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Abstract

This paper presents new unsupervised learning algorithms that have been synthesized
using a genetic approach� A set of such learning algorithms has been compared with the
classical Kohonen�s Algorithm on the Self�Organizing Map and has been found to provide a
better performance measure� This study indicates that there exist many unsupervised learn�
ing algorithms that lead to an organization similar to that of Kohonen�s Algorithm� and that
genetic algorithms can be used to search for optimal algorithms and optimal architectures
for the unsupervised learning�

� Introduction

Genetic algorithms �GAs� ��� �	 are search and optimization algorithms which emulate the
mechanics of natural evolution� GAs operate on a population of individuals� each of which
consists of a string� called a chromosome� that encodes a solution to the problem being solved�
Each individual is used to explore a di
erent region of the search space of the problem� At
each iteration� called a generation� a new population is created using probabilistic rules to
exchange the information in the chromosomes of the individuals� In this way� GAs both
exploit the information already gained and explore new regions in the search space�

The design of arti�cial neural networks �ANNs� whose performance is optimized for a
certain application is still a research issue ��	� This design problem is also a complicated one
because of the large design space� the presence of many variables� and complex interactions
among these variables �
	� GAs can be used to search for optimal ANNs� A number of
researchers have already applied GAs to synthesize application�speci�c ANNs ��	� Some
have used GAs to determine the connection weights in an ANN� while others have used
them to �nd the optimal topology and optimal parameters of a certain learning rule for an
ANN� Chalmers ��	 has used a GA to �nd better learning rules for a single layer ANN� Up to
now� all the applications have been done in ANNs employing a supervised learning process�
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In this work� we apply GAs to �nd better learning rules for Self�Organizing Map �SOM� ���
��	� The SOM is an ANN with a two�dimensional array of output nodes and one�dimensional
array of input nodes� which employs an unsupervised learning algorithm known as Kohonen�s

algorithm� Kohonen�s algorithm uses a learning or weight update rule called Kohonen�s rule

to update the connections weights in the SOM architecture�
Kohonen ���	 raises some questions about the self�organization process� which have re�

mained unanswered so far� Three of them are�

�� Do there exist several� possibly many� optimal algorithms that lead to a similar orga�
nization produced by Kohonen�s algorithm�

�� Does the basic recursive map algorithm �Kohonen�s algorithm� ensue from some more
general principle� If such a principle exists� does it possibly de�ne in this category an
optimal recursive algorithm that is more e
ective than the ones used so far�

�� Can the principle also be expressed for a more general network structure�

In this study� we have used the SOM architecture� We have encoded the learning or
weight update rules as a chromosome string� We have then used a GA to �nd unsupervised
learning rules with better performance based on a certain performance measure� We have
found a number of such learning rules which perform better than Kohonen�s rule for the
applications we have investigated� Our study indicates that there are many algorithms
leading to an organization similar to the one produced by Kohonen�s algorithm for at least
certain applications� and that the use of GAs can help us to answer the second and third
questions raised by Kohonen�

The organization of the paper is as follows � We present an overview of genetic algorithms
and applications of genetic algorithms to the design of ANNs in Section �� Section � is
devoted to the explanation of the experimental framework� in which Kohonen�s Algorithm�
the genetic algorithm� the genetic representation methods� and performance criteria are
given� The experiments and results are discussed in Section �� Finally� Section 
 includes
the conclusions�

� Genetic Algorithms and Connectionism

��� Genetic Algorithms

Genetic Algorithms ��� �	 are essentially search and optimization algorithms which work by
mimicking the process of natural evolution as a means of advancing toward the optimum�
They can search large and complex spaces e
ectively� GAs are robust in that they adapt to
a wide variety of environments�

GAs use a population of individuals� each of which consists of a chromosome that encodes
a solution to the problem for which GAs are employed� GAs are blind search algorithms in
that they usually do not know what they are solving ��	� The connection between a GA and
a problem is provided with an evaluation function� The evaluation function is calculated
with an evaluation algorithm� The evaluation function measures how good an individual is
in adapting to its environment� that is� it indicates the goodness of an individual� called its
�tness� which is determined by examining� according to the requirements of the problem�
the goodness of the solution encoded in the individual�s chromosome�
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A typical GA works as follows� First� the chromosomes in the population are initialized
uniformly at random� At each generation� the individuals in the current population are
evaluated using the evaluation function� Based on �tness values� individuals are selected from
the population� two at a time� as parents� The individuals with better �tness values have a
higher probability of being selected� A number of genetic operators are next applied to the
parents� The most common genetic operators are crossover� and mutation� Using crossover�
randomly selected portions of parents are exchanged� and two children are generated� These
children are then mutated by producing random changes in their chromosomes� After that�
the children are evaluated and a new generation is formed by selecting some of the parents
and children on the basis of their �tness values in order to keep the population size constant�

