
Graph-Based
Anomaly Detection:

Problems, Algorithms and Applications

Leman Akoglu

L. Akoglu

Anomaly: That stands out
https://en.wikipedia.org/wiki/August_Landmesser

2

https://en.wikipedia.org/wiki/August_Landmesser

L. Akoglu

Anomaly Detection: Many Use-cases

3

L. Akoglu

Formalizing Anomaly Detection
• Concrete problem settings exist. e.g./esp. for point-cloud data

• Real-world… A bit more complex.

4

Local outlier Global outlier

Collective outliers

L. Akoglu

Formalizing Anomaly Detection
Given <DATA>, Find <ANOMALIES>

e.g. (accounting) Given millions of transactions, find abnormalities

We heard you work on anomaly detection.

Yes, I am very excited. Tell me more.

We have lots of data, and want to find anomalies.

OK, wait, tell me what your REAL PROBLEMS are.
Why do you want to detect anomalies?
What do you consider to be an anomaly?

5

L. Akoglu

Formalizing Anomaly Detection
Tell me what your REAL PROBLEMS are.

We want to find errors, inefficiencies,
malfeasance… We want to save $$$. We also
want YOU to find all unknown anomalies.

Hmm… OK…? BTW, we don’t want too many false
positives. Data sits in a cloud. We also

OK. OK. What data have limited budget (for auditing, etc.)…
do you have?

Given <DATA>, Find <ANOMALIES> s.t. <CONSTRAINTS>
6

L. Akoglu

Graph-based Anomaly Detection
• Often, underlying data is unmistakably relational:

… …

… …

user-business
reviews account transactions

… …

…

employer-employee
physician-patient-provider

7

L. Akoglu

Graph-based Anomaly Detection

8

[Survey] Graph-based Anomaly Detection and Description: A Survey. [Akoglu+]
Data Mining and Knowledge Discovery (DAMI), May 2015.

Several surveys and tutorials:

[Tutorial] Fraud Detection through Graph-Based User Behavior Modeling. [Beutel+]
ACM CCS 2015.

[Tutorial] Social Media Anomaly Detection: Challenges and Solutions. [Liu & Chawla]
ACM SIGKDD 2015.

[Survey] False Information on Web and Social Media: A Survey. [Kumar & Shah]
arXiv:1804.08559

L. Akoglu

Challenges
Problem: Given <Data>, Find <Anomalies> s.t. <Constraints>

1. <Data> : Graph heterogeneity (node/edge labels, attributes, multi-
edges, edge weights, edge timestamps, etc.)

How or whether to “fold” meta-data into a graph

2. <Anomalies> : Definition/Formalization of anomalies (e.g., group
anomalies vs. anomalous groups)

Heterogeneity exacerbates the issue

3. <Constraints> : System/Application requirements e.g., distributed/
streaming/massive data, attribution (who), explainability (why)

9

L. Akoglu

Outline
• Anomaly Detection: Motivation, Formalism, Challenges

• Graph-based Anomaly Detection
• General-purpose (single graph)

Global – anomalous nodes
Local – group anomalies
Collective – anomalous groups

• Specialized (graph database)

• Recent Trend: Deep Anomaly Detection

10

L. Akoglu

plain, weighted, directed

Anomalous nodes (global)
Problem Sketch:

11

L. Akoglu

ego
Anomalous nodes (global): OddBall

• For each node

• Extract ego-net (1-hop neighborhood)

• Extract ego-net features

• Find patterns (“laws”)

• Detect outliers (distance to patterns)

ego-net

OddBall: Spotting Anomalies in Weighted Graphs. [Akoglu+] PAKDD 2010.

Problem Setting:

12

L. Akoglu

Anomalous nodes (global): OddBall

slope=2

slope=1

slope=1.35

discussion group,
“rank boosting”,

etc.

#neighbors N

#e
dg

es
 E

telemarketer, spammer,
port scanner, “popularity

contests”, etc.

13

L. Akoglu

Anomalous nodes (global): OddBall

#citations

#
cr

os
s-

ci
ta

tio
ns

FORUM POSTS

14

L. Akoglu

Anomalous nodes (global): OddBall

#checks

$

CAMPAIGN-DONATIONS Kerry,
John F.

Snyder,
James E. Jr

Russo,
Aaron

15

L. Akoglu

Outline
• Anomaly Detection: Motivation, Formalism, Challenges

• Graph-based Anomaly Detection
• General-purpose (single graph)

Global – anomalous nodes
Local – group anomalies
Collective – anomalous groups

• Specialized (graph database)

• Recent Trend: Deep Anomaly Detection

16

L. Akoglu

Group anomalies (local)

(left) community “focuses” on (right) “focuses” on

Problem Sketch:

17

L. Akoglu

cluster
extraction &

(cluster) outlier
detection

“focus”
estimation

Group anomalies (local): FocusCO

dissimilar pairs

similar pairs1

2

age gender

3

19

L. Akoglu

Group anomalies (local): FocusCO
• Focus estimation • Clusters & Local outliers

S and D (intermixed)

nodes

attributes

Feature Matrix

“Focus”: feature weights
20

L. Akoglu

Group anomalies (local): FocusCO
• Focus estimation

S and D (intermixed)

nodes

attributes

Feature Matrix

“Focus”: feature weights

Focused Outlier

(Local) clustering obj.:
conductance

weighted by focus

node with
many (but) weak ties

Cluster Member

21

• Clusters & Local outliers

L. Akoglu

Group anomalies (local): FocusCO

Cluster Outlier did
not mention Waas.

Liberal Cluster in Political Blogs Graph

22

L. Akoglu

Outline
• Anomaly Detection: Motivation, Formalism, Challenges

• Graph-based Anomaly Detection
• General-purpose (single graph)

Global – anomalous nodes
Local – group anomalies
Collective – anomalous groups

• Specialized (graph database)

• Recent Trend: Deep Anomaly Detection

24

L. Akoglu

Anomalous groups (collective)
• Problem Sketch:

Given a node-attributed subgraph, how to define “normality”?

Internal

External

high

low
25

L. Akoglu

Anomalous groups (collective): AMEN
Problem Setting:

• Given a subgraph in a node-attributed graph

• Identify (subgraph) “focus” such that
• Internal nodes are

structurally dense & coherent in focus
• External nodes are structurally sparse

or not-surprising, or different in focus

Scalable Anomaly Ranking of Attributed Neighborhoods. [Perozzi & Akoglu] SIAM SDM, 2016.

Internal

External
Internal

26

L. Akoglu

Anomalous groups (collective): AMEN
• Internal nodes are

structurally dense & coherent in focus

• External nodes are structurally sparse
or not-surprising, or different in focus

chess biking

27

L. Akoglu

Anomalous groups (collective): AMEN

different across neighborhoods. Moreover, the attribute
weights are often latent. For defining our quality criteria we
can assume w is known. Later in Section 4 we will show that
thanks to our formulation, we can infer this weight vector so
as to make a given neighborhood as internally consistent and
externally well-separated as possible. In the following we
discuss the properties captured by Eq. (3.2).

First, notice that the internal consistency is decreased
by missing edges inside a neighborhood, as Aij = 0 for
(i, j) /2 E . Second, the existence of an edge is rewarded
as much as the “surprise” of the edge. Specifically, kikj

2m
denotes the probability that two nodes of degrees ki and kj
are connected to each other by chance in a random network
with the same degree distribution as the original graph [15].
As such, we define the surprise of an edge (i, j) 2 E as
(1 � kikj

2m). The smaller kikj

2m is for an existing edge inside
a neighborhood, the more surprising it is and the more it
contributes to the quality of the neighborhood.

These two properties quantify the structure of the neigh-
borhood. On the other hand, the similarity function quanti-
fies the attribute coherence. As a result, the more similar the
neighborhood nodes can be made by some choice of w, the
higher I becomes. If no such weights can be found, inter-
nal consistency reduces even if the community is a complete
graph with no missing edges.

Overall, a neighborhood with (1) many existing and (2)
“surprising” internal edges among its members where (3) (a
subset of) attributes make them highly similar receives a high
internal consistency score.

3.1.2 External separability: Besides being internally
consistent, we consider a neighborhood to be of high quality
if it is also well-separated from its boundary. In particular, a
well-separated neighborhood either has (1) few cross-edges
at its boundary, or (2) many cross-edges that can be “exon-
erated”. A cross-edge (i, b) 2 E (i 2 C, b 2 B) is exoner-
ated either when it is unsurprising (i.e., expected under the
null model) or when internal node i is dissimilar to boundary
node b based on the focus attribute weights. The latter cri-
terion ensures that what makes the neighborhood members
similar to one another does not also make them similar to the
boundary nodes, but rather differentiates them. The external
separability E of a neighborhood C is then

E = �
X

i2C,b2B,
(i,b)2E

�
1�min(1,

kikb
2m

)
�
s(xi,xb|w)  0 .

(3.3)

External separability considers only the boundary edges
and quantifies the degree that these cross-edges can be exon-
erated. As discussed earlier, cross-edges are exonerated in
two possible ways. First, a cross-edge may be unsurprising;
in which case the term (1 � min(1, kikb

2m)) becomes small
or ideally zero (recall Fig. 2 (a) scenario). Second, the

boundary node of a cross-edge may not share the same fo-
cus attributes with the internal node; in which case the term
s(xi,xb|w) becomes small or ideally zero (recall Fig. 2 (b)
scenario). The higher the number of cross-edges that can be
exonerated, the larger E (note the negative sign) and hence
the quality of a neighborhood becomes.

Note that good neighborhoods by normality differ
from quasi-cliques for which only internal quality measures,
such as density [17] or average degree [5], are defined.
Different from those and besides internal consistency, we
also quantify the quality of the boundary of a neighborhood.
Normality is also different from popular measures that
do quantify the boundary, such as cut-ratio [7], modularity
[15] or conductance [4], for which good neighborhoods are
expected to have only a few cross-edges. In contrast, our
formulation allows for many cross-edges as long as they are
either (i) unsurprising (under the null model) or if surprising,
(ii) can be exonerated by the neighborhood focus. These
advantages arise as we utilize both structure and attributes in
a systematic and intuitive way to define our measure.

3.2 Normality Having defined the two criteria for the
quality of a neighborhood, normality (N) is written as
the sum of the two quantities I and E, where high quality
neighborhoods are expected to have both high internal con-
sistency and high external separability.

N = I + E =
X

i2C,j2C

�
Aij �

kikj
2m

�
s(xi,xj|w)

�
X

i2C,b2B
(i,b)2E

�
1�min(1,

kikb
2m

)
�
s(xi,xb|w)(3.4)

For a neighborhood with the highest normality, all
the possible internal edges exist and are also surprising for
which pairwise similarities are high. These ensure that the
first term is maximized. Moreover, the neighborhood either
has no cross-edges or the similarity or surprise of existing
cross-edges to the boundary nodes are near zero, such that
the second term vanishes. Neighborhoods of a graph for
which the normality takes negative values are of lesser
quality and deemed as anomalous.
Choice of similarity function: To this end, we considered
the node attributes to be scalar variables where s(xi,xj|w)
is the weighted dot-product similarity. If the attributes are
categorical (e.g., location, occupation, etc.), one can instead
use the Kronecker delta function �(·) that takes the value 1 if
two nodes exhibit the same value for a categorical attribute
and 0 otherwise.

The choice of the similarity function is especially im-
portant for binary attributes (e.g., likes-biking, has-job, etc.).
While those can be thought of as categorical variables tak-
ing the values {0, 1}, using Kronecker � becomes undesir-
able for nodes inside a neighborhood. The reason is, inter-

null model similarity “focus” vector
• Measure of Normality:

28

L. Akoglu

Anomalous groups (collective): AMEN

2

1

3

nal consistency by the � function is the same both when all
the neighborhood nodes exhibit a particular binary attribute
(all 1) and when none does (all 0). However, one may not
want to characterize a neighborhood based on attributes that
its members do not exhibit even if the agreement is large.
Therefore, we propose to use dot-product for computing in-
ternal consistency and Kronecker � for computing external
separability for binary-attributed graphs.

4 Anomaly Mining of Entity Neighborhoods
As presented so far, when given a neighborhood C of an
attributed graph and vector w of attribute weights, we can
directly compute its normality using Eq. (3.4). However,
for the task of anomaly mining, the focus of a neighborhood
is latent and hard to guess without any prior knowledge. This
is especially true in high dimensions where most attributes
are irrelevant, making a uniform attribute weight vector
impractical. Moreover, even if the neighborhood focus is
known a priori, it is hard to assign weights to those attributes
beyond that of binary relevance.

In this section, we propose an optimization approach to
automatically infer the attribute weight vector for a given
neighborhood, as the vector that maximizes its normality
score. That is, we aim to identify a subspace that would
make the neighborhood’s normality as high as possible.
All neighborhoods can then be ranked based on their (best
possible) normality scores, and those with lowest scores can
be deemed anomalous. This allows us to restate our original
problem in Section 2 as follows:
Given a set of neighborhoods C and normality N ;
Find the attribute weight vector wCi which maximizes

N(Ci) for each neighborhood Ci 2 C,
Rank neighborhoods C by normality score,
Find the neighborhoods of lowest quality.

