FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

DECIDABILITY

TURING MACHINES-SYNOPSIS

- The most general model of computation
- Computations of a TM are described by a sequence of configurations. (Accepting Configuration, Rejecting Configuration)
- Turing-recognizable languages
 - TM halts in an accepting configuration if *w* is in the language.
 - TM may halt in a rejecting configuration or go on indefinitely if *w* is not in the language.
- Turing-decidable languages
 - TM halts in an accepting configuration if *w* is in the language.
 - TM halts in a rejecting configuration if *w* is not in the language.
- Nondeterministic TMs are equivalent to Deterministic TMs.

DESCRIBING TURING MACHINES AND THEIR INPUTS

- For the rest of the course we will have a rather standard way of describing TMs and their inputs.
- The inputs to TMs have to be strings.
- Every object O that enters a computation will be represented with a string (O), encoding the object.
- For example if *G* is a 4 node undirected graph with 4 edges $\langle G \rangle = (1, 2, 3, 4) ((1, 2), (2, 3), (3, 1), (1, 4))$
- Then we can define problems over graphs,e.g., as:

 $A = \{ \langle G \rangle \mid G \text{ is a connected undirected graph} \}$

DECIDABILITY

- We investigate the power of algorithms to solve problems.
- We discuss certain problems that can be solved algorithmically and others that can not be.
- Why discuss unsolvability?
- Knowing a problem is unsolvable is useful because
 - you realize it must be simplified or altered before you find an algorithmic solution.
 - you gain a better perspective on computation and its limitations.

OVERVIEW

- Decidable Languages
- Diagonalization
- Halting Problem as a undecidable problem
- Turing-unrecognizable languages.

DECIDABLE LANGUAGES

Some notational details

- (B) represents the encoding of the description of an automaton (DFA/NFA).
- We need to encode Q, Σ, δ and F.

- Here is one possible encoding scheme:
- Encode Q using unary encoding:
 - For $Q = \{q_0, q_1, \dots, q_{n-1}\}$, encode q_i using i + 1 0's, i.e., using the string 0^{i+1} .
 - We assume that q_0 is always the start state.
- Encode Σ using unary encoding:
 - For Σ = {a₁, a₂,... a_m}, encode a_i using *i* 0's, i.e., using the string 0ⁱ.
- With these conventions, all we need to encode is δ and F!
- Each entry of δ , e.g., $\delta(q_i, a_j) = q_k$ is encoded as

$$\underbrace{\mathbf{0}_{q_i}^{i+1}}_{q_i} \mathbf{1} \underbrace{\mathbf{0}_{a_j}^{j}}_{a_j} \mathbf{1} \underbrace{\mathbf{0}_{q_k}^{k+1}}_{q_k}$$

• The whole δ can now be encoded as

• *F* can be encoded just as a list of the encodings of all the final states. For example, if states 2 and 4 are the final states, *F* could be encoded as

• The whole DFA would be encoded by

 $11\,00100010000100000\cdots 0\,11\,00000001000000\,11$

encoding of the transitions

encoding of the final states

(B) representing the encoding of the description of an automaton (DFA/NFA) would be something like

$$\langle B \rangle = 11 \underbrace{00100010000100000\cdots 0}_{encoding of the transitions} 11 \underbrace{0000000010000000}_{encoding of the final states} 11$$

 In fact, the description of all DFAs could be described by a regular expression like

$$11(0^+10^+10^+1)^*1(0^+1)^+1$$

Similarly strings over Σ can be encoded with (the same convention)

$$\langle w \rangle = \underbrace{0000}_{a_4} 1 \underbrace{000000}_{a_6} 1 \cdots \underbrace{0}_{a_1}$$

- \$\lambda B, w\$\rangle\$ represents the encoding of a machine followed by an input string, in the manner above (with a suitable separator between \$\lambda B\$\rangle\$ and \$\lambda w\$\rangle\$.
- Now we can describe our problems over languages and automata as problems over strings (representing automata and languages).