Crossover and mutation are not applied to every pair of parents selected in a generation�
The number of crossover operations is controlled with a probability called the probability of

crossover and the number of mutation operations with a probability called the probability

of mutation� The crossover operator is responsible� by generating children similar to their
parents� for the exploitation of knowledge already gained� and responsible� by producing
new individuals� for the exploration of the solution space� The mutation operator is used to
increase the diversity of the population� The probability of crossover and the probability of
mutation should be selected so that the balance between the exploitation of good solutions
found so far and the exploration of the solution space is maintained� The probability of
crossover is usually very near to � and the probability of mutation is near to ��

��� Genetic Connectionism

The design of an arti�cial neural network which is optimized for a speci�c application is
still a research issue �
� �	� The space of possible ANN architectures and learning rules is
extremely large� There are many variables� both discrete and continuous� and they interact
in a complex manner �
	� Besides� the performance of an architecture and a learning rule
usually depends on the application� So far� various heuristic methods for this design problem
have been derived from experience in both practical and small applications�

Instead of extensive trial�and�error experimentation� the optimal architectures and learn�
ing rules for a certain application can be searched with a powerful search and optimization
method� GAs are good candidates of such methods�

Genetic connectionism combines the genetic search and the connectionist computation�
Up to now� GAs have been applied successfully to the problem of designing ANNs with
supervised learning process in several ways �
� �	� These are�

� Given the topology� �i�e�� the connectivity� the number of layers� and the number of
nodes within each layer�� and the learning rule of the network� GAs are used to deter�
mine the connection weights� That is� the GA learning weights is compared to other
learning algorithms� e�g�� backpropagation�

� Given the learning rule of the network� GAs are used to determine the topology of the
network�

� Given the topology of the network� GAs are used to �nd �ttest learning rules based on
a certain �tness measure ��	�

� Given the topology and the learning rule of the network� GAs are used to determine
optimal parameters for the learning rule�
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��� Related Work

Our work is in the same category with that of Chalmers ��	 in the sense that we both use
a GA to �nd �ttest learning rules but �xing the network topology in advance� However�
Chalmers uses an ANN with a supervised learning process but we use an ANN� namely
SOM� with an unsupervised learning process�

Chalmers encodes the learning rule of a supervised learning algorithm in a fully connected�
single layer� feed�forward neural network with sigmoid output units� The �tness of a learning
rule is determined by applying it to a number of learnable tasks� Each task is a linearly
separable mapping from input patterns to output patterns� A genetic algorithm is employed
to the �nd the �ttest learning rules in this neural network� Many �ttest learning rules
are found at the end of the experiments� Based on the �tness measure on the tasks� the
performance of the learning rules on the tasks is comparable to that of the well�known delta
rule�

� Experimental Framework

��� The Self�Organizing Map

The Self�Organizing Map �SOM� ��� ��� ��� ��	 is an ANN in which the cells become specif�
ically tuned to various input signal patterns or classes of patterns through an unsupervised
learning process� The self�organizing process can be considered as a mapping of the proba�
bility density function of the high dimensional input data onto the two�dimensional display�
where output nodes corresponding to nearby input patterns lie topologically nearby� The
aim is to cluster the input data� Similar inputs should be classi�ed as being in the same
cluster�

In the SOM architecture� there are n continuous�valued inputs x� to xn� de�ning a point
�x in n�dimensional real space Rn� �x is called the input vector or the input pattern� There
are k output cells and they are arranged in a ��dimensional array� Each output cell oi�
i � f�� � � � � kg� is connected to xj � j � f�� � � � � ng� with a weight wij � The weight vector �mi

of an output cell oi is an n�dimensional vector of weights� i�e�� �mi � �wi�� � � � � win	
T � Rn�

The measure for the match of �x with �mi is based on the Euclidean distance k �x � �mi k
of �x and �mi de�ned as

k �x � �mi k�

vuut nX
j��

�xj � wij�� ���

The vectors �x�t�and �mi�t� represent the values of vectors �x and �mi respectively at discrete
time steps t � �� �� � � ��

Kohonen�s algorithm ��� ��	� presented in Figure �� proceeds as follows� First� all the
weights from n inputs to the k outputs are initialized to small random values� usually between
��� and ��� ��	� The weights coming to a given output cell from all the input cells are
normalized so that the total length of each weight vector from input cells to a given output
is � ��	� After that� the network is trained Tmax times� During each training iteration� a
new input pattern �x selected randomly from all the patterns is presented to the network�
The Euclidean distances between the input vector �x and the output vectors �mi are then
computed using the Eq� �� The best matching cell oc� the one with the minimum Euclidean
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distance to the input pattern �x� is identi�ed� That is�

k �x�t�� �mc�t� k� min
��i�k

k �x�t�� �mi�t� k ���

We refer to the best matching cell as the winner� Next� the weights of all the cells within a
neighborhood Nc�t� of the winner oc are updated using the equation

