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Abstract--This paper describes a hybrid pattern classification system based on a pattern preprocessor 
and an artificial neural network classifier that can recognize patterns even when they are deformed by 
transformation of rotation, scaling, and translation or a combination of these. After a description of 
the system architecture we provide experimental results from three different classification domains: 
classification of letters in the English alphabet, classification of the letters in the Japanese Katakana 
alphabet, and classification of geometric figures. For the first problem, our system can recognize patterns 
deformed by a single transformation with well over 90% success ratio and with 89% success ratio when all 
three transformations are applied. For the second problem, the system performs very good for patterns 
deformed by scaling and translation but worse (about 75%) when rotations are involved. For the third 
problem, the success ratio is almost 100% when only a single transformation is applied and 88% when all 
three transformations are applied. The system is general purpose and has a reasonable noise tolerance. 

Deformation invariant pattern classification Pattern recognition Artificial neural networks 

I. INTRODUCTION 

The recent interest in artificial neural networks, 
machine learning, and parallel computation has led 
to renewed research in the area of pattern recognition. 
Pattern recognition aims to extract information about 
the image and/or classify its contents. Systems having 
pattern recognition ability have many possible appli- 
cations in a wide variety of areas, from simple object 
existence checks, through identity verification, to robot 
guidance in space exploration. Pattern classification, 
a subfield of pattern recognition, is concerned with 
determining whether the pattern in an input image 
belongs to one of the predefined classes. Early pattern 
classification research performed in the 1960s and 
1970s focused on asymptotic properties of classifiers, 
on demonstrating convergence of density estimators, 
and on providing bounds for error rates. Many, re- 
searchers studied parametric Bayesian classifiers where 
the form of input distributions is assumed to be known 
and parameters of distributions are estimated using 
techniques that require simultaneous access to all 
training data. These classifiers, especially those that 
assume Gaussian distributions, are still the most 
widely used since they are simple and are clearly 
described in a number of textbooks. ~x'2~ However, the 
thrust of recent research has changed. More attention 
is being paid to practical issues as pattern classification 
techniques are being applied to speech, vision, robotics, 
and artificial intelligence applications where real-time 
response with complex real world data is necessary. 
In all cases, pattern classification systems should be 
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able to learn while or before performing, and make 
decisions depending on the recognition result. 

Developing pattern recognition systems is usually 
a two-stage process. First the designer should carefully 
examine the characteristics of the pattern environ- 
ment. This involves lengthy experimentation. The 
result is a set of features chosen to represent the 
original input image. Second, the designer should 
choose from a variety of techniques to classify the 
pattern which is now in feature representation. The 
stage of feature determination and extraction strictly 
determines the success of the system, since from thereon 
the image is represented by this feature form, There- 
fore, it is highly desired that the classification system 
itself should extract the necessary features to differen- 
tiate the example patterns that represent each class. 
In other words, the system should be automated to 
work by itself and should not depend on the human 
designer's success in defining the features. Further, 
these features should be chosen such that they should 
tolerate the differentiation between the patterns in the 
same class. The system should also have the ability 
to perform the classification in a rotation, scaling, and 
translation invariant manner. This effect is typical 
when the scanning device, suppose a camera, changes 
its orientation or distance from the specimen. Hence 
the image fed to the system may contain a pattern 
that is rotated, scaled, or translated compared to its 
original form when it was first presented to the system. 
For such a case, either the system should employ 
features that are invariant to such transformations or 
there should be a preprocessor to maintain the rota- 
tional, scaling, and translation invariancy. Even for a 
limited system designed for classifying only a deter- 

687 



688 C. Yf3CEER and K. OFLAZER 

mined type of pa t te rns - -an  optical character clas- 
sifier, or an identity verifier--i t  is hard to find features 
that extract useful information while maintaining the 
mentioned invariances. The problem will be impracti- 
cal if such a system is intended for general purpose 
classification to classify any type of patterns. 

The scope of this work has been to develop a general 
purpose pattern classification system which can classify 
patterns even if they are deformed by transformations 
like rotation, scaling, and translation or a combina- 
tion of them. The system is based on a preprocessor 
front-end and an artificial neural networks back-end. 
Artificial neural networks have recently been used for 
automatic feature extraction and/or pattern classifica- 
tion mainly owing to their learning algorithms, gen- 
eralization ability and noise tolerance, ca-a) 

The paper is organized as follows: after a brief 
overview of the pattern classification problem we 
overview the relevant work in pattern classification 
and introduce some concepts from artificial neural 
networks. We then describe in detail the structure 
of the proposed pattern classification system and give 
experimental results on three different pattern classifi- 
cation domains: the English alphabet, the Japanese 
Katakana alphabet, and set of five geometric symbols. 
The summary and conclusions are followed by two 
appendices including the mathematical derivations of 
the two groups of formulae given in the text. 

2. PATTERN RECOGNITION AND 
NEURAL NETWORKS 

Pattern recognition deals with the identification or 
interpretation of the pattern in an image. It aims to 
extract information about the image and/or classify 
its contents. For  some simple and frequently encoun- 
tered patterns, the recognition process can be a straight- 
forward task. However, when patterns are complex 
or when pattern characteristics cannot be predicted 
beforehand, then one needs a high-level system to 
perform pattern recognition. The problem attempted 
in this work is a subclass of the general pattern 
recognition problem. The aim is to classify the pattern 
in an input image using the information that was 
extracted from the example patterns previously sup- 
plied to the system. Inputs are in the form of digitized 
binary-valued two-dimensional (2D) images contain- 
ing the pattern to be classified. This representation of 
the 2D image is defined and used throughout the text 
as the pixel-map form of the image. 

2.1. Overview of pattern classification 

Pattern classification is concerned with determining 
whether the pattern in an input image belongs to one 
of the predefined classes. There are two major pattern 
classification techniques: template matching and feature 
extraction. Template matching compares the pixel- 
map of the test pattern with a number of stored 
pixel-maps until an exact match or a match with 

tolerable error is found. It is a top-down process in 
the sense that the trial procedure does not depend on 
the test pattern in any way. On the other hand, feature 
extraction is the process of converting the pixel-map 
representation of the input image of a group of quanti- 
tative descriptors called feature values. These features 
are usually predefined by the designer and chosen to 
be independent from each other, t4'5"7) Pattern classi- 
fication using feature extraction usually starts by 
detection of some limited number of features. These 
features are chosen to distinguish most of the previously 
stored patterns. If a non-acceptable result is obtained, 
classification continues with some other features until 
a unique decision is made. It is important to note that 
the feature extraction process which converts the input 
image to a set of quantitative values should preserve 
the discrimination information throughout and after 
the conversion. In order to attain a high success ratio 
in classification, features should satisfy the following 
two requirements: ~7) 

• Small intraclass invariance. Patterns with similar 
shapes and similar general characteristics should end 
up with numerically close numbers for the features. 

• Large interclass separation. Patterns from different 
classes should evaluate to features which have quite 
different quantitative values. In other words, the pat- 
terns from different classes should differ in one or 
more features so that discrimination can be made. 

Template matching gets both computation and memory 
intensive when the resolution of the stored patterns 
increases, or when the patterns get more complex. In 
addition, template matching is sensitive to the exact 
orientation, size, and location of the object unless 
rotation, scaling, and translation invariant autocor- 
relation techniques are used. Consider the case of 
complex patterns which are 2D perspective projec- 
tions of three-dimensional (3D) objects, the patterns 
will be highly effected by the orientation and position 
of the objects, hence some form of generalized template 
matching will be required. 

The computation and memory requirements for 
classification with feature extraction are less severe 
than template matching. In most applications, com- 
puters having moderate computing power are em- 
ployed to generate the Fourier descriptors of the 
perimeter lines in a silhouette of the pattern. For 
higher level tasks, artificial intelligence techniques are 
used in analyzing the information embedded in the 
skeletonized form of the patterns. The fundamental 
problem with feature extraction is that important 
information may be lost in the extensive data reduction 
at the feature extraction stage. 

2.2. Pattern classification with neural networks 

There are two main approaches to pattern classifi- 
cation using artificial neural networks. The first ap- 
proach uses feature extraction and then employs 
artificial neural networks to perform the classifica- 
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tion on the feature values. Examples of such work 
are extraction of image information using regular 
moments, t9) Zernike moments, tTI Fourier descrip- 
tors, ~9-121 autoregressive models, ua~ image represen- 
tation by circular harmonic expansion, t~*l syntactic 
pattern recognition applications, tx 5~ Karhunen-Lorve 
expansion,t 16~ polar-coordinate Fourier transform, t ~ 7) 
transforming the image to another 2D representa- 
tion. "s~ Kollias et al. have transformed the input 
image to another 2D representation, called (a, b) plane, 
and performed classification using higher-order net- 
works.~l s~ Khotanzad et al. have used Zernike moments 
to achieve rotational invariancy in classification. ~7) 
They have computed some finite number of Zernike 
moments of the given image and performed classifica- 
tion on these moment values. Le Cun et al. first skel- 
etonized the input patterns and then scanned the whole 
image with a 7 x 7 window, with the window templates 
designed to detect certain predefined features. ~4) The 
classification is performed on the computed feature 
values. Kirby et al. used the Karhunen-Lorve expan- 
sion of the input image as its feature representation 
and performed classification on the expansion. ~'6~ 

A second and newly developing approach lets the 
features be determined and extracted by the artificial 
neural network itself. Martin et al. fed a neural network 
size-normalized gray scale image and report that "the 
generalization performance is surprisingly insensitive 
to characteristics of the network architecture, as long 
as enough training samples are used and there is 
sufficient capacity to support training to high levels"." 9~ 

2.3. Overview o f  artificial neural networks 

Artificial neural networks are computational models 
inspired by the structure of the human brain. They 
are massively parallel networks comprising a large 
number of simple processing units, called artificial 
neurons. The neuron structure given in Fig. 1 is the 
basic building block of such networks. It performs a 
weighted summation over its inputs, which may be 
the output of other neurons or may be coming from 
the external environment. The threshold, a local value 
for each neuron, is added to the sum. Then an 
activation function--also called the limiting or squash- 
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Fig. 1. Structure and function of a single artificial neuron. 
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Fig. 2. Some activation functions for the artificial neuron. 

ing function--is applied on the resulting sum to 
determine the neuron's output value. Various sig- 
moids, and hard-limiting (thresholding) functions are 
widely used activation function types, some of which 
are shown in Fig. 2. 

The weights associated with the inter-neuron con- 
nections represent the influence of its inputs over its 
output value. Depending on the sign of the weight an 
input may excite or inhibit the neuron. Most neural 
network architectures learn to respond to their inputs 
correctly by going through a training process during 
which the weights between the neurons are adjusted. 

The most common of the architectures of artificial 
neural networks is the multilayer feed-forward network 
architecture where neurons are grouped as layers and 
connections between neurons in consecutive layers are 
permitted. One end of the layered structure is called 
the input layer, while the other end the output layer. 
The inputs are fed from the input layer and the outputs 
are produced from the output layer. The hidden 
layer(s) between the input and output layers extract 
salient features from the input data and develop 
internal representations for those relevant features. 

3. THE PATI'ERN CLASSIFICATION SYSTEM 

Feed-forward type neural networks, when used as 
pattern classifiers directly, are highly sensitive to 
transformations like rotation, scaling and translation 
in the input. This behavior emerges from the fact that 
throughout the training phase the area of interest that 
the network mainly concentrates on is the region 
where the pattern lies. Hence the weights associated 
with the input pixels that are out of this region decay 
to zero during training. Although the neurons in the 
first layer perform a weighted summation over the 
values of all pixeis, these null weights block the 
information that may arise from the corresponding 
pixels. Thus a transformation that pushes the pattern 
out of this region, degrades the classification per- 
formance of the network dramatically. Therefore, in 
order to obtain a high success ratio in classification 
the system should provide rotation, scaling, and trans- 
lation correction before attempting to classify. Such 
invariancy can be achieved by a preprocessor with the 
following properties: 

• The preprocessor should map the patterns that 
are distorted by transformations or noise to a reason- 
ably stable output pattern. 
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Fig. 3. Block diagram of RST, the pattern classification system. 
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Fig. 4. Block diagram of the preprocessor. 
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• The mapping algorithm should be easy to com- 
pute. That is, it should not increase the overall com- 
plexity of the recognition system. A preprocessor that 
is much slower than the classifier and/or the interpreter 
would turn out to be a bottleneck increasing the 
classification time per pattern. 

