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Visualization of complex relational information has become increasingly important
as complex data and computational power have become more available to social
network researchers. Common sources of relational complexity include change over
time, multiple relationships, network size, and network density. The most useful
method for displaying complex data often depends upon the source of complexity and
the nature of the information to be learned. In this paper, we explore the use of
motion, especially for representation of change over time and relationship. Also,
using data from a large Wall Street investment bank, we demonstrate several
strategies to represent complex relational data in two-dimensions.

INTRODUCTION

Information visualization has become increasingly important as access to large amounts of data
increased and the ability to analyze that data has improved. More work is needed to refine methods
of conveying the information uncovered back to users who must make sense of the vast amount of
information that is available to them. Within the field of computer science we have seen an
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increased interest in information visualizationin general (Chen, 1999; Ware, 2000). And within the
area of social network analysis, new approaches to the visualization of relational data have emerged
such as Pajek (Batagelj and Mrvar, 1998) KrackPlot (Krackhardt et al., 1994) MultiNet (Richards
and Seary, 1999). For a complete discussion of the history of visualization in social network analysis
see Freeman (2000). The interests of these two communities are converging. Computer scientists
are ever more cognizant of the importance of agent interaction. Social network analysts make use
of the increasingly complex information and computational resources availableto study dynamic,
multi-relational networks made up of many actors. Complexity is introduced as the number of actors
and relations modeled increases and the interaction between network size, density and change over time
describes complex systems. In terms of computation, as systems become more complex they require
more time, space or resources to solve. Similarly complex systems require that users expend more effort
for visualization. The proper design of visual displays of complex data will lessen the burden on viewers
trying to make sense of data and on researchers trying to communicate important features of the
displayed data.

The most well considered approach to visual representation of network data uses two-dimensional
static displays. This approach tovisualization uses the spatial positioning of nodes; characteristics
of nodes such as color, shape, and size; and characteristics of edges such as texture and color to
communicate as much information as possible within a single graph. While we have learned a lot
about the importance of layout and characteristics of nodes and edges for communicating informa-
tion in graphs, we see that there are limits to the amount of information that can be displayedin a
static graph.

Three major sources of network complexity are data that describe longitudinal and multi-relational
networks and data that describe networks made up of many actors with dense connections. Each
of these advances in our ability to collect and analyse social network data calls for advances in
network visualization as well. In this paper we discuss approaches using KrackPlot to address
complexity resulting from changes over time and among relationships and complexity resulting
from large-scale networks. While some aspects of complex networks can be communicated using
current two-dimensional graph representations, other aspects require new visualization techniques.
For example, motion is very useful for conveying information about changes in networks, especially
when the user needs to convey change over time or over network relationships. There are some
cases where motion is not the best option for displaying complex information. The usefulness of
motion may be limited by the size and density of the graph, the nature of the change that occursand
the media for publication of the information. We organize the rest of the discussion by the source
of complexity in the network, and explore motion as well as techniques using two-dimensional
representations for displaying complex network data.

COMPLEXITY INTRODUCED BY NETWORK CHANGE

Motion is an obvious tool for displaying information about changes in networks over time, with the
requisite warning that improperly applied, motion might obscure underlying phenomenon (Qin &
Simon 1992a, 1992b and 1995). We havecompleted preliminary work (McGrath & Blythe, 2000)
that suggests that viewers who are able to use motion to observe changes in graphs perceive those
changes more quickly than those who are only able to switch between still representations of the
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two time periods. Furthermore, we have shown that motion is particularly useful when used in
conjunction with graph layout techniques that assign meaning to the positioning of nodes in
Cartesian space (McGrath et al., 2001). In that case increased movement across representations
highlights changes over time or across relationships. As expected, we found that motion is often
useful for the efficient communication of network change. In response to these results, we have
implemented a simple mechanism for displaying change across two graphs using motion in
KrackPlot in order to allow users to employ motion easily.

Displaying Change with Motion in KrackPlot using MORPHING

The most recent version of KrackPlot includes a morphing function that allows users to take
advantage of motion to display changes to the layout of a graph. The user first identifies an initial
layoutand then a second layout. Finally, the user designates the number of steps to be used to move
from the first to the second layout. To use the morph function, users select “morph” from the
top-level menu. Users may specify their first graph layout by selecting “first” while that layout is
displayed on screen. Next the users can change the layout either by moving nodes and changing
edges between nodes on the current graph interactively with the mouse or by loading a second
version of the graph that contains the same nodes with different coordinates indicating their
position on the screen. When the second layout is complete, the user selects “second” to identify the
second layout. Now the “change” function will employ motion to display the change between the
first and second layout.

The morphing function uses the shortest path between the first and second position of the each
node in the graph. Any edges that change from the first to the second graph layout will change at
the mid-point of the move from the first to second layout. The user can specify the number of steps
between the first and second graph layout. The default number of steps between graphs is 50. If the
number of steps is set to “1” the display flash between the first and second layout in “before and
after” format. Asthe number of steps between the layouts increases, the motion appears to be more
smooth. Currently, the morph function works best to convey changes in nodes’ positions between
the first and second layout. It does allow foradding and removing edges between the two layouts.
It is more difficult to display changing nodes between the two layouts.

