core” include talkleft.com,
liberaloasis.com, and democrats.org/blog.
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Figure 9: PICS on POLBLOGS. Notice the “core” conser-
vative and liberal blogs (clusters 3 and 6), each with two
sets of “peripheral” groups with many citations.

4.3 Scalability In § 3.6 we theoretically showed that
the computational complexity of PICS is linear in the
total graph and attribute size. In this section, we also
demonstrate the time complexity of PICS experimen-
tally. Figure 8 shows the running time with respect to
increasing total size for several datasets we studied (the
total size is the total number of non-zeros (nnz) in the
A and F matrices). Notice that the run time grows
linearly with respect to the total nnz. (Recall that the
run time also depends on the number of clusters found,
hence the slight dip for YOUTUBE at total size 950K as
fewer clusters (20 vs 23) are found.) Experiments were
performed on a 4-CPU Intel 3.0GHz Xeon server with
16GB RAM. All code was written in Matlab.
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5 Conclusion

We proposed PICS, which is to the best of the authors’
knowledge, the first parameter-free method for finding
cohesive clusters in attributed graphs. The contribu-
tions of our work include:
• Algorithm design: We introduce a novel clustering

model; PICS finds groups of nodes in an attributed
graph with (1) similar connectivity, and (2) at-
tribute homogeneity. By definition, clusters with
similar connectivity include but are not limited to
dense clusters. It also groups the node attributes
into meaningful clusters. The nodes deviating from
the discovered patterns correspond to bridge-nodes
with connections across clusters or outlier-nodes
that do not belong well to any cluster.

• Parameter-free nature: PICS is fully automatic. It
works without any user-specified input, such as the
number of clusters, choice of density or similarity
functions and thresholds.

• Scalability: The run time of the proposed algo-
rithms grows linearly with respect to the total
graph and attribute size.

• Effectiveness: We show that PICS discovers quality
clusters, bridges and outliers in diverse real-world
datasets including YouTube and Twitter.

6 Appendix

In this section, we give the pseudo-code and de-
scribe the procedures called by PICS in § 3.4 in more
detail. Simply put, Split-FeatureGroup (similarly
Split-NodeGroup) increases the number of attribute
(node) groups by 1 by first finding the attribute (node)
group with the maximum entropy per-column (row)
(Line 1), and then moving those attributes (nodes) in
that group whose removal reduce the per-column (row)
entropy to the new group (Lines 2-9). If no column
(row) can be moved, the procedures return the original
mapping (Lines 10-14).

Procedure 1.1 Split-FeatureGroup

Input: n×f feature matrix F, CT , lT

Output: CT+1, lT+1

1: Split the column group g with the maximum entropy
per-column using Equation (6.1)

2: for each column y in column group g do
3: if removal of y from group g decreases the per-

column entropy of g as in Equation (6.2) then
4: Place y into the new group: CT+1

y = lT + 1

5: Update BF
ig ∀i, 1 ≤ i ≤ k.

6: else
7: CT+1

y = CT
y = g

8: end if
9: end for

10: if size of new feature-group > 0 then
11: lT+1 = lT + 1
12: else
13: lT+1 = lT

14: end if

Procedure 1.2 Split-NodeGroup
Input: n×n connectivity matrix A, n×f feature ma-

trix F, (RT , CT ), (kT , lT )
Output: RT+1, kT+1

1: Split the row group g with the maximum entropy
per-row using Equation (6.3)

2: for each row x in row group g do
3: if removal of x from group g decreases the per-

row entropy of g as in Equation (6.4) then
4: Place x into the new group: RT+1

x = kT + 1
5: Update BF

gj ∀j, 1 ≤ j ≤ l as well as BA
gj and

BA
jg ∀j, 1 ≤ j ≤ k.

6: else
7: RT+1

x = RT
x = g

8: end if
9: end for

10: if size of new node-group > 0 then



11: kT+1 = kT + 1
12: else
13: kT+1 = kT

14: end if

When the number of node or attribute groups
changes, Shuffle finds a lower-cost mapping by reas-
signing the nodes and attributes to the existing groups.
It does so by first iterating over all the rows (nodes)
(Lines 4-16) and then the columns (attributes) (Lines
17-25), assigning each row (column) to the node (at-
tribute) group that minimizes its encoding cost (Lines
15 and 24, resp.). It repeats the same process until the
total cost cannot be reduced any further (Lines 26-30).