4.1 Neighborhood Focus Extraction Our goal is to find
an attribute weight vector (hereafter called wC) for a neigh-
borhood C, which makes its normality as high as possi-
ble, such that connected nodes in the neighborhood are very
similar and the nodes at the boundary are dissimilar. To this
end, we leverage our normality to formulate an objective
function parameterized by the attribute weights. This objec-
tive also has the nice property of quantifying structure, by
penalizing non-existing in-edges and surprising cross-edges.
Our formulation for focus extraction is then maxwC N(C),
which by reorganizing the terms that do not depend on wC,
can be rewritten (based on Eq. (3.4)) as

max
wC

wC
T ·

 X

i2C,j2C

�
Aij �

kikj
2m

�
s(xi,xj)

�
X

i2C,b2B
(i,b)2E

�
1�min(1,

kikb
2m

)
�
s(xi,xb)

�

max
wC

wC
T · (xI + xE)(4.5)

where xI and xE are vectors that respectively denote the
first and the second summation terms. Note that these can
be directly computed from data. Moreover, the similarity
function s(xi,xj) can be replaced by either (xi � xj) or
�(xi,xj) depending on the type of the node attributes.

4.2 Size-invariant Scoring The normality score in Eq.
(4.5) grows in magnitude with the size of the neighborhood
C being considered. Normalization is desirable then, in
order to compare across differences in both neighborhood
and boundary size.

We note that I is the maximum in the case of a fully
connected neighborhood the members of which all agree
upon the focus attributes. Therefore, Imax = |C|2, where
smax(xi,xj) = 1 provided that the attributes xi(f) are
normalized to [0, 1] for each node i. On the other hand the
minimum is negative, when there exists no internal edges
and pairwise similarities are maximum. That is, Imin =P

i2C,j2C �kikj

2m . To normalize the internal consistency
I , we subtract Imin and divide by Imax � Imin, which is
equivalent to a weighted version of edge density.

To normalize external separability, we derive a mea-
sure similar to conductance [4], i.e., ratio of boundary or
cut edges to the total volume (sum of the degrees of the
neighborhood nodes). The difference is that each edge
is weighted based on its surprise and the similarity of its
end nodes. In particular, we define xĨ =

P
i2C,j2C
(i,j)2E

�
1 �

min(1, kikj

2m)
�
s(xi,xj). Note that similar to E, Ĩ considers

only the existing edges in the graph. Therefore, Ĩ � E can
be seen as the total weighted volume of the neighborhood.

Overall, we scale our measure as follows, where the
division of the vectors in the second term is element-wise.
As such, x̂I(f) 2 [0, 1] and x̂E(f) 2 [�1, 0].

N̂ = wC
T (x̂I + x̂E) = wC

T (
xI � Imin

Imax � Imin
+

xE

xĨ � xE
)

4.3 Objective Optimization The normalized objective
function can be written as

max
wC

wC
T · (x̂I + x̂E)

(4.6)

s.t. kwCkp = 1, wC(f) � 0, 8f = 1 . . . d

Note that we introduce a set of constraints on wC

to fully formulate the objective. In particular, we require
the attribute weights to be non-negative and that wC is
normalized (or regularized) to its p-norm. These constraints
also facilitate the interpretation of the weights. In the
following we let x = (x̂I + x̂E), where x(f) 2 [�1, 1].

There are various ways to choose p, yielding different
interpretations. If one uses kwCkp=1, a.k.a. the L1 norm,

different across neighborhoods. Moreover, the attribute
weights are often latent. For defining our quality criteria we
can assume w is known. Later in Section 4 we will show that
thanks to our formulation, we can infer this weight vector so
as to make a given neighborhood as internally consistent and
externally well-separated as possible. In the following we
discuss the properties captured by Eq. (3.2).

First, notice that the internal consistency is decreased
by missing edges inside a neighborhood, as Aij = 0 for
(i, j) /2 E . Second, the existence of an edge is rewarded
as much as the “surprise” of the edge. Specifically, kikj

2m
denotes the probability that two nodes of degrees ki and kj
are connected to each other by chance in a random network
with the same degree distribution as the original graph [15].
As such, we define the surprise of an edge (i, j) 2 E as
(1 � kikj

2m). The smaller kikj

2m is for an existing edge inside
a neighborhood, the more surprising it is and the more it
contributes to the quality of the neighborhood.

These two properties quantify the structure of the neigh-
borhood. On the other hand, the similarity function quanti-
fies the attribute coherence. As a result, the more similar the
neighborhood nodes can be made by some choice of w, the
higher I becomes. If no such weights can be found, inter-
nal consistency reduces even if the community is a complete
graph with no missing edges.

Overall, a neighborhood with (1) many existing and (2)
“surprising” internal edges among its members where (3) (a
subset of) attributes make them highly similar receives a high
internal consistency score.

3.1.2 External separability: Besides being internally
consistent, we consider a neighborhood to be of high quality
if it is also well-separated from its boundary. In particular, a
well-separated neighborhood either has (1) few cross-edges
at its boundary, or (2) many cross-edges that can be “exon-
erated”. A cross-edge (i, b) 2 E (i 2 C, b 2 B) is exoner-
ated either when it is unsurprising (i.e., expected under the
null model) or when internal node i is dissimilar to boundary
node b based on the focus attribute weights. The latter cri-
terion ensures that what makes the neighborhood members
similar to one another does not also make them similar to the
boundary nodes, but rather differentiates them. The external
separability E of a neighborhood C is then

E = �
X

i2C,b2B,
(i,b)2E

�
1�min(1,

kikb
2m

)
�
s(xi,xb|w)  0 .

(3.3)

External separability considers only the boundary edges
and quantifies the degree that these cross-edges can be exon-
erated. As discussed earlier, cross-edges are exonerated in
two possible ways. First, a cross-edge may be unsurprising;
in which case the term (1 � min(1, kikb

2m)) becomes small
or ideally zero (recall Fig. 2 (a) scenario). Second, the

boundary node of a cross-edge may not share the same fo-
cus attributes with the internal node; in which case the term
s(xi,xb|w) becomes small or ideally zero (recall Fig. 2 (b)
scenario). The higher the number of cross-edges that can be
exonerated, the larger E (note the negative sign) and hence
the quality of a neighborhood becomes.

Note that good neighborhoods by normality differ
from quasi-cliques for which only internal quality measures,
such as density [17] or average degree [5], are defined.
Different from those and besides internal consistency, we
also quantify the quality of the boundary of a neighborhood.
Normality is also different from popular measures that
do quantify the boundary, such as cut-ratio [7], modularity
[15] or conductance [4], for which good neighborhoods are
expected to have only a few cross-edges. In contrast, our
formulation allows for many cross-edges as long as they are
either (i) unsurprising (under the null model) or if surprising,
(ii) can be exonerated by the neighborhood focus. These
advantages arise as we utilize both structure and attributes in
a systematic and intuitive way to define our measure.

3.2 Normality Having defined the two criteria for the
quality of a neighborhood, normality (N) is written as
the sum of the two quantities I and E, where high quality
neighborhoods are expected to have both high internal con-
sistency and high external separability.

N = I + E =
X

i2C,j2C

�
Aij �

kikj
2m

�
s(xi,xj|w)

�
X

i2C,b2B
(i,b)2E

�
1�min(1,

kikb
2m

)
�
s(xi,xb|w)(3.4)

For a neighborhood with the highest normality, all
the possible internal edges exist and are also surprising for
which pairwise similarities are high. These ensure that the
first term is maximized. Moreover, the neighborhood either
has no cross-edges or the similarity or surprise of existing
cross-edges to the boundary nodes are near zero, such that
the second term vanishes. Neighborhoods of a graph for
which the normality takes negative values are of lesser
quality and deemed as anomalous.
Choice of similarity function: To this end, we considered
the node attributes to be scalar variables where s(xi,xj|w)
is the weighted dot-product similarity. If the attributes are
categorical (e.g., location, occupation, etc.), one can instead
use the Kronecker delta function �(·) that takes the value 1 if
two nodes exhibit the same value for a categorical attribute
and 0 otherwise.

The choice of the similarity function is especially im-
portant for binary attributes (e.g., likes-biking, has-job, etc.).
While those can be thought of as categorical variables tak-
ing the values {0, 1}, using Kronecker � becomes undesir-
able for nodes inside a neighborhood. The reason is, inter-

nal consistency by the � function is the same both when all
the neighborhood nodes exhibit a particular binary attribute
(all 1) and when none does (all 0). However, one may not
want to characterize a neighborhood based on attributes that
its members do not exhibit even if the agreement is large.
Therefore, we propose to use dot-product for computing in-
ternal consistency and Kronecker � for computing external
separability for binary-attributed graphs.

4 Anomaly Mining of Entity Neighborhoods
As presented so far, when given a neighborhood C of an
attributed graph and vector w of attribute weights, we can
directly compute its normality using Eq. (3.4). However,
for the task of anomaly mining, the focus of a neighborhood
is latent and hard to guess without any prior knowledge. This
is especially true in high dimensions where most attributes
are irrelevant, making a uniform attribute weight vector
impractical. Moreover, even if the neighborhood focus is
known a priori, it is hard to assign weights to those attributes
beyond that of binary relevance.

In this section, we propose an optimization approach to
automatically infer the attribute weight vector for a given
neighborhood, as the vector that maximizes its normality
score. That is, we aim to identify a subspace that would
make the neighborhood’s normality as high as possible.
All neighborhoods can then be ranked based on their (best
possible) normality scores, and those with lowest scores can
be deemed anomalous. This allows us to restate our original
problem in Section 2 as follows:
Given a set of neighborhoods C and normality N ;
Find the attribute weight vector wCi which maximizes

N(Ci) for each neighborhood Ci 2 C,
Rank neighborhoods C by normality score,
Find the neighborhoods of lowest quality.

4.1 Neighborhood Focus Extraction Our goal is to find
an attribute weight vector (hereafter called wC) for a neigh-
borhood C, which makes its normality as high as possi-
ble, such that connected nodes in the neighborhood are very
similar and the nodes at the boundary are dissimilar. To this
end, we leverage our normality to formulate an objective
function parameterized by the attribute weights. This objec-
tive also has the nice property of quantifying structure, by
penalizing non-existing in-edges and surprising cross-edges.
Our formulation for focus extraction is then maxwC N(C),
which by reorganizing the terms that do not depend on wC,
can be rewritten (based on Eq. (3.4)) as

max
wC

wC
T ·

 X

i2C,j2C

�
Aij �

kikj
2m

�
s(xi,xj)

�
X

i2C,b2B
(i,b)2E

�
1�min(1,

kikb
2m

)
�
s(xi,xb)

�

max
wC

wC
T · (xI + xE)(4.5)

where xI and xE are vectors that respectively denote the
first and the second summation terms. Note that these can
be directly computed from data. Moreover, the similarity
function s(xi,xj) can be replaced by either (xi � xj) or
�(xi,xj) depending on the type of the node attributes.

4.2 Size-invariant Scoring The normality score in Eq.
(4.5) grows in magnitude with the size of the neighborhood
C being considered. Normalization is desirable then, in
order to compare across differences in both neighborhood
and boundary size.

We note that I is the maximum in the case of a fully
connected neighborhood the members of which all agree
upon the focus attributes. Therefore, Imax = |C|2, where
smax(xi,xj) = 1 provided that the attributes xi(f) are
normalized to [0, 1] for each node i. On the other hand the
minimum is negative, when there exists no internal edges
and pairwise similarities are maximum. That is, Imin =P

i2C,j2C �kikj

2m . To normalize the internal consistency
I , we subtract Imin and divide by Imax � Imin, which is
equivalent to a weighted version of edge density.

To normalize external separability, we derive a mea-
sure similar to conductance [4], i.e., ratio of boundary or
cut edges to the total volume (sum of the degrees of the
neighborhood nodes). The difference is that each edge
is weighted based on its surprise and the similarity of its
end nodes. In particular, we define xĨ =

P
i2C,j2C
(i,j)2E

�
1 �

min(1, kikj

2m)
�
s(xi,xj). Note that similar to E, Ĩ considers

only the existing edges in the graph. Therefore, Ĩ � E can
be seen as the total weighted volume of the neighborhood.

Overall, we scale our measure as follows, where the
division of the vectors in the second term is element-wise.
As such, x̂I(f) 2 [0, 1] and x̂E(f) 2 [�1, 0].

N̂ = wC
T (x̂I + x̂E) = wC

T (
xI � Imin

Imax � Imin
+

xE

xĨ � xE
)

4.3 Objective Optimization The normalized objective
function can be written as

max
wC

wC
T · (x̂I + x̂E)

(4.6)

s.t. kwCkp = 1, wC(f) � 0, 8f = 1 . . . d

Note that we introduce a set of constraints on wC

to fully formulate the objective. In particular, we require
the attribute weights to be non-negative and that wC is
normalized (or regularized) to its p-norm. These constraints
also facilitate the interpretation of the weights. In the
following we let x = (x̂I + x̂E), where x(f) 2 [�1, 1].

There are various ways to choose p, yielding different
interpretations. If one uses kwCkp=1, a.k.a. the L1 norm,

• Estimating Normality:

31

L. Akoglu

Anomalous groups (collective): AMEN
telescopic op-amps

telescopic cascode
multidecade

… …

split-radix FFT

reciprocal split
reserve

… …

32

L. Akoglu

Anomalous groups (collective): AMEN
telescopic op-amps

telescopic cascode
multidecade

… …

split-radix FFT

reciprocal split
reserve

… …

33

L. Akoglu

Anomalous groups in malice detection

Mapping Networks of Terrorist Cells / Krebs46

I was amazed at how sparse the network was and how
distant many of the hijackers on the same team were
from each other. Many pairs of team members where
beyond the horizon of observability (Friedkin, 1983)
from each other – many on the same flight were more
than 2 steps away from each other. Keeping cell mem-
bers distant from each other, and from other cells,
minimizes damage to the network if a cell member is
captured or otherwise compromised. Usama bin
Laden even described this strategy on his infamous
video tape which was found in a hastily deserted house
in Afghanistan. In the transcript (Department of
Defense, 2001) bin Laden mentions:

Those who were trained to fly didn’t know the others.
One group of people did not know the other group.