�mi�t� �� �

�
�mi�t� � ��t���x�t�� �mi�t�	 if i � Nc�t�
�mi�t� otherwise

���

where ��t�� the learning rate� is a scalar�valued function such that � � ��t� � �� The
neighborhood Nc�t� at a time step t of the the winner oc consists of all the cells lying in a
small area around the cell oc at the time step t� The width or radius r�t� of the neighborhood
and the learning rate decrease monotonically with the time step t� The learning rate remains
constant within the neighborhood� The exact forms of ��t� and r�t� are given in Figure ��
After training the network� the calibration step comes� During this step� each pattern is
presented to the network once and the winner for the pattern is labeled with the item �or
symbol� representing the pattern�

The ordering of the �mi occurs during the �rst T � ���� training iterations� Thus� Tmax

should be larger than ����� The remaining training iterations are only needed for the �ne
adjustment of the map� Moreover� the time complexity of Kohonen�s Algorithm is directly
proportional to Tmax� Hence� we have selected a small value for Tmax� Tmax is equal to
��� k� where k is the number of output cells or the size of the map and k � ��� � � ���
Hence� Tmax � �����

��� Genetic Representation

A general weight update rule for the SOM should incorporate relevant variables and subsume
Kohonen�s rule �Eq� ��� These variables consist of the inputs� the outputs� the connection
weights� and the training iteration number �or the time step��

Let �x be the input vector and oi be the i
th output cell� where i � f�� � � � � kg� There are

n connections between oi and input nodes x�� x�� � � � � xn� The weight wij of the connection
between oi and xj is increased at the time step t by an amount equal to �wij where

�wij � F�wij� xj � t� yi� ���

where yi depends on the correlation between �x and �mi�
When calculating the value of the function F at a time step t� we use the values of the

variables of the function F at the time step t� The function F is de�ned as

F�wij� xj � t� yi� � c� �c�wij � c�xj � c�t
�� � c�yi � c�wijxj � c�wijt

�� �

c�wijyi � c	xjt
�� � c
xjyi � c��t

��yi � c��wijxjt
�� �

c��wijxjyi � c��wijt
��yi � c��xj t

��yi � c��wijxjt
��yi� �
�

where t � � and the coe�cients c�� � � � � c�� are signed real numbers�
When the coe�cients other than c�� c�� and c
 are �� the function F gives a version of

Kohonen�s rule� Namely� F becomes

F�wij� xj� t� yi� � c��c�wijt
�� � c	xjt

���

� c�t
���c�c	xj � c�c�wij� ���
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Algorithm� Kohonen�s Algorithm
Input� input patterns�
Output� a clustering of patterns on a map�

�� read input patterns

�� normalize input patterns� i�e�� map each element into the interval ��� �	�

�� assign a random weight in ����� ���	 to every connection weight

�� normalize weights so that the total length of the each weight vector from all the inputs to a given
unit is �� i�e�� for each i � f�� � � � � kg

�mi � �mi� k �mi k


� for each time step t in ��� ����	 do �� training the network Tmax � ���� times��


��� get a pattern randomly


��� �nd the winner for the pattern


��� �nd ��t� and radius r�t�� The ��t� is de�ned as

��t� �

�
���� � �t�T ����T �� ����� if t � T
��T � � ��t� T ���Tmax� T ������T �� otherwise

where T � ����� ���� � ��
� ��T � � ����� Tmax � ����� and the radius r�t� of the neighborhood
of the winner at the time step t is de�ned as

r�t� �

�
r��� � �t�T ��r�T �� r���� if t � T

� otherwise

where T � ����� r��� � �� r�T � � ��


��� update weights of the cells in the neighborhood of the winner�

�� endfor

�� for each pattern do �� calibration ��

���� �nd the winner for the pattern�

���� assign the symbol of the pattern to the winning cell�

�� endfor

Figure �� Kohonen�s Algorithm
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which is equivalent to Eq� � for c	 � �� c� � ��� and ��t� � c�t
���

We have encoded these coe�cients in a number of di
erent ways�

����� Coding �

Each coe�cient is coded using 
 bits� This coding is similar to Chalmers� ��	� The interpre�
tation of these 
�bit strings corresponding to each coe�cient is as follows�

The coding of the coe�cient c� is di
erent from that of the other coe�cients� Let c� be
coded using the bits b�b�b�b�b�� and d� be the decimal value of the bits b�b�b�b� encoding
the coe�cient c�� Then�

c� �

���
��

� if d� � �
��d���� if d� �� � and b� � �
�d���� if d� �� � and b� �� �

���

Thus� the value of c� is such that ����� � c� � �� Let cj � where j � f�� � � � � �
g� be coded
using the bits b�b�b�b�b�� and dj be the decimal value of the bits b�b�b�b�� Then�

cj �

���
��

� if dj � �
��dj�� if dj �� � and b� � �
�dj�� if dj �� � and b� �� �

���

Thus� the value of cj is such that �� � cj � ����
Each coe�cient c�cj � j � f�� � � � � �
g� can take values between between ����� and ���

though not exhaustively� One can see that the ���bit chromosome corresponding to F can
generate approximately ���� weight update rules�

For this coding� yi is the correlation between �x and �mi� mapped onto the interval ��� ��
using a sigmoid function� The formula for yi is given as

yi �
�

� � e�y
�

i

���

where

y
�

i �
nX

j��

xjwij ����

����� Coding �

The coe�cient c� is coded in 
 bits and the others in � bits� The coding of the coe�cient c�
is exactly similar to that in coding �� The coding of the other coe�cients is di
erent� Let
cj � j � f�� � � � � �
g� be coded using the bits b�b�b� � � �b	� and dj be the decimal value of the
bits b�b� � � �b	� Then�

cj �

�
��dj if b� � �
�dj if b� � �

����

Thus� the value of cj is such that ����� � �� � cj � ���� � ��� The ��
�bit chromosome
can generate approximately ���	 weight update rules� For this coding� yi is the correlation
between �x and �mi� The formula for yi is given as

yi �
nX

j��

xjwij ����
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����� Coding �

This coding is the same as coding � except that the coe�cients other than the coe�cient c�
are calculated di
erently� Let cj � j � f�� � � � � �
g� be coded using the bits b�b�b� � � �b	� and
dj be the decimal value of the bits b�b� � � �b	� Then�

cj �

�
��dj�M if b� � �
�dj�M if b� � �

����

where M � �� � �� the maximum integer that �ts in � bits� Thus� the value of cj is such
that �� � cj � �� The ��
�bit chromosome can generate approximately ���	 weight update
rules�

����� Coding �

This coding is the same as coding � except that the formula for yi is di
erent� For this
coding� yi is the correlation between �x and �mi� mapped onto the interval ��� �� using a
sigmoid function� The formula for yi is given as

yi �
�

� � e�y
�

i

����

where

y
�

i �
nX

j��

xjwij ��
�

The ��
�bit chromosome can generate approximately ���	 weight update rules�
The length of the interval between any two successive values that a coe�cient other than

c� can take is not constant in coding � but constant in coding �� �� and �� The coe�cient c�
limits the values of other coe�cients� The value of c� is almost always less than � because the
coe�cients should be small numbers� When we removed the coe�cient c� from any coding�
the weight update rules obtained performed very badly� That is� they had no self�organizing
power at all� Thus� the coe�cient c� is essential�

��� The Genetic Algorithm

We have performed our experiments using a program implementing the genetic algorithm in
Figure �� The properties of the genetic algorithm we used are as follows�

� the number of individuals in the population is ��� and the population size is constant�

� the maximum number of generations is ����

� the probability of crossover is ����

� the probability of mutation is �����

� Roulette Wheel selection method ��	 is used�

� elitism ��� �	� which is including the �ttest individual in a generation in the next gen�
eration� is used�

	



The genetic algorithm works as follows� First� all the pattern sets are read� The number of
the pattern sets is �� each set corresponding to a sample problem� The pattern sets are next
normalized as in Kohonen�s Algorithm� The chromosomes in the population are initialized
with a fair coin toss� That is� each bit of a chromosome is set to � or � with a probability
of ��
� During the entire run of the program� each pattern set is used an equal number of
times to evaluate the rules� but the order of selection of the sets is random� For example�
during ��� generations� each set of patterns is selected � times and the rules are evaluated

� times on each set�

The main loop of the algorithm contains the steps corresponding to the evaluation of
the population� calculation of the statistics about the population� and creation of a new
generation� The individuals in the population are evaluated using the Evaluation Algorithm�
which is given in section ��
� The statistics about the population consists of the maximum
�tness value� the individual with the maximum �tness� and so on� In order to create a new
generation� all the individuals are selected from the current population� two at a time� as
parents� Selection is based on the �tness values of the individuals so that individuals with
higher �tness values have a higher chance of being selected� The genetic operator crossover
is next applied to the parents� Using crossover� randomly selected portions of parents are
exchanged� and two children are produced� These children are then mutated by producing
random changes in their chromosomes� The number of crossover operations is controlled with
the probability of crossover� and the number of mutation operations with the probability of
mutation�

