Formal Languages, Automata and Computation

DECIDABILITY

TURING MACHINES-SYNOPSIS

- The most general model of computation
- Computations of a TM are described by a sequence of configurations. (Accepting Configuration, Rejecting Configuration)
- Turing-recognizable languages
- TM halts in an accepting configuration if w is in the language.
- TM may halt in a rejecting configuration or go on indefinitely if w is not in the language.
- Turing-decidable languages
- TM halts in an accepting configuration if w is in the language.
- TM halts in a rejecting configuration if w is not in the language.
- Nondeterministic TMs are equivalent to Deterministic TMs.

Describing Turing Machines and Their
 Inputs

- For the rest of the course we will have a rather standard way of describing TMs and their inputs.
- The inputs to TMs have to be strings.
- Every object O that enters a computation will be represented with a string $\langle O\rangle$, encoding the object.
- For example if G is a 4 node undirected graph with 4 edges

$$
\langle G\rangle=(1,2,3,4)((1,2),(2,3),(3,1),(1,4))
$$

- Then we can define problems over graphs,e.g., as:

$$
A=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

DECIDABILITY

- We investigate the power of algorithms to solve problems.
- We discuss certain problems that can be solved algorithmically and others that can not be.
- Why discuss unsolvability?
- Knowing a problem is unsolvable is useful because
- you realize it must be simplified or altered before you find an algorithmic solution.
- you gain a better perspective on computation and its limitations.

OVERVIEW

- Decidable Languages
- Diagonalization
- Halting Problem as a undecidable problem
- Turing-unrecognizable languages.

Decidable Languages

Some notational details

- $\langle B\rangle$ represents the encoding of the description of an automaton (DFA/NFA).
- We need to encode Q, Σ, δ and F.

Encoding Finite Automata as Strings

- Here is one possible encoding scheme:
- Encode Q using unary encoding:
- For $Q=\left\{q_{0}, q_{1}, \ldots q_{n-1}\right\}$, encode q_{i} using $i+10$'s, i.e., using the string 0^{i+1}.
- We assume that q_{0} is always the start state.
- Encode Σ using unary encoding:
- For $\Sigma=\left\{a_{1}, a_{2}, \ldots a_{m}\right\}$, encode a_{i} using $i 0$'s, i.e., using the string 0^{i}.
- With these conventions, all we need to encode is δ and F !
- Each entry of δ, e.g., $\delta\left(q_{i}, a_{j}\right)=q_{k}$ is encoded as

$$
\underbrace{0^{i+1}}_{q_{i}} 1 \underbrace{0^{j}}_{a_{j}} 1 \underbrace{0^{k+1}}_{q_{k}}
$$

Encoding Finite Automata as Strings

- The whole δ can now be encoded as

- F can be encoded just as a list of the encodings of all the final states. For example, if states 2 and 4 are the final states, F could be encoded as

$\underbrace{000}_{q_{2}} 1 \underbrace{00000}_{q_{4}}$

- The whole DFA would be encoded by

$11 \underbrace{00100010000100000 \cdots 0}_{\text {encoding of the transitions }} 11 \underbrace{0000000010000000}_{\text {encoding of the final states }} 11$

Encoding Finite Automata as Strings

- $\langle B\rangle$ representing the encoding of the description of an automaton (DFA/NFA) would be something like

$$
\langle B\rangle=11 \underbrace{00100010000100000 \cdots 0}_{\text {encoding of the transitions }} 11 \underbrace{0000000010000000}_{\text {encoding of the final states }} 11
$$

- In fact, the description of all DFAs could be described by a regular expression like

$$
11\left(0^{+} 10^{+} 10^{+} 1\right)^{*} 1\left(0^{+} 1\right)^{+} 1
$$

- Similarly strings over Σ can be encoded with (the same convention)

$$
\langle w\rangle=\underbrace{0000}_{a_{4}} 1 \underbrace{000000}_{a_{6}} 1 \cdots \underbrace{0}_{a_{1}}
$$

Encoding Finite Automata as Strings

- $\langle B, w\rangle$ represents the encoding of a machine followed by an input string, in the manner above (with a suitable separator between $\langle B\rangle$ and $\langle w\rangle$.
- Now we can describe our problems over languages and automata as problems over strings (representing automata and languages).