The metrics for the network in Figure 2 are shown
below and in Table 1. We see a very long mean path
length, 4.75, for a network of less than 20 nodes.
From this metric and bin Laden’s comments above we
see that covert networks trade efficiency for secrecy.

no shortcuts with shortcuts

Group Size
Potential Ties
Actual Ties
Density

 19
342
 54

 16 %

19
342
66

19%

Geodesics
160

140

120

100

80

60

40

20

1 2 3 4 5 6 7 8 9 10
 = without shortcuts = with shortcuts

Yet, work has to be done, plans have to be executed.
How does a covert network accomplish its goals?
Through the judicious use of transitory short-cuts
(Watts, 1999) in the network. Meetings are held that
connect distant parts of the network to coordinate
tasks and report progress. After the coordination is

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

Mapping Networks of Terrorist Cells / Krebs 45

1 http://www.google.com

Figure 1. Early Hijacker Matrix

Once the names of the 19 hijackers were public, discovery about their background and ties seemed to
accelerate. From two to six weeks after the event, it appeared that a new relationship or node was added
to the network on a daily basis. In addition to tracking the newspapers mentioned, I started to search
for the terrorists’ names using the Google search engine 1. Although I would find information about
each of the 19 hijackers, rarely would I find information from the search engine that was not reported
by the major newspapers I was tracking. Finding information that was not duplicated in one of the
prominent newspapers made me suspicious. Several false stories appeared about a cell in Detroit.
These stories, originally reported with great fanfare, were proven false within one week. This made me
even more cautious about which sources I used to add a link or a node to the network.

By the middle of October enough data was available to start seeing patterns in the hijacker network.
Initially, I examined the prior trusted contacts (Erickson, 1981) – those ties formed through living and
learning together. The network appeared in the shape of a serpent (Figure 2) – how appropriate, I
thought.

• In other contexts, “too dense”ly
connected groups may be
indicative of malice/fraud

• 9/11 hijackers were
densely linked via
• kinship
• school/training
• travel/financial records
• meetings
• …"Mapping networks of terrorist cells."

Krebs, V. E. Connections 24.3 (2002): 43-52

34

L. Akoglu

Anomalous groups in malice detection
• Opinion fraud: Groups of users promoting/demoting businesses

Opinion Fraud Detection in Online Reviews using Network Effects. [Akoglu+] ICWSM, 2013
Collective Opinion Spam Detection: Bridging Review Networks and Metadata. [Rayana & Akoglu] ACM SIGKDD 2015
Discovering Opinion Spammer Groups by Network Footprints. [Ye & Akoglu] ECML PKDD 2015
BIRDNEST: Bayesian Inference for Ratings-Fraud Detection. [Hooi+] SIAM SDM 2016
Collective Opinion Spam Detection using Active Inference. [Rayana & Akoglu] SIAM SDM 2016

… …

35

Table 4: AP and AUC performance of compared methods on all three datasets.
User Ranking Review Ranking

AP AUC AP AUC
Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip

Random 0.2024 0.1782 0.2392 0.5000 0.5000 0.5000 0.1327 0.1028 0.1321 0.5000 0.5000 0.5000
FraudEagle 0.2537 0.2233 0.3091 0.6124 0.6062 0.6175 0.1067 0.1122 0.1524 0.3735 0.5063 0.5326
Wang et al. 0.2659 0.2381 0.3306 0.6167 0.6207 0.6554 0.1518 0.1255 0.1803 0.5062 0.5415 0.5982
Prior 0.2157 0.1826 0.2550 0.5294 0.5081 0.5269 0.2241 0.1789 0.2352 0.6707 0.6705 0.6838
SpEagle 0.3393 0.2680 0.3616 0.6905 0.6575 0.6710 0.3236 0.2460 0.3319 0.7887 0.7695 0.7942

SpEagle+(1%) 0.3967 0.3480 0.4245 0.7078 0.6828 0.6907 0.3352 0.2757 0.3545 0.7951 0.7829 0.8040
SpLite+ (1%) 0.3777 0.3331 0.4218 0.6744 0.6542 0.6784 0.3124 0.2550 0.3448 0.7693 0.7631 0.7923

Table 5: Precision@k of compared methods on (from
top to bottom) YelpChi, YelpNYC, and YelpZip.

User Ranking Review Ranking

k P
r
io
r

F
r
a
u
d
E
a
g
le

W
a
n
g

e
t
a
l.

S
p
E
a
g
le

P
r
io
r

F
r
a
u
d
E
a
g
le

W
a
n
g

e
t
a
l.

S
p
E
a
g
le

100 0.32 0.30 0.21 0.73 0.38 0.25 0.24 0.74
200 0.26 0.30 0.19 0.59 0.33 0.18 0.26 0.59
300 0.23 0.38 0.21 0.52 0.33 0.21 0.25 0.53
400 0.21 0.33 0.26 0.49 0.32 0.29 0.25 0.50
500 0.18 0.29 0.27 0.50 0.31 0.27 0.25 0.50
600 0.17 0.28 0.27 0.49 0.32 0.25 0.26 0.49
700 0.18 0.27 0.29 0.46 0.31 0.22 0.26 0.46
800 0.18 0.26 0.30 0.46 0.32 0.22 0.25 0.46
900 0.18 0.26 0.30 0.46 0.32 0.20 0.23 0.45
1000 0.19 0.28 0.32 0.45 0.31 0.20 0.23 0.45

100 0.34 0.21 0.15 0.44 0.34 0.10 0.17 0.44
200 0.30 0.19 0.19 0.46 0.32 0.12 0.22 0.46
300 0.28 0.17 0.18 0.44 0.34 0.09 0.27 0.44
400 0.27 0.21 0.17 0.44 0.34 0.11 0.21 0.44
500 0.25 0.22 0.17 0.41 0.33 0.11 0.22 0.41
600 0.23 0.27 0.17 0.40 0.32 0.13 0.22 0.40
700 0.22 0.37 0.16 0.39 0.32 0.12 0.22 0.39
800 0.22 0.45 0.16 0.39 0.32 0.13 0.20 0.39
900 0.22 0.50 0.15 0.38 0.31 0.13 0.22 0.38
1000 0.22 0.45 0.16 0.38 0.32 0.14 0.20 0.38

100 0.51 0.55 0.18 0.44 0.51 0.29 0.86 0.43
200 0.48 0.52 0.18 0.53 0.51 0.29 0.92 0.52
300 0.46 0.48 0.20 0.52 0.51 0.29 0.61 0.51
400 0.44 0.49 0.20 0.54 0.48 0.30 0.46 0.53
500 0.42 0.48 0.20 0.52 0.47 0.29 0.38 0.53
600 0.41 0.47 0.21 0.51 0.46 0.28 0.35 0.52
700 0.41 0.47 0.21 0.50 0.44 0.29 0.32 0.50
800 0.40 0.49 0.22 0.50 0.45 0.29 0.34 0.49
900 0.39 0.48 0.22 0.49 0.44 0.28 0.30 0.48
1000 0.39 0.47 0.22 0.50 0.43 0.28 0.27 0.49

3.3 Analyzing priors
Next we investigate the informativeness of feature cate-

gories and individual features in estimating e↵ective priors.

User vs. Review vs. Product priors.
We start by analyzing the user, review, and product pri-

ors. To study the e↵ectiveness of a certain group of priors
(e.g., user, or user+review), we only initialize the priors for
the nodes in that group in the graph (as estimated from
metadata) and set the remaining node priors to unbiased,
i.e. {0.5, 0.5}. We then compare the performance of SpEa-
gle with priors of various groups.

Table 7 shows the AP and AUC performance of SpEa-
gle across datasets with various prior groups. We find that
the review priors produce the most e↵ective results, followed

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
User Ranking (YelpChi)

Prior Wang FraudEagle SpEagle
SpEagle+(1%) SpEagle+(5%) SpEagle+(10%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
Review Ranking (YelpChi)

Prior Wang FraudEagle SpEagle
SpEagle+(1%) SpEagle+(5%) SpEagle+(10%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
User Ranking (YelpNYC)

Prior Wang FraudEagle SpEagle
SpEagle+(0.5%) SpEagle+(1%) SpEagle+(2%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
Review Ranking (YelpNYC)

Prior Wang FraudEagle SpEagle
SpEagle+(0.5%) SpEagle+(1%) SpEagle+(2%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
User Ranking (YelpZip)

Prior Wang FraudEagle SpEagle
SpEagle+(0.25%) SpEagle+(0.5%) SpEagle+(1%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
Review Ranking (YelpZip)

Prior Wang FraudEagle SpEagle
SpEagle+(0.25%) SpEagle+(0.5%) SpEagle+(1%)

(a) User Ranking (b) Review Ranking

Figure 3: NDCG@k of compared methods on (from
top to bottom) YelpChi, YelpNYC, and YelpZip for both
user and review ranking. Also shown are results for
SpEagle+ with varying % of labeled data.

by user priors, and product priors. The di↵erence in per-
formance is especially pronounced on our largest dataset
YelpZip. To our surprise, we find that the product priors
alone yield performance that is lower than that by random
ranking. As a result, SpEagle with only user and review
priors performs almost as well as using all the priors.

Text- vs. Behavior-based priors.
Recall from Table 2 that our features are derived from

review text as well as behavioral clues. Here we investigate
the performance of SpEagle when priors are estimated from

Table 4: AP and AUC performance of compared methods on all three datasets.
User Ranking Review Ranking

AP AUC AP AUC
Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip

Random 0.2024 0.1782 0.2392 0.5000 0.5000 0.5000 0.1327 0.1028 0.1321 0.5000 0.5000 0.5000
FraudEagle 0.2537 0.2233 0.3091 0.6124 0.6062 0.6175 0.1067 0.1122 0.1524 0.3735 0.5063 0.5326
Wang et al. 0.2659 0.2381 0.3306 0.6167 0.6207 0.6554 0.1518 0.1255 0.1803 0.5062 0.5415 0.5982
Prior 0.2157 0.1826 0.2550 0.5294 0.5081 0.5269 0.2241 0.1789 0.2352 0.6707 0.6705 0.6838
SpEagle 0.3393 0.2680 0.3616 0.6905 0.6575 0.6710 0.3236 0.2460 0.3319 0.7887 0.7695 0.7942

SpEagle+(1%) 0.3967 0.3480 0.4245 0.7078 0.6828 0.6907 0.3352 0.2757 0.3545 0.7951 0.7829 0.8040
SpLite+ (1%) 0.3777 0.3331 0.4218 0.6744 0.6542 0.6784 0.3124 0.2550 0.3448 0.7693 0.7631 0.7923

Table 5: Precision@k of compared methods on (from
top to bottom) YelpChi, YelpNYC, and YelpZip.

User Ranking Review Ranking

k P
r
io
r

F
r
a
u
d
E
a
g
le

W
a
n
g

e
t
a
l.

S
p
E
a
g
le

P
r
io
r

F
r
a
u
d
E
a
g
le

W
a
n
g

e
t
a
l.

S
p
E
a
g
le

100 0.32 0.30 0.21 0.73 0.38 0.25 0.24 0.74
200 0.26 0.30 0.19 0.59 0.33 0.18 0.26 0.59
300 0.23 0.38 0.21 0.52 0.33 0.21 0.25 0.53
400 0.21 0.33 0.26 0.49 0.32 0.29 0.25 0.50
500 0.18 0.29 0.27 0.50 0.31 0.27 0.25 0.50
600 0.17 0.28 0.27 0.49 0.32 0.25 0.26 0.49
700 0.18 0.27 0.29 0.46 0.31 0.22 0.26 0.46
800 0.18 0.26 0.30 0.46 0.32 0.22 0.25 0.46
900 0.18 0.26 0.30 0.46 0.32 0.20 0.23 0.45
1000 0.19 0.28 0.32 0.45 0.31 0.20 0.23 0.45

100 0.34 0.21 0.15 0.44 0.34 0.10 0.17 0.44
200 0.30 0.19 0.19 0.46 0.32 0.12 0.22 0.46
300 0.28 0.17 0.18 0.44 0.34 0.09 0.27 0.44
400 0.27 0.21 0.17 0.44 0.34 0.11 0.21 0.44
500 0.25 0.22 0.17 0.41 0.33 0.11 0.22 0.41
600 0.23 0.27 0.17 0.40 0.32 0.13 0.22 0.40
700 0.22 0.37 0.16 0.39 0.32 0.12 0.22 0.39
800 0.22 0.45 0.16 0.39 0.32 0.13 0.20 0.39
900 0.22 0.50 0.15 0.38 0.31 0.13 0.22 0.38
1000 0.22 0.45 0.16 0.38 0.32 0.14 0.20 0.38

100 0.51 0.55 0.18 0.44 0.51 0.29 0.86 0.43
200 0.48 0.52 0.18 0.53 0.51 0.29 0.92 0.52
300 0.46 0.48 0.20 0.52 0.51 0.29 0.61 0.51
400 0.44 0.49 0.20 0.54 0.48 0.30 0.46 0.53
500 0.42 0.48 0.20 0.52 0.47 0.29 0.38 0.53
600 0.41 0.47 0.21 0.51 0.46 0.28 0.35 0.52
700 0.41 0.47 0.21 0.50 0.44 0.29 0.32 0.50
800 0.40 0.49 0.22 0.50 0.45 0.29 0.34 0.49
900 0.39 0.48 0.22 0.49 0.44 0.28 0.30 0.48
1000 0.39 0.47 0.22 0.50 0.43 0.28 0.27 0.49

3.3 Analyzing priors
Next we investigate the informativeness of feature cate-

gories and individual features in estimating e↵ective priors.

