Formal Languages, Automata and

Computation

Slides for 15-453 Lecture 1 Fall 2015 1/25

Administrative Stuff

e Textbook: Introduction to the Theory of
Computation, 3rd edition by Michael Sipser (MIT)

e Evaluation:

o 2 Midterm Exams
e 1 Final Exam
@ 8 Homeworks

e See syllabus for details.

Slides for 15-453 Lecture 1 Fall 2015 2/25

What is this course about? — Formal

Languages

e An abstraction of the notion of a “problem”
e Problems are cast either as Languages (= sets of
“Strings”)
e "Solutions” determine if a given “string” is in the set or not
@ e.g., Is a given integer, n, prime?
e Or, as transductions between languages

e “Solutions” transduce/transform the input string to an output
string
@ e.g., What is 3+5?

Slides for 15-453 Lecture 1 Fall 2015 3/25

What is this course about? — Formal

Languages

e So essentially all computational processes can be
reduced to one of
e Determining membership in a set (of strings)
e Mapping between sets (of strings)
e We will formalize the concept of mechanical
computation by
e giving a precise definition of the term “algorithm”
e characterizing problems that are or are not suitable for
mechanical computation.

Slides for 15-453 Lecture 1 Fall 2015 4/25

What is this course about? — Automata

e Automata (singular Automaton) are abstract
mathematical devices that can
e Determine membership in a set of strings
e Transduce strings from one set to another
e They have all the aspects of a computer
@ input and output
e memory
e ability to make decisions
e transform input to output
e Memory is crucial:

e Finite Memory
o Infinite Memory

@ Limited Access
@ Unlimited Access

Slides for 15-453 Lecture 1 Fall 2015 5/25

What is this course about?— Automata

e We have different types of automata for different
classes of languages.
e They differ in
e the amount of memory then have (finite vs infinite)
e what kind of access to the memory they allow.
e Automata can behave non-deterministically

@ A non-deterministic automaton can at any point, among
possible next steps, pick one step and proceed

e This gives the conceptual illusion of (infinitely) parallel
computation for some classes of automata

@ All branches of a computation proceed in parallel (sort of)
e More on this later

Slides for 15-453 Lecture 1 Fall 2015 6/25

What is this course about?— Complexity

e How much resource does a computation
consume?

e Time and Space
e What are the implications of nondeterminism for
complexity?

e How can we classify problems into classes based
on their resource use?
e Are there problems with very unreasonable resource usage

(Intractable problems)?
e How can we characterize such problems?

@ P vs. NP, PSPACE, Log Space

Slides for 15-453 Lecture 1 Fall 2015 7125

What is this course about?— Computability

e What is computational power?
e Automaton 1 tells Automaton 2
“Tell me what kinds of problems you can solve and | will tell
you how powerful you are? “
e What does computational power depend on? (it

turns out, not “speed”)

e What does it mean for a problem to be
computable ?

e Are there any uncomgutable functions or
unsolvable problems*

o What does this mean?
e Why do we care?

Slides for 15-453 Lecture 1 Fall 2015 8/25

Applications/Relevance

e Pattern matching
e Perl Hacking
e Bioinformatics
o Lexical analysis
e Design and Verification
e Hardware
e Software
e Communication Protocols
e Parsing Languages
@ Compiler construction
o XML Analysis
e Natural language processing, Machine Translation

e Algorithm design and analysis

Slides for 15-453 Lecture 1 Fall 2015 9/25

Decision Problems

e A decision problem is a function with a YES/NO

output
e We need to specify

o the set A of possible inputs (usually A is infinite)
e the subset B C A of YES instances (usually B is also infinite)

e The subset B should have a finite description!

Slides for 15-453 Lecture 1 Fall 2015 10/25

Decision Problems — Examples

e A: integers
e is_even?(x)
e is_prime?(x)

e A: integers x integers
o is_relatively_prime?(x,y)

Slides for 15-453 Lecture 1 Fall 2015 11/25

Decision Problems — Examples

e A: set of all pairs (G, t)
G is a {finite set of triples of the sort (i, j, w)},
i and j are integers and w is real
The finite set encodes the edges of a weighted directed
graph G.
e A={...({...,(3,4,5.6),...},8.0),...}
e Each pairin A, (G, t), represents a graph G and a

threshold t
e Does G have a path that goes through all nodes
once with total weight < t?
e Travelling Salesperson Problem

e Ais the set of all TSP instances.

Slides for 15-453 Lecture 1 Fall 2015 12/25

Encoding Sets

e Sets can be
o Finite
e Infinite
@ Countably Infinite: can be put in one-to-one correspondence
with natural numbers (e.g., rational numbers, integers)
@ Uncountably Infinite: can NOT be put in one-to-one
correspondence with natural numbers (e.g., real numbers)

Slides for 15-453 Lecture 1 Fall 2015 13/25

Encoding Sets

e In real life, we use many different types of data:
integers, reals, vectors, complex numbers,
graphs, programs (your program is somebody
else’s data).

e These can all be encoded as strings
e So we will have only one data type: strings

Slides for 15-453 Lecture 1 Fall 2015 14/25

e An alphabet is any finite set of distinct symbols
e {0,1},{0,1,2,...,9}, {a,b,c}
e We denote a generic alphabet by ©

e A string is any finite-length sequence of elements
of X.

e e.g., if X = {a, b} then g, aba, aaaa,,
abababbaab are some strings over the alphabet &

Slides for 15-453 Lecture 1 Fall 2015 15/25

e The length of a string w is the number of symbols
in w. We denote it by |w|. |aba| = 3.