Selecting good features for relatively complex patterns, 
like the human face or finger prints, turns out to be 
impractical or even impossible316) The problem is 
more acute when there is no prior knowledge on the 
patterns to be classified. Therefore, a system to auto- 
matically extract the useful features is essential. Artific- 
ial neural networks extract information during the 
training process, t2°~ The hidden layers and the neurons 
in the hidden layers detect the relevant features in the 
images. 

The pattern classification system introduced in this 
work, RST, has a modular structure consisting of three 
main blocks, a preprocessor, a classifier, and an inter- 
preter. The blocks are cascaded in order such that the 
original image is first preprocessed, then classified, and 
finally the results are interpreted. Figure 3 shows the 
block diagram for the pattern classification system. 

3.1. PREP1: the preprocessor with radial scaling 
correction 

The function of the preprocessor is to provide 
rotational, scaling, and translation invariancy on the 
input image. Both the input and the output of the 
preprocessor are images in pixel-map form. The pre- 
processor has three cascaded blocks R-Block, S-Block, 
and T-Block. The block diagram of the system is given 
in Fig. 4. The R-Block maintains rotational invariancy, 
the S-Block maintains scaling invariancy, T-Block 
maintains translational invariancy. 

The order in which the blocks are cascaded is 
determined mainly by the functional dependencies 
between these blocks. In the first implementation of 
the preprocessor, PREP1, the T-Block comes first, the 
S-Block second, and R-Block last. Since the scaling 
and rotation operations need a proper pivot point to 

function on, the T-Block is positioned before the two 
blocks. The origin of the pixel-map output by this 
block will be the pivot point for the scaling and 
rotation blocks. Further, placing the S-Block in front 
of the R-Block will bring the following two advantages: 

• The S-Block will prevent the pattern from flowing 
out of the image by a rotation operation. Consider 
an image containing a line pattern where the line 
diagonally extends between the corner points. Since 
our grid is of rectangular type, not a circular grid, the 
two ends of this pattern will flow out of the image 
after a rotation of 45 deg. However, performing scaling 
correction beforehand would establish a radial bound- 
ary for the pattern. 

• The S-Block will adjust the number of pixels that 
are on-pixels and will regulate the information flowing 
into the R-Block. The performance of the R-Block 
degrades when the number of on-pixels is only a small 
portion of the total number of pixels. Hence, perform- 
ing scaling correction will enable a better performance 
in providing rotational invariancy. 

3.1.1. The T-Block. The T-Block maintains trans- 
lational invariancy by computing the center of gravity 
of the pattern and translating the image so that the 
center of gravity coincides with the origin. The result- 
ing image is passed to the S-Block. The center of 
gravity is computed by averaging the x and y co- 
ordinates of the on-pixels, as formulated below. 

\ 
. . . . . . . . . . . . . .  r . . . . . . . . . . . . . .  

Fig. 5. A sample pattern before and after the T-Block. 
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Define P to be the number of on-pixels: 

N N 
P = ~, ~ f(x,,yj).  (1) 

i = l j = l  

Then the center of gravity, (Xav, Yav), will be 

~, ~1 f(Xi'y')'Xi' Y a v = p  f(xi,Yj)'Yj Xav = p j 
i= "= i = l j =  

(2) 

where function f (x ,  y) gives the value of the pixel at 
the coordinates (x, y). For digitized binary-valued 2D 
images this function will be either 0 or 1. t 

The mapping function for the translation invariant 
image is 

fT(Xi, yj) = f(xi  + x,v, yj + Y,v). (3) 

Figure 5 shows the function of T-Block on a sample 
pattern. 

3.1.2. The S-Block. The S-Block maintains scaling 
invariancy by scaling the image so that the average 
radius for the on-pixels is equal to one-fourth of the 
grid size. The term radius for a pixel is defined to be 
the length of the straight line connecting the pixel and 
the origin. The scaling process will bring a radial 
boundary to the pattern in the image while adjusting 
the number of on-pixels. It thus disables any possible 
pattern deformation caused by rotation. The average 
radius is computed as: 

1 N N 

E E fT(X',YJ)'x/(X~ + Y}) 
r,~ - ~,~: ,E~= ,fT(x,,Ys),=, S=, 

(4) 

and the scale factor, s, given by 

ray 
s = - -  ( 5 )  

R 

where R is equal to one-fourth of the grid size. 
The mapping function for the scaling invariant 

image is 

frs(Xl, y j) = fT(S'X i, S "ys). (6) 

Figure 6 shows the function of the S-Block on the 
sample image processed by the T-Block. 

Equation (6), the mapping function for the S-Block, 
embeds an interpolation property. In this equation, 
the pixels of the output image are mapped back to 
their corresponding pixels in the input image. This is 
called reverse mapping and brings the interpolation 
property. Consider a case where the forward mapping 
technique is used, and two on-pixels that are adjacent 
in the input image are mapped to two apart  pixels in 
the output image. There would be a discontinuity 
between these on-pixels in the output image. However, 
using reverse mapping both the apart pixels and the 

t If x or y, the arguments of the function, are not integers 
then they are rounded to the nearest integer to obtain the 
pixel coordinates. 

I i 

Fig. 6. The sample pattern before and after the S-Block. 

J 

Fig. 7. The forward mapping technique and the interpolation 
property by the reverse mapping technique used in the 

S-Block. 

pixels between them are mapped back to one of the 
original pixels, thus maintaining the connectivity of 
the pattern. A sketch illustrating this discussion is 
given in Fig. 7. 

3.1.3. The R-Block. The R-Block maintains rota- 
tional invariancy by rotating the image so that the 
direction of maximum variance coincides with the 
x-axis. The derivation of the function is based on the 
Karhunen-Lo6ve transformation which has been used 
in some applications. ~s't6'21) The transformation ex- 
ploits the following: given a set of vectors, the eigen- 
vector that corresponds to the largest eigenvalue of 
the covariance matrix calculated from the set of 
vectors, points in the direction of maximum vari- 
ance. t16'21) This property can be used to maintain 
rotational invariancy since detection of the maximum 
variance direction will also reveal the rotation angle. 
A general solution for any size of vectors would be 
impractical. However, for 2D vectors formed by the 
x and y coordinates of the on-pixels, the eigenvalues 
are easy to compute and a formula for the eigenvector 
corresponding to the greatest eigenvalue can be derived 
from the 2 by 2 covariance matrix. The rotation 
parameters are derived as follows. 
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Define: 

r ] 1 N s r n 
[J x = (x, • z ZS, s(X,,,)/x'/ 

mr EI=IEj=IfTS i Yj) i=lj=l ' LYjJ 
(7) 

N N 

P= Z E fTs(X,,Yj ) (8) 
i = l j = l  

N N N N 

Txx = E ~'. J'Ts(X,,Yj)'x~ , Tyy = ~, E As(X,,Yj) "y] 
i = l j = l  i = l j - 1  

(9) 
N N 

Txr = ~ E fTs(X,,Yj)'xi'yj • (10) 
i l j = l  

The covariance matrix defined as 

C= 1 - - ( F x ] - - [ : ~ ] ) ( [ ~ ]  J L m r d /  (11) 

can be simplified to 

f 1 N N 
C=Iv~N v'u ~ "x , Z E fTs(Xi,Yj) 

\~ . . .~ i=12. . j=IJTs[  i ' Y j )  i= l  j =1 

x [xil[xilX)-- [°xl[° ¢ (12) 
LYiJLYjJ / LmyJLmyl  " 

Since translation invariancy has been maintained, the 
averages mx and my are zero. Furthermore, the averag- 
ing term in front of the matrix can be eliminated since 
it does not change the direction of the eigenvectors. 
Therefore, the covariance matrix becomes 

C =  Ly Try~" (13) 

Finally (detailed derivation is given in Appendix A), 
the sine and cosine of the rotation angle come out as 

I 

. . . . . . . . .  

Fig. 8. The sample pattern before and after the R-Block. 

pattern until the computed orientation coincides with 
the x-axis. Since a pattern and its 180 ° rotated version 
will have the same orientation of maximal variance, 
the R-Block will not be able to differentiate between 
them and will apply the same angle of rotation on 
both patterns. The resulting mappings will conserve 
this 180 ° angle difference. Hence depending on its 
original orientation, a given pattern will be mapped 
to one of the two canonical patterns. These two 
canonical patterns will both represent the class. Hence 
for each original pattern we have two preprocessor 
outputs which are used in training the network. 

3.2. PREP2: the preprocessor with axial scalin9 correc- 
tion 

PREP1, performs radial scaling correction which 
uses the same scaling factor along all directions. A 
different approach is to use different scaling factors 
along different axes. This type of scaling correction 
performs better in certain applications. For  example, 
the patterns may have been scanned in with different 
resolutions in different dimensions. The preprocessor 
with axial scaling correction, called PREP2, has two 
main differences from the previous version: 

sin 0 - 
(Tyy - T=x) + x/((Ty, - T~=) 2 + 4-T~y) 

COS 0 = 

x/(8. T2y + 2-(Tyy- T~x) 2 + 2.(Tyy - T~x)~/((Ty , - Txx) 2 + 4. T2y)) 

2" Txy 
~/(8. TZy + 2 '(Ty - Tx) 2 + 2 ' ( T  - Tx) ~ / ( ( T  - T )  2 + 4. T2y))" 

(14) 

(15) 

The mapping function for the rotation invariant 
image is 

f xsx(Xi, y j) = fTs(COS O" X i -- sin O" y : sin O" x i + cos O" y ~). 
(16) 

Figure 8 shows the function of the R-Block on the 
sample pattern processed by the S-Block. 

It should be noted that the R-Block rotates a 

• The main blocks are reordered, such that the 
T-Block comes first, the R-Block is second, and the 
S-Block is last. 

• The scaling factors are computed using a different 
function. 

In order to maintain rotational, scaling, and trans- 
lational invariancy PREP2 computes various rele- 
vant parameters as (detailed derivation is given in 
Appendix B) 

Txx=(  ~=x j~lf(x, ,Yi) 'x~)--P'x~v 

Tyr-= ~. Z f(xl, Y,)'y2,'~ . 2 i=~j=l " / - - P  y'v 

(17) 

(18) 
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Ty=( i~=l j~=lf(xi, yj)'xi'Yj)- P'xa./ Yav 

sin 0 - (Try - Txx) + x/((Ty, -- Txx) 2 + 4-T2Q 
x/(8" T~y + 2 . ( T -  Tx) 2 + 2 ' ( L  ' - T x ) x / ( ( T  ' - Tx) 2 + 4-TZy)) 

2-Txy 
cos 0 = x/(8. T~y + 2.(Ty - T )  2 + 2-(Ty - T x ) x / ( ( T y  - T )  2 + 4' T Zy))" 

sx= /(Txx(c°sO)2+2"Txy "cOsO'sinO+ Trr(sin 0)2) 

Rx'P 
sy=N/(T~x(sinO)2+2"T~y'cosO'sinO+Tyy(cosO)2 ) 

Ry'P 

(19) 

(20) 

(21) 

(22) 

(23) 

where s x and sy are the scaling factors, and R x and Ry 
are the desired deviation values along the correspond- 
ing axes. Rx and Ry are equal to the grid size. 

The mapping function for the preprocessor with 
axial scaling correction is 

f TRs(Xi, yfl = f(cos O" sx" xi - sin O" sr" Y j + x,v, 
sinO's~'xi+cosO'sr'yj+ yav ). (24) 

Note that, for PREP1 the complete mapping function 
could be obtained only after two passes over the 
original image. However, for PREP2 the whole mapping 
function can be computed after a single pass over the 
original image. 