User vs. Review vs. Product priors.
We start by analyzing the user, review, and product pri-

ors. To study the e↵ectiveness of a certain group of priors
(e.g., user, or user+review), we only initialize the priors for
the nodes in that group in the graph (as estimated from
metadata) and set the remaining node priors to unbiased,
i.e. {0.5, 0.5}. We then compare the performance of SpEa-
gle with priors of various groups.

Table 7 shows the AP and AUC performance of SpEa-
gle across datasets with various prior groups. We find that
the review priors produce the most e↵ective results, followed

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
User Ranking (YelpChi)

Prior Wang FraudEagle SpEagle
SpEagle+(1%) SpEagle+(5%) SpEagle+(10%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
Review Ranking (YelpChi)

Prior Wang FraudEagle SpEagle
SpEagle+(1%) SpEagle+(5%) SpEagle+(10%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
User Ranking (YelpNYC)

Prior Wang FraudEagle SpEagle
SpEagle+(0.5%) SpEagle+(1%) SpEagle+(2%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
Review Ranking (YelpNYC)

Prior Wang FraudEagle SpEagle
SpEagle+(0.5%) SpEagle+(1%) SpEagle+(2%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
User Ranking (YelpZip)

Prior Wang FraudEagle SpEagle
SpEagle+(0.25%) SpEagle+(0.5%) SpEagle+(1%)

top K
100 200 300 400 500 600 700 800 900 1000

N
D

C
G

@
k

0

0.2

0.4

0.6

0.8

1
Review Ranking (YelpZip)

Prior Wang FraudEagle SpEagle
SpEagle+(0.25%) SpEagle+(0.5%) SpEagle+(1%)

(a) User Ranking (b) Review Ranking

Figure 3: NDCG@k of compared methods on (from
top to bottom) YelpChi, YelpNYC, and YelpZip for both
user and review ranking. Also shown are results for
SpEagle+ with varying % of labeled data.

by user priors, and product priors. The di↵erence in per-
formance is especially pronounced on our largest dataset
YelpZip. To our surprise, we find that the product priors
alone yield performance that is lower than that by random
ranking. As a result, SpEagle with only user and review
priors performs almost as well as using all the priors.

Text- vs. Behavior-based priors.
Recall from Table 2 that our features are derived from

review text as well as behavioral clues. Here we investigate
the performance of SpEagle when priors are estimated from

L. Akoglu

Anomalous groups in malice detection
• Social securities tax fraud: Groups of resources transferred

between “shadow” companies

GOTCHA! Network-based Fraud Detection for Social Security Fraud. [Van Vlasselaer+] Management Science, 63 (9), 2016

Pieces of the puzzle II
!  Relations

#  shared resources (e.g., equipment, suppliers, employees)

L. Akoglu MNG 2016 @ SIAM SDM 28

…

…

e.g.

36

L. Akoglu

Outline
• Anomaly Detection: Motivation, Formalism, Challenges

• Graph-based Anomaly Detection
• General-purpose (single graph)

Global – anomalous nodes
Local – group anomalies
Collective – anomalous groups

• Specialized (graph database)

• Recent Trend: Deep Anomaly Detection

37

L. Akoglu

Anomalous graphs (System security)
• Advanced Persistent Threat

38

Problem Setting :
• Given a stream of event logs
• Find anomalous system events

time pid event arg/data
100 10639 fork NULL

200 10640 execve /bin/sh

300 10650 read STDIN

400 10640 fstat 0xbfc5598

500 10660 sock_wr 0.0.0.0

… … … …

Host-level
detection

L. Akoglu

Anomalous graphs (System security)
• Advanced Persistent Threat

39

Problem Setting :
• Given a stream of event logs
• Find anomalous system events

Requirements :
• Real-time detection
• Low-latency
• Low computational overhead
• Low memory usage

Host-level
detection

Given <DATA>, Find <ANOMALIES>
s.t. <CONSTRAINTS>

L. Akoglu

graphs with typed nodes and edges, (ii) processes incoming
edges fast and consumes bounded memory, as well as (iii)
dynamically maintains the clustering and detects anomalies
in real time. In a nutshell, we propose a new shingling-based
similarity function for heterogeneous graphs, which lends it-
self to graph sketching that uses fixed memory while preserv-
ing similarity. We show how to maintain the graph sketches
e�ciently as new edges arrive. Based on this representa-
tion, we employ and dynamically maintain a centroid-based
clustering scheme to score and flag anomalous graphs. The
main contributions of this work are listed as follows:

• Novel formulation and graph similarity: We for-
mulated the host-level APT detection problem as a
clustering-based anomaly detection task in streaming
heterogeneous graphs. To enable an e↵ective cluster-
ing, we designed a new similarity function for times-
tamped typed graphs, based on shingling, which ac-
counts for the frequency of di↵erent substructures in a
graph. Besides being e�cient to compute and e↵ective
in capturing similarity between graphs, the proposed
function lends itself to comparing two graphs based on
their sketches, which enables memory-e�ciency.

• Dynamic maintenance: We introduce e�cient tech-
niques to keep the various components of our approach
up to date as new edges arrive over the stream. Specif-
ically, we show how to maintain (a) the graph sketches,
and (b) the clustering incrementally.

• Desirable properties: Our formulation and proposed
techniques are motivated by the requirements and de-
sired properties of the application domain. As such,
our approach is (i) fully streaming, where we perform a
continuous, edge-level processing of the stream, rather
than taking a snaphot-oriented approach; (ii) time-
e�cient, where the processing of each edge is fast with
constant complexity to update its graph’s sketch and
the clustering; (iii) memory-e�cient, where the sketches
and cluster summaries consume constant memory that
is controlled by user input, and (iv) online, where we
score and flag the anomalies in real-time.

We quantitatively validate the e↵ectiveness and (time and
space) e�ciency of our proposed StreamSpot on simulated
datasets containing normal host-level activity as well as ab-
normal attack scenarios (i.e., ground truth). We also de-
sign experiments to study the approximation quality of our
sketches, and the behavior of our detection techniques under
varying parameters, such as memory size.

Source code of StreamSpot and the simulated datasets
(normal and attack) will be released at http://www3.cs.
stonybrook.edu/~emanzoor/streamspot/.

2. PROBLEM & OVERVIEW
For host-level APT detection, a host machine is instru-

mented to collect system logs. These logs essentially capture
the events occuring in the system, such as memory accesses,
system calls, etc. An example log sequence is illustrated in
Figure 1. Based on the control and data dependences, infor-
mation flow graphs are constructed from the system logs. In
the figure, the tag column depicts the ID of the information
flow (graph) that an event (i.e., edge) belongs to.

The streaming graphs are heterogeneous where edge types
correspond to system calls such as read, fork, sock_wr, etc.
and node types include socket, file, memory, etc.

time% pid% event% arg/data% tag%
100# 10639# fork# NULL# 1#

200# 10640# execve# /bin/sh# 1#

300# 10650# read# STDIN# 2#

400# 10640# fstat# 0xbfc5598# 1#

500# 10660# sock_wr# 0.0.0.0# 2#

…# …# …# …# …#

10650%

STDIN%

10660%

0.0.0.0%

10639%

10640%

0xbfc5598%

<100,fork>%

/bin/sh%

Figure 1: Example stream of system logs, and two
resulting information flow graphs (red vs. blue).
Both nodes and edges are typed. Edges arriving
to di↵erent flows may interleave.

As such, an edge can be represented in the form of

< source-id, source-type �s, dest-id, dest-type �d,
timestamp t, edge-type �e, flow-tag >

These edges form dynamically evolving graphs, where the
edges sharing the same flow-tag belong to the same graph.
Edges arriving to di↵erent graphs may be interleaved, that
is, multiple graphs may be evolving simultaneously.

Our goal is to detect anomalous graphs at any given time
t, i.e., in real time as they occur. To achieve this goal, we
follow a clustering-based anomaly detection approach. In
a nutshell, our method maintains a small, memory-e�cient
representation of the evolving graphs in main memory, and
uses a new similarity measure that we introduce to cluster
the graphs. The clustering is also maintained dynamically as
existing graphs evolve or as new ones arrive. Anomalies are
flagged in real time through deviations from this clustering
model that captures the normal flow patterns.

In the following, we summarize the main components of
our proposed approach called StreamSpot, with forward
references to respective subsequent (sub)sections.

• Similarity of heterogeneous graphs: (§3.1) We
introduce a new similarity measure for heterogeneous
graphs with typed nodes and edges as well as times-
tamped edges. Each graph G is represented by a what
we call shingle-frequency vector (or shortly shingle vec-
tor) zG. Roughly, a k-shingle s(v, k) is a string con-
structed by traversing edges, in their temporal order,
in the k-hop neighborhood of node v. The shingle-
vector contains the counts of unique shingles in a
graph. Similarity between two graphs is defined as
the cosine similarity between their respective shingle
vectors. Intuitively, the more the same shingles two
graphs contain in common, the more similar they are.

• Memory-e�cient sketches: (§3.2) Number of
unique shingles can be arbitrarily large for heteroge-
neous graphs with hundreds to thousands of node and
edge types. As such, we show how to instead use a
sketch representation of a graph. Sketches are much
smaller (in fact constant-size) vectors, while enabling
similarity to be preserved. In other words, similarity
of the sketches of two graphs provides a good approxi-
mation to their (cosine) similarity with respect to their
original shingle vectors.

• E�cient maintenance of sketches: (§3.3) As new
edges arrive, shingle counts of a graph change. As
such, the shingle vector entries need to be updated.
Recall that we do not explicitly maintain this vector
in memory, but rather its (much smaller) sketch. In
this paper, we show how to update the sketch of a
graph e�ciently, (i) in constant time and (ii) without
incurring any additional memory overhead.

Anomalous graphs (System security)
• Each event associated with a

logical flow (tag)

• Events from different flows may
interleave

40

time pid event arg/data tag
100 10639 fork NULL 1
200 10640 execve /bin/sh 1
300 10650 read STDIN 2
400 10640 fstat 0xbfc5598 1
500 10660 sock_wr 0.0.0.0 2
… … … … …

• Each event as a directed edge :

! Many, simultaneously-growing
node&edge-labeled graphs
! Universe of labels unknown

Fast Memory-Efficient Anomaly Detection in Streaming Heterogeneous Graphs. [Manzoor+] ACM SIGKDD, 2016.

L. Akoglu

Anomalous graphs (Accounting)
• Double-entry Bookkeeping

example journal entry:

44

Problem Setting :
• Given millions of journal entries
• Find anomalies

(entry errors, misconduct, etc.)
GL_Account_
Number

CA_FS_Caption Cr/Db
GL_Reporting
_Amount

40020000
(Revenue)

Gross Sales (GSL) C -7250

40020001
(Revenue)

Gross Sales (GSL) C -2500

20830000
(Liabilities)

Sales Tax Payables
(STP)

C -794.63

10390000
(Assets)

Accounts
Receivable (ARV)

D 10544.63

Given <DATA>, Find <ANOMALIES>
s.t. <CONSTRAINTS>

L. Akoglu

Anomalous graphs (Accounting)
• Double-entry Bookkeeping

example journal entry:

45

Problem Setting :
• Given millions of journal entries
• Find anomalies

(entry errors, misconduct, etc.)

Requirements :
• Explainability (audit)

GL_Account_
Number

CA_FS_Caption Cr/Db
GL_Reporting
_Amount

40020000
(Revenue)

Gross Sales (GSL) C -7250

40020001
(Revenue)

Gross Sales (GSL) C -2500

20830000
(Liabilities)

Sales Tax Payables
(STP)

C -794.63

10390000
(Assets)

Accounts
Receivable (ARV)

D 10544.63

Given <DATA>, Find <ANOMALIES>
s.t. <CONSTRAINTS>

Anomaly Detection in Large Labeled Multi-Graph Databases. [Nguyen+] arXiv:2010.03600, 2020.

L. Akoglu

Anomalous graphs (Accounting)

46

GL_Account_
Number

CA_FS_Caption Cr/Db
GL_Reporting
_Amount

40060000
(Revenue)

Gross Sales (GSL) C -1575.00

10415000
(Assets)

Accounts
Receivable (ARV)

D 1575.00

Accounts
Receivable

Gross
Sales

Gross
Sales

Sales Tax
Payables

$ 7250

$ 2500 $ 794.63

Accounts
Receivable

Gross
Sales

$ 1575

GL_Account_
Number

CA_FS_Caption Cr/Db
GL_Reporting
_Amount

40020000
(Revenue)

Gross Sales (GSL) C -7250

40020001
(Revenue)

Gross Sales (GSL) C -2500

20830000
(Liabilities)

Sales Tax Payables
(STP)

C -794.63

10390000
(Assets)

Accounts
Receivable (ARV)

D 10544.63

• Transaction graphs:

L. Akoglu

Anomalous graphs (Accounting)

47

• Transaction graph of journals over 10-day window:

L. Akoglu

Anomalous graphs (Accounting)
• Anomaly detection via data description/encoding

48

TABLE I: Comparison with popular approaches to graph
anomaly detection, in terms of distinguishing properties.