Decidable Problems

Regular Languages

- Does B accept w ?
- Is $L(B)$ empty?
- Is $L(A)=L(B)$?

The Acceptance Problem for DFAs

THEOREM 4.1

$A_{D F A}=\{\langle B, w\rangle \mid B$ is a DFA that accepts input string $w\}$ is a decidable language.

Proof

- Simulate with a two-tape TM.
- One tape has $\langle B, w\rangle$
- The other tape is a work tape that keeps track of which state of B the simulation is in.
- $M=$ "On input $\langle B, w\rangle$
(1) Simulate B on input w
(2) If the simulation ends in an accept state of B, accept; if it ends in a nonaccepting state, reject."

The Acceptance Problem for NFAs

THEOREM 4.2

$A_{N F A}=\{\langle B, w\rangle \mid B$ is a NFA that accepts input string $w\}$ is a decidable language.

Proof

- Convert NFA to DFA and use Theorem 4.1
- $N=$ "On input $\langle B, w\rangle$ where B is an NFA
(1) Convert NFA B to an equivalent DFA C, using the determinization procedure.
(2) Run TM M in Thm 4.1 on input $\langle C, w\rangle$
- If M accepts accept; otherwise reject."

The Generation Problem for Regular EXPRESSIONS

THEOREM 4.3

$A_{R E X}=\{\langle R, w\rangle \mid R$ is a regular exp. that generates string $w\}$ is a decidable language.

Proof

- Note R is already a string!!
- Convert R to an NFA and use Theorem 4.2
- $P=$ "On input $\langle R, w\rangle$ where R is a regular expression
(1) Convert R to an equivalent NFA A, using the Regular Expression-to-NFA procedure
(2) Run TM N in Thm 4.2 on input $\langle A, w\rangle$
- If N accepts accept; otherwise reject."

The Emptiness Problem for DFAs

THEOREM 4.4
$E_{D F A}=\{\langle A\rangle \mid A$ is a DFA and $L(A)=\Phi\}$ is a decidable language.

Proof

- Use the DFS algorithm to mark the states of DFA
- $T=$ "On input $\langle A\rangle$ where A is a DFA.
(1) Mark the start state of A
(2) Repeat until no new states get marked.
- Mark any state that has a transition coming into it from any state already marked.
- If no final state is marked, accept, otherwise reject."

The Equivalence Problem for DFAs

Theorem 4.5

$E Q_{D F A}=\{\langle A, B\rangle \mid A$ and B are DFAs and $L(A)=L(B)\}$ is a decidable language.

Proof

- Construct the machine for $L(C)=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))$ and check if $L(C)=\Phi$.
- $T=$ "On input $\langle A, B\rangle$ where A and B are DFAs.
(1) Construct the DFA for $L(C)$ as described above.
(2) Run TM T of Theorem 4.4 on input $\langle C\rangle$.
(3) If T accepts, accept; otherwise reject."

Decidable Problems

CONTEXT-FREE LANGUAGES

- Does grammar G generate w ?
- Is $L(G)$ empty?

The Generation Problem for CFGs

TheOrem 4.7

$A_{C F G}=\{\langle G, w\rangle \mid G$ is a CFG that generates string $w\}$ is a decidable language.

Proof

- Convert G to Chomsky Normal Form and use the CYK algorithm.
- $C=$ "On input $\langle G, w\rangle$ where G is a CFG
(1) Convert G to an equivalent grammar in CNF
(2) Run CYK algorithm on w of length n
(0) If $S \in V_{i, n}$ accept; otherwise reject."