3.3. The classifier 
The current implementation of the system employs 

a multilayer feed-forward network for the classifier 
block. Such a network has a layered structure and 

only connections between neurons at subsequent layers 
are permitted. The training algorithm is the widely 
used backpropaoation algorithm3 TM Since the input is 
an image in pixel-map form, the number of nodes in 
the input layer is fixed and equal to the number of 
pixels, Further, since the output neurons are organized 
such that each node represents a class, the number 
of output neurons is also fixed. Hence, given the input 
and output layer size one should decide on the number 
of hidden layers and the number of neurons in each 
hidden layer as well as the learning rate. In fact, this 
choice of network size is as critical as the choice of 
the learning rate. The decision depends on the type 
of problem dealt with, and on the size and variety of 
the example patterns. There are two useful rules to 
have in mind: 

• One should choose the network large enough so 
that the neurons can develop features to distinguish 
the patterns belonging to different classes, while as 

Input Layer 

ROW 1 

ROW 2 

! : i 

R O W  N 

i 
I : [ 

Fig. 9. The structure and image feeding strategy to the classifier. 
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compact as possible to avoid memorization of the 
example patterns. 

• One should choose the learning rate small if two 
or more of the example patterns are similar, and large 
otherwise. 

The general structure of the neural network classifier 
is given in Fig. 9. The output of the preprocessor, 
which is an image in pixel-map form, is converted to 
a linear array by cascading the rows of the image from 
the top row to the bottom row. The content of each 
array entry is the initial input value of the correspond- 
ing input node. 

The classifier is trained as follows: the preprocessed 
forms of the images containing the sample patterns 
from each class are fed to the network, while the 
desired output classification is supplied to the output 
neurons. The artificial neural network learns to pro- 
duce the desired outputs when the sample inputs are 
given to the system using the backpropagation algor- 
ithm. In the classification mode, the preprocessed 
image to be classified is presented to the network 
which then activates the appropriate output neurons. 

3.4. The interpreter 

One of the key determinants of the system perform- 
ance is the success in interpretation of the classifier 
outputs. Since we have employed an artificial neural 
network for the classifier, the classification result will 
be in the form of activation values of the neurons in 
the output layer. 

It is hard to decide on the method to be used so 
that none of the information that serves to distinguish 
the classes is ignored. The first alternative is to use a 
simple maximum finder block for the interpreter. 
However, the performance would be moderate since 
it will always decide on one of the classes whether the 
class chosen is dominant on others or not. Threshold- 
ing can be applied to the outputs so that a class is 
selected if the outputs exceed this predetermined 
threshold. However, this method may indicate multiple 
classes for certain inputs. A more promising method 
is to report no discrimination as long as the ratio of 
the maximum output to the next highest output 
remains under a predetermined threshold value. When 
the ratio exceeds the threshold, which means that the 
maximum output is dominant on the other outputs, 
the interpreter decides on the class with the maximum 
output. The interpreter block of our system employs 
this last approach. If the ratio of the maximum output 
to the next highest output exceeds the predetermined 
threshold, the interpreter reports that a discrimination 
could be made and the pattern belongs to the class 
with the maximum output. If not, then the interpreter 
reports that no unique discrimination could be made. 
This simple method has been observed to perform 
well in the evaluation of the classifier outputs. 

3.5. Computational requirements 

The computational requirements for the system pre- 
sented above can be characterized as follows. Let G, P, 

H, and O be the number of pixels in the image, the 
number of on-pixels in the image, the number of 
hidden units in the one-hidden-layer neural network 
and the number of output units, respectively. Ignoring 
any computation that does not depend on one of these 
and assuming that we have pixels either 0 or 1, for 
PREP1, we can write the total computational require- 
ments as follows. The T-Block requires about 2P 
integer additions, 2G integer subtractions. The S- 
Block requires 2P integer multiplications, 2P integer 
additions and P floating point square roots, and 2G 
floating point multiplications. The R-Block requires 
3P integer multiplications, 3P integer additions, and 
4G floating point multiplications and 2G floating 
point additions. The neural networks trained typically 
have very sparse weight matrices and this fact can be 
exploited. The forward pass through the network 
takes P* H + H* O floating point multiplications and 
additions, and H + O sigmoid function invocations. 
The overall process takes about: 

• 9P + 2G integer additions; 
• 5P integer multiplications; 
• 2G + P . H  + H ' O  floating point additions; 
• 6G + P . H  + H ' O  floating point multiplications; 
• P floating point square root computations; and 
• H + O sigmoid function computations. 

Obviously the time parameters corresponding to these 
operations will change from system to system. On our 
Sparcstation environment we have noted a speed of 
about 7-10 character recognitions per second for the 
letter recognition problem discussed later. The require- 
ments for the PREP2 case can be similarly derived. 

4. EXPERIMENTAL RESULTS 

Based on the formulations described in the previous 
sections, a general purpose pattern classification system 
has been developed on Sun Spare workstations using 
the graphics environment SunView. {~2"23) We have 
experimented with three problem domains: character 
recognition on the English alphabet, character recog- 
nition on the Japanese Katakana alphabet and, recog- 
nition of geometric objects. 

4.1. Character reco#nition on the English alphabet 

This classical problem is the classification of letters 
in the English alphabet. The artificial neural network 
chosen for classifying the English alphabet is a multi- 

A B C D E F G H I  123456789 

J K L M N 0 P q R lo 1112131415161718 

S T tl V W X Y Z 1~ 20 21 22 23 24 25 26 

Fig. 10. The example patterns and corresponding class 
numbers for the 26 English letters. 



Pattern is g with 0.927701 

Candidate was Y with 0.021057 

D i s c r i m i n a t i o n  r a t i o  i s  440 .6  

Pattern i s  P w i t h  0 . 772268  

Cand ida te  was V w i t h  0 .055143  
D i s c r i m i n a t i o n  r a t i o  i s  145.3 

Pattern i s  Q w i t h  0 . 722949  

Cand ida te  was V with 0.029526 

D i s c r i m i n a t i o n  ra t i o  i s  244.8 

LBm 

I 1=I 

P a t t e r n  is  8 with 0 .906775  695 
C a n d i d a t e  was O with 0 .030358  

Discrimination ratio i s  298 .7  

Pattern is B w i t h  0.894358 

Candidate was D with 0.036271 

D i s c r i m i n a t i o n  r a t i o  i s  246 .6  

P a t t e r n  i s  B w i t h  0.797724 

Cand ida te  was E with 0 .026937  

D i s c r i m i n a t i o n  r a t i o  i s  296 .1  

tcoll  Pattern is C with 0.936130 

Cand ida te  was U w i t h  0.031960 

Discrimination ra t i o  is 232.9 

Pattern i s  C with 0 .900459  

Cand ida te  was U w i t h  0.030606 

Discrimination ra t io  i s  294 .2  

Pattern i s  C with 0.872540 

Cand ida te  was U with 0 .032756  

D i s c r i m i n a t i o n  ra t io  i s  266.4  

Fig. 11. Classification results with PREP1 for letters A, B, and C rotated by 0, 60, and - 6 0  deg. 

Pattern is Q with 0.927701 

Candidate was Y with 0.021057 I ~  

l . l  D i s c r i m i n a t i o n  r a t i o  i s  440.6 

Pattern is A with 0.605121 
m 

Cand ida te  was V with 0.04Q005 I ~  

Discrimination ra t i o  i s  151.3 

T 
Pattern is A with 0.501417 

Cand ida te  was K with 0.168918 

Discrimination r a t i o  is  23 .7  B 

Pattern is B with 0.~:)6775 

Candidate was D with 0.030358 

Discrimination ra t io  i s  298 .7  

Pattern is 8 with 0.917553 

Cand ida te  was O w i t h  0.075526 

D i s c r i m i n a t i o n  ra t io  i s  121.5 

Pattern is B with 0 .753702  

Cand ida te  was E w i t h  0.061952 

Discrimination ra t i o  is 118.4 

Fig. 12. Classification results 

Pattern is C with 0.936130 

Candidate was U with 0,03196~ 

D i s c r i m i n a t i o n  r a t i o  is  292 .9  

Pattern is C w i t h  0 .836518  

Candidate was U with 0 .038423  

Discrimination ra t i o  is 217.7 

Pattern is C with 0.789987 

Cand ida te  was L w i t h  0.041864 

Discrimination ra t io  is 188.7 

with PREPI for letters A, B, and C scaled by a factor of 1, 0.8, and 0.6. 

Cand ida te  was Y w i t h  0.021057 

D i s c r i m i n a t i o n  r a t i o  i s  440 .6  

- - ~ ~  Pattern i s  R with 0.770125 

Cand ida te  was ~ w i t h  0.041848 

D i s c r l m i  a t i o n  r a t i o  i s  184.0 % 

I A I ~ I j l  Pattern is @ with 0.927701 [ B I =  
c a n d i d a t e  was Y w i t h  0 . 021057  

Discrimination r a t i o  is 440.6 

P a t t e r n  i s  B w i t h  0 .906775  
Cand ida te  was O w i t h  0 .030358  
Discrimination ra t i o  i s  298.7 

Pattern is 8 w i t h  0.514692 

Candidate was F with 0.023781 

Discrimination ra t i o  i s  172.8 

Pattern is B with 0.848754 

Cand ida te  was D w i t h  0 . 099398  

Discrimination ra t i o  is 85.4 

[c [Ioi 
I ci1 [ 

Pattern is C with 0.936130 

Candidate was U with 0.031860 

Discrimination ra t i o  i s  292.9 

Pattern i s  C with 0.707669 

Cand ida te  was U w i t h  0 .042863  

D i s c r i m i n a t i o n  r a t i o  i s  165.1  

Pattern is C with 0.905177 

Candidate was O with 0.019897 

Discrimination r a t i o  i s  454.g 

Fig. 13. Classification results with PREP1 for letters A,B, and C translated diagonally by 0,6, and 
- 6 pixels. 



Pattern is @ with 0.927701 

Candidate was Y with 0.021057 

Discrimination ra t i o  is  440.6 

Pattern i s  A with 0.521594 

Cand ida te  was R w i t h  0.035405 

D i s c r i m i n a t i o n  r a t i o  is 147 .3  % 

P a t t e r n  is F with 0.107739 

Cand ida te  was V with 0.047904 

D i s c r i m i n a t i o n  r a t i o  i s  22 .5  

B[= 
Baz 

Pattern is  B w i t h  0.9(36775 

Candidate was O with 0.030358 

D i s c r i m i n a t i o n  r a t i o  i s  298.7 % 

Pattern is B with 0.796986 

Cand ida te  was E with 0.032866 

D i s c r i m i n a t i o n  ra t io  is  242.5 

Pattern is B w i t h  0.783350 

Cand ida te  was R w i t h  0.035924 

D i s c r i m i n a t i o n  ra t i o  i s  218.1 

C 
~ Pattern i s  C with 0.936130 

Candidate was U with 0.031960 

D i s c r i m i n a t i o n  ra t i o  i s  292.9 

Pattern i s  C with 0.877739 

C 0 Candidate was O with 0.048185 
D i s c r i m i n a t i o n  ra t i o  i s  178.5 

Pattern is  C with 0.734980 

C ~ Candidate was U w i t h  0 . 0 2 4 7 9 2  

D i s c r i m i n a t i o n  ra t i o  i s  296.5 

Fig. 14. Classification results with PREP1 for letters A,B, and C with 0,20, and 40% noise. 

P a t t e r n  is @ w i t h  0.927701 

Cand ida te  was Y w i t h  0.021057 

Discrimination r a t i o  i s  440.6 

P a t t e r n  i s  Q with 0 .283534  

Candidate was V with 0.081742 

D i s c r i m i n a t i o n  r a t i o  i s  34 .7  % 

Pattern is R with 0.713344 

Candidate was Q with 0.023365 

Discrimination ratio is 305.3 % 

B 
Pattern is  8 w i t h  0.906775 

Cand ida te  was D with 0.030398 

Discrimination r a t i o  i s ' 2 9 8 . 7  

Pattern is B w i t h  0.479234 

Candida te  was R wi th  0.083784 

D i s c r i m i n a t i o n  r a t i o  is  57 .2  

Pattern is 8 with 0.832631 

Candidate was R wi th  0.035072 

Discrimination ra t io  i s  237.4  

C 
0 

Pattern is C with 0.93613(3 

Candidate was U with 0.031960 

Discrimination r a t i o  is  292.9 

Pattern i s  C w i t h  0.854945 

Candidate was U with 0.040233 

Discrimination ratio is 212.5 

Pattern i s  C with 0.577801 

Cand ida te  was O w i t h  0.026685 

Discrimination ra t i o  is  218.5 

Fig. 15. Classification results with PREP1 for letters A, B, and C with random translation, scaling, and 
rotation applied. 