Graph Emb. Graph Anom. Detect.

Properties vs. Methods

[1
0]

,[
12

]
[1

3]
,[

14
],

[1
8]

[1
1]

,[
15

],
[1

6]

[1
]

[2
],

[5
]

[4
]

[6
]

[9
],

[8
]

[3
]

C
O

D
E

T
E

C
T

Graph-level/graph database 4 4 4 4 4
Node-labeled graphs 4 4 4 4 4 4
Multi/Weighted edges 4 4 4 4 4
Directed edges 4 4 4 4 4 4 4 4 4
Anomaly detection 4 4 4 4 4 4 4

II. RELATED WORK

CODETECT is designed to detect anomalous graphs within
a database containing graphs with complex properties; such
as node labels and/or multi/weighted, and/or directed edges.
To our knowledge, there exists no other work for this task

that is able to handle graphs with such nature. Table I gives a
qualitative comparison to existing art, described as follows.

Graph anomaly detection has been the focus of many work
[1], [2], [4], [5], [6] (See [7] for a survey.) However, these do
not apply to detecting anomalies within a graph database, as
they are designed to find node/edge/subgraph anomalies within
a single graph. Several work for detecting anomalies among
a set or series of graphs [3], [8], [9] cannot simultaneously
handle all the graph properties that CODETECT is designed
for, such as node labels or edge weights.

Recently, a body of graph embedding methods has been
developed, able to handle graphs with complex properties [10],
[11], [12], [13], [14], [15], [18]. Those as well as graph kernels
[16], [17] produce vector representations. However, they do
not tackle anomaly detection per se. Such representations need
to be input to a certain choice of an off-the-shelf detector
to perform anomaly detection. While such representations
capture general structural patterns, we find they are not suitable
for anomaly detection as shown in the experiments.

Finally, frequent patterns and lossless compression via the
MDL principle [19] have been successfully applied to anomaly
detection [20], [21], however for regular transaction (or vector)
databases. We are the first to use motif-based lossless graph
encoding for the graph anomaly detection task.

III. PRELIMINARIES & THE PROBLEM

As input, a large set of J graphs G = {G1, . . . , GJ} is
given. Each graph Gj = (Vj , Ej , ⌧) is a directed, node-
labeled, multi-graph which may contain multiple edges that
have the same end nodes. ⌧ : Vj ! T is a function that
assigns labels from an alphabet T to nodes in each graph.
The number of realizations of an edge (u, v) 2 Ej is called
its multiplicity, denoted m(u, v). (See Fig. 1(a) for example.)

Our motivating domain is business accounting, in which
each Gj corresponds to a graph representation of what-is-
called a “journal entry”: a detailed transaction record. Nodes
capture the unique accounts associated with the record, di-

rected edges the transactions between these accounts, and

A

B

A

B

D
C
! ", $

= 2

……

(a) (b)
Fig. 1: (a) E.g. node-labeled multi-graph; (b) Example motif
table; 1st col. lists the motifs, 2nd col. the corresponding
codes, width depicting code length. Letters denote node labels
and same-dashed edges belong to the same motif occurrence.

node labels the financial statement (FS) account types (e.g.,
assets, liabilities, revenue, etc.). Bookkeeping data is kept as a
chronological listing (called General Ledger) of each separate
business transaction, where multiple transactions involving
same account-pairs generate multi-edges between two nodes.

Our high-level idea for finding anomalous graphs in
database G is to identify key characteristic patterns of the
data that “explain” or compress the data well, and flag those
graphs that do not exhibit such patterns as expected—simply
put, graphs that do not compress well are anomalous. More
specifically, graph patterns are substructures or subgraphs,
called motifs, which occur frequently within the input graphs.
“Explaining” the data is encoding each graph using the fre-
quent motifs that it contains. The more frequent motifs we use
for encoding, the more we can compress the data; simply by
encoding the existence of each such motif with a short code.

The goal is to find a (small) set of motifs that compresses the
data the best. Building on the Minimum Description Length
(MDL) principle [22], we aim to find a model, namely a motif

table (denoted MT) that contains a carefully selected subset of
graph motifs, such that the total code length of (1) the model
itself plus (2) the encoding of the data using the model is as
small as possible. In other words, we are after a small model
that compresses the data the most. The two-part objective of
minimizing the total code length is given as follows.

minimize
MT✓MT

L(MT,G) = L(MT)| {z }
model code length

+ L(G|MT)| {z }
data code length

, (1)

where MT denotes the set of all possible candidate motif
tables. The first term can be seen as a model regularizer that
penalizes using an unneccesarily large set of motifs to explain
the data. The second term is the compression length of the data
with the (selected) motifs and decomposes as L(G|MT) =P

j L(Gj |MT) since individual journals are independent. The
encoding length L(Gj |MT) is also the anomaly score for the
jth graph—the larger, the more anomalous.

As such, we have a combinatorial subset selection problem
toward optimizing Eq. (1). To this end, we address two
subproblems outlined below.

Problem 1: Our graph encoding problem is two-fold: (1)
how to encode, and (2) which motifs to encode with, or,

TABLE I: Comparison with popular approaches to graph
anomaly detection, in terms of distinguishing properties.

Graph Emb. Graph Anom. Detect.

Properties vs. Methods

[1
0]

,[
12

]
[1

3]
,[

14
],

[1
8]

[1
1]

,[
15

],
[1

6]

[1
]

[2
],

[5
]

[4
]

[6
]

[9
],

[8
]

[3
]

C
O

D
E

T
E

C
T

Graph-level/graph database 4 4 4 4 4
Node-labeled graphs 4 4 4 4 4 4
Multi/Weighted edges 4 4 4 4 4
Directed edges 4 4 4 4 4 4 4 4 4
Anomaly detection 4 4 4 4 4 4 4

II. RELATED WORK

CODETECT is designed to detect anomalous graphs within
a database containing graphs with complex properties; such
as node labels and/or multi/weighted, and/or directed edges.
To our knowledge, there exists no other work for this task

that is able to handle graphs with such nature. Table I gives a
qualitative comparison to existing art, described as follows.

Graph anomaly detection has been the focus of many work
[1], [2], [4], [5], [6] (See [7] for a survey.) However, these do
not apply to detecting anomalies within a graph database, as
they are designed to find node/edge/subgraph anomalies within
a single graph. Several work for detecting anomalies among
a set or series of graphs [3], [8], [9] cannot simultaneously
handle all the graph properties that CODETECT is designed
for, such as node labels or edge weights.

Recently, a body of graph embedding methods has been
developed, able to handle graphs with complex properties [10],
[11], [12], [13], [14], [15], [18]. Those as well as graph kernels
[16], [17] produce vector representations. However, they do
not tackle anomaly detection per se. Such representations need
to be input to a certain choice of an off-the-shelf detector
to perform anomaly detection. While such representations
capture general structural patterns, we find they are not suitable
for anomaly detection as shown in the experiments.

Finally, frequent patterns and lossless compression via the
MDL principle [19] have been successfully applied to anomaly
detection [20], [21], however for regular transaction (or vector)
databases. We are the first to use motif-based lossless graph
encoding for the graph anomaly detection task.

III. PRELIMINARIES & THE PROBLEM

As input, a large set of J graphs G = {G1, . . . , GJ} is
given. Each graph Gj = (Vj , Ej , ⌧) is a directed, node-
labeled, multi-graph which may contain multiple edges that
have the same end nodes. ⌧ : Vj ! T is a function that
assigns labels from an alphabet T to nodes in each graph.
The number of realizations of an edge (u, v) 2 Ej is called
its multiplicity, denoted m(u, v). (See Fig. 1(a) for example.)

Our motivating domain is business accounting, in which
each Gj corresponds to a graph representation of what-is-
called a “journal entry”: a detailed transaction record. Nodes
capture the unique accounts associated with the record, di-

rected edges the transactions between these accounts, and

A

B

A

B

D
C
! ", $

= 2

……

(a) (b)
Fig. 1: (a) E.g. node-labeled multi-graph; (b) Example motif
table; 1st col. lists the motifs, 2nd col. the corresponding
codes, width depicting code length. Letters denote node labels
and same-dashed edges belong to the same motif occurrence.

node labels the financial statement (FS) account types (e.g.,
assets, liabilities, revenue, etc.). Bookkeeping data is kept as a
chronological listing (called General Ledger) of each separate
business transaction, where multiple transactions involving
same account-pairs generate multi-edges between two nodes.

Our high-level idea for finding anomalous graphs in
database G is to identify key characteristic patterns of the
data that “explain” or compress the data well, and flag those
graphs that do not exhibit such patterns as expected—simply
put, graphs that do not compress well are anomalous. More
specifically, graph patterns are substructures or subgraphs,
called motifs, which occur frequently within the input graphs.
“Explaining” the data is encoding each graph using the fre-
quent motifs that it contains. The more frequent motifs we use
for encoding, the more we can compress the data; simply by
encoding the existence of each such motif with a short code.

The goal is to find a (small) set of motifs that compresses the
data the best. Building on the Minimum Description Length
(MDL) principle [22], we aim to find a model, namely a motif

table (denoted MT) that contains a carefully selected subset of
graph motifs, such that the total code length of (1) the model
itself plus (2) the encoding of the data using the model is as
small as possible. In other words, we are after a small model
that compresses the data the most. The two-part objective of
minimizing the total code length is given as follows.

minimize
MT✓MT

L(MT,G) = L(MT)| {z }
model code length

+ L(G|MT)| {z }
data code length

, (1)

where MT denotes the set of all possible candidate motif
tables. The first term can be seen as a model regularizer that
penalizes using an unneccesarily large set of motifs to explain
the data. The second term is the compression length of the data
with the (selected) motifs and decomposes as L(G|MT) =P

j L(Gj |MT) since individual journals are independent. The
encoding length L(Gj |MT) is also the anomaly score for the
jth graph—the larger, the more anomalous.

As such, we have a combinatorial subset selection problem
toward optimizing Eq. (1). To this end, we address two
subproblems outlined below.

Problem 1: Our graph encoding problem is two-fold: (1)
how to encode, and (2) which motifs to encode with, or,

TABLE I: Comparison with popular approaches to graph
anomaly detection, in terms of distinguishing properties.

Graph Emb. Graph Anom. Detect.

Properties vs. Methods

[1
0]

,[
12

]
[1

3]
,[

14
],

[1
8]

[1
1]

,[
15

],
[1

6]

[1
]

[2
],

[5
]

[4
]

[6
]

[9
],

[8
]

[3
]

C
O

D
E

T
E

C
T

Graph-level/graph database 4 4 4 4 4
Node-labeled graphs 4 4 4 4 4 4
Multi/Weighted edges 4 4 4 4 4
Directed edges 4 4 4 4 4 4 4 4 4
Anomaly detection 4 4 4 4 4 4 4

II. RELATED WORK

CODETECT is designed to detect anomalous graphs within
a database containing graphs with complex properties; such
as node labels and/or multi/weighted, and/or directed edges.
To our knowledge, there exists no other work for this task

that is able to handle graphs with such nature. Table I gives a
qualitative comparison to existing art, described as follows.

Graph anomaly detection has been the focus of many work
[1], [2], [4], [5], [6] (See [7] for a survey.) However, these do
not apply to detecting anomalies within a graph database, as
they are designed to find node/edge/subgraph anomalies within
a single graph. Several work for detecting anomalies among
a set or series of graphs [3], [8], [9] cannot simultaneously
handle all the graph properties that CODETECT is designed
for, such as node labels or edge weights.

Recently, a body of graph embedding methods has been
developed, able to handle graphs with complex properties [10],
[11], [12], [13], [14], [15], [18]. Those as well as graph kernels
[16], [17] produce vector representations. However, they do
not tackle anomaly detection per se. Such representations need
to be input to a certain choice of an off-the-shelf detector
to perform anomaly detection. While such representations
capture general structural patterns, we find they are not suitable
for anomaly detection as shown in the experiments.

Finally, frequent patterns and lossless compression via the
MDL principle [19] have been successfully applied to anomaly
detection [20], [21], however for regular transaction (or vector)
databases. We are the first to use motif-based lossless graph
encoding for the graph anomaly detection task.

III. PRELIMINARIES & THE PROBLEM

As input, a large set of J graphs G = {G1, . . . , GJ} is
given. Each graph Gj = (Vj , Ej , ⌧) is a directed, node-
labeled, multi-graph which may contain multiple edges that
have the same end nodes. ⌧ : Vj ! T is a function that
assigns labels from an alphabet T to nodes in each graph.
The number of realizations of an edge (u, v) 2 Ej is called
its multiplicity, denoted m(u, v). (See Fig. 1(a) for example.)

Our motivating domain is business accounting, in which
each Gj corresponds to a graph representation of what-is-
called a “journal entry”: a detailed transaction record. Nodes
capture the unique accounts associated with the record, di-

rected edges the transactions between these accounts, and

A

B

A

B

D
C
! ", $

= 2

……

(a) (b)
Fig. 1: (a) E.g. node-labeled multi-graph; (b) Example motif
table; 1st col. lists the motifs, 2nd col. the corresponding
codes, width depicting code length. Letters denote node labels
and same-dashed edges belong to the same motif occurrence.

node labels the financial statement (FS) account types (e.g.,
assets, liabilities, revenue, etc.). Bookkeeping data is kept as a
chronological listing (called General Ledger) of each separate
business transaction, where multiple transactions involving
same account-pairs generate multi-edges between two nodes.

