skip to page contentSBU
Stony Brook University
Machine Learning
CSE512 - Spring 2014

Home
Syllabus
Assignments
Notes

Syllabus (download as pdf)


Date

Lectures and Readings

   

1/28

 

 

 

 

 

 

 

1/30

 

 

2/4

 

 

 

 

 

 

Introduction to Machine Learning, Basics (3 lectures)

Lecture 1: Intro to ML

  • What is ML? ML applications
  • Learning paradigms
    • Supervised learning (regression, classification)
    • Unsupervised learning (density estimation, clustering, dimensionality reduction)

Readings:

  • Bishop 2.1, Appendix B
  • (Optional) Mitchell, Ch 1
  • (Optional) Murphy, 1.1, 1.2, 1.3.1

Recitation (Basics of Probability & Intro to Matlab)


Lecture 2: Learning Distributions

  • Point estimation
    • Maximum Likelihood Estimation (MLE)
    • Bayesian learning
    • Maximum A Posterior (MAP) Estimation
  • MLE vs. MAP
  • Gaussians
  • What is ML revisited

Readings:





2/6

 

 

 

 

 

 

 


2/11

 

 

 

 

 

 


2/13

Linear Models (Regression, Classification) (3 lectures)

Lecture 3: Linear Regression

  • Linear Regression, [Applet]
  • Regularized Least Squares,
  • Overfitting,
  • Bias-Variance Tradeoff,

Readings:


Lecture 4: Naive Bayes

  • Bayes Optimal Classifier
  • Conditional Independence,
  • Naive Bayes, [Applet]
  • Gaussian Naive Bayes

Readings:


Lecture 5: Logistic Regression

  • Generative v. Discriminative
  • Logistic Regression [Applet]

Readings:

 

2/18

 

 

 

 

 

 

 

 

2/20

 

 

 

 

 

 

 

2/25

 

 

 

 

 

 

 


2/27

 

 

 

 

 

 

 


3/4

Non-linear Models and Model Selection (5 lectures)

Lecture 6: Decision Trees

  • Decision Trees [Applet]
  • Entropy, Information Gain
  • Overfitting, Pre-and Post-pruning

Readings:

  • (Bishop - 1.6) Information Theory
  • (Bishop - 14.4) Tree-based Models
  • (Recommended) Quantities of Information Wikipedia entry
  • (Recommended) Nils Nilsson's ML book (Ch 6, all sections): Decision Trees
  • (Optional) Mitchell, Ch 3
  • (Optional) Murphy, 16.2

Lecture 7: Boosting

  • Combining weak classifiers
  • Adaboost algorithm [Adaboost Applet]
  • Comparison with logistic regression and bagging

Readings:


Lecture 8: Model Selection

  • Cross Validation,
  • Simple Model Selection,
  • Regularization,
  • Information Criteria (AIC, BIC, MDL)

Readings:


Lecture 9: Neural Networks

  • Neural Nets [Applet]
  • Prediction – Forward-propagation
  • Training – Back-propagation

Readings:

  • (Bishop 5.1) Feed-forward Network Functions
  • (Bishop 5.2) Network Training
  • (Bishop 5.3) Error Back-propagation
  • (Additional Resource) [CMU Course] on Neural Nets
  • (Optional) Murphy, 16.5

Lecture 10: Nonparametric Methods

  • Instance-based Learning [Applet]
  • Histogram, Kernel Density Estimation
  • K-NN Classifier
  • Kernel Regression

Readings:

 

3/6

 

 

 

 

 

 

 

 

 
3/11

 

Margin-based Approaches (2 lectures)

Lecture 11: Support Vector Machines

Readings:


Lecture 12: The Kernel Trick

  • Dual SVM
  • Kernel Trick
  • Comparison with Kernel regression and Logistic Regression

Readings:


3/13

 
3/18 3/20

 

3/25

 

 

 

 

 

 

 

 

3/27


Midterm Exam

NO CLASS (Spring Break)

Learning Theory (2 lectures)

Lecture 13: PAC Learning

  • PAC-learning [Applets]
  • Sample complexity
  • Haussler bound, Hoeffding's bound

Readings:


Lecture 14: VC Dimension

  • VC Dimension
  • Mistake Bounds
  • Midterm exam review

Readings:

 

4/1

 

 

 

 

 

 

 


4/3

 

 

 

 

 

4/8

 

 

 

 

 


4/10

Structured Models (Graphical Models and HMM) (4 lectures)

Lecture 15: Bayesian Networks – Representation

Readings:


Lecture 16: Bayesian Networks – Inference

  • Marginalization
  • Variable Elimination

Readings:

  • (Bishop 8.4.1, 8.4.2) - Inference in Chain/Tree Structures
  • (Optional) Murphy, 10.3

Lecture 17: Bayesian Networks – Structure Learning

  • Learning CPTs
  • Learning structure - Chow-Liu Algorithm

Readings:


Lecture 18: Hidden Markov Models

  • HMM Representation
  • Forward Algorithm
  • Forward-Backward Algorithm
  • Viterbi Algorithm
  • Baum-Welch Algorithm

Readings:

 

4/15

 

 

 

 

 

4/17

 

 

 

 

 

4/22

 

 

 

 

 

4/24

Unsupervised and semi-supervised learning (4 lectures)

Lecture 19: Clustering I

  • Hierarchical Clustering
  • Spectral Clustering [Demo]

Readings:


Lecture 20: Clustering II

Readings:

  • (Bishop 9.1, 9.2) - K-means, Mixtures of Gaussian

Lecture 21: Expectation Maximization

  • EM Algorithm

Readings:


Lecture 22: Semi-Supervised Learning

  • Mixture Models
  • Graph Regularization
  • Co-training

Readings:

 

4/29

Learning in High Dimensions (1 lecture)

Lecture 23: Dimensionality reduction

  • Curse of Dimensionality
  • Feature Selection
  • Principal Component Analysis (PCA)

Readings:

5/1

5/6

5/8

5/20

Project Presentations I

Project Presentations II

Final Exam Overview

Final Exam



Last modified: 2014, by Leman Akoglu