Pattern is 1 w i t h  0.911179 

Candidate was 22 w i t h  0.046750 

Discrimination ra t i o  is 19.5 

Pattern is 1 with 0.762654 

Cand ida te  was 9 w i t h  0.087812 

D i s c r i m i n a t i o n  r a t i o  i s  11.2 

Pattern is  1 with 0.850162 

Candidate was 9 with 0.151426 

D i s c r i m i n a t i o n  r a t i o  i s  5.5 

Bm 

Wm 

Pattern is 2 w i t h  0.779841 

Candidate was 19 with 0 .072447  

Discrimination ra t io  is 10.8 

Pattern is 2 with 0.624327 

Cand ida te  was 21 with 0.055638 

Discrimination ra t io  is  i i . 0  

Pattern is 2 with 0.569115 

Cand ida te  was 21 w i t h  0 .051234  

D i s c r i m i n a t i o n  r a t i o  i s  11.1 

Pattern is 3 with 0.865484 

Candidate was 12 with 0.046633 

Discrimination ra t io  is 18.6 

Pattern is 3 with 0.817947 

Cand ida te  was 12 w i t h  0 .086025  

Discrimination ra t io  is  9 .5  

Pattern is 3 with 0.818400 

Cand ida te  was 12 with O.047264 

D i s c r i m i n a t i o n  r a t i o  is  17.3  

Fig. 16. Classification results with PREP2 on rotated letters. 



P a t t e r n  i s  2 w i t h  0 . 7 7 9 8 4 1  697 
C a n d i d a t e  was 19 w i t h  0 . 0 7 2 4 4 7  

D i s c r i m i n a t i o n  r a t i o  i s  1 0 . 8  

P a t t e r n  i s  2 w i t h  0 . 1 6 1 9 7 7  

C a n d i d a t e  was  4 with 0 . 0 7 8 8 2 5  

D i s c r i m i n a t i o n  r a t i o  iS 2.1 

Pattern iS 2 with 0.634949 

CandiOate was IO with 0.071779 

Discrimination ra t io  i s  8.8 

C u 
C %) 

c O 

Pattern is 3 w i t h  0.865484 

Candidate was 12 with 0.046633 

D i s c r i m i n a t i o n  r a t i o  i s  1 8 . 6  

Pattern i s  3 w i t h  0 . 8 1 5 4 8 0  

Candidate was 12 with 0.074951 

d i s c r i m i n a t i o n  r a t i o  i s  1 0 . 9  

P a t t e r n  i s  3 with 0 . 7 0 9 0 3 5  

Cand ida te  was 12 with 0.067718 

D i s c r i m i n a t i o n  r a t i o  i s  1 0 . 5  

Fig. 17. Classification results with PREP2 on scaled letters. 

' , , ,< 
A< 

A I<l 

A< 
A 

Pattern is 1 with 0.911179 

Candidate was 22 with 0.046750 

D i s c r i m i n a t i o n  ra t i o  iS 19.5 

Pattern is 1 with 0.007283 

Candidate was 25 with 0.077792 

Discrimination ra t i o  is 10.4 

Pattern is 1 with 0.761698 

Cand ida te  was 9 w i t h  0.074611 

Discrimination ra t i o  i s  I0,5 
ul© 

Pattern iS 2 With 0.779841 

Cand ida te  was 19 with 0.072447 

D i s c r i m i n a t i o n  r a t i o  is  1 0 . 8  

Pattern i s  2 with 0.426662 

Cand ida te  was 18 with 0.191974 

Discrimination ra t i o  is 2.2 

Pattern i s  2 with 0.496783 

Cand ida te  was 19 with 0 . 0 5 0 1 0 8  

D i s c r i m i n a t i o n  r a t i o  i s  9.9  

I c u  
CO 

C 

P a t t e r n  iS 3 with 0.869484 

Candidate was 12 w i t h  0 . 0 4 6 6 3 3  

Discrimination ra t io  is 18.6 

Pattern is 3 with 0 . 7 1 2 3 2 6  

Cand ida te  was 12 with 0.211969 

Discrimination ra t i o  iS 3.4 

Pattern is 3 with 0.671936 

Cand ida te  was 12 w i t h  0 . 0 9 9 3 2 4  

Discrimination ra t i o  iS 6.8  

Fig. 18. Classification results with PREP2 on translated letters. 

Pattern is 1 with 0.911179 

Candidate was 22 with 0 . 0 4 6 7 5 0  

Discrimination ra t i o  is 19.5 

Pattern is 1 with 0.721102 

Candidate was 25 with 0.119924 

Discrimination r a t i o  i s  6 . 0  

Pattern is 1 with 0+775800 

Cand ida te  was 25 with 0.151237 

Discrimination ra t i o  is 5.9 

nllm 
BPI© 
BI© 

Pattern is 2 with 0.779841 

Candidate was 19 with 0.072447 

Discrimination ra t i o  is 10.8 

Pattern is 2 with 0.689617 

Candidate w~s 10 with 0.058586 

Discrimination r a t i o  is 11.8 

Pattern is 2 with 0.105599 

Candidate was 4 with 0.052336 

Discrimination ra t i o  is 2.0 

Icluh 
Pattern is 3 with 0.865484 

Candidate was 12 with 0.046633 

Discrimination ra t i o  is 18.6 

Pattern iS 3 w i t h  0.75388@ 

Cand ida te  was 7 w i t h  0.223764 

Discrimination ra t i o  is 3.4 

Pattern is 3 with 0.708500 

Candidate was 7 with 0.127391 

D i s c r i m i n a t i o n  ra t io  is 6.2 

Fig. 19. Classification results with PREP2 on noisy letters. 
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I A  I I ~ l  P a t t e r n  i s  1 w i t h  O.911179 B 
Candida te  was 22 w i t h  O,O46750 
Discrimination ratio is 19.5 

> Pattern is 1 with 0.353124 ~ ~ 
Candidate was 25 w i th  0.109775 
D i s c r i m i n a t i o n  r a t i o  is 3.2 

P a t t e r n  i s  1 w i t h  0.750400 i '  
Candidate was 25 wi th  0.078528 
Discr iminat ion ratio is 9.6 

f 

Pattern is 2 with 0.779841 
Candidate was 19 with 0.072447 
Discrimination r a t i o  is 10.8 

Pattern is 2 with 0.304866 
Candidate was 4 with 0.141030 
D i s c r i m i n a t i o n  r a t i o  i s  2.2  

P a t t e r n  i s  2 w i t h  0.289387 
Candida te  was 18 w i t h  0.O99175 
D i s c r i m i n a t i o n  r a t i o  i s  2 .9  

Pattern is 3 with 0,865484 
Candidate was 12 with 0.046633 
Discrimination r a t i o  is 18.6 

Pattern is 3 with 0,652949 
Candida te  was 16 w i t h  0.076594 
Discr iminat ion r a t i o  is 8.5 

Pat tern is 3 wi th  0.692806 
Candidate was 12 with 0.083135 
D i s c r i m i n a t i o n  r a t i o  is 8.3 

Fig. 20. Classification results with PREP2 on letters with random translation, scaling, and rotation applied. 

ul=l 

Candida te  was R w i t h  0.026135 Candida te  was 18,R w i t h  0.088717 
Discrimination ratio is 28.3 Discrimination ratio is 2.3 

Pattern is K with 0.138077 I ~ l  Pattern is 1.@ with 0.329702 
Candidate was R with 0.045942 ~ I ~  Candidate was 18.R with 0.134324 
D i s c r i m i n a t i o n  r a t i o  i s  3 .0  ~ D i s c r i m i n a t i o n  r a t i o  i s  2 .4  

Could not  d i s c r i m i n a t e  . . .  ~ [ ~ Could no t  d i s c r i m i n a t e  . . .  
Candidates were R with 0.179557 Candidates were i.@ with 0.158431 

and V wi th  0.093892 and 18.R wi th  0.11446, 

Pattern is C wi th  0.395336 { ~  I~'~ It / ~  Pattern is 3.C wi th  0.239498 
Candidate was J wi th  0.067349 ~ p  j j  [ ~  Candidate was 12.L wi th  0.062020 
Discrimination ratio is 5.9 l{ ~ Discrimination ratio is 3.9 

Pattern is P with 0.6i9575 ~ l h ~  Pattern is 16.P with 0.253201 
Candidate was V wi th  0.035675 ~ l l l ~ l  Candidate was 22.V wi th  0.038780 
Discr iminat ion r a t i o  is 17.4 Discr iminat ion r a t i o  is 6,5 

Pattern is H with 0.504894 FT-- -~¢-- - - -~ .  Pattern is 21.U with 0.388433 
Candida te  was K w i t h  0.091623 I Candida te  was 18.R w i t h  0.064422 
D i s c r i m i n a t i o n  r a t i o  i s  5 .5  D i s c r i m i n a t i o n  r a t i o ' i s  6 .0  

CandiDate  was M w i t h  0.058771 Candida te  was 21.U w i t h  0,111176 
Discrimination ratio is 4.1 Discrimination ratio is 3.3 

Pat tern is C with 0.446178 ~¢~  J w ~  Pattern is 3.C wi th  0.754746 
Candidate was G with 0.058094 ~ I U Candidate was 12.L with ~044923 
D i s c r i m i n a t i o n  r a t i o  i s  7 .7  D i s c r i m i n a t i o n  ratio i s  16.8 

Candida te  was N w i t h  O.O55340 Candida te  was 17. 0 wi th  O.O60319 
Discrimination ratio is 6.0 Discrimination ratio is 3.0 

3 I ~ Pattern is C with 0.370625 3 II ~ Could not discriminate ... 
Candidate was v wi th  0.065969 Candidates were 17.q w i t h  0,061081 
D i s c r i m i n a t i o n  r a t i o  i s  5 .6  and 7.G math 0.036380 

Fig. 21. Classification results, with PREP1 (le~) and PREP2 (right), on ten hand-crafted English letters. 

layer feed-forward network with 1024 input nodes, 
each one corresponding to one of the pixels of the 
32 x 32 input image and 26 output neurons, one for 
each letter. An output value close to 1 is interpreted 
as a strong membership, while a value close to 0 will 
point to a loose membership. The number of hidden 
layers and the number of  neurons in each hidden layer 

has been found by trial-and-error, which is typical for 
most multilayer feed-forward network applications. (3-s) 
After some experimentation we have found that a 
network with 1024 input nodes, 20 neurons in the 
single hidden layer, and 26 neurons in the output layer 
performs the best for a number of test cases. 

In the training phase, the network is trained on the 



A rotation, scaling, and translation invariant pattern classification system 699 

a ka ga sa za ta da na ha ba pa m a  ra wa fa 

i ki gi shi ji chi ji ni hi bi pi mi ri fi 

r'7 ~ y 7,, X ,y ,y  )~ 7 7" 7" ~ /i,, 
u ku gu su zu tsu zu nu fu bu pu :mu ru 

e ke ge se  ze te de ne he be pe me re fe 

o ko go so zo to do no ho bo po mo ro fo 

ya kya gya sha ja cha ja nya hyal bya pya mya rya 

yu kyu;gyu shu ju chu ju nyu hyu byu pyu myu ryu 

yo kyoJgyo sho] jo cho jo nyo hyo byo pyo myo ryo 

Fig. 22. The 111 symbols of the Japanese Katakana alphabet. 

n 

0 

a ga sa za ta da na ha ba ma ra 

i ki gi shi ji chi ji ni hi bi mi ri 

u ku gu su zu tsu zu nu fu bu mu ru 

ge se ze te de b e  ~me re 

, ,e, % 5 .  ~S = ::~1, ~0 '~  bt~ b; / ' .  h~ej bo'mo ro o ko I go so zo to do no 

Fig. 23. The 66 unique patterns and their corresponding class numbers. 

va I 

161 
V U  I 

I l l  
VO I 

canonical example patterns (which are the outputs of 
the preprocessor) until it manages to successfully 
classify the letters. The example patterns for the 
English letters and their corresponding classes are 
given in Fig. 10. 