Our high-level idea for finding anomalous graphs in
database G is to identify key characteristic patterns of the
data that “explain” or compress the data well, and flag those
graphs that do not exhibit such patterns as expected—simply
put, graphs that do not compress well are anomalous. More
specifically, graph patterns are substructures or subgraphs,
called motifs, which occur frequently within the input graphs.
“Explaining” the data is encoding each graph using the fre-
quent motifs that it contains. The more frequent motifs we use
for encoding, the more we can compress the data; simply by
encoding the existence of each such motif with a short code.

The goal is to find a (small) set of motifs that compresses the
data the best. Building on the Minimum Description Length
(MDL) principle [22], we aim to find a model, namely a motif

table (denoted MT) that contains a carefully selected subset of
graph motifs, such that the total code length of (1) the model
itself plus (2) the encoding of the data using the model is as
small as possible. In other words, we are after a small model
that compresses the data the most. The two-part objective of
minimizing the total code length is given as follows.

minimize
MT✓MT

L(MT,G) = L(MT)| {z }
model code length

+ L(G|MT)| {z }
data code length

, (1)

where MT denotes the set of all possible candidate motif
tables. The first term can be seen as a model regularizer that
penalizes using an unneccesarily large set of motifs to explain
the data. The second term is the compression length of the data
with the (selected) motifs and decomposes as L(G|MT) =P

j L(Gj |MT) since individual journals are independent. The
encoding length L(Gj |MT) is also the anomaly score for the
jth graph—the larger, the more anomalous.

As such, we have a combinatorial subset selection problem
toward optimizing Eq. (1). To this end, we address two
subproblems outlined below.

Problem 1: Our graph encoding problem is two-fold: (1)
how to encode, and (2) which motifs to encode with, or,

TABLE I: Comparison with popular approaches to graph
anomaly detection, in terms of distinguishing properties.

Graph Emb. Graph Anom. Detect.

Properties vs. Methods

[1
0]

,[
12

]
[1

3]
,[

14
],

[1
8]

[1
1]

,[
15

],
[1

6]

[1
]

[2
],

[5
]

[4
]

[6
]

[9
],

[8
]

[3
]

C
O

D
E

T
E

C
T

Graph-level/graph database 4 4 4 4 4
Node-labeled graphs 4 4 4 4 4 4
Multi/Weighted edges 4 4 4 4 4
Directed edges 4 4 4 4 4 4 4 4 4
Anomaly detection 4 4 4 4 4 4 4

II. RELATED WORK

CODETECT is designed to detect anomalous graphs within
a database containing graphs with complex properties; such
as node labels and/or multi/weighted, and/or directed edges.
To our knowledge, there exists no other work for this task

that is able to handle graphs with such nature. Table I gives a
qualitative comparison to existing art, described as follows.

Graph anomaly detection has been the focus of many work
[1], [2], [4], [5], [6] (See [7] for a survey.) However, these do
not apply to detecting anomalies within a graph database, as
they are designed to find node/edge/subgraph anomalies within
a single graph. Several work for detecting anomalies among
a set or series of graphs [3], [8], [9] cannot simultaneously
handle all the graph properties that CODETECT is designed
for, such as node labels or edge weights.

Recently, a body of graph embedding methods has been
developed, able to handle graphs with complex properties [10],
[11], [12], [13], [14], [15], [18]. Those as well as graph kernels
[16], [17] produce vector representations. However, they do
not tackle anomaly detection per se. Such representations need
to be input to a certain choice of an off-the-shelf detector
to perform anomaly detection. While such representations
capture general structural patterns, we find they are not suitable
for anomaly detection as shown in the experiments.

Finally, frequent patterns and lossless compression via the
MDL principle [19] have been successfully applied to anomaly
detection [20], [21], however for regular transaction (or vector)
databases. We are the first to use motif-based lossless graph
encoding for the graph anomaly detection task.

III. PRELIMINARIES & THE PROBLEM

As input, a large set of J graphs G = {G1, . . . , GJ} is
given. Each graph Gj = (Vj , Ej , ⌧) is a directed, node-
labeled, multi-graph which may contain multiple edges that
have the same end nodes. ⌧ : Vj ! T is a function that
assigns labels from an alphabet T to nodes in each graph.
The number of realizations of an edge (u, v) 2 Ej is called
its multiplicity, denoted m(u, v). (See Fig. 1(a) for example.)

Our motivating domain is business accounting, in which
each Gj corresponds to a graph representation of what-is-
called a “journal entry”: a detailed transaction record. Nodes
capture the unique accounts associated with the record, di-

rected edges the transactions between these accounts, and

A

B

A

B

D
C
! ", $

= 2

……

(a) (b)
Fig. 1: (a) E.g. node-labeled multi-graph; (b) Example motif
table; 1st col. lists the motifs, 2nd col. the corresponding
codes, width depicting code length. Letters denote node labels
and same-dashed edges belong to the same motif occurrence.

node labels the financial statement (FS) account types (e.g.,
assets, liabilities, revenue, etc.). Bookkeeping data is kept as a
chronological listing (called General Ledger) of each separate
business transaction, where multiple transactions involving
same account-pairs generate multi-edges between two nodes.

Our high-level idea for finding anomalous graphs in
database G is to identify key characteristic patterns of the
data that “explain” or compress the data well, and flag those
graphs that do not exhibit such patterns as expected—simply
put, graphs that do not compress well are anomalous. More
specifically, graph patterns are substructures or subgraphs,
called motifs, which occur frequently within the input graphs.
“Explaining” the data is encoding each graph using the fre-
quent motifs that it contains. The more frequent motifs we use
for encoding, the more we can compress the data; simply by
encoding the existence of each such motif with a short code.

The goal is to find a (small) set of motifs that compresses the
data the best. Building on the Minimum Description Length
(MDL) principle [22], we aim to find a model, namely a motif

table (denoted MT) that contains a carefully selected subset of
graph motifs, such that the total code length of (1) the model
itself plus (2) the encoding of the data using the model is as
small as possible. In other words, we are after a small model
that compresses the data the most. The two-part objective of
minimizing the total code length is given as follows.

minimize
MT✓MT

L(MT,G) = L(MT)| {z }
model code length

+ L(G|MT)| {z }
data code length

, (1)

where MT denotes the set of all possible candidate motif
tables. The first term can be seen as a model regularizer that
penalizes using an unneccesarily large set of motifs to explain
the data. The second term is the compression length of the data
with the (selected) motifs and decomposes as L(G|MT) =P

j L(Gj |MT) since individual journals are independent. The
encoding length L(Gj |MT) is also the anomaly score for the
jth graph—the larger, the more anomalous.

As such, we have a combinatorial subset selection problem
toward optimizing Eq. (1). To this end, we address two
subproblems outlined below.

Problem 1: Our graph encoding problem is two-fold: (1)
how to encode, and (2) which motifs to encode with, or,

TABLE I: Comparison with popular approaches to graph
anomaly detection, in terms of distinguishing properties.

Graph Emb. Graph Anom. Detect.

Properties vs. Methods

[1
0]

,[
12

]
[1

3]
,[

14
],

[1
8]

[1
1]

,[
15

],
[1

6]

[1
]

[2
],

[5
]

[4
]

[6
]

[9
],

[8
]

[3
]

C
O

D
E

T
E

C
T

Graph-level/graph database 4 4 4 4 4
Node-labeled graphs 4 4 4 4 4 4
Multi/Weighted edges 4 4 4 4 4
Directed edges 4 4 4 4 4 4 4 4 4
Anomaly detection 4 4 4 4 4 4 4

II. RELATED WORK

CODETECT is designed to detect anomalous graphs within
a database containing graphs with complex properties; such
as node labels and/or multi/weighted, and/or directed edges.
To our knowledge, there exists no other work for this task

that is able to handle graphs with such nature. Table I gives a
qualitative comparison to existing art, described as follows.

Graph anomaly detection has been the focus of many work
[1], [2], [4], [5], [6] (See [7] for a survey.) However, these do
not apply to detecting anomalies within a graph database, as
they are designed to find node/edge/subgraph anomalies within
a single graph. Several work for detecting anomalies among
a set or series of graphs [3], [8], [9] cannot simultaneously
handle all the graph properties that CODETECT is designed
for, such as node labels or edge weights.

Recently, a body of graph embedding methods has been
developed, able to handle graphs with complex properties [10],
[11], [12], [13], [14], [15], [18]. Those as well as graph kernels
[16], [17] produce vector representations. However, they do
not tackle anomaly detection per se. Such representations need
to be input to a certain choice of an off-the-shelf detector
to perform anomaly detection. While such representations
capture general structural patterns, we find they are not suitable
for anomaly detection as shown in the experiments.

Finally, frequent patterns and lossless compression via the
MDL principle [19] have been successfully applied to anomaly
detection [20], [21], however for regular transaction (or vector)
databases. We are the first to use motif-based lossless graph
encoding for the graph anomaly detection task.

III. PRELIMINARIES & THE PROBLEM

As input, a large set of J graphs G = {G1, . . . , GJ} is
given. Each graph Gj = (Vj , Ej , ⌧) is a directed, node-
labeled, multi-graph which may contain multiple edges that
have the same end nodes. ⌧ : Vj ! T is a function that
assigns labels from an alphabet T to nodes in each graph.
The number of realizations of an edge (u, v) 2 Ej is called
its multiplicity, denoted m(u, v). (See Fig. 1(a) for example.)

Our motivating domain is business accounting, in which
each Gj corresponds to a graph representation of what-is-
called a “journal entry”: a detailed transaction record. Nodes
capture the unique accounts associated with the record, di-

rected edges the transactions between these accounts, and

A

B

A

B

D
C
! ", $

= 2

……

(a) (b)
Fig. 1: (a) E.g. node-labeled multi-graph; (b) Example motif
table; 1st col. lists the motifs, 2nd col. the corresponding
codes, width depicting code length. Letters denote node labels
and same-dashed edges belong to the same motif occurrence.

node labels the financial statement (FS) account types (e.g.,
assets, liabilities, revenue, etc.). Bookkeeping data is kept as a
chronological listing (called General Ledger) of each separate
business transaction, where multiple transactions involving
same account-pairs generate multi-edges between two nodes.

Our high-level idea for finding anomalous graphs in
database G is to identify key characteristic patterns of the
data that “explain” or compress the data well, and flag those
graphs that do not exhibit such patterns as expected—simply
put, graphs that do not compress well are anomalous. More
specifically, graph patterns are substructures or subgraphs,
called motifs, which occur frequently within the input graphs.
“Explaining” the data is encoding each graph using the fre-
quent motifs that it contains. The more frequent motifs we use
for encoding, the more we can compress the data; simply by
encoding the existence of each such motif with a short code.

The goal is to find a (small) set of motifs that compresses the
data the best. Building on the Minimum Description Length
(MDL) principle [22], we aim to find a model, namely a motif

table (denoted MT) that contains a carefully selected subset of
graph motifs, such that the total code length of (1) the model
itself plus (2) the encoding of the data using the model is as
small as possible. In other words, we are after a small model
that compresses the data the most. The two-part objective of
minimizing the total code length is given as follows.

minimize
MT✓MT

L(MT,G) = L(MT)| {z }
model code length

+ L(G|MT)| {z }
data code length

, (1)

where MT denotes the set of all possible candidate motif
tables. The first term can be seen as a model regularizer that
penalizes using an unneccesarily large set of motifs to explain
the data. The second term is the compression length of the data
with the (selected) motifs and decomposes as L(G|MT) =P

j L(Gj |MT) since individual journals are independent. The
encoding length L(Gj |MT) is also the anomaly score for the
jth graph—the larger, the more anomalous.

As such, we have a combinatorial subset selection problem
toward optimizing Eq. (1). To this end, we address two
subproblems outlined below.

Problem 1: Our graph encoding problem is two-fold: (1)
how to encode, and (2) which motifs to encode with, or,

Graph cover

L. Akoglu

Anomalous graphs (Accounting)
• Anomaly detection via data description/encoding

49

TABLE I: Comparison with popular approaches to graph
anomaly detection, in terms of distinguishing properties.

Graph Emb. Graph Anom. Detect.

Properties vs. Methods

[1
0]

,[
12

]
[1

3]
,[

14
],

[1
8]

[1
1]

,[
15

],
[1

6]

[1
]

[2
],

[5
]

[4
]

[6
]

[9
],

[8
]

[3
]

C
O

D
E

T
E

C
T

Graph-level/graph database 4 4 4 4 4
Node-labeled graphs 4 4 4 4 4 4
Multi/Weighted edges 4 4 4 4 4
Directed edges 4 4 4 4 4 4 4 4 4
Anomaly detection 4 4 4 4 4 4 4

II. RELATED WORK

CODETECT is designed to detect anomalous graphs within
a database containing graphs with complex properties; such
as node labels and/or multi/weighted, and/or directed edges.
To our knowledge, there exists no other work for this task

that is able to handle graphs with such nature. Table I gives a
qualitative comparison to existing art, described as follows.