DECIDABLE PROBLEMS

REGULAR LANGUAGES

- Does *B* accept *w*?
- Is L(B) empty?
- Is L(A) = L(B)?

THE ACCEPTANCE PROBLEM FOR DFAS

THEOREM 4.1

 $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$ is a decidable language.

Proof

- Simulate with a two-tape TM.
 - One tape has $\langle B, w \rangle$
 - The other tape is a work tape that keeps track of which state of *B* the simulation is in.
- M = "On input $\langle B, w \rangle$
 - Simulate B on input w
 - If the simulation ends in an accept state of *B*, *accept*; if it ends in a nonaccepting state, *reject*."

THE ACCEPTANCE PROBLEM FOR NFAS

THEOREM 4.2

 $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is a NFA that accepts input string } w \}$ is a decidable language.

Proof

- Convert NFA to DFA and use Theorem 4.1
- N = "On input $\langle B, w \rangle$ where B is an NFA
 - Convert NFA B to an equivalent DFA C, using the determinization procedure.
 - **2** Run TM *M* in Thm 4.1 on input $\langle C, w \rangle$
 - If M accepts accept; otherwise reject."

THE GENERATION PROBLEM FOR REGULAR EXPRESSIONS

THEOREM 4.3

 $A_{REX} = \{ \langle R, w \rangle \mid R \text{ is a regular exp. that generates string } w \}$ is a decidable language.

PROOF

- Note *R* is already a string!!
- Convert *R* to an NFA and use Theorem 4.2
- P = "On input $\langle R, w \rangle$ where R is a regular expression
 - Convert R to an equivalent NFA A, using the Regular Expression-to-NFA procedure
 - **2** Run TM *N* in Thm 4.2 on input $\langle A, w \rangle$
 - If N accepts accept; otherwise reject."

THE EMPTINESS PROBLEM FOR DFAS

THEOREM 4.4

$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \Phi \}$ is a decidable language.

PROOF

- Use the DFS algorithm to mark the states of DFA
- T = "On input $\langle A \rangle$ where A is a DFA.
 - Mark the start state of A
 - Repeat until no new states get marked.
 - Mark any state that has a transition coming into it from any state already marked.

If no final state is marked, accept; otherwise reject."

THE EQUIVALENCE PROBLEM FOR DFAS

THEOREM 4.5

 $EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$ is a decidable language.

PROOF

- Construct the machine for $L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$ and check if $L(C) = \Phi$.
- T = "On input $\langle A, B \rangle$ where A and B are DFAs.
 - Construct the DFA for L(C) as described above.
 - **2** Run TM *T* of Theorem 4.4 on input $\langle C \rangle$.
 - If T accepts, accept; otherwise reject."

DECIDABLE PROBLEMS

CONTEXT-FREE LANGUAGES

- Does grammar G generate w?
- Is L(G) empty?

THE GENERATION PROBLEM FOR CFGs

THEOREM 4.7

 $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$ is a decidable language.

Proof

- Convert *G* to Chomsky Normal Form and use the CYK algorithm.
- C = "On input $\langle G, w \rangle$ where G is a CFG
 - Convert G to an equivalent grammar in CNF
 - 2 Run CYK algorithm on *w* of length *n*
 - So If $S \in V_{i,n}$ accept; otherwise reject."

THE GENERATION PROBLEM FOR CFGS

ALTERNATIVE PROOF

- Convert G to Chomsky Normal Form and check all derivations up to a certain length (Why!)
- S = "On input $\langle G, w \rangle$ where G is a CFG
 - Convert G to an equivalent grammar in CNF
 - Solution List all derivations with 2n 1 steps where *n* is the length of *w*. If n = 0 list all derivations of length 1.
 - If any of these strings generated is equal to w, accept; otherwise reject."
- This works because every derivation using a CFG in CNF either increase the length of the sentential form by 1 (using a rule like *A* → *BC* or leaves it the same (using a rule like *A* → *a*)
- Obviously this is not very efficient as there may be exponentially many strings of length up to 2n 1.