Figures 11-15 present examples of the system per- 
formance using the preprocessor PREP1. Input images 
are 32 x 32 pixels. The first column is the original 
image given to the system. The second column is the 
preprocessed version of the original image, and finally 
the third column is the resulting decision. The class 
name and value of the corresponding output neuron 
are given. Figures 16-20 give the performance using 
the preprocessor PREP2. Figure 21 compares the 
classification results for two versions of the system, 
one with PREP1 and the other with PREP2. The 
input patterns are ten hand-crafted English letters. 

PR 26:5-C 

Table 1 shows the (average) percentage of letters 
correctly classified after undergoing 100 random trans- 
formations of the type stated in the first column.t 

4.2. Character recognition on the Japanese Katakana 
alphabet 

This problem is the classification of symbols in the 
Japanese Katakana alphabet shown in Fig. 22. Since 
the 111 Katakana symbols are in fact combined forms 
of 66 unique patterns, the system is trained only on 
these patterns. Figure 23 shows the example patterns 

t Combined denotes an input that is distorted from the 
original by a random scaling, rotation and translation. The 
noise is applied to an undeformed pattern by flipping the 
on-pixels with a certain probability. In the last row, noise is 
applied to the distorted pattern. 
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Table 1. Percentage of correct classification for letters under 
various distortions 

Transformation PREP1 (%) PREP2 (%) 

Rotation 91 89 
Scaling 98 94 
Translation 100 100 
Combined 89 79 
20% noise 98 96 
40% noise 92 84 
Combined and 77 60 

20% noise 

Table 2. Percentage of correct classification for Japanese 
Katakana symbols under various distortions 

Transformation PREP1 (%) 

Rotation 75 
Scaling 92 
Translation 100 
Combined 68 
20% noise 93 
40% noise 76 
Combined and 20% noise 57 

0 ~ --  1 2 3  

0 A 4~ 

Fig. 24. The patterns and class numbers for the five main 
geometric symbols: circular, cross, line, square-like, and 

triangular. 

and the corresponding class numbers. The network 
for the Japanese Katakana alphabet is similar to the 
network for the English alphabet except for the number 
of output neurons. With some experimentation, a 
network with only one hidden layer having 20 nodes 
has been chosen. 

Figures 26-30 give the performance of the system 
with preprocessor PREPI. Table 2 shows the (average) 
percentage of Katakana symbols correctly classified 
after undergoing 100 random transformations of the 
type stated in the first column. 

4.3. Classification of #eometric symbols 

This is the problem of classification of five main 
geometric symbols: circle, cross, line, rectangle, and 
triangle. The original patterns from each class is given 

0 i Pattern is 1 with 0.489718 
Candidate was 5 with 0.182937 
D i s c r i m i n a t i o n  r a t i o  i s  2.7 

~ Pattern is 5 with 0.834490 
Candidate was 4 w i t h  0 . 0 5 4 0 0 7  

D i s c r i m i n a t i o n  r a t i o  i s  1 5 . 5  

~ .  Pattern is 3 with 0.683376 
Candidate was 5 w i th  0.106999 
Discrimination ratio i S  6 . 4  

~ Pattern is 3 with 0 ~ 7 0 9 0 3 0  

~.~ Candidate was 5 ~ i t h  0.129486 
/ 

D isc r im ina t ion  r a t i o  is 5.5 

- - - - - -  Candidate was 5 with 0.066862 
D isc r im ina t ion  r a t i o  is 8.4 

l ~ Pattern is 3 with 0.888596 
Candidate was 5 w i th  0,068497 
D i s c r i m i n a t i o n  r a t i o  i s  1 3 . 0  

C a n d i d a t e  w as  5 w i t h  0 . 0 7 0 7 2 0  

D i s c r i m i n a t i o n  r a t i o  is 5 . 0  

~ Pattern is 5 with 0.487965 
Candidate was 4 w i th  0,006454 
D isc r im ina t ion  r a t i o  is 75.6 

J ~  ~ Pat tern is 5 w i th  0.419376 
Candidate w as  3 w i t h  O , 1 0 4 7 8 4  

D i s c r i m i n a t i o n  r a t i o  i s  4 . 0  

CanOida+e was 5 with 0.286256 
D isc r im ina t ion  r a t i o  is 2.5 

Pat tern is 1 w i th  0.829573 
Candidate was 4 w i th  0.106937 
D i s c r i m i n a t i o n  r a t i o  i s  7.8 

P a t t e r n  i s  1 w i t h  0 . 7 4 6 3 2 7  

C a n d i d a t e  was  5 w i t h  O . O 8 0 1 7 5  

D i s c r i m i n a t i o n  r a t i o  i s  9 . 3  

Pattern is 2 w i th  0.807182 
Candidate was 3 w i th  0.208715 
D i s c r i m i n a t i o n  r a t i o  i s  3 . 9  

Pattern is 2 wi th  0.660773 
C a n d i d a t e  w a s  3 w i t h  0 . 2 0 0 8 4 8  

D i s c r i m i n a t i o n  r a t i o  i s  ~ . 3  

Pattern is 3 with 0.717909 
Candidate was 5 w i th  O . 2 9 0 2 6 4  

Discr im ina t ion  r a t i o  is 2.5 

Pat tern is 3 w i th  0.757173 
Candidate was 5 w i th  0 . 0 4 5 8 8 4  

D i s c r i m i n a t i o n  r a t i o  i s  1 6 . 5  

P a t t e r n  i s  4 w i t h  0 . 4 5 1 7 2 5  

C a n d i d a t e  was  2 w i t h  0.078808 
D i s c r i m i n a t i o n  r a t i o  i s  5 . 7  

Pattern is 4 w i th  0.552510 
Candidate was 3 w i th  0.020043 
D iscr im ina t ion  r a t i o  is 19.7 

Could not discriminate ... 
Candidates were 5 with 0.236333 

a n d  3 w i t h  0 . 1 3 0 8 5 3  

Pattern i s  5 with 0 . 4 5 6 6 8 3  

C a n d i d a t e  w a s  3 w i t h  0 . 0 6 7 8 1 1  

D i s c r i m i n a t i o n  r a t i o  i s  6.7 

Fig. 25. Classification results, with PREPI (left) and PREP2 (fight), on distorted patterns of the five main 
geometric symbols. 



Pattern is I with 0.8~121 

Candidate was 14 with 0.075892 

Discrimination ra t i o  is 10.8 

Pattern i s  1 w i t h  0.554672 

Candidate was 34 w i t h  0.054674 

Discrimination ra t i o  is 10.1 

Pattern is I with 0.5BO281 

Cand ida te  was 5 with 0.071503 

Discrimination r a t i o  is  8.1 

P a t t e r n  is  2 w i t h  0.96,2589 701 
Candidate was 13 with 0.048572 

Discr imina t ion  r a t i o  is  18.6 

Pa t t e rn  is  2"wlth 0.565567 

Candidate was 33 with 0.072772 
Discr imina t ion  r a t i o  is  7.B 

P a t t e r n  is  2 with 0.469407 

Cand ida te  was 40 w i t h  0.017480 

Discrimination ra t i o  is 26.9 

P a t t e r n  is  3 w i t h  0.900058 

Cand ida te  was 6 w i t h  0.056437 

Discrimination ra t i o  is  15.9 

Pattern i s  3 with 0,771208 

Candidate was 6 w i t h  0.072263 

Disc r imina t ion  r a t i o  is 10.7 

P a t t e r n  is  3 w i t h  0.753924 

Cand ida te  was 6 w i t h  0.087926 

D i s c r i m i n a t i o n  r a t i o  is  8 .6  

Fig. 26. Classification results with PREP1 for symbols from Class 1,2,and 3 rotated by 0, 60, and -60deg.  

Pattern is  1 with 0.820121 

Cand ida te  was 14 w i t h  0.075892 

Discr imina t ion  ra t i o  is  10.O 

P a t t e r n  is 1 with 0.486271 

~ Candidate was 34 with 0.042003 

Discrimination ra t i o  is I I . 6  

Pattern is 1 with 0.525178 

4 Cand ida te  was 54 with 0.077539 
Disc r imina t ion  r a t i o  is 6.B 

Pattern is 2 with 0.9(32589 

Candidate was 15 with 0.048572 

Discrimination ra t i o  is 18.G 

Pattern is 2 with 0.446612 

Candidate was 40 with 0.203349 

Disc r imina t ion  r a t i o  is  2.2 

Pattern is  2 with 0.812504 

Cand ida te  was 35 with 0.035828 

Discrimination r a t i o  is  22.7 

P a t t e r n  is  3 w i t h  0.98(X)58 

Cand ida te  was G w i t h  0.056437 

Discrimination r a t i o  is 15.9 

Pattern is 3 with 0.798072 

Candidate was 66 with 0.085245 

Discrimination ra t i o  is 9.4 

Pattern is 3 with 0.642452 

Candidate was 51 with 0.253859 

Discrimination ra t i o  is 2.5 

Fig. 27. Classification results with PREP1 for symbols from Class 1, 2, and 3 scaled by a factor of 1,0.8, 
and 0.6. 

7 - t  

Pattern is 1 with 0.820121 

Candidate was 14 with 0.075892 

Discrimination ra t io  is 10.B 

Pattern is I with 0.801266 

Candidate was 14 with 0.066165 

Discr imina t ion  r a t i o  is  12.1 

Pattern is I with 0.813754 
Candidate was 14 with 0.074115 

Discrimination ra t i o  is 11.0 

Pattern is 2 with 0.9025@9 

Candidate was 13 with 0.048572 

D i s c r i m i n a t i o n  r a t i o  is  1B.6 

Pattern is 2 with 0.455015 

Cand ida te  was 35 w i t h  0.069810 
Discr iminat ion  r a t i o  is 6.5 

P a t t e r n  is  40 w i t h  0.249899 

Cand ida te  was 9 Wi th  0.099151 

Discrimination r a t i o  is  2 .5 

P a t t e r n  is 5 w i t h  O . ~ 5 B  

Cand ida te  was 6 w i t h  0.056437 

Discr imina t ion  r a t i o  is  15.9 

P a t t e r n  is 5 w i t h  0.696134 

Candidate was 51 with 0.196200 

Discrimination ra t i o  is 3.5 

P a t t e r n  is  5 w i t h  0.854651 

Candidate was GG with 0.055580 
Discrimination ra t i o  is 15.4 

Fig. 28. Classification results with PREP1 for symbols from Class 1, 2, and 3 translated diagonally by 
0, 6, and - 6 pixels. 
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7 4 
Pattern is 1 with 0.820121 

Candidate was 14 with 0.075892 

D i s c r i m i n a t i o n  rat io  i s  10 .8  

Pat tern is 1 wi th  0L786578 

Candidate was 14 with 0.054121 

Discr im ina t ion  r a t i o  is 14.5 

Pattern is I with 0.679368 
Candidate was 21 wi th  0.038395 

Discrimination rat io  is 17.7 

Pattern is 2 with 0.902589 

Candidate was 13 with 0.048572 
Discrimination rat io  is 18.6 

Pattern is 2 with 0.714926 

Cand ida te  was 40with 0.0691~O 

Discrimination ra t io  i s  10 .3  

Pattern is 2 with 0.265836 
Candidate was 6 w i th  O.OB0215 
Discr iminat ion  r a t i o  is 3.3 

Pattern is 3 with 0.900058 

Candidate was G with 0.@5S437 

Discr iminat ion  r a t i o  i s  15,9 

Pattern is 3 with 0.767802 

Candidate was 53 w i th  0.215734 

Discrimination rat io  iS 3.6 

Could not discriminate . . .  

Candidates were 3 wi th  0.534035 

and 22 wi th  0.293054 

Fig. 29. Classification results with PREP1 for symbols from Class 1,2, and 3 with 0,20, and 40% noise. 