Graph anomaly detection has been the focus of many work
[1], [2], [4], [5], [6] (See [7] for a survey.) However, these do
not apply to detecting anomalies within a graph database, as
they are designed to find node/edge/subgraph anomalies within
a single graph. Several work for detecting anomalies among
a set or series of graphs [3], [8], [9] cannot simultaneously
handle all the graph properties that CODETECT is designed
for, such as node labels or edge weights.

Recently, a body of graph embedding methods has been
developed, able to handle graphs with complex properties [10],
[11], [12], [13], [14], [15], [18]. Those as well as graph kernels
[16], [17] produce vector representations. However, they do
not tackle anomaly detection per se. Such representations need
to be input to a certain choice of an off-the-shelf detector
to perform anomaly detection. While such representations
capture general structural patterns, we find they are not suitable
for anomaly detection as shown in the experiments.

Finally, frequent patterns and lossless compression via the
MDL principle [19] have been successfully applied to anomaly
detection [20], [21], however for regular transaction (or vector)
databases. We are the first to use motif-based lossless graph
encoding for the graph anomaly detection task.

III. PRELIMINARIES & THE PROBLEM

As input, a large set of J graphs G = {G1, . . . , GJ} is
given. Each graph Gj = (Vj , Ej , ⌧) is a directed, node-
labeled, multi-graph which may contain multiple edges that
have the same end nodes. ⌧ : Vj ! T is a function that
assigns labels from an alphabet T to nodes in each graph.
The number of realizations of an edge (u, v) 2 Ej is called
its multiplicity, denoted m(u, v). (See Fig. 1(a) for example.)

Our motivating domain is business accounting, in which
each Gj corresponds to a graph representation of what-is-
called a “journal entry”: a detailed transaction record. Nodes
capture the unique accounts associated with the record, di-

rected edges the transactions between these accounts, and

A

B

A

B

D
C
! ", $

= 2

……

(a) (b)
Fig. 1: (a) E.g. node-labeled multi-graph; (b) Example motif
table; 1st col. lists the motifs, 2nd col. the corresponding
codes, width depicting code length. Letters denote node labels
and same-dashed edges belong to the same motif occurrence.

node labels the financial statement (FS) account types (e.g.,
assets, liabilities, revenue, etc.). Bookkeeping data is kept as a
chronological listing (called General Ledger) of each separate
business transaction, where multiple transactions involving
same account-pairs generate multi-edges between two nodes.

Our high-level idea for finding anomalous graphs in
database G is to identify key characteristic patterns of the
data that “explain” or compress the data well, and flag those
graphs that do not exhibit such patterns as expected—simply
put, graphs that do not compress well are anomalous. More
specifically, graph patterns are substructures or subgraphs,
called motifs, which occur frequently within the input graphs.
“Explaining” the data is encoding each graph using the fre-
quent motifs that it contains. The more frequent motifs we use
for encoding, the more we can compress the data; simply by
encoding the existence of each such motif with a short code.

The goal is to find a (small) set of motifs that compresses the
data the best. Building on the Minimum Description Length
(MDL) principle [22], we aim to find a model, namely a motif

table (denoted MT) that contains a carefully selected subset of
graph motifs, such that the total code length of (1) the model
itself plus (2) the encoding of the data using the model is as
small as possible. In other words, we are after a small model
that compresses the data the most. The two-part objective of
minimizing the total code length is given as follows.

minimize
MT✓MT

L(MT,G) = L(MT)| {z }
model code length

+ L(G|MT)| {z }
data code length

, (1)

where MT denotes the set of all possible candidate motif
tables. The first term can be seen as a model regularizer that
penalizes using an unneccesarily large set of motifs to explain
the data. The second term is the compression length of the data
with the (selected) motifs and decomposes as L(G|MT) =P

j L(Gj |MT) since individual journals are independent. The
encoding length L(Gj |MT) is also the anomaly score for the
jth graph—the larger, the more anomalous.

As such, we have a combinatorial subset selection problem
toward optimizing Eq. (1). To this end, we address two
subproblems outlined below.

Problem 1: Our graph encoding problem is two-fold: (1)
how to encode, and (2) which motifs to encode with, or,

TABLE I: Comparison with popular approaches to graph
anomaly detection, in terms of distinguishing properties.

Graph Emb. Graph Anom. Detect.

Properties vs. Methods

[1
0]

,[
12

]
[1

3]
,[

14
],

[1
8]

[1
1]

,[
15

],
[1

6]

[1
]

[2
],

[5
]

[4
]

[6
]

[9
],

[8
]

[3
]

C
O

D
E

T
E

C
T

Graph-level/graph database 4 4 4 4 4
Node-labeled graphs 4 4 4 4 4 4
Multi/Weighted edges 4 4 4 4 4
Directed edges 4 4 4 4 4 4 4 4 4
Anomaly detection 4 4 4 4 4 4 4

II. RELATED WORK

CODETECT is designed to detect anomalous graphs within
a database containing graphs with complex properties; such
as node labels and/or multi/weighted, and/or directed edges.
To our knowledge, there exists no other work for this task

that is able to handle graphs with such nature. Table I gives a
qualitative comparison to existing art, described as follows.

Graph anomaly detection has been the focus of many work
[1], [2], [4], [5], [6] (See [7] for a survey.) However, these do
not apply to detecting anomalies within a graph database, as
they are designed to find node/edge/subgraph anomalies within
a single graph. Several work for detecting anomalies among
a set or series of graphs [3], [8], [9] cannot simultaneously
handle all the graph properties that CODETECT is designed
for, such as node labels or edge weights.

Recently, a body of graph embedding methods has been
developed, able to handle graphs with complex properties [10],
[11], [12], [13], [14], [15], [18]. Those as well as graph kernels
[16], [17] produce vector representations. However, they do
not tackle anomaly detection per se. Such representations need
to be input to a certain choice of an off-the-shelf detector
to perform anomaly detection. While such representations
capture general structural patterns, we find they are not suitable
for anomaly detection as shown in the experiments.

Finally, frequent patterns and lossless compression via the
MDL principle [19] have been successfully applied to anomaly
detection [20], [21], however for regular transaction (or vector)
databases. We are the first to use motif-based lossless graph
encoding for the graph anomaly detection task.

III. PRELIMINARIES & THE PROBLEM

As input, a large set of J graphs G = {G1, . . . , GJ} is
given. Each graph Gj = (Vj , Ej , ⌧) is a directed, node-
labeled, multi-graph which may contain multiple edges that
have the same end nodes. ⌧ : Vj ! T is a function that
assigns labels from an alphabet T to nodes in each graph.
The number of realizations of an edge (u, v) 2 Ej is called
its multiplicity, denoted m(u, v). (See Fig. 1(a) for example.)

Our motivating domain is business accounting, in which
each Gj corresponds to a graph representation of what-is-
called a “journal entry”: a detailed transaction record. Nodes
capture the unique accounts associated with the record, di-

rected edges the transactions between these accounts, and

A

B

A

B

D
C
! ", $

= 2

……

(a) (b)
Fig. 1: (a) E.g. node-labeled multi-graph; (b) Example motif
table; 1st col. lists the motifs, 2nd col. the corresponding
codes, width depicting code length. Letters denote node labels
and same-dashed edges belong to the same motif occurrence.

node labels the financial statement (FS) account types (e.g.,
assets, liabilities, revenue, etc.). Bookkeeping data is kept as a
chronological listing (called General Ledger) of each separate
business transaction, where multiple transactions involving
same account-pairs generate multi-edges between two nodes.

Our high-level idea for finding anomalous graphs in
database G is to identify key characteristic patterns of the
data that “explain” or compress the data well, and flag those
graphs that do not exhibit such patterns as expected—simply
put, graphs that do not compress well are anomalous. More
specifically, graph patterns are substructures or subgraphs,
called motifs, which occur frequently within the input graphs.
“Explaining” the data is encoding each graph using the fre-
quent motifs that it contains. The more frequent motifs we use
for encoding, the more we can compress the data; simply by
encoding the existence of each such motif with a short code.

The goal is to find a (small) set of motifs that compresses the
data the best. Building on the Minimum Description Length
(MDL) principle [22], we aim to find a model, namely a motif

table (denoted MT) that contains a carefully selected subset of
graph motifs, such that the total code length of (1) the model
itself plus (2) the encoding of the data using the model is as
small as possible. In other words, we are after a small model
that compresses the data the most. The two-part objective of
minimizing the total code length is given as follows.

minimize
MT✓MT

L(MT,G) = L(MT)| {z }
model code length

+ L(G|MT)| {z }
data code length

, (1)

where MT denotes the set of all possible candidate motif
tables. The first term can be seen as a model regularizer that
penalizes using an unneccesarily large set of motifs to explain
the data. The second term is the compression length of the data
with the (selected) motifs and decomposes as L(G|MT) =P

j L(Gj |MT) since individual journals are independent. The
encoding length L(Gj |MT) is also the anomaly score for the
jth graph—the larger, the more anomalous.

As such, we have a combinatorial subset selection problem
toward optimizing Eq. (1). To this end, we address two
subproblems outlined below.

Problem 1: Our graph encoding problem is two-fold: (1)
how to encode, and (2) which motifs to encode with, or,

TABLE I: Comparison with popular approaches to graph
anomaly detection, in terms of distinguishing properties.

Graph Emb. Graph Anom. Detect.

Properties vs. Methods

[1
0]

,[
12

]
[1

3]
,[

14
],

[1
8]

[1
1]

,[
15

],
[1

6]

[1
]

[2
],

[5
]

[4
]

[6
]

[9
],

[8
]

[3
]

C
O

D
E

T
E

C
T

Graph-level/graph database 4 4 4 4 4
Node-labeled graphs 4 4 4 4 4 4
Multi/Weighted edges 4 4 4 4 4
Directed edges 4 4 4 4 4 4 4 4 4
Anomaly detection 4 4 4 4 4 4 4

II. RELATED WORK

CODETECT is designed to detect anomalous graphs within
a database containing graphs with complex properties; such
as node labels and/or multi/weighted, and/or directed edges.
To our knowledge, there exists no other work for this task

that is able to handle graphs with such nature. Table I gives a
qualitative comparison to existing art, described as follows.

Graph anomaly detection has been the focus of many work
[1], [2], [4], [5], [6] (See [7] for a survey.) However, these do
not apply to detecting anomalies within a graph database, as
they are designed to find node/edge/subgraph anomalies within
a single graph. Several work for detecting anomalies among
a set or series of graphs [3], [8], [9] cannot simultaneously
handle all the graph properties that CODETECT is designed
for, such as node labels or edge weights.

Recently, a body of graph embedding methods has been
developed, able to handle graphs with complex properties [10],
[11], [12], [13], [14], [15], [18]. Those as well as graph kernels
[16], [17] produce vector representations. However, they do
not tackle anomaly detection per se. Such representations need
to be input to a certain choice of an off-the-shelf detector
to perform anomaly detection. While such representations
capture general structural patterns, we find they are not suitable
for anomaly detection as shown in the experiments.

Finally, frequent patterns and lossless compression via the
MDL principle [19] have been successfully applied to anomaly
detection [20], [21], however for regular transaction (or vector)
databases. We are the first to use motif-based lossless graph
encoding for the graph anomaly detection task.

III. PRELIMINARIES & THE PROBLEM

As input, a large set of J graphs G = {G1, . . . , GJ} is
given. Each graph Gj = (Vj , Ej , ⌧) is a directed, node-
labeled, multi-graph which may contain multiple edges that
have the same end nodes. ⌧ : Vj ! T is a function that
assigns labels from an alphabet T to nodes in each graph.
The number of realizations of an edge (u, v) 2 Ej is called
its multiplicity, denoted m(u, v). (See Fig. 1(a) for example.)

Our motivating domain is business accounting, in which
each Gj corresponds to a graph representation of what-is-
called a “journal entry”: a detailed transaction record. Nodes
capture the unique accounts associated with the record, di-

rected edges the transactions between these accounts, and

A

B

A

B

D
C
! ", $

= 2

……

(a) (b)
Fig. 1: (a) E.g. node-labeled multi-graph; (b) Example motif
table; 1st col. lists the motifs, 2nd col. the corresponding
codes, width depicting code length. Letters denote node labels
and same-dashed edges belong to the same motif occurrence.

node labels the financial statement (FS) account types (e.g.,
assets, liabilities, revenue, etc.). Bookkeeping data is kept as a
chronological listing (called General Ledger) of each separate
business transaction, where multiple transactions involving
same account-pairs generate multi-edges between two nodes.

Our high-level idea for finding anomalous graphs in
database G is to identify key characteristic patterns of the
data that “explain” or compress the data well, and flag those
graphs that do not exhibit such patterns as expected—simply
put, graphs that do not compress well are anomalous. More
specifically, graph patterns are substructures or subgraphs,
called motifs, which occur frequently within the input graphs.
“Explaining” the data is encoding each graph using the fre-
quent motifs that it contains. The more frequent motifs we use
for encoding, the more we can compress the data; simply by
encoding the existence of each such motif with a short code.

The goal is to find a (small) set of motifs that compresses the
data the best. Building on the Minimum Description Length
(MDL) principle [22], we aim to find a model, namely a motif

table (denoted MT) that contains a carefully selected subset of
graph motifs, such that the total code length of (1) the model
itself plus (2) the encoding of the data using the model is as
small as possible. In other words, we are after a small model
that compresses the data the most. The two-part objective of
minimizing the total code length is given as follows.

minimize
MT✓MT

L(MT,G) = L(MT)| {z }
model code length

+ L(G|MT)| {z }
data code length

, (1)

where MT denotes the set of all possible candidate motif
tables. The first term can be seen as a model regularizer that
penalizes using an unneccesarily large set of motifs to explain
the data. The second term is the compression length of the data
with the (selected) motifs and decomposes as L(G|MT) =P

j L(Gj |MT) since individual journals are independent. The
encoding length L(Gj |MT) is also the anomaly score for the
jth graph—the larger, the more anomalous.