(LECTURE 15)

SLIDES FOR 15-453

THE EMPTINESS PROBLEM FOR CFGS

THEOREM 4.8

$E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \Phi \}$ is a decidable language.

Proof

- Mark variables of *G* systematically if they can generate terminal strings, and check if *S* is unmarked.
- R = "On input $\langle G \rangle$ where G is a CFG.
 - Mark all terminal symbols G
 - Repeat until no new variable get marked.
 - Mark any variable A such that G has a rule A → U₁U₂ · · · U_k and U₁, U₂, . . . U_k are already marked.
 - If start symbol is NOT marked, accept; otherwise reject."

THE EQUIVALENCE PROBLEM FOR CFGs

 $EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$

- It turns out that *EQ*_{DFA} is not a decidable language.
- The construction for DFAs does not work because CFLs are NOT closed under intersection and complementation.
- Proof comes later.

DECIDABILITY OF CFLS

THEOREM 4.9

Every context free language is decidable.

PROOF

- Design a TM *M_G* that has *G* built into it and use the result of *A_{CFG}*.
- M_G = "On input w
 - Run TM S (from Theorem 4.7) on input $\langle G, w \rangle$
 - If S accepts, accept, otherwise reject.

ACCEPTANCE PROBLEM FOR TMS

THEOREM 4.11

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \text{ is undecidable.}$

- Note that A_{TM} is Turing-recognizable. Thus this theorem when proved, shows that recognizers are more powerful than deciders.
- We can encode TMs with strings just like we did for DFA's (How?)

ACCEPTANCE PROBLEM FOR TMS

- The TM U recognizes A_{TM}
- U = "On input $\langle M, w \rangle$ where *M* is a TM and *w* is a string:
 - Simulate M on w
 - If M ever enters its accepts state, accept; if M ever enters its reject state, reject.
- Note that if *M* loops on *w*, then *U* loops on (*M*, *w*), which is why it is NOT a decider!
- U can not detect that M halts on w.
- *A_{TM}* is also known as the Halting Problem
- *U* is known as the Universal Turing Machine because it can simulate every TM (including itself!)

THE DIAGONALIZATION METHOD

Some basic definitions

- Let *A* and *B* be any two sets (not necessarily finite) and *f* be a function from *A* to *B*.
- *f* is one-to-one if $f(a) \neq f(b)$ whenever $a \neq b$.
- f is onto if for every $b \in B$ there is an $a \in A$ such that f(a) = b.
- We say *A* and *B* are the same size if there is a one-to-one and onto function $f : A \longrightarrow B$.
- Such a function is called a correspondence for pairing *A* and *B*.
 - Every element of A maps to a unique element of B
 - Each element of *B* has a unique element of *A* mapping to it.

THE DIAGONALIZATION METHOD

- Let \mathcal{N} be the set of natural numbers $\{1, 2, \ldots\}$ and let \mathcal{E} be the set of even numbers $\{2, 4, \ldots\}$.
- f(n) = 2n is a correspondence between \mathcal{N} and \mathcal{E} .
- Hence, \mathcal{N} and \mathcal{E} have the same size (though $\mathcal{E} \subset \mathcal{N}$).
- A set A is countable if it is either finite or has the same size as N.
- $\mathcal{Q} = \{ \frac{m}{n} \mid m, n \in \mathcal{N} \}$ is countable!
- Z the set of integers is countable:

$$f(n) = \begin{cases} \frac{n}{2} & n \text{ even} \\ \\ -\frac{n+1}{2} & n \text{ odd} \end{cases}$$

THE DIAGONALIZATION METHOD

THEOREM

 $\mathcal R$ is uncountable

PROOF.