Pattern is 1 with 0.820121 I 
Candidate was 14 w i th  ®.@75892 ~ 

Discrimination rat io  i s  10.8 

Pattern is 1 with @.640245 

Candidate was 34 with 0.052577 ~ 

Discrimination rat io  is 12.2 

Pattern is 1 w i th  0.463797 L 
Candidate was 15 w i th  @.1408Q3 ~ 

Discrimination rat io  is 3.3 

Pat tern is 2 w i th  0.902589 
Candidate was 13 wi th  ®.048572 
Discrimination rat io  is 18.5 

Pattern is 2 w i t h  @.572148 

Candidate was 15 with  0.I@34~ 
Discrimination rat io  is 5.5 

Pattern i s  2 with 0,758859 

Candidate was 4 0 w i t h  0.109365 
D iscr im ina t ion  r a t i o  is 6.9 

Pat tern is 3 wi th  0.900058 

Candidate was 6 w i th  0.056437 

Discrimination rat io  is 15.9 

Pattern is 3 with @.386634 
Candidate was G with @.@e2848 
Discrimination ratio iS 4.7 

Pattern is 3 with @.537339 
Candidate was 6G with  0.110447" 
D iscr iminat ion  r a t i o  is 4.9 

Fig. 30. Classification results with PREP1 for symbols from Class 1, 2, and 3 with random translation, 
scaling, and rotation applied. 
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X x  
÷ x  

X 

Pattern is 2 with 0.797234 
Candidate was 4 with 0.050726 
D i s c r i m i n a t i o n  r a t i o  i s  14.1 

P a t t e r n  i s  2 wi th  0.795648 
Candidate was 3 with 0.113798 
D i s c r i m i n a t i o n  rat io i s  7.0 

Pattern i s  2 with 0.795905 

Candidate  was 4 with 0.062356 
D i s c r i m i n a t i o n  rat io i s  12.8 

0 0  
O o  
<bo  

\ 
/ 

Pattern i s  3 with 0.888963 
Candidate  was 5 with 0.060073 

D i s c r i m i n a t i o n  r a t i o  is  13.1 

Pattern i s  3 with 0.885215 

Candidate  was 5 with 0.069678 
D i s c r i m i n a t i o n  r a t i o  i s  12.7 

Pattern i s  3 with 0.880394 
Candidate was 5 with 0.073615 

D i s c r i m i n a t i o n  r a t i o  i s  12.0 

0 E3 
Oo 

A D> 
Pattern is 5 with 0.886124 

Candidate was 5 with 0.000000 

Discrimination ra t i o  is In~ 

Pattern is 5 with 0.882761 

Candidate was 4 with 0.073631 
Discrimination ra t i o  is 12.0 

Pattern i s  5 with 0.877362 
Candidate was 2 with 0.038979 
Discrimination rat io is 22.5 

Fig .  31. C l a s s i f i c a t i o n  r e su l t s  w i t h  P R E P 1  for  g e o m e t r i c  s y m b o l s  r o t a t e d  

Pattern is 1 wlth 0.877130 

Candidate was 5 with 0.098540 

D i s c r i m i n a t i o n  r a t i o  i s  6.9 

Pattern i s  1 w l th  0.601759 

Candidate  was 4 with 0.065529 

D i s c r i m i n a t i o n  r a t i o  is  9.2 

P a t t e r n  i s  I wi th  0.665887 

Candidate  was 5 w i th  0.094537 
D i s c r i m i n a t i o n  r a t i o  is 7.0 

Pattern is 4 with 0.693944 
Candidate was 5 with 0.138596 
Discrimination r a t i o  is  5.0 

Pattern i s  4 with 0.709548 

Candidate was 5 with 0.174160 

Discrimination r a t i o  i s  4.1 

Pattern i s  4 with 0.718940 
Candidate was 5 with 0.153219 
Discrimination ratio is 4.7 

by O, 60, a n d  - 6 0  deg,  

0 0 Pattern is i with 0.8771~ X X 
Candidate was 5 with 0.098540 

D i s c r i m i n a t i o n  r a t i o  i s  6 .9  

0 0 Pattern is 1with 0.718018 X X 
Candidate was 5 with 0.201359 
Discrimination rat io is 3.6 

0 0 Pattern is 1 with 8.659420 X . 
Candidate was 5 with O. 102605 

D i s c r i m i n a t i o n  r a t i o  i s  6.4 

P a t t e r n  i s  2 wi th  0.797234 

Candidate  was 4 wi th  0.058728 
D i s c r i m i n a t i o n  r a t i o  i s  14.1 

Pattern i s  2 wi th  0.795905 

Candidate was 3 with 0.073029 
D i s c r i m i n a t i o n  r a t i o  i s  10.9 

P a t t e r n  is  2 w i th  0.792736 

CanOidate was 3 with 0.16S081 
Discrimination rat io i s  4.7 

Pattern is 3 with 0.888963 
Candidate was 5 with 0.088073 
D i s c r i m i n a t i o n  r a t i o  i s  13.1 

Pattern i s  3 with 0.883824 
Candidate was 5 wi th  0.074029 
D i s c r i m i n a t i o n  r a t i o  i s  11.9 

Pattern is 3 with 0.078547 
Candidate was 5 with 0.075138 

Discrimination r a t i o  is 11.7 

011o 
Oto 
0o 

Pattern is 4 with 0.693944 
Candidate was 5 with 0.138596 
D i s c r i m i n a t i o n  r a t i o  is 5.0 

P a t t e r n  is  4 wi th  0.713021 
Candidate  was 5 w i th  O.160948 
Discrimination rat io is 4.4 

COUld not discriminate . . .  

Candida tes  were 4 w i th  0.434515 

and 5 ul th 0.313256 

A >  

Pattern is 5 wlth 0.886124 

Candidate was 5 with 0 . 0 ~  

D i s c r i m i n a t i o n  r a t i o  i s  In~ 

Pattern i s  5 with 0.882583 

Candidate was 5 with 0 . 0 0 0 ~  

D i s c r i m i n a t i o n  r a t i o  i s  InF 

Pattern i s  5 with 0.838724 

Candidate  was 4 with 0.062111 
D i s c r i m i n a t i o n  r a t i o  i s  13.5 

Fig .  32. C l a s s i f i c a t i o n  r e su l t s  w i th  P R E P 1  fo r  g e o m e t r i c  s y m b o l s  sca led  by  a f ac to r  o f  1, 0.8, a n d  0.6. 
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Pattern is I wi th 0.577130 

Candidate was 5 wi th 0.098540 

D i s c r i m i n a t i o n  r a t i o  i s  6 , 9  

Pattern i s  1 with 0 . 5 7 3 7 2 5  

Cand ida te  was 4 w i t h  0.074930 

D i s c r i m i n a t i o n  r a t i o  is  7 .7 

p a t t e r n  is  i w i t h  0 .4~ )310  

Cand ida te  was 4 w i t h  0.127724 

Discrimination rat io  is 3.B 

X x  
X X  
X x  

P a t t e r n  i s  2 w i t h  0 . 7 9 7 2 3 4  

C a n d i d a t e  was 4 w i t h  0.056726 

Discrimination rat io is 14.1 

P a t t e r n  i s  2 w i t h  0.797234 

Cand ida te  was 4 w i t h  0.056725 

D i s c r i m i n a t i o n  r a t i o  i s  14.1 

Pattern i s  2 w i t h  0.797586 

Cand ida te  was 3 w i t h  0.057445 

Discrimination rat io  i s  13.9 

P a t t e r n  is  3 w i t h  0.888963 

Cand ida te  was 5 w i t h  0.068073 

Discrimination ratio i s  13.1 

Pattern i s  3 w i t h  0.888963 

Cand ida te  was 5 with 0.068073 

Discrimination ratio is 13.1 

Pattern i s  3 with 0.888963 

Cand ida te  was 5 w i t h  0.068073 

Discrimination ra t io  i s  13.I 

n u] 

DD 
On 

P a t t e r n  is 4 w i t h  0.693944 

Cand ida te  was 5 w i t h  0.136596 

D i s c r i m i n a t i o n  r a t i o  i s  5.0  

P a t t e r n  i s  4 w i t h  0 . 6 9 3 9 4 4  

C a n d i d a t e  was  5 w i t h  0 . 1 3 8 5 9 6  

D i s c r i m i n a t i o n  r a t i o  i s  5 . 0  

P a t t e r n  is  4 w i t h  0.693944 

Cand ida te  was 5 with 0.138596 

D i s c r i m i n a t i o n  r a t i o  is  5 ,0  

L, Ai l ll::ll 
Pattern is 5 with 0.886124 

Candidate was 5 wi th 0 . ~  

Discrimination rat io  i s  In~ 

Pattern i s  5 with 0.859155 
CandiOate was 4 wlth 0.067199 

D i s c r i m i n a t i o n  ra t io  is 12.8 

Pattern i s  5 with 0.885915 

Candidate was 4 with O.OCO0~O 

Discrimination rat io  is In~ 

Fig. 33. Classification results with PREP1 for geometric symbols translated diagonally by 0,6, and - 6  
pixels. 

O o  
O o  
0 o 

Pattern is 1 w i t h  0 . 6 7 7 1 3 0  

C a n d i d a t e  was 5 with 0 . 0 9 8 5 4 0  

D i s c r i m i n a t i o n  r a t i o  i s  6 .9  

P a t t e r n  is  I wi th 0.635650 

Cand ida te  was 5 w i t h  0.052700 

D i s c r i m i n a t i o n  r a t i o  is  12.1 

Pattern is 1 wi th 0.621933 

Cand ida te  was 5 wi th 0.050860 

D i s c r i m i n a t i o n  r a t i o  is  1 2 . 2  

X x  
X X  
x X  

Pattern is 2 with 0.797234 

Candidate was 4 with 0.056726 

D i s c r i m i n a t i o n  r a t i o  i s  1 4 . 1  

Pattern i s  2 with 0 . 7 9 5 7 9 3  

Candidate was  3 w i t h  0 . 0 7 2 6 4 8  

D i s c r i m i n a t i o n  r a t i o  is  1 1 . 0  

P a t t e r n  is 2 w i t h  0.794545 

C a n d i d a t e  was  3 w i t h  0 . 0 8 3 1 6 4  

D i s c r i m i n a t i o n  r a t i o  i s  9 .6  

Pattern is 3 with 0.888963 

Candidate was 5 with 0,068073 

Discrimination r a t i o  i s  13.1 

Pattern is  3 with 0.888750 

Cand ida te  was 5 with 0.067956 

Discrimination rat io  i S  13.1 

Pattern i s  3 with 0 . 8 8 3 6 7 7  

Candidate was 5 ulth 0 . 0 7 3 6 5 9  

D i s c r i m i n a t i o n  ratio i s  12 .O 

D E3 
D Q  
0 

P a t t e r n  is 4 w i t h  0.693944 

Cand ida te  was 5 w i t h  0.138596 

D i s c r i m i n a t i o n  r a t i o  is  5 .0  

Pattern is 4 with 0.724285 

Candidate was 5 wi th 0.157215 

D i s c r i m i n a t i o n  r a t i o  is  4 .6  

Pattern i s  4 with 0 . 7 0 6 5 4 4  

Cand ida te  was 5 w i t h  0.195862 

D i s c r i m i n a t i o n  r a t i o  i s  3.6  

Pattern is 5 with 0.B86124 

Candidate was 5 with 0 . 0 0 ~  

Discrimination rat io  is Inf 

Pattern is 5 with 0.853305 

C a n d i D a t e  was  2 w i t h  0 , 0 3 7 2 6 4  

D i s c r i m i n a t i o n  r a t i o  i s  22.9 

Pattern is 5 with 0.879075 

CandiDate was 2 w i t h  0 . 0 4 0 6 4 6  

Discrimination rat io  is 21.6 

Fig. 34. Classification results with PREP1 for geometric symbols with 0, 20, and 40~  noise. 
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Oo 
DO 

i 

01oL 

Pattern is I with 0.677130 

Cand ida te  was 5 with 0.098540 

D i s c r i m i n a t i o n  r a t i o  is  G.9 

Pattern i s  1 w i t h  0.627392 

Candidate was 5 with 0.059374 

Discriminat ion r a t i o  is 10.6 

Pattern is 1 with 0,696513 

Cand ida te  was 5 Wlth 0.204566 
Discrimination ra t i o  is 3.4 

X x  
4-X 

P a t t e r n  is  2 w i t h  0.797234 

Cand ida te  was 4 w i t h  0.056726 

Discrimination ra t io  is  14.1 

Pattern is 2 with 0.794498 

Candidate was 3 with 0.O60785 
Discrimination r a t i o  is 13.1 

Pattern is 2 with O.7BO405 
Candidate was 3 with 0.220720 
Discrimination r a t i o  is  3.5 