Since the time complexity of the genetic algorithm is directly proportional to the number
of generations� the population size� and the time complexity of the evaluation algorithm�
we kept the population size and the maximum number of generations rather small� Using
greater values for these variables caused a very large increase in the runtime of the genetic
algorithm�

��� Fitness Calculation

In the SOM architecture� the de�nition of the optimal mapping is still unclear ���	� The
mean E� which we call the mean error� of the Euclidean distances between input patterns
and the weight vectors of their best matching output cells is used as a criterion for the
optimal mapping ���	� Formally� let ocp� where c � f�� � � � � kg and p � f�� � � � � Pg with P

being the number of patterns� be the best matching cell for a pattern �xp during calibration�
Then� given the weight vector �mcp of an output cell ocp� the Euclidean distance between �xp
and �mcp is as given in Eq� �� We de�ne the mean error E for all P patterns as

E � ���P �
PX
p��

k �xp � �mcp k ����

According to this cost formulation� a map with the smallest E value is the best map� Since
the best map should be the map with the highest �tness� we transform the smallest error to
the highest �tness value in two di
erent ways�

�� Fitness criterion � �

Given a map with a mean error Er� the �tness F �Er� of the weight update rule r






Algorithm� The Genetic Algorithm
Input� sets of input patterns�
Output� unsupervised learning rules�

�� read all the pattern sets

�� normalize the pattern sets as in Kohonen�s Algorithm

�� initialize the population

�� for � iterations do �� A total of ��� generations since � � 
� � ��� ��

���� select a pattern set randomly among � pattern sets

���� for 
� generations do

������ for each individual in the population do

�������� evaluate the individual using the Evaluation Algorithm

������ endfor

������ calculate the statistics about the population

������ for each pair of individuals in population do �� creating a new generation ��

�������� select a pair of individuals as parents

�������� perform a two�point crossover on the parents with the probability of crossover� and so
obtain two children

�������� mutate each bit of each children with the probability of mutation�

����
� endfor

���� endfor


� endfor

Figure �� The Genetic Algorithm�

producing this map is de�ned as

F �Er� �

�
� if Er � �
���

Er
if Er �� �

����

where � is a very large value�

�� Fitness criterion � �

Given a map with a mean error Er� the �tness F �Er� of the learning rule producing
this map is de�ned as

F �Er� � maxallr�Er��Er ����

where maxallr�Er� is the maximum mean error value among those of all the maps�

��� The Evaluation Algorithm

The evaluation algorithm� presented in Figure �� calculates the �tness values of the individ�
uals in the population based on one of the �tness criteria� The evaluation algorithm is very
similar to Kohonen�s algorithm� The most important di
erence is that we use the encoded
weight update rule �Eq� 
� instead of Kohonen�s rule �Eq� ��� The time complexity of the
evaluation algorithm is exactly the same as that of Kohonen�s Algorithm�
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Algorithm� The Evaluation Algorithm�
Input� an individual in the population�
Output� the individual whose �tness is computed�

�� decode the coe�cients of F from the chromosome of the given individual

�� initialize the map as in Kohonen�s Algorithm �steps � and ��

�� for each time step t in ��� ����	 do �� training the network Tmax � ���� times ��

���� get a pattern randomly

���� �nd the best matching cell

���� �nd the radius r�t� as in Kohonen�s Algorithm �step 
���

���� update weights of the cells in the neighborhood of the winner using the rule decoded from the
chromosome� �i�e� use the function F�

�� endfor


� for each pattern do �� calibration ��


��� �nd the winner for the pattern

�� endfor

�� �nd the �tness of the individual using the �tness criterion

Figure �� The Evaluation Algorithm

��� Sample Problems

We have used six sample problems for experimentation� The �rst sample problem �Taxonomy
of Abstract Data� is from Kohonen ���	� It consists of abstract data vectors with hypothetical
attributes� The attributes are determined by assuming hierarchical structures among the
vectors� The second sample is obtained from McClelland et al� ���	� It consists of a number
of nouns with certain features� Based on the features of the object implied by the noun� each
noun is associated with a vector of features� The third sample problem is taken fromWaltz et
al� ���	� It is composed of a number of �concepts� and a number of �features�� Each concept
is associated with a vector of values where each value indicates the level of activation of the
feature of the concept� The fourth sample problem includes a number of nouns� Each noun
has a vector whose entries give the ordinal values of the letters of the noun� The �fth sample
problem� given in Figure ��� contains ��� points uniformly distributed in a unit square� The
sixth sample problem� given in Figure ��� contains ��� points uniformly distributed in a
plus�shaped polygon inside a unit square� The �rst four problems were used as both training
and test data� The last two problems were used only as test data� The problems are given
in Appendix A�

� Experiments and Results

The details of the runs are given in Table �� We have experimented with di
erent genetic
codings and di
erent �tness criteria� The learning rules in the population were trained on
the �rst four sample problems� The genetic algorithm was run for ��� generations� For each
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� generations� a sample problem was selected to train the rules� Each sample problem was
selected exactly � times but the order of the selection was random�

After the run of the genetic algorithm� a number of best learning rules were taken from
the population and tested� All the selected rules and Kohonen�s rule were tested on the �rst
four sample problems �training data�� which were used to train the rules� Two of the rules
and Kohonen�s rule were also tested on the last two sample problems �test data�� which were
not used to train the rules�

Kohonen�s rule �Eq� �� was tested on each sample problem ��� times� each time with
a di
erent random number seed� Our rules were also tested on each sample problem ���
times� but we used the same random number seeds as those used in testing Kohonen�s rule
in order to ensure that the same initial maps were used for all the rules�

We give �� new unsupervised learning rules in Table � and Table �� The entries in the
tables correspond to the coe�cients in the Eq� 
� The algorithm used to test our rules is
very similar to Kohonen�s Algorithm� The only di
erence is that we have used our rules
�Table � and Table �� instead of Kohonen�s rule as the weight update rule�

The comparisons of the performance of our rules and Kohonen�s rule on the �rst four
sample problem are given in Table �� The entries in the �rst column give the rule number�
To explain other entries� consider the �rst rule� i�e�� the �rst row� The mean error produced
by the �rst rule is smaller than the one produced by Kohonen�s rule in ��� of all the runs
for the sample problem �� Similarly� the mean error by the �rst rule is smaller than the one
by Kohonen�s rule in ��� of all the runs for the second sample problem� The interpretation
of the other entries is similar�

The comparisons of the performance of the second rule� the �fth rule� and Kohonen�s
rule on the last two sample problems are given in Table 
� The interpretation of the entries
is similar to that of the entries in Table ��

In Figure � and Figure 
� we present some maps taken from the test runs of our �rst rule
and Kohonen�s rule on the training data� The original maps are all hexagonal but some are
converted to rectangular maps� In Figure �� Figure �� Figure �� and Figure �� we present
some maps taken from the test runs of our second rule and Kohonen�s rule on the test data�
We also give the mean errors obtained for these maps� In these maps� the points represent
the positions of the output cells in the weight space� and a line is plotted between two points
corresponding to two neighbor output cells� Moreover� a higher density of grid points in a
region on these maps usually indicates a higher probability of the random input patterns in
the region� We used the following parameters in the runs on the test data� initial learning
rate � ���� �nal learning rate � ����� initial radius � ��� �nal radius � �� and the number
of training iterations � ������

We now give some observations�

� Learning rules obtained from Run �� perform the best among all the other rules
including Kohonen�s rule�

� Considering the genetic coding criteria� we can rank the rules from the best to the
worst in terms of their performance as� rules from coding �� rules from coding �� rules
from coding �� rules from coding ��

� Rules obtained from runs other than Run �� and Run �� perform poorer than Koho�
nen�s rule even on the data used in training�

� Considering the rule �� taken from Run ��� we can say that the performance metric
is good enough to make comparisons based on it�

��



Table �� Classi
cation of Experiments�

Run � Coding � Fitness Crit� � Rules Input Data

� � � �� �� � problems �� �� � are normalized� but not �

� � � �� � �

� � � �� � �

� � � 	� 
 �

� � � ��� �� problems �� �� �� and � are normalized

Table �� Coe�cients of Six New Unsupervised Weight Update Rules�

ci New Learning Rules

� � � � � �

c� ���� ���� ���� ���� ���� ������		

c� � � ��� ���
� ���
� ��	�

c� �� �� ���� ��
� ��
� ���

c� � � � ���� ���� �

c� �� ��� ��� ����	 ����	 ����

c� ��� � �� ����	 ����	 ���

c� ��� ��� ��� ����� ����� ����

c� � �� ���� ����� ����� ��

c	 ���� ���� �� ���� ���� ���

c� �� �� � ���� ���� �	�

c�� ��� �� ��� ����� ���� ����

c�� �� � � ���� ���� 	�

c�� ���� �� ��� ���� ���� ��

c�� �� �� ���� ����� ����� ���

c�� ��� ��� �� ���� ���� ����

c�� �	 �	 �� ���� ���� ��

� Considering the rules �especially rule ��� taken from Run ��� we can say that there
exist unsupervised learning rules that produce maps similar to those by Kohonen�s rule
and that perform better as least on the problems we have investigated�

� Considering the output maps produced� we can say that the clustering obtained by
some of our rules and by Kohonen�s rule are very similar�

� Conclusions

We have presented an overview of genetic algorithms� and the use of genetic algorithms in
the design of arti�cial neural network architectures� We have applied genetic algorithms to
the design of unsupervised learning rules in the self�Organizing Map architecture� We have
discovered a number of such rules� Some of these rules as well as Kohonen�s rule have later
been tested both on the training data and on the test data� Some of our rules have performed
much better than Kohonen�s rule on all the sample problems�

��



Table �� Coe�cients of Five New Unsupervised Weight Update Rules�

ci New Learning Rules

� 	 
 �� ��

c� �����
�� ������ ������ ���� ����

c� ���� ������� ������� ���
� ���
�

c� �
� ������ ������ ���� ����

c� �� ������ ������ ����� �����

c� ��� ����
�
 ���
�
 ���
� ���
�

c� ���� ������ ������ ����� �����

c� ���	 ������
 �����	� ����� �����

c� ��� ���
�� ���
�� ����� ����


c	 �	� ������ ������ ���� ����

c� ���� ����
�� ������� ����� ����

c�� ��� ����
�� ������� ����� ����

c�� ��	 ������� �����
� ����� �����

c�� �� ������� ������� ���
� �����

c�� ��� ������� ������ ���� ����

c�� �� ��
��� ��
��� ���	 ����

c�� ��
	 ����		 ������ ����� �����

Table �� Performance of Rules on the First Four Sample Problems�

Rule � On Sample � On Sample � On Sample � On Sample �

� �� 

 	� ���

� �� 

 
	 ���

� �� 
� 	� ���

� �
 
� � ���

� 	� 
� � ���

� � �� � ���

� � �� � ��

	 � � � ���


 � � � 
�

�� �� 
� � ���

�� �� 
� � ���

Table �� Performance of Some Rules on the Last Two Sample Problems�

Rule � On Sample � On Sample �

� 	� ���

� � �

��



For sample problem � � �Hexagonal�

C B A � Z � Y � � � R Q P � O � N � D C

� D � � � � � � � � � � � W � � � M E B

E � � V U � X � � 	 � � � � � � � � F A

� � F � � � � � � � � � � � X � S L K G

� H G � T � W � � � � � � � � � � � � H

� I � K S � � � Q � � 	 � Y � � � T � I

J � L M N O P � � R � � � Z � V U � � J

�a� �b�

For sample problem � � �Rectangular�

bat � food co
chicken potato � woman � wolf fl�bat

chicken � � � pasta � � � lion �

ball � bb�bat carrot cheese doll � man � dog

� � � hammer � � � � boy �

� � spoon � � li�chicken sheep girl � �

hatchet � � plate � � � � � rock

fork paperwt vase � curtain window desk � � �

�a�

bat � � � doll � woman man � lion

chicken � pasta cheese � � � � boy dog

� co
chicken � � � desk � girl wolf fl�bat

� potato � carrot � � � � � �

food � � � � window � � sheep li�chicken

� � � hatchet fork � � curtain � �

ball bb�bat hammer spoon � paperwt vase plate � rock

�b�

Figure �� The maps obtained from test runs� The map �a� corresponds to the one produced by
our 
rst rule� and the map �b� to the one produced by Kohonen�s rule�
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For sample problem � � �Rectangular�

� � � � � � casino � � weekend

� � � � fire
at � � gambling � �

� � � � � � � � � dollar

� � � � � � � waste
money � �

� � video
games � � � � � � �

� � � � outdoors � � � � �

� � � � � � � hunting � deer

�a�

dollar � � � � � � � � weekend

� � � � gambling � � � � �

waste
money � � � � � fire
at � � �

� � � � � � � � � �

� � casino � � � � � � hunting

� � � � � outdoors � � � �

video
games � � � � � � deer � �

�b�

For sample problem 	 � �Rectangular�

dog � curtain � � � � � wolf spoon

� food � � � lion plate rock � �

� fork doll girl � � � � � sheep

boy � � � desk � chicken � potato woman

vase � bat � ball � � � � �

� � � � � � cheese � window �

pasta � man � hatchet � carrot � � hammer

�a�

vase � dog � � � hatchet � potato window

man � food � � chicken � � � �

bat � � boy � � � � � woman

� desk � � � � cheese � sheep �

ball girl fork doll � � � � � spoon

� � lion � � hammer � � � wolf

pasta � � curtain � carrot � plate � rock

�b�

Figure �� The maps obtained from test runs� The map �a� corresponds to the one produced by
our 
rst rule� and the map �b� to the one produced by Kohonen�s rule�

��



Figure �� Map by Kohonen�s Rule on Sample Problem � �Mean error � �������	��

Figure �� Map by Rule � on Sample Problem � �Mean error � �����		���

��



Figure 	� Map by Kohonen�s Rule on Sample Problem � �Mean error � ����������

Figure 
� Map by Rule � on Sample Problem � �Mean error � ����������

�	



This study indicates that there are many unsupervised learning algorithms that lead to a
similar organization like the one produced by Kohonen�s algorithm� The ideas in this study
can be used to obtain application�speci�c unsupervised learning algorithms� In addition�
the examination of the resulting rules can help us �nd the general unsupervised learning
algorithm� if one exists� applicable to a wide variety of arti�cial neural networks�
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Appendix A � Sample Problems
�� Sample Problem � � �Taxonomy of Abstract Data� The hierarchical structure of data

in a tree structure and the input data matrix are given below� The input data matrix
contains �� patterns with 
 attributes each�

Tree Structure Input Data Matrix

A
B
C
D
E Attributes Attributes

� Items Items

F A � 
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H
K
L
M
N
O
P
Q
R E � 
 
 
 
 U � � � � 
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I S W G � � 
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� � � H � � 
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J T X
�
�
�
	
�
� I � 	 
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� � J � � 
 
 
 Z � � � 	 


U Y K � � � 
 
 � � � � � �

� � L � � � 
 
 � � � � � �

V Z M � � � 
 
 � � � � � �

N � � 	 
 
 	 � � � � 	

O � � � 
 
 � � � � � �

P � � � 
 
 � � � � � �

�� Sample Problem � � The features for the nouns are given below� The numbers indicate
the numerical value of the feature� There are �� patterns with � attributes each�

Feature Dimension Values for Nouns














































HUMAN human�� nonhuman��

SOFTNESS soft�� hard��

GENDER male�� female�� neuter��

VOLUME small�� medium�� large��

FORM compact�� �
D�� �
D�� �
D�	

POINTNESS pointed�� rounded��

BREAKABILITY fragile�� unbreakable��

OBJECT TYPE food�� toy�� tool�� utensil�	 furniture��

animate�� natural
inanimate��

� means �non�applicable�� The format of the attributes is �HUMAN� SOFTNESS�
GENDER� VOLUME� FORM� POINTNESS� BREAKABILITY� OBJECT TYPE	�
Explanation for some nouns � ft bat �  ying bat� bb bat � baseball bat� paperwt �
paperweight� li chicken � living chicken� co chicken � cooked chicken�

Input Data Matrix
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ball � � � � � � � � hatchet � � � � � � � �

fl�bat � � � � 	 � � � hammer � � � � � � � �

bb�bat � � � � � � � � man � � � � 	 � � �

bat � 
 
 � 
 
 � 
 woman � � � � 	 � � �

boy � � � � 	 � � � plate � � � � � � � �

paperwt � � � � � � � � rock � � � � 	 � � �

cheese � � � � � � � � potato � � � � � � � �

li�chicken � � � � 	 � � � pasta � � � � � � � �

co�chicken � � � � � � � � spoon � � � � � � � 	

chicken � � 
 � 
 � 
 
 carrot � � � � � � � �

curtain � � � � � � � � vase � � � � � � � �

desk � � � � 	 � � � window � � � � � � � �

doll � � � � 	 � � � dog � � � � 	 � � �

food � � � � 
 � � � wolf � � � � 	 � � �

fork � � � � � � � 	 sheep � � � � 	 � � �

girl � � � � 	 � � � lion � � � � 	 � � �

�� Sample Problem � � The concepts and the features �or attributes� are given below�
There are �� patterns with �� attributes each� Concepts � weekend�A� outdoors�B�
casino�C� video games�D� �re at�E� waste money�F� deer�G� dollar�H� hunting�I�
and gambling�J� The letters associated with the concepts are used for abbreviation�
The meaning of the numbers in the following table is � ��positive association� ��
�mild
association� ���
�negative association� and ��unrelated�

Input Data Matrix
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�� Sample Problem � � The nouns and their attributes are given below� There are ��
patterns with � attributes each� The ordinal value of a letter is according to English
Alphabet�

Input Data Matrix

Ordinal value Ordinal value
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� Sample Problem 
 � There are ��� points generated at random in a unit square� The
points are uniformly distributed�

�� Sample Problem � � There are ��� points generated at random in a plus�shaped polygon
in a unit square� The points are uniformly distributed�
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Figure ��� The Fifth Sample Problem�

Figure ��� The Sixth Sample Problem�
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