COMPLEXITY INTRODUCED BY NETWORK SIZE

A second source of complexity results from network size and density. Large network are difficult
to visualize because of the sheer size and amount of information available. Similarly, dense net-
works contain a large amount of relational data that is difficult to visualize. There are several strat-
egies that users might take to visualize and represent large networks in a meaningful way. The best
approach to visualizing large data sets often depends upon characteristics of the network (such as
density) and the nature of the information to be learned from the graph. Three approaches that are
often useful are (1) visualizing subsets of a large graph, (2) partitioninga large graph and visualizing
relationships among partitions,and (3) exploring structure interactively using simulated annealing
and adjusting the energy function to address characteristics of the displayed network. We will dem-
onstrate these three approaches using data from Friedman and Krackhardt (1997). The data
describe friendship ties among 83 support staff people in a large Wall Street investment bank.
Shapes indicate ethnicity: ellipses denote Southeast Asian staff; rectangles denote Indian staff;
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diamonds denote European staff; staff of all other ethnicity are represented with no shape around
them. Figure 1 shows the friendship ties among bank staff in a circle layout. The circle does give an
idea of the density of the graph however, it communicates very little about the structure of the
network. Starting with this baseline method of representation, we will demonstrate the three

techniques listed above.
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Figure 1. Friendship Network Circle Layout

Visualize a subset
In some cases, the user might find it helpful to break down the large graph into subsets. For

instance, in the case of the investment banking data, the user might display the network for one
group only. Here, we have extracted the European staff and Figure 2 shows that three groups of
three or more people, two pairs of people, and seven isolates emerge when only European staff and
their relations are considered. This approach limits the information that is displayed about the
network (for instance, the actors who are displayed as isolates here might in fact be at the center of
a group of non-European actors within the network). In some cases, it might be useful to compare
images of the network even when they do not on their own tell the “whole story.” The European
network was displayed in KrackPlot by choosing the Hide option (Modify_ Hide_ Hide Type) to
eliminate all other ethnic groups. Working interactively within KrackPlot, the user can hide and
reinstate subgroups to explore the effect of their absence or presence on the overall structure of the
graph. We could generate the same display for any subgroup or set of subgroups that have been
identified as attributes in KrackPlot. A user might choose to represent a series of subsets of the
graph to communication information about the graph.

Partition, group, or block and display relationships between partitions
The user may employ one of several techniques to identify roles or positions within a network.
These relational approaches allow the user to translate complex networks into more simple forms.
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Once nodes have been assigned to roles, the user can assign the same spatial positioning to all nodes
in the same role by assigning the same Cartesian coordinates within KrackPlot. Figure 3 shows an
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Figure 2. Friendship network for European

example of this using the same Wall Street investment bank data. We used UCINET V to identify
roles using structural equivalence. Next we edited the KrackPlot file to assign the same coordinates
to all nodes in the same role. We imported the edited KrackPlot file into KrackPlot. When the file
is opened in KrackPlot, it appears as a reduced graph. In fact, all of the nodes are stacked up on each
other. If the user holds the mouse over the stack and clicks,
nodes will cycle through to the top of the stack. Any connec-
tions that exist among the structurally equivalent roles are
portrayed as edges between the roles. Similarly, connections
that exist within the structurally equivalent nodes in the same
role are portrayed as self-reflected arrows back to the same
position. To move a structurally equivalent group, the user
must be careful to draw out a rectangle around the group. If
the user just uses the mouse to drag the group, only the first
node in the stack. We also added four nodes labeled “One”
through “Four” to the representation to label the structurally
equivalent roles. This approach pre-serves all of the informa-
tion about the network while displaying only the reduced
graph.

Figure 3. Reduced graph

Use automatic layout to focus in on an overall structure and

then substructures

Users can explore large structures interactively within KrackPlot by using the available layout
functions. Figure 4 shows network displayed using multi-dimensional scaling. While it is interest-
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ing that the network looks like a velociraptor when displayed this way, it still conveys little
information about the sttructure of the network. Figure 5 shows the network displayed using
simulated annealing (and the default settings), an optimization routine that maximizes certain
positive features of graph layout.
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Figure 4. Multidimensional Scaling

Simulated annealing starts with the graph positions that are given. It then randomly moves an
individual node to a point on the circumference of a circle defined around the node’s current
location, with a steadily decreasing radius. Once the node is moved, the routine reevaluates the new
graph layout to determine if it is better or worse according to predefined graph layout features. The
features are: nodes that are not too close to each other, edges that are not too long, edges that do not
cross each other and nodes that do not go through edges. The "energy function", describing the
attributes of the graph that will be optimized, is based on one suggested by Davidson and Harel

Figure 5. Anneal with default setting
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(1989). If it is better, the new node position will be accepted. If it is worse, the new layout will be
accepted with a small probability that depends on the "temperature"” of the system and the amount
worse that the new layout is. Simulated annealing will accept worse layouts with some probability
to avoid local optima. Since simulated annealing begins the optimization routine from the initial
graph layout, we have found it to be useful to start with a graph layout created using multidimen-
sional scaling.