Pattern is 3 with 0.888963 

Candidate was 5 with 0.068075 
Discrimination ra t i o  is 13.1 

Pattern is  3 with 0.885966 

Candidate was 5 w i t h  0.071898 

0iscr imina t ion  r a t i o  is 12.3 

Pattern is  3 w i t h  0.883736 

Cand ida te  was 5 with 0.075221 
Discrimination r a t i o  i s  11.7 

0 E] 

O l:::a 

A 
P a t t e r n  is  5 w i t h  0.886124 

Cand ida te  was 5 w i t h  0.000000 
Discrimination r a t i o  is  In~ 

Pattern i s  5 with 0.859256 
Cand ida te  was 4 w i t h  0.06OO94 
D i s c r i m i n a t i o n  r a t i o  is  14.3 

Pattern i s  5 w i t h  O.B7OGO0 

Candidate was 4 with 0.069745 
Discrimination r a t i o  i s  12.5 

Pat tern  is 4 with 0.693944 
Candidate was 5 with 0,138596 
D i s c r i m i n a t i o n  r a t i o  is  5.0 

Pattern is 4 with 0.606711 

Candidate was 5 with 0.133236 

Discrimination ra t i o  is 4.6 

Pattern is 4 with 0.719280 

Candidate was 5 with 0.159010 
Discrimination r a t i o  is 4.5 

Fig. 35. Classification results with PREP1 for geometric symbols with random translation, scaling, and 
rotation applied. 

0 0 Pat tern  is 1 with 0'D79950 ~ - ~ [ ~  
Cand ida te  was 5 with 0.053595 

Discrimination r a t i o  is 16.4 

Pattern is  1 with 0.877091 ~ - - - - ~ - - ~  

0 1 0 Cand ida te  was 4 w l t h  0,055626 17-11 Discrimination ratio i s  I5.B 

Cand ida te  was 4 with 0.061732 

Discrimination ra t i o  is  14.0 

: 441 

P a t t e r n  is  2 w i t h  0.876442 

Cand ida te  was 5 w i t h  0.136934 

Discrimination r a t i o  is 6.4 

Pattern is 2 with 0.833144 
Candidate was 4 with 0.124221 
Discrimination ra t i o  is 6.7 

Pattern is 2 with 0.862304 

Cand ida te  was 3 w i t h  0.15BBG3 

Discrimination ra t i o  is 5.4 

Pattern is 3 with 0.871819 

Candidate was 5 with 0.031805 

Discrimination r a t i o  is 27.4 

Pattern is 3 with 0.B00754 

Cand ida te  was 5 with 0.034429 
Discrimination r a t i o  is 23.3 

Pattern is  3 with 0.755228 

Candidate was 5 with 0.334764 
Discrimination ra t i o  is 2.3  

0 0  
Oo 

Pattern is 4 with 0.643865 

Candidate was 3 with 0.025258 

Discrimination ra t i o  is 25.5 

Pattern is 4 with 0.621688 

Cand ida te  ~as 3 w i t h  0.028381 

Discrimination r a t i o  is 21.9 

Pattern i s  4 with 0.647699 

Cand ida te  was 3 w i t h  0.024492 

Discrimination r a t i o  is 26.4 

Pattern is 5 wi th 0.589879 

Candidate was 3 with 0.041384 

Discrimination ra t i o  is 14.3 

Pattern is 5 with 0.58091B 

Candidate was 3 with 0.046978 

Discrimination ra t i o  is 12.4 

Pattern is 5 with 0.549789 

Cand ida te  was 3 with 0.053978 

Discrimination ra t i o  is 10.2 

Fig. 36. Classification results with PREP2 for rotated geometric symbols. 
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0 P a t t e r n  i s  1 w i t h  0 . 879950  
Cand ida te  was 5 w i t h  0 . 053595  

Discrimination r a t i o  is 16.4 

P a t t e r n  i s  1 w i t h  0 . 868769  

0 C a n d i d a t e  was 4 with 0 . 0 5 7 5 1 8  

D i s c r i m i n a t i o n  ra t i o  i s  15.1 

p a t t e r n  i s  1 w i t h  0 . 8 7 4 1 4 1  

O C a n d i d a t e  w as  4 w i t h  0 . 0 5 5 7 9 8  

D i s c r i m i n a t i o n  r a t i o  i s  15.7  

Xlx x,;x 
x X 

P a t t e r n  i s  2 with 0 . 8 7 6 4 4 2  

Cand ida te  was  5 with 0 . 1 3 6 9 3 4  

D i s c r i m i n a t i o n  r a t i o  i s  6 . 4  

P a t t e r n  i s  2 w i t h  0 . 875945  

Candidate was 5 with 0.133413 

D i s c r i m i n a t i o n  r a t i o  i s  S.6 

Pattern i s  2 with 0.866440 

Cand ida te  was 3 with 0 .197172  

Discrimination ra t i o  i s  4 .4  

Pattern is 3 with 0.B71819 

Candidate was 5 with 0.031803 

D i s c r i m i n a t i o n  r a t i o  i s  27 .4  

P a t t e r n  i s  3 w i t h  0 , 8 6 4 0 2 8  

Cand ida te  was 5 with 0 .032874  

Discrimination ra t i o  is 26.3 

Pattern i s  3 w i t h  0 . 868065  

C a n d i d a t e  w a s  5 w i t h  0 . 032336  

Discrimination ra t i o  is 26.B  

n o 

n [] 

P a t t e r n  i s  4 w i t h  0 . 643865  

Cand ida te  was 3 w i t h  0 . 025258  

D i s c r i m i n a t i o n  r a t i o  i s  2 5 . 5  

Pattern i s  4 w i t h  0 .622195  

Candidate was 3 with 0.028365 

D i s c r i m i n a t i o n  r a t i o  i s  2 1 . 9  

P a t t e r n  i s  4 w i t h  0 . 4 5 0 6 0 1  

C a n d i d a t e  w a s  3 with 0 . 0 3 6 8 5 2  

D i s c r i m i n a t i o n  ra t i o  i s  12.2  

IA< 
IA< 
A<! 

P a t t e r n  i s  5 wVd~ 0 . 5 ~ 6 ~  

C a n d i O l ~  ads  3 w i ~  0.041394 

D i s c r i m i n a t i o n  r a t i o  i s  14.3 

l~attern i s  5 u i t ~  0.551313 
Candidate ~a$ 3 witl~ 1.141ES4 

D i s c r i m i n a t i o n  r a t i o  i s  11.] 

P a t t e r n  i s  5 w i t h  0.~154 
Cand ida t e  m 3 wi t l l  0.041787 
Discrimirmtion ratio is 13.6 

Fig. 37. Classification results with PREP2 for scaled geometric symbols. 

O 0  
Oo 
Oo 

P a t t e r n  i s  1 w i t h  0 . 879950  

Cand ida te  was 5 w i t h  0 . 053595  

D i s c r i m i n a t i o n  r a t i o  i s  1 6 . 4  

Pattern is I with 0.838417 

Cand ida te  was 4 w i t h  0 . 0 ~ 0 3 3  

D i s c r i m i n a t i o n  r a t i o  i s  1 4 . 0  

P a t t e r n  i s  1 w i t h  0 . 8 3 4 1 4 4  

C a n d i d a t e  w as  4 w i t h  0 . 0 8 8 3 7 7  

D i s c r i m i n a t i o n  r a t i o  i s  9 . 4  

P a t t e r n  i s  3 w i t h  0 . 871819  

Cand ida te  was 5 w i t h  0 . 031803  

D i s c r i m i n a t i o n  r a t i o  i s  2 7 . 4  

P a t t e r n  i s  3 w i t h  0 . 8 7 1 8 1 9  

Cand ida te  was 5 w i t h  0 . 0 3 1 8 0 3  

Discrimination r a t i o  is 27.4 

Pattern i s  3 w i t h  0 .871819  

Cand ida te  w a s  5 w i t h  0 . 0 3 1 8 0 3  

D i s c r i m i n a t i o n  r a t i o  i s  27 .4  

D D 

P a t t e r n  i s  2 w i t h  0 . 876442  

Cand ida te  was 5 w i t h  0 .136934  

D i s c r i m i n a t i o n  ra t i o  i s  6 . 4  

Pattern i s  2 with 0 .878442  

Candidate w a s  5 with 0 . 1 3 6 9 3 4  

D i s c r i m i n a t i o n  r a t i o  i s  6 . 4  

P a t t e r n  i s  2 w i t h  0 . 8 7 6 4 4 2  

Cand ida te  was  5 with 0 . 1 3 6 9 3 4  

D i s c r i m i n a t i o n  r a t i o  i s  6 . 4  

P a t t e r n  i s  4 w i t h  0 . 6 4 3 8 6 5  

C a n d i d a t e  was  3 w i s h  0 . 0 2 5 2 5 8  

D i s c r i m i n a t i o n  r a t i o  i s  25 .5  

P a t t e r n  i s  4 w i t h  0 . 2 6 9 5 8 2  

C a n d i d a t e  was  5 with 0 . 0 3 5 9 1 6  

D i s c r i m i n a t i o n  r a t i o  i s  7 . 5  

P a t t e r n  i s  4 w i t h  O . S 4 0 8 3 4  

Cand ida te  was 2 w i t h  0 . 122693  

D i s c r i m i n a t i o n  r a t i o  i s  5 . 2  

IA <1 

P a t t e r n  i s  5 with 0 . 5 8 9 8 7 9  

Cand ida te  was  3 w i t h  0 . 0 4 1 3 8 4  

D i s c r i m i n a t i o n  r a t i o  i s  1 4 . 3  

p a t t e r n  i s  5 w i t h  o .494oe2  

Cand ida te  was 3 w i t h  O . 0 5 4 K 4 g  

Discrimination r a t i o  is 9.0 

P a t t e r n  i s  5 w i t h  0 .589G24 

Cand ida te  was 3 with 0 .041387  
O i s c r l m i n t t i o n  r a t i o  i s  14 .2  

Fig. 38. Classification results with PREP2 for translated geometric symbols. 
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O© 
Oo 
Oo 

Pattern is  1 w i t h  0.879950 

Candidate  was 5 with 0.@53595 

Discrimination rat io  i s  16.4 

Pattern is 1 with 0.862585 
Candidate  was 4 with 0 . 0 5 6 5 7 2  

Discrimination rat io  is 15.2 

Pattern is 1 with 0.838112 

Candidate was 5 with 0.053715 

Discrimination ra t io  is  15.G 

X x  
X x  
Xl× 

Pattern is 2 with 0.876442 

Candidate was 5 with 0.136934 

Discrimination ra t io  is  G.4 

P a t t e r n  is  2 w i t h  0 .850293 

Candidate was 5 w i t h  0.153788 

Discrimination ratio is 5.5 

Could not discriminate . . .  

Candidates were 2 with 0.855229 
and 3 w i t h  0.459749 

Pattern is 3 with 0.871819 
Candidate was 5 with 0.031803 

Discrimination ra t io  is 27.4 

Pattern is 3 with 0.@02989 

Candidate was 5 with 0.034285 
D i s c r i m i n a t i o n  r a t i o  is 2 3 . 4  

Pattern is 3 with 0.822618 

Candidate  was 5 with 0.055444 

D i s c r i m i n a t i o n  r a t i o  i s  1 4 . 8  

0 E] 
Pattern is 4 with 0.643865 

Candidate was 3 with 0.025258 
Discrimination rat io  is 25.5 

Pattern is 4 with 0.621095 

Candidate was 3 w i t h  0 . 0 2 5 5 4 4  

Discrimination r a t i o  i s  2 4 . 3  

P a t t e r n  is 4 with 0.586205 
C a n d i d a t e  was 3 with 0 . 0 2 3 3 6 1  

D i s c r i m i n a t i o n  r a t i o  i s  2 5 . 1  

II 
~ Pattern is 5 with 0.589879 

Candidate was 3 with 0.Q41384 

Discrimination r a t i o  is 1 4 . 3  

Candidate was 3 with 0,050612 
Discrimination rat io  is 10.4 

& 1 ~ Pattern is 5 with 0.525596 
Candidate was 3 with 0 . 0 7 2 0 2 4  

D i s c r i m i n a t i o n  r a t i o  i s  7 . 3  

Fig. 39. Classification results with PREP2 for noisy geometric symbols. 