Procedure 1.3 Shuffle

Input: n×n connectivity matrix A, n×f feature ma-
trix F, (RT , CT ), (kT , lT )

Output: (RT+1, CT+1)
1: Let t denote the inner iteration index. Set t = T
2: Compute Bt

ij and P t
ij with respect to (Rt, Ct, kt, lt)

3: repeat
4: Shuffle rows: Fix column assignments Ct

5: for each row x do
6: Splice x in F into lt parts (each corresponding

to one of the column groups in F) Denote them

as x1, . . . , xlt .
7: for each of these parts do
8: Compute the number of 1s and 0s, that is,

nF
u (xj), u = 0, 1 and j = 1, . . . , lt

9: end for
10: Splice x in A and the corresponding column in

A into kt parts. Denote them as x1
r, . . . , x

kt

r

and x1
c , . . . , x

kt

c , respectively.
11: for each of these parts do
12: Compute the number of 1s and 0s, that

is, nA
u (xj

r) and nA
u (xj

c), u = 0, 1 and j =
1, . . . , kt

13: end for
14: end for
15: Assign each row (i.e., node) x into the node group

Rt+1
x that yields the minimum encoding cost for

x using Equation (6.5)
16: Re-compute Bt+1

ij and P t+1
ij with respect to

(Rt+1, Ct, kt, lt)
17: Shuffle columns: Fix row assignments Rt+1 in

A and F, (also fixes the column assignment in
A, so we operate only on F here)

18: for each column y do
19: Splice y in F into kt parts (each corresponding

to one of the row groups in F) Denote them as

y1, . . . , yk
t

.
20: for each of these parts do

21: Compute the number of 1s and 0s, that is,
nF
u (yi), u = 0, 1 and i = 1, . . . , kt

22: end for
23: end for
24: Assign each column (i.e., feature) y to the feature

group Ct+1
y that yields the minimum encoding

cost for y using Equation (6.6)
25: Recompute Bt+1

ij and P t+1
ij w.r.t.

(Rt+1, Ct+1, kt, lt)
26: if there is no decrease in total cost then
27: return (Rt, Ct)
28: else
29: Set t = t + 1
30: end if
31: until convergence

6.1 Equations

g := arg max1≤j≤l
1

cj

( k∑
i=1

nF (Bij)H(PF
ij (1))

)(6.1)

1

cg − 1

k∑
i=1

nF (B
′

ig)H(P
′F
ig (1)) <

1

cg

k∑
i=1

nF (Big)H(PF
ig (1))

(6.2)

where B′ig denotes the Big without column y.

g := arg max1≤i≤k
1

ri

( l∑
j=1

nF (Bij)H(PF
ij (1))(6.3)

+

k∑
j=1

nA(Bij)H(PA
ij (1)) +

k∑
j=1

nA(Bji)H(PA
ji (1))

)

1

rg − 1

( l∑
j=1

nF (B
′

gj)H(P
′F
gj (1)) +

k∑
j=1

(
nA(B

′

gj)H(P
′A
gj (1))

(6.4)

+nA(B
′

jg)H(P
′A
jg (1))

))
<

1

rg

( l∑
j=1

nF (Bgj)H(PF
gj(1))

+

k∑
j=1

(
nA(Bgj)H(PA

gj(1)) + nA(Bjg)H(PA
jg(1))

))

where B′gj denotes the Bgj without row x.

Rt+1
x := arg min1≤i≤k

{ l∑
j=1

1∑
u=0

nF
u (xj) log

1

PF
ij (u)

(6.5)



+

k∑
j=1

1∑
u=0

(
nA
u (xj

r) log
1

PA
ji (u)

+ nA
u (xj

c) log
1

PA
ij (u)

)
+dxx(logPA

iRt
x
(1) + logPA

Rt
xi

(1)− logPA
ii (1))

+(1− dxx)(logPA
iRt

x
(0) + logPA

Rt
xi

(0)− logPA
ii (0))

}
where first two lines respectively denote the cost of
shifting row x in F, and the same row x and its
corresponding column in A to a new group i. Last two
lines account for the double-counting of cell dxx in A.

Ct+1
y := arg min1≤j≤l

{ k∑
i=1

1∑
u=0

nF
u (xi) log

1

PF
ij (u)

}(6.6)
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