- Assume f exists and every number in \mathcal{R} is listed.
- Assume x ∈ R is a real number such that x differs from the jth number in the jth decimal digit.
- If x is listed at some position k, then it differs from itself at kth position; otherwise the premise does not hold
- f does not exist

```
f(n)
 п
 1
      3.14159...
 2
    55.77777...
 3
      0.12345...
 4
      0.50000...
 ÷
x = .4527...
defined as
such, can not
be on this list.
```

DIAGONALIZATION OVER LANGUAGES

COROLLARY

Some languages are not Turing-recognizable.

PROOF

- For any alphabet Σ, Σ* is countable. Order strings in Σ* by length and then alphanumerically, so Σ* = {s₁, s₂,..., s_i,...}
- The set of all TMs is a countable language.
 - Each TM *M* corresponds to a string $\langle M \rangle$.
 - Generate a list of strings and remove any strings that do not represent a TM to get a list of TMs.

DIAGONALIZATION OVER LANGUAGES

PROOF (CONTINUED)

- The set of infinite binary sequences, \mathcal{B} , is uncountable. (Exactly the same proof we gave for uncountability of \mathcal{R})
- Let \mathcal{L} be the set of all languages over Σ .
- For each language $A \in \mathcal{L}$ there is unique infinite binary sequence \mathcal{X}_A
 - The *i*th bit in \mathcal{X}_A is 1 if $s_i \in A$, 0 otherwise.

$A = \{$ 0, 00, 01, 000, 001, } $\mathcal{X}_A = \{$ 0 1 0 1 1 }	Σ*= {	$\epsilon,$	0,	1,	00,	01,	10,	11,	000,	001,	 }
$\mathcal{X}_A = \{ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ \cdots \}$	A={		0,		00,	01,			000,	001,	 }
	$\mathcal{X}_{A}=\{$	0	1	0	1	1	0	0	1	1	 }

DIAGONALIZATION OVER LANGUAGES

PROOF (CONTINUED)

- The function $f : \mathcal{L} \longrightarrow \mathcal{B}$ is a correspondence. Thus \mathcal{L} is uncountable.
- So, there are languages that can not be recognized by some TM. There are not enough TMs to go around.

THE HALTING PROBLEM IS UNDECIDABLE

THEOREM

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}, \text{ is undecidable.}$

PROOF

- We assume A_{TM} is decidable and obtain a contradiction.
- Suppose *H* decides *A*_{TM}

 $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$

THE HALTING PROBLEM IS UNDECIDABLE

PROOF (CONTINUED)

- We now construct a new TM D
 - D = "On input $\langle M \rangle$, where M is a TM
 - Run *H* on input $\langle M, \langle M \rangle \rangle$.
 - If H accepts, reject, if H rejects, accept"

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

• When D runs on itself we get

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

• Neither D nor H can exist.

WHAT HAPPENED TO DIAGONALIZATION?

Consider the behaviour of all possible deciders:

						$\langle D \rangle$	
	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •	$\langle M_j \rangle$	•••
<i>M</i> ₁	accept	reject	accept	reject	•••	accept	• • •
<i>M</i> ₂	accept	accept	accept	accept	• • •	accept	• • •
M_3	reject	reject	reject	reject	• • •	reject	• • •
M_4	accept	accept	reject	reject	• • •	accept	• • •
÷		÷			۰.		
$D = M_j$	reject	reject	accept	accept	•••	<u>?</u>	•••
:		÷					۰.

• D computes the opposite of the diagonal entries!

A TURING UNRECOGNIZABLE LANGUAGE

- A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.
- A language is decidable if it is Turing-recognizable and co-Turing-recognizable.
- $\overline{A_{TM}}$ is not Turing recognizable.
 - We know A_{TM} is Turing-recognizable.
 - If $\overline{A_{TM}}$ were also Turing-recognizable, A_{TM} would have to be decidable.
 - We know A_{TM} is not decidable.
 - $\overline{A_{TM}}$ must not be Turing-recognizable.