The Generation Problem for CFGs

Alternative Proof

- Convert G to Chomsky Normal Form and check all derivations up to a certain length (Why!)
- $S=$ "On input $\langle G, w\rangle$ where G is a CFG
(1) Convert G to an equivalent grammar in CNF
(2 List all derivations with $2 n-1$ steps where n is the length of w. If $n=0$ list all derivations of length 1 .
- If any of these strings generated is equal to w, accept, otherwise reject."
- This works because every derivation using a CFG in CNF either increase the length of the sentential form by 1 (using a rule like $A \rightarrow B C$ or leaves it the same (using a rule like $A \rightarrow a$)
- Obviously this is not very efficient as there may be exponentially many strings of length up to $2 n-1$.

The Emptiness Problem for CFGs

TheOrem 4.8

$E_{C F G}=\{\langle G\rangle \mid G$ is a CFG and $L(G)=\Phi\}$ is a decidable language.

PROOF

- Mark variables of G systematically if they can generate terminal strings, and check if S is unmarked.
- $R=$ "On input $\langle G\rangle$ where G is a CFG.
(1) Mark all terminal symbols G
(2) Repeat until no new variable get marked.
- Mark any variable A such that G has a rule $A \rightarrow U_{1} U_{2} \ldots U_{k}$ and $U_{1}, U_{2}, \ldots U_{k}$ are already marked.
(3) If start symbol is NOT marked, accept; otherwise reject."

The Equivalence Problem for CFGs

$E Q_{C F G}=\{\langle G, H\rangle \mid G$ and H are CFGs and $L(G)=L(H)\}$

- It turns out that $E Q_{D F A}$ is not a decidable language.
- The construction for DFAs does not work because CFLs are NOT closed under intersection and complementation.
- Proof comes later.

Decidability of CFLs

THEOREM 4.9

Every context free language is decidable.

PRoof

- Design a TM M_{G} that has G built into it and use the result of $A_{\text {CFG }}$.
- $M_{G}=$ "On input w
(1) Run TM S (from Theorem 4.7) on input $\langle G, w\rangle$
(2) If S accepts, accept, otherwise reject.

Acceptance Problem for TMs

THEOREM 4.11
$A_{T M}=\{\langle M, w\rangle \mid M$ is a TM and M accepts $w\}$ is undecidable.

- Note that $A_{T M}$ is Turing-recognizable. Thus this theorem when proved, shows that recognizers are more powerful than deciders.
- We can encode TMs with strings just like we did for DFA's (How?)

Acceptance Problem for TMs

- The TM U recognizes $A_{T M}$
- $U=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:
(1) Simulate M on w
(2) If M ever enters its accepts state, accept; if M ever enters its reject state, reject.
- Note that if M loops on w, then U loops on $\langle M, w\rangle$, which is why it is NOT a decider!
- U can not detect that M halts on w.
- $A_{T M}$ is also known as the Halting Problem
- U is known as the Universal Turing Machine because it can simulate every TM (including itself!)

The Diagonalization Method

SOME BASIC DEFINITIONS

- Let A and B be any two sets (not necessarily finite) and f be a function from A to B.
- f is one-to-one if $f(a) \neq f(b)$ whenever $a \neq b$.
- f is onto if for every $b \in B$ there is an $a \in A$ such that $f(a)=b$.
- We say A and B are the same size if there is a one-to-one and onto function $f: A \longrightarrow B$.
- Such a function is called a correspondence for pairing A and B.
- Every element of A maps to a unique element of B
- Each element of B has a unique element of A mapping to it.

The Diagonalization Method

- Let \mathcal{N} be the set of natural numbers $\{1,2, \ldots\}$ and let \mathcal{E} be the set of even numbers $\{2,4, \ldots\}$.
- $f(n)=2 n$ is a correspondence between \mathcal{N} and \mathcal{E}.
- Hence, \mathcal{N} and \mathcal{E} have the same size (though $\mathcal{E} \subset \mathcal{N}$).
- A set A is countable if it is either finite or has the same size as \mathcal{N}.
- $\mathcal{Q}=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathcal{N}\right\}$ is countable!
- Z the set of integers is countable:

$$
f(n)=\left\{\begin{array}{cc}
\frac{n}{2} & n \text { even } \\
-\frac{n+1}{2} & n \text { odd }
\end{array}\right.
$$

The Diagonalization Method

THEOREM

\mathcal{R} is uncountable

PROOF.