LO 
[o 

0 

oL 
ol 
o1 

Pattern is 1 with 01879350 
Candidate was 5 with O l 0 5 3 5 9 5  

Discrimination rat io  is 16.4 

Pattern is 1 with 0.875433 
Candidate was 4 with 0.056011 

Discrimination ra t io  is 15.6 

Pattern is 1 with 0.790569 
Candidate  was 4 w i t h  0.138684 

Discrimination rat io  is 5.7 

X x  
%X 
"/-X 

Pattern is 2 with 0.876442 

Candidate was 5 with 0.136934 

D i s c r i m i n a t i o n  r a t i o  is  6 . 4  

Pattern is  2 w i t h  0.844548 
C a n d i d a t e  was 4 w i t h  O . 1 2 0 5 0 2  

D i s c r i m i n a t i o n  r a t i o  i s  7 . 0  

Pattern iS 2 with 0.886646 

Candidate was 3 w i t h  0.377719 

D i s c r i m i n a t i o n  r a t i o  i s  2.3 

Pattern is 3 with 0.871819 / 

l i  - -  l l  Candidate was 5 wlth 0.0 1 3 
1 M  1 Discrimination rat io  is 27.4 

Pattern LS 3 with 0.851932 B 
Candidate was 5 with 0.032825 

D i s c r i m i n a t i o n  r a t i o  i s  2 6 . 0  

~ l  Pattern is 3 wlth 0.865563 0 0 
Candidate  was 5 with 01029263 

D i s c r i m i n a t i o n  r a t i o  i s  29.6 

Pattern is 4 with 0.645855 

Candidate was 3 with 0.025258 
Discrimination rat io  is 25.5 

Pattern i s  4 with 0.644489 
Candidate was 2 with 0.115655 
Discrimination rat io  is 5.6 

Pattern is 4 with 0.S08465 
Candidate was 3 with 0.027020 
Discrimination rat io  is 22.5 

Pattern is 5 with 0.589879 

Candidate was 3 with 0.041384 

Discrimination rat io is 14.3 

Pattern is 5 with 0.522750 
Candidate was 3 w i t h  0 . 0 6 1 0 3 7  

D i s c r i m i n a t i o n  r a t i o  i s  8 .G  

Pattern is 5 with 0.568483 
Candidate was 3 with 0.054351 
D i s c r i m i n a t i o n  r a t i o  i s  1 0 . 5  

Fig. 40. Classification results with PREP2 geometric symbols with random translation, scaling and rotation 
applied. 
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Table 3. Percentage of correct classification for geometric 
symbols under various distortions. 

Transformation PREP1 (%) PREP2 (%) 

Rotation 98 94 
Scaling 100 100 
Translation 100 100 
Combined 88 84 
20% noise 100 100 
40% noise 98 97 
Combined and 89 78 

20% noise 

Table 4. Results for the three problems with PREP1 

Transformation Letters(%) Katakana(%) Symbols(%) 

Rotation 91 75 98 
Scaling 98 92 100 
Translation 100 100 100 
Combined 89 68 88 
20% noise 98 93 100 
40% noise 92 76 98 
Combined and 77 57 89 

20% noise 

Table 5. Results for the letter and geometric symbol problems 
with PREP2 

Transformation Letters (%) Symbols (%) 

Rotation 89 94 
Scaling 94 100 
Translation 100 100 
Combined 79 84 
20% noise 96 100 
40% noise 84 97 
Combined and 20% noise 60 78 

in Fig. 24. Figures 31-35 give the performance on 
single grid images of the geometric symbols, using 
PREP1. Figures 36-40 give the performance using 
PREP2. 

Figure 25 gives the classification results for the two 
versions of the preprocessor on the distorted versions 
of the geometric symbols. PREP1 could detect only 
50% of the distorted patterns, while PREP2 managed 
to successfully classify 90%. The performance difference 
emerges from the axial scaling correction ability of 
this preprocessor. 

Table 3 shows the (average) percentage of geometric 
symbols correctly classified after undergoing 100 ran- 
dom transformations of the type stated in the first 
column. 

Tables 4 and 5 present results for the two prepro- 
cessors respectively, for the three problems above. 

5. DISCUSSION AND CONCLUSIONS 

In this work we have presented a hybrid pattern 
classification system which can classify patterns inde- 
pendent of any deformations of translation, scaling 
and rotation. The system uses a preprocessor which 
maps input patterns to a set of canonical patterns 

which is then classified by a multilayer neural network. 
The artificial neural network is trained using the 
popular backpropagation algorithm. The use of the 
preprocessor reduces the number of training patterns 
to two per example pattern to be classified instead of 
a much larger number if the netwoiks were to be 
trained on all possible distortions of the patterns. 
Results from three different applications were pre- 
sented. In classification of letters of the English alpha- 
bet the system was able to correctly classify 89% of 
the inputs which were deformed by random rotations, 
translations and scaling. The performance is much 
better when distortions were only of one kind, with 
100% of the inputs distorted by only translations 
correctly classified. In the recognition of geometric 
figures, the system was able to correctly classify 88% 
of the inputs which were deformed by all three kinds 
of distortions while the performance was almost perfect 
when the random distortions were only of one kind. 
The overall performance for recognition of the Japanese 
Katakana alphabet was worse compared to the other 
two applications. Of the inputs with combined defor- 
mations 68% were correctly classified. Even though 
the performance for inputs which are distorted only 
by translations or scaling is very good, the performance 
for rotationally distorted inputs was about 75~o. The 
main reason for this loss of performance is that some 
of the letters in this case are very similar to each other 
differing by very small visual features. When patterns 
that are already deformed are processed with the 
preprocessors, a certain amount of superfluous visual 
features may be introduced during mapping between 
images. The system presented here is independent of 
the application domain and leaves features extraction 
to the neural network and thus can be applied in other 
domains with relative simplicity. 
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A P P E N D I X  A. D E R I V A T I O N  O F  T H E  R - B L O C K  
FUNCTIONS 

Define 

mym~ E~= , ~ j  ,f,s(Xi, Yj)'=t~ = , LYj/ 
(AI) 

P =  f,,(x,,y,) (A2) 
i = l j = l  

Txx: ~ ~ f.rs(X,,y)'x 2, T,,= ~ ~ frs(Xi, y ) ' y  2 (A3, 
i = l j = l  i = l j = l  

/v 

'Ix r = ~ ~ fTs(Xi,yj)'x,'yj. (A4) 
i = 1 j = 1  

The covariance matrix defined as 

C 1 x m x x 

: P ( [ Y I - [ m y ] ) ( I Y l -  [ : I ] Y  (A5) 

can be simplified to 

C-- N .~ . , • ~ ~f'rs(X, ' y )  
i = I ~-j = I JrstXl, Yfl i = I j = I 

Xi Xi T mx mx T k ] k ]  ,,6, 
For our application, the averages m~ and my are zero 
since we have provided translational invariancy. Further- 
more, the averaging fraction in front of the matrix can be 
eliminated since it does not change the direction of the 
eigenvectors of the correlation matrix. Therefore, the correla- 
tion matrix can be written as 

T~y (A7) C= T.) T . "  

The eigenvalues of this matrix are computed from 

(2 - T ~ )  (AS)  ( 2 1 - C ) =  I - r , y  -T. , ,  1 
(2 - T,y) J 

(2 - T ) ( ~ .  - T y )  - V2y = 0 ( A 9 )  

Tyy + T~ _+ x/((Tyy + T~) 2 - 4. (T~x. Ty~- V2y)) 

2 
(a10) 

then the corresponding eigenvectors can be derived as 

[,,:: ,Al l ,  
TyrJLYJ LYJ 

T~.x + T~y.y = 2.x 

T~y.x + Tw.y = 2.y (Al2) 

y ), -- Tx~ 
- (Al3) 

x Txr 

Substituting the greatest eigenvalue, one gets the slope 
of the eigenvector as 

• 2 y=Tyr-T~+x/ ( (Trr - -Txx)2+4 T~y) (A14) 
x 2"Txy 

Hence, the sine and cosine for this slope can be derived 
from 

sin 0 = Y 
~/(,~2 + / )  

(Tyy -- T~) + x/((Tyr -- T~) 2 + 4. T~y) 

x/(8. T2y + 2"(Ty - Tx)2 + 2"(Ty - T )  x / ( (Tr  - Tx) 2 + 4. Tx2y)) 

X 
COS 0 ~/(x2 + y2) 

2-Tx, 
~/(8. T~y + 2.(Ty, - Tx) 2 + 2.(Ty - T ) ~ / ( ( T  - Tx) 2 + 4. T~r)) 

(AI5) 

(AI6) 

(Al7) 

(AI8) 
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The mapping function of the R-Block is 

fTsR(Xi, y~) = frs(COS O'xi- sin O.yj, sin O'xi + cos O.yj). 

sin 0 = 

COS 0 = 

T~y = f(xl,yj)'x(yj - P'x "y, . (B9) 
\ i = l j = l  / 

(A19) 
The sine and cosine oftbe rotation angle remain unchanged 

( r ,  - T~x) + ~/((Tyy - T~) 2 + 4. T2,) (B10) 

~/(8. T 2, + 2 . ( T  - Tx) 2 + 2 . ( T  -- T+) x / t ( T r  - T )  2 + 4" T2)) 

2" T:'r (Bl l )  
x/(8" T~Zy + 2.(Ly - T~ )2 + 2 ' ( T  - T ) x / ( ( T  - T )  2 + 4. T2r)) ' 

APPENDIX B. DERIVATION OF THE PREP2 FUNCTIONS 

Define 
N 

P = ~, f(xl, yj) (B1) 
i = l j = l  

N N El= ,  Ej= ,f(x,,yj) x i 
x.~ - (82) 

P 

~..~:, E~= ,f(x,, yj).yj 
y., - (B3) 

P 

Recalling from equation (9), the formula for T~  which was 
N 

T~ = ~, ~, fr(xl,yj)'x~ (B4) 
i = l j = l  

can be written as 

T~= ~ ~ f(x~,yj)(x~- x~) 2 (B5) 
i = l k = l  

= ~ ~ f(xi,y,)'x 2 --2"x,, ~ ~ f(xi, yj,'x, 
i = l j = l  i = l j = l  

+X2a, ~ ~f(xi ,  yj) (B6) 
i = l j = l  

(87) 

Similarly 

T.=( ~=,)~= f(x,,yJ)'Y})-P'Y2a. (88) 

In order to maintain scaling correction on the transla- 
tion and rotation invariant image, we define the scaling 
factors as 

s,, =\ ~ I 

N N X 2 
S - -  I (~ ' i= l~ ' j= l fTR( i'Yj)'Yj~ ' - X ] \  R ~  ) (B13) 

The numerator  term can be written as 
N N 

~,f,a(xi,Y,)'x~: ~ ~,f(x,,YA[(x,--x.Oc°sO 
i = l j = l  i = l j = l  

+ (Yl + y.,)sin 0] 2 (B14) 

which simplifies into 

~ f(xl, yj)[(x2--x2.) cOs20 
i=1 j=l 

+ 2(xiy j - x,w~,)cos 0sin 0 + (y2 _ y2 )sin2 0] 

substituting Txx, T~y, and Tyy one gets 

~ / (  Tx;(c°s 0)2 + 2" Txr.cosO.sinO+ Try(sin 0) 2)  
s~ = R~" P 

similarly the scaling factor sy can be derived as 

/ f  T~x'(sin 0) 2 + 2-Txy'cos 0. sin 0 + Tyr'(cos 0)2x~ 
Sy = ) R;,, 

(Bl5) 

(BI6) 

(817) 
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