
FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

CONTEXT FREE LANGUAGES

Carnegie Mellon University in Qatar

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 1 / 24

WHERE ARE WE?

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 2 / 24

A NONREGULAR LANGUAGE

We showed that L = {anbn | n ≥ 0} was not
regular.

No DFA
No Regular Expression

How can we describe such languages?
Remember: the description has to be finite!

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 3 / 24

A NONREGULAR LANGUAGE

Consider L = {anbn | n ≥ 0} again.
How can we generate such strings?

Remember DFAs did recognition, not generation.
Consider the following inductive way to generate
elements of L

Basis: ε is in the language
Recursion: If the string w is in the language, then so is the
string awb.

ε→ ab → aabb · · · → a55b55 · · ·
Looks like we have simple and finite length
process to generate all the strings in L
How can we generalize this kind of description?

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 4 / 24

ANOTHER NONREGULAR LANGUAGE

Consider L = {w | na(w) = nb(w)}.
Now consider the following inductive way to
generate elements of L

Basis: ε is in the language
Recursion 1: If the string w is in the language, then so are
awb and bwa
Recursion 2: If the strings w and v are in the language, so is
wv .

The first recursion rules makes sure that the a’s
and b’s are generated in the same number
(regardless of order)
The second recursion takes any two strings each
with equal number of a’s and b’s and generates a
new such string by concatenating them.

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 5 / 24

GRAMMARS

Grammars provide the generative mechanism to
generate all strings in a language.
A grammar is essentially a collection of
substitution rules, called productions
Each production rule has a left-hand-side and a
right-hand-side.

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 6 / 24

GRAMMARS - AN EXAMPLE

Consider once again L = {anbn | n ≥ 0}
Basis: ε is in the language

Production: S → ε

Recursion: If w is in the language, then so is the
string awb.

Production: S → aSb

S is called a variable or a nonterminal symbol
a,b etc., are called terminal symbols
One variable is designated as the start variable or
start symbol.

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 7 / 24

HOW DOES A GRAMMAR WORK?

Consider the set of rules R = {S → ε,S → aSb}
Start with the start variable S
Apply the following until all remaining symbols are
terminal.

Choose a production in R whose left-hand sides matches
one of the variables.
Replace the variable with the rule’s right hand side.

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaaaSbbbb
⇒ aaaabbbb
The string aaaabbbb is in the language L
The sequence of rule applications above is called
a derivation.

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 8 / 24

PARSE TREES

S

a S

a S

a S

a S

ε

b

b

b

b

The terminals concatenated

from left to right give us the

string.

Derivations can also
be represented with a
parse tree.
The leaves constitute
the yield of the tree.
Terminal symbols can
occur only at the
leaves.
Variables can occur
only at the internal
nodes.

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 9 / 24

LANGUAGE OF A GRAMMAR

All strings generated this way starting with the
start variable constitute the language of the
grammar.
We write L(G) for the language of the grammar G.

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 10 / 24

A GRAMMAR FOR A FRAGMENT OF ENGLISH

S → NP VP
NP → CN | CN PP
VP → CV | CV PP
PP → P NP
CN → DT N
CV → V | V NP
DT → a | the

N → boy | girl | flower |
telescope

V → touches | likes |
sees | gives

P → with | to

Nomenclature:
S: Sentence
NP: Noun Phrase
CN: Complex
Noun
PP: Prepositional
Phrase
VP: Verb Phrase
CV: Complex Verb
P: Preposition
DT: Determiner
N: Noun
V: Verb

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 11 / 24

A GRAMMAR FOR A FRAGMENT OF ENGLISH

S → NP VP
NP → CN | CN PP
VP → CV | CV PP
PP → P NP
CN → DT N
CV → V | V NP
DT → a | the

N → boy | girl | flower |
telescope

V → touches | likes |
sees | gives

P → with | to

S ⇒ NP VP
⇒ CN PP VP
⇒ DT N PP VP
⇒ a N PP VP
⇒ · · ·
⇒ a boy with a flower VP
⇒ a boy with a flower CV PP
⇒ · · ·
⇒ a boy with a flower sees a girl

with a telescope

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 12 / 24

ENGLISH PARSE TREE

S

NP

CN

DT

a

N

boy

PP

P

with

NP

CN

DT

a

N

flower

VP

CV

V

sees

NP

CN

DT

a

N

girl

PP

P

with

NP

CN

DT

a

N

telescope

This structure is for the interpretation where the
boy is seeing with the telescope!

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 13 / 24

ENGLISH PARSE TREE
ALTERNATE STRUCTURE

S

NP

CN

DT

a

N

boy

PP

P

with

NP

CN

DT

a

N

flower

VP

CV

V

sees

NP

CN

DT

a

N

girl

PP

P

with

NP

CN

DT

a

N

telescope

This is for the interpretation where the girl is carrying a telescope.
(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 14 / 24

STRUCTURAL AMBIGUITY

A set of rules can assign multiple structures to the
same string.
Which rule one chooses determines the eventual
structure.