As such, we have a combinatorial subset selection problem
toward optimizing Eq. (1). To this end, we address two
subproblems outlined below.

Problem 1: Our graph encoding problem is two-fold: (1)
how to encode, and (2) which motifs to encode with, or,

𝐺!

𝐺"

𝐺#

…

5 g1 2 g3 1 g45

1 g3 4 g200

1 g2

g200

L. Akoglu

Anomalous graphs (Accounting)
• Anomaly detection via data description/encoding

50

overlap; i.e., their uses in covering a graph are independent.
As such, updating usages when we insert a new motif to MT

is quite efficient. Having inserted g and updated usages, we
remove 2-node motifs that reduce to zero usage from MT

(line 13), and compute the total encoding length with the
resulting MT (lines 14-15). The rest of the algorithm (lines
16-20) picks the ‘best’ g to actually insert that leads to the
largest savings, if any, or otherwise quits.

VI. EXPERIMENTS

Datasets. Our work is initiated by a collaboration with
industry, and CODETECT is evaluated on large real-world
datasets containing all transactions of 2016 (tens to hundreds
of thousands transaction graphs) from 3 different companies,
anonymously SH, HW, and KD (proprietary) summarized in
Table II. These do not come with ground truth anomalies.
For quantitative evaluation, our expert collaborators inject two
types of anomalies into each dataset based on domain knowl-
edge (Sec. VI-A), and also qualitatively verify the detected
anomalies from an accounting perspective (Sec. VI-B).

We also study the public Enron database [6], consisting
of daily email graphs of its 151 employees over 3 years
surrounding the financial scandal. Nodes depict employee
email addresses and edges indicate email exchanges. Each
node is labeled with the employee’s department (Energy Op-
erations, Regulatory and Government Affairs, etc.) and edge
multiplicity denotes the number of emails exchanged.

TABLE II: Summary of real-world datasets.

Name #Graphs #Types #Nodes #Multi-edges

SH 38,122 11 [2, 25] [1, 782]
HW 90,274 11 [2, 25] [1, 897]
KD 152,105 10 [2, 91] [1, 1774]
ENRON 1,139 16 [2, 87] [1, 1356]

A. Anomaly Detection Performance

We show that CODETECT is substantially better in detect-
ing graph anomalies as compared to a list of baselines across
various performance measures. The anomalies are injected by
domain experts, which mimic schemes related to money laun-
dering, entry error or malfeasance in accounting, specifically:
• Path injection (money-laundering-like): (i) Delete a random

edge (u, v) 2 Ej , and (ii) Add a length- 2 or 3 path u–
w(–z)–v where at least one edge of the path is rare (i.e.,
exists in only a few Gj’s). The scheme mimics money-
laundering, where money is transferred through multiple
hops rather than directly from the source to the target.

• Type injection (entry-error or malfeasance): (i) Pick a
random node u 2 Vj , and (ii) Replace its type t(u) with a
random type t 6= t(u). This scheme mimics either simply
an entry error (wrong account), or malfeasance that aims
to reflect larger balance on certain types of account (e.g.,
revenue) in order to deceive stakeholders.

For path injection, we choose 3% of graphs and inject
anomalous paths that replace 10% of edges (or 1 edge if 10%
of edges is less than 1). For type injection, we also choose
3% of graphs and type-perturb 10% of the nodes (or 1 node

if 10% of nodes is less than 1). We also tested with different
severity levels of injection, i.e., 30% and 50% of edges or
nodes, and observed similar results to those with 10%.
Baselines: We compare CODETECT with:
• SMT: A simplified version of CODETECT that uses the

Standard Motif Table to encode the graphs.
• SUBDUE [9]: The closest existing approach for anomaly

detection in node-labeled graph databases (See Sec. II).
Since it cannot handle multi-edges, we input the Gj’s as
simple graphs setting all the edge multiplicities to 1.

• Graph Embedding + IFOREST: We pair different graph
representation learning approaches with state-of-the-art
outlier detector IFOREST [24], as they cannot directly de-
tect anomalies. We consider the following combinations:
– Graph2Vec [13] (G2V) + IFOREST: G2V cannot han-

dle edge multiplicities, thus we set all to 1.
– Deep Graph Kernel [16] (DGK) + IFOREST
– GF + IFOREST: Graph (numerical) features (GF) in-

clude number of edges of each type-pair and number
of nodes of each type.

• ENTROPY quantifies skewness of the distribution on the
non-zero number of edges over all possible type pairs as
the anomaly score. A smaller entropy implies there exist
rare type-pairs and hence higher anomalousness.

• MULTIEDGES uses sum of edge multiplicities as anomaly
score. We tried other simple statistics, e.g., #nodes,
#edges, their sum/product, which do not perform well.

Measures: Based on the ranking of graphs by anomaly score,
we measure Precision at top-k for k = {10, 100, 1000},
and also report Area Under ROC Curve (AUC) and Average
Precision (AP) that is the area under the precision-recall curve.

1) Detection of path anomalies: We report detection
results on SH and HW datasets in Tables III and IV (per-
formance on KD is similar and omitted for brevity).
TABLE III: Detection performance of path anomalies in SH.

Method Prec@10 Prec@100 Prec@1000 AUC AP

CODETECT 1.000 0.920 0.386 0.958 0.548

SMT 0.100 0.280 0.352 0.932 0.413
SUBDUE 0.200 0.495 0.356 0.906 0.373
GF+IFOREST 0.100 0.120 0.237 0.926 0.210
G2V+IFOREST 0.800 0.750 0.308 0.886 0.383
DGK+IFOREST 0.100 0.030 0.025 0.712 0.050
ENTROPY 0.100 0.800 0.219 0.821 0.347
MULTIEDGES 0.000 0.040 0.027 0.643 0.049

TABLE IV: Detection performance of path anomalies in HW.

Method Prec@10 Prec@100 Prec@1000 AUC AP

CODETECT 0.900 0.990 0.999 0.995 0.772

SMT 0.600 0.440 0.784 0.906 0.733
SUBDUE 0.800 0.710 0.685 0.930 0.555
GF+IFOREST 0.400 0.230 0.497 0.959 0.429
G2V+IFOREST 0.000 0.100 0.819 0.824 0.380
DGK+IFOREST 0.300 0.140 0.023 0.858 0.097
ENTROPY 0.300 0.820 0.896 0.981 0.571
MULTIEDGES 0.000 0.020 0.029 0.719 0.106

CODETECT consistently outperforms all baselines by a
large margin across all performance measures in detecting path

anomalies. More specifically, CODETECT provides 16.9% im-
provement over the runner-up (underlined) on average across
all measures on SH, and 10.2% on HW. Note that the
runner-up is not the same baseline consistently across different
performance measures. Benefits of motif search is evident
looking at the superior results over SMT. G2V+IFOREST
produces decent performance w.r.t. most measures but is still
much lower than those of CODETECT.

2) Detection of type anomalies: Tables V and VI report
detection results on the two larger datasets, HW and KD
(performance on SH is similar and omitted for brevity). Note
that SUBDUE and G2V+IFOREST failed to complete within 5
days on KD, thus their results are absent in Table VI.

TABLE V: Detection performance of type anomalies in HW.

Method Prec@10 Prec@100 Prec@1000 AUC AP

CODETECT 0.800 0.720 0.709 0.918 0.359
SMT 0.000 0.100 0.174 0.883 0.192
SUBDUE 0.800 0.710 0.685 0.920 0.555

GF+IFOREST 0.200 0.080 0.027 0.832 0.092
G2V+IFOREST 0.000 0.030 0.030 0.499 0.030
DGK+IFOREST 0.100 0.030 0.038 0.801 0.074
ENTROPY 0.100 0.030 0.117 0.623 0.062
MULTIEDGES 0.000 0.020 0.032 0.505 0.030

TABLE VI: Detection performance of type anomalies in KD.

Method Prec@10 Prec@100 Prec@1000 AUC AP

CODETECT 0.800 0.940 0.863 0.716 0.403

SMT 0.200 0.190 0.122 0.715 0.082
SUBDUE � � � � �
GF+IFOREST 0.300 0.060 0.038 0.650 0.053
G2V+IFOREST � � � � �
DGK+IFOREST 0.100 0.090 0.068 0.644 0.061
ENTROPY 0.400 0.240 0.130 0.541 0.040
MULTIEDGES 0.000 0.040 0.035 0.498 0.030

In general, we observe similar performance advantage of
CODETECT over the baselines for type anomalies. The ex-
ception is SUBDUE which performs comparably, and appears
to suit better for type anomalies, potentially because changing
node labels disrupts structure more than the addition of a few
short isolate paths. SUBDUE however does not scale to KD,
and the runner-up on this dataset performs significantly worse.

B. Case Studies

Case 1 - Anomalous transaction records: The original
accounting databases we are provided with by our industry
partner do not contain any ground truth labels. Nevertheless,
they beg the question of whether CODETECT unearths any
dubious journal entries that would raise an eyebrow from an
economic bookkeeping perspective. In collaboration with their
accounting experts, we analyze the top 20 cases as ranked by
CODETECT. Due to space limit, we elaborate on one case
study from each dataset/corporation as follows.

In SH, we detect a graph with a large encoding length yet
relatively few (27) multi-edges, as shown in Fig. 3, consisting
of several small disconnected components. In accounting terms
the transaction is extremely complicated, likely the result of
a (quite rare) “business restructuring” event. In this single

journal entry there exist many independent simple entries,
involving only one or two operating-expense (OE) accounts,
while other edges arise from compound entries (involving
more than three accounts). This event involves reversals (back
to prepaid expenses) as well as re-classification of previ-
ously booked expenses. The fact that all these bookings are
recorded within a single entry leaves room for manipulation of
economic performance and mis-reporting via re-classification,
which deserves an audit for careful re-examination.

Fig. 3: Anomalous graph in SH.

Fig. 4: (left) A rare motif, (right) Anomalous graph in HW.

In Fig. 4 (left) we show a motif with sole usage of 1
in the dataset, which is used to cover an anomalous graph
(right) in HW. Edge NGL (non-operating gains&losses) to
C (cash) depicts an unrealized foreign exchange gain and
is quite unusual from an economic bookkeeping perspec-
tive. This is because, by definition, unrealized gains and
losses do not involve cash. Therefore, proper booking of the
creation or relinquishment of such gains or losses should
not involve cash accounts. Another peculiarity is the three
separate disconnected components, each of which represents
very distinct economic transactions: one on a bank charge
related to a security deposit, one on health-care and travel-
related foreign-currency business expense (these two are short-
term activities), and a third one on some on-going construction
(long-term in nature). It is questionable why these diverse
transactions are grouped into a single journal. Finally, the
on-going construction portion involves reclassifying a long-
term asset into a suspense account, which requires follow-up
attention and final resolution.

Fig. 6: (left) A
rare motif, (right)
Anomalous graph
in KD.

Finally, the anomalous journal entry
from KD involves the motif shown in
Fig. 6 (left) where the corresponding
graph is the exact motif with multiplic-
ity 1 shown on the (right). This motif
has sole usage of 1 in the dataset and
is odd from an accounting perspective.
Economically, it represents giving up an
existing machine, which is a long-term
operating asset (LOA), in order to reduce
a payable or an outstanding short-term
operating liability (SOL) owed to a vendor. Typically one
would sell the machine and get cash to payoff the vendor
with some gains or losses. We also note that the MT does

Path injections

Type perturbations

L. Akoglu

Outline
• Anomaly Detection: Motivation, Formalism, Challenges

• Graph-based Anomaly Detection
• General-purpose (single graph)

Global – anomalous nodes
Local – group anomaly
Collective – anomalous groups

• Graph-level anomalies

• Recent Trend: Deep Anomaly Detection

51

L. Akoglu

Deep Anomaly Detection
• Representation learning: transformative for applications in

NLP/translation, recommender systems, etc.

• Why not automatically learn data representations
for anomaly detection?

• Ideas easily transfer to graph data

Deep Learning for Anomaly Detection: A Review. [Pang+] July 2020

A Unifying Review of Deep and Shallow Anomaly Detection. [Ruff+] Sep. 2020

Deep Learning for Anomaly Detection: A Survey. [Chalapathy & Chawla] Jan. 2019

52

L. Akoglu

Deep Anomaly Detection
Graph Embedding

53

Outlier
Detector

L. Akoglu

Deep Anomaly Detection

• Can seamlessly handle various
types of graphs: labeled,
attributed, multi-edges, weights

• Can do end-to-end learning
(one-class, reconstruction)

• Embeddings capture general
prevalent patterns, may not be
suitable for anomaly detection

• Hyper-parameter tuning
becomes key for success!

Graph Embedding

Unsupervised model selection – likely a critical future direction

54

L. Akoglu

www.cs.cmu.edu/~lakoglu/
http://www.andrew.cmu.edu/user/lakoglu/pubs.html#code

Graph-based Anomaly Detection
Code, Data, Papers, Slides

Thanks!

http://www.cs.cmu.edu/~lakoglu/