- Assume f exists and every number in \mathcal{R} is listed.
- Assume $x \in \mathcal{R}$ is a real number such that x differs from the $j^{\text {th }}$ number in the $j^{\text {th }}$ decimal digit.
- If x is listed at some position k, then it differs from itself at $k^{\text {th }}$ position; otherwise the premise does not hold
- f does not exist

n	$\mid c(n)$
1	$3.14159 \ldots$
2	$55.77777 \ldots$
3	$0.12345 \ldots$
4	$0.50000 \ldots$

$x=.4527 \ldots$ defined as such, can not be on this list.

Diagonalization over Languages

COROLLARY

Some languages are not Turing-recognizable.

PRoof

- For any alphabet Σ, Σ^{*} is countable. Order strings in Σ^{*} by length and then alphanumerically, so $\Sigma^{*}=\left\{s_{1}, s_{2}, \ldots, s_{i}, \ldots\right\}$
- The set of all TMs is a countable language.
- Each TM M corresponds to a string $\langle M\rangle$.
- Generate a list of strings and remove any strings that do not represent a TM to get a list of TMs.

Diagonalization over Languages

PROOF (CONTINUED)

- The set of infinite binary sequences, \mathcal{B}, is uncountable. (Exactly the same proof we gave for uncountability of \mathcal{R})
- Let \mathcal{L} be the set of all languages over Σ.
- For each language $A \in \mathcal{L}$ there is unique infinite binary sequence \mathcal{X}_{A}
- The $i^{\text {th }}$ bit in \mathcal{X}_{A} is 1 if $s_{i} \in A, 0$ otherwise.

Diagonalization over Languages

PROOF (CONTINUED)

- The function $f: \mathcal{L} \longrightarrow \mathcal{B}$ is a correspondence. Thus \mathcal{L} is uncountable.
- So, there are languages that can not be recognized by some TM. There are not enough TMs to go around.

The Halting Problem is Undecidable

THEOREM

$A_{T M}=\{\langle M, w\rangle \mid M$ is a $T M$ and M accepts $w\}$, is undecidable.

Proof

- We assume $A_{T M}$ is decidable and obtain a contradiction.
- Suppose H decides $A_{T M}$

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

The Halting Problem is Undecidable

PROOF (CONTINUED)

- We now construct a new TM D
$D=$ "On input $\langle M\rangle$, where M is a TM
(1) Run H on input $\langle M,\langle M\rangle\rangle$.
(2) If H accepts, reject, if H rejects, accept'
- So

$$
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { does not accept }\langle M\rangle \\ \text { reject } & \text { if } M \text { accepts }\langle M\rangle\end{cases}
$$

- When D runs on itself we get

$$
D(\langle D\rangle)= \begin{cases}\text { accept } & \text { if } D \text { does not accept }\langle D\rangle \\ \text { reject } & \text { if } D \text { accepts }\langle D\rangle\end{cases}
$$

- Neither D nor H can exist.

What Happened to Diagonalization?

Consider the behaviour of all possible deciders:

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\ldots	$\begin{gathered} \langle D\rangle \\ \left\langle M_{j}\right\rangle \end{gathered}$	
M_{1}	accept	reject	accept	reject	\ldots	accept	
M_{2}	accept	accept	accept	accept	\ldots	accept	
M_{3}	reject	reject	reject	reject	.	reject	
M_{4}	accept	accept	reject	$\underline{\text { reject }}$		accept	
$D=M_{j}{ }^{\vdots}$	reject	reject	accept	accept		$?$	

- D computes the opposite of the diagonal entries!

A Turing Unrecognizable Language

- A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.
- A language is decidable if it is Turing-recognizable and co-Turing-recognizable.
- $\overline{A_{T M}}$ is not Turing recognizable.
- We know $A_{T M}$ is Turing-recognizable.
- If $\overline{A_{T M}}$ were also Turing-recognizable, $A_{T M}$ would have to be decidable.
- We know $A_{T M}$ is not decidable.
- $\overline{A_{T M}}$ must not be Turing-recognizable.