VP→ CV | CV PP
CV→ V | V NP
NP→ CN | CN PP
· · · [VP [CV sees [NP a girl] [PP with a telescope]].
· · · [VP [CV sees] [NP [CN a girl] [PP with a telescope]].

(Not all brackets are shown!)

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 15 / 24

OTHER EXAMPLES OF GRAMMAR

APPLICATIONS

Programming Languages
Users need to how to “generate” correct programs.
Compilers need to know how to “check” and “translate”
programs.

XML Documents
Documents need to have a structure defined by a DTD
grammar.

Natural Language Processing, Machine
Translation

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 16 / 24

FORMAL DEFINITION OF A GRAMMAR

A Grammar is a 4-tuple G = (V ,Σ,R,S) where
V is a finite set of variables
Σ is a finite set of terminals, disjoint from V .
R is a set of rules of the X → Y
S ∈ V is the start variable

In general X ∈ (V ∪ Σ)+ and Y ∈ (V ∪ Σ)∗

A context-free grammar is a grammar where all
rules have X ∈ V (remember V ⊂ (V ∪ Σ)+)

The substitution is independent of the context V appears in.

The right hand side of the rules can be any
combination of variables and terminals, including
ε (hence Y ∈ (V ∪ Σ)∗).

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 17 / 24

FORMAL DEFINITION OF A GRAMMAR

If u, v and w are strings of variables and
terminals and A→ w is a rule of the grammar, we
say uAv yields uwv , notated as uAv ⇒ uwv
We say u derives v , notated as, u ∗⇒ v , if either

u = v , or
a sequence u1,u2, . . . ,uk , k ≥ 0 exists such that
u ⇒ u1 ⇒ u2, · · · ,⇒ uk ⇒ v .
We call u, v , and all ui as sentential forms.

The language of the grammar is
{w ∈ Σ∗ | S ∗⇒ w}

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 18 / 24

DESIGNING CONTEXT FREE GRAMMARS

Consider once again the language
L = {w | na(w) = nb(w)}.
The grammar for this language is
G = ({S}, {a,b},R,S) with R as follows:

1 S → aSb
2 S → bSa
3 S → SS
4 S → ε

From now we will only list the productions, the
others will be implicit.
We will also combine productions with the same
left-hand side using | symbol.
S → aSb | bSa | SS | ε

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 19 / 24

DESIGNING CONTEXT FREE GRAMMARS

L = {w | na(w) = nb(w)}.
S → aSb | bSa | SS | ε

Clearly the strings generated by G have equal
number of a’s and b’s. (Obvious from the rules!)
We also have to show that all strings in L can be
generated with this grammar.

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 20 / 24

DESIGNING CONTEXT FREE GRAMMARS

ASSERTION

Grammar G with R = {S → aSb | bSa | SS | ε}
generates L = {w | na(w) = nb(w)}.

PROOF (BY INDUCTION)
The grammar generates the basis strings of ε, ab and ba.

All other strings in L have even length and can be in one of the 4
possible forms:

1 awb (w ∈ Σ∗)
2 bwa
3 awa
4 bwb

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 21 / 24

DESIGNING CONTEXT FREE GRAMMARS

PROOF (CONTINUED)
Assume that G generates all strings of equal number of a’s and
b’s of (even) length n.

Consider a string like awb of length n + 2.

awb will be generated from w by using the rule S → aSb
provided S ∗⇒ w .

But w is of length n, so S ∗⇒ w by the induction hypothesis.

There is a symmetric argument for strings like bwa.

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 22 / 24

DESIGNING CONTEXT FREE GRAMMARS

PROOF (CONTINUED)
Consider a string like awa. Clearly w 6∈ L. Consider (symbols of)

this string annotated as follows

0a1 · · ·−1 a0

where the subscripts after a prefix v of awa denotes
na(v)− nb(v).

Think of this as count starting as 0, each a adding one and each
b subtracting 1. We should end with 0 at the end.

Note that right after the first symbol we have 1 and right before
the last a we must have −1.

Somewhere along the string (in w) the counter crosses 0.
(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 23 / 24

DESIGNING CONTEXT FREE GRAMMARS

PROOF (CONTINUED)
Somewhere along the string (in w) the counter crosses 0.

0

u︷ ︸︸ ︷
a1 · · · x 0 y · · ·−1 a︸ ︷︷ ︸

v

0 x , y ∈ {a,b}

So u and v have equal numbers of a’s and b’s and are shorter.

u, v ∈ L by the induction hypothesis and the rule S → SS
generates awa = uv , given S ∗⇒ u and S ∗⇒ v

There is a symmetric argument for strings like bwb.

(CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 7 SPRING 2011 24 / 24