The default settings for annealing in KrackPlot were chosen for less complex graph. However,
KrackPlot allows users to change the settings within anneal to attach different weights to each of the
characteristics. The user can modify settings to accommodate more complex network information.
In each annealing pass, the graph will be evaluated on these features using the default weights or the
weights you providein the "Settings” function. We will show how attaching different weights to the
different graph features defined in the energy function can help the user uncover structurein alarge
graph. First, Figure 5 shows the bank staff friendship network layout using the default anneal
settings. (Which are node repulsion = 1; edge repulsion = 0; edge repulsion in jiggle step = 1; edge
length weight = 1; edge length variance = 0; edge crossing weight = 0; and weight on node hitting
edge =0.) The default settings for node repulsion keeps nodes away from each other and the default
setting for edge length keeps connected nodes close to each other by keeping the edges between
them short. As seen in Figure 5, using the default settings for simulated annealing does not uncover
much structure in an 83-person network. When there are many nodes, the default setting for node
repulsion tends to force the nodes to spread out too evenly on the page. The energy function pushes
against the outside boundary of the picture.

Users can uncover more information about the structure of large graphs by working interactively
with the annealing layout function and changing the weight attached to the annealing energy
function. Also, using the “jiggle” function allows users to make refinement to the previously
annealed layout.
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Figure 6. Anneal with Edge crossings=0 and Node repulsion=.1
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The first change that we employ is to the weight assigned for node repulsion. Since there are 83
nodes in the network, we lower the node repulsion weight so that the nodes do not simply push
against each other and against the boundary of the picture. We hold the edge length weight
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Figure 7. Anneal with Edge crossings=0, Node Repulsion=.01

constant at 1 so that in all versions of the layout, connected nodes stay close to each other. Figure 6
shows the result of lowering the node repulsion weight from 1 to .1; now the structure of the
network begins to be more visible.

As we lower the node repulsion to .01 in Figure 7, we see that some groups and cluster emerge from
the network. Figure 8 shows how the layout can be refined using the “jiggle” function in KrackPlot.

Figure 8. Jiggle prior picture with Edge Crossing for jiggle=.01
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At this point, we introduce attention to limiting edge crossing by raising the weight on edge cross-
ings from 0 to .01. Figure 8 shows little change from Figure 7, but the jiggle function does attempt
to refine the display by reducing edge crossings. Figure 9 shows the result of using simulated
annealing with the node repulsion set even lower, to .001. Here the connected nodes form into tight

)

Figure 9. Anneal with edge crossings=0 and node repulsion=.001

clusters of overlapping nodes. While on its own, this display makes it rather difficult for viewers to
extract information, it provides a good starting point for the jiggle refinement that is shown in
Figure 10. For the layout displayed in Figure 10, we have taken the prior layout and refined it by
including an edge crossing weight of .01 and increasing the node repulsion weight to .01. This

Figure 10. Jiggle prior picture with edge crossings=.01 and node
repulsion=.01
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process leads to a readable graph in which the structure of the network of 83 people emerges from
the representation.

CONCLUSION

In this paper, we demonstrated several techniques for displaying complex network data using
current software. We recognize that no one technique is best for displaying structural data under
all circumstances. The amount of information, its complexity, and the salient features thatare to be
discerned in the picture all affect the choice of methods for display of such data. For example, in
some cases, motion will be helpful; in other cases motion will obfuscate. Often times, as in the last
investment banking example, there is a tradeoff between seeing the overall forest — the clusters of
overall groups and their relative social proximity or ordering in relation to each other - and seeing
the finer detail of the trees — identifying key players and roles within these groups. Interactingback
and forth, changing the parameters to identify macro groups and then relaxing these parameters to
reveal finer detail, providesa model for future work in automated and interactive display of complex
network data of this kind.

But all of this progress leads us to ask another question. While we can produce faster and fancier
network display programs, it is important to keep in mind that the purpose of all of this is to
communicate important features of the structure to the viewer. To fully answer the question “What
display technique is best” or even “What display technique is best in this circumstance”, we need to
better understand what the perceiver is learning or seeing in the display. To be sure, we can make
more programs that seem to us as researchers/ programmers to make “better” pictures; but we are
relatively ignorant of how general human perception interacts with these new fancy features. We
believe that both kinds of research should go on in parallel. That is, new techniques of display
should be evaluated for their ability to communicate structure to the user, and in turn new
techniques can be developed to take advantage of what we find people “see” in particular display
formats. Currently, it is our impression that there is a severe imbalance in this parallel research:
Much more emphasis has been placed on methods of network data display and little on what people
infer from structural displays. We certainly applaud the rapid progress in technology and would not
want to diminish the enthusiasm of those who are diligently working to make finer and finer
programs. We simply suggest that the other side of this progress also deserves equally enthusiastic
efforts to reveal the human gain in understanding of social structures.
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