e The symbol ¢ denotes a special string called the
empty string
@ ¢ has length 0
e String concatenation
o lfw=ay,...,apand v =by,...,bpthenw - v (or wr)
:a1,...,anb1,...,bm
e Concatenation is associative with e as the identity element.
e If a € X, we use a" to denote a string of n a’s
concatenated
e ¥ ={0,1},0% = 00000
) ao =def €
o gt =def a’a

Slides for 15-453 Lecture 1 Fall 2015 16/25

e The reverse of a string w is denoted by w”.
o wi=a,. . . a
e A substring y of a string w is a string such that
w = xyz with |x|, |y|,|z| > 0 and
X1+ 1yl + 1z = |l

o If w = xy with |x|,|y| > 0and |x| + |y| = |w]|, then
x is prefix of w and y is a suffix of w.
e Forw = abaab,

@ ¢, g, aba, and abaab are some prefixes
@ ¢, abaab, aab, and baab are some suffixes.

Slides for 15-453 Lecture 1 Fall 2015 17/25

e The set of all possible strings over ¥ is denoted
by ¥*.
o We define 3% = {¢}and X" =3"1.%
e with some abuse of the concatenation notation applying to
sets of strings now

0S0Y"={ww=xyandx € X" 'and y € ¥}
oy =Ur'ur?u..-I"U-- =g T
o Alternatively, ¥* = {xq,...,Xxp/n > 0 and x; € X for all /}

e ¢ denotes the empty set of strings ¢ = {},
o but ¢* = {e}

Slides for 15-453 Lecture 1 Fall 2015 18/25

e Y™ is a countably infinite set of finite length strings

e If x is a string, we write x" for the string obtained
by concatenating n copies of x.

e (aab)® = aabaabaab
o (aab)? = ¢

Slides for 15-453 Lecture 1 Fall 2015 19/25

e A language L over ¥ is any subset of ¥*

Finite /

Infinite

e L can be finite or (countably) infinite

Slides for 15-453 Lecture 1 Fall 2015 20/25

Some Languages

e L =%*—The mother of all languages!
e L ={a, ab, aab} — A fine finite language.
@ Description by enumeration
o L={a"b": n> 0} ={e, ab, aabb, aaabbb, ...}
o L ={w|ng(w) is even}
e nx(w) denotes the number of occurrences of x in w
e all strings with even number of a’s.

o L= {ww=wh}
e All strings which are the same as their reverses —
palindromes.
o L ={wlw = xx}
e All strings formed by duplicating some string once.

e L = {w|w is a syntactically correct Java program }

Slides for 15-453 Lecture 1 Fall 2015 21/25

e Since languages are sets, all usual set operations
such as intersection and union, etc. are defined.

o Complementation is defined with respect to the
universe ¥ *: L=3%*—L

Slides for 15-453 Lecture 1 Fall 2015 22/25

e If L, Ly and L, are languages:
Ly Lo = {Xy|X € L4 and y e Lg}
[O={e}and L"=L""1.L

L =Ugo L

Lr=UPL =L~ {e

Slides for 15-453 Lecture 1 Fall 2015 23/25

Sets of Languages

e The power set of ¥*, the set of all its subsets, is
denoted as 2%

Finite 7

Infinite

Set of Languages/Family/Class of [anguages

Slides for 15-453 Lecture 1 Fall 2015 24 /25

Describing Languages

e Interesting languages are infinite
e We need finite descriptions of infinite sets
e L={a"b":n> 0} is fine but not terribly useful!
e We need to be able to use these descriptions in
mechanizable procedures

Slides for 15-453 Lecture 1 Fall 2015 25/25

SUMMARY

e Alphabet %,

e Set of all Strings, ¥*,

e Language L C ¥ *,

o Set of all languages 2>

Finite Ky

Infinite

Set of Languages/Family/Class of Languages

SLIDES FOR 15-453 LECTURE 2 FALL 2015 2/31

AUTOMATA

o Abstract Models of computing devices

o | |]
Con\}vri(:; i Additione_\l _Memory
Finite Memory (Infinite)
Output [O A O I A A

o Each step of operation is like:

e If the current input symbol is X and memory state is Z, then
output Y, move (left/right)

SLIDES FOR 15-453 LECTURE 2 FALL 2015 3/31

AUTOMATA

e The control unit has some finite memory and it
keeps track of what step to execute next.

o Additional memory (if any) is infinite - we never
run out of memory!
o Infinite but like a stack - only the top item is accessible at a
given time.
e Infinite but like a tape, any cell is (sequentially) accessible.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 4/31

FINITE STATE AUTOMATA

o Finite State Automata (FSA) are the simplest
automata.

o Only the finite memory in the control unit is
available.

e The memory can be in one of a finite number
states at a given time — hence the name.

e One can remember only a (fixed) finite number of properties
of the past input.

e Since input strings can be of arbitrary length, it is not
possible to remember unbounded portions of the input string.

e It comes in Deterministic and Nondeterministic
flavors.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 5/31

DETERMINISTIC FINITE STATE AUTOMATA
(DFA)

o A DFA starts in a start state and is presented with
an input string.

¢ It moves from state to state, reading the input
string one symbol at a time.

o What state the DFA moves next depends on

e the current state,
e current input symbol

e When the last input symbol is read, the DFA
decides whether it should accept the input string

SLIDES FOR 15-453 LECTURE 2 FALL 2015 6/31

A SIMPLE DFA EXAMPLE

o States are shown with circles. We usually have
labels on the states.
e One designated state is the start state, (State gy here).
e States with double circles denote the accepting or final
states (State g1 here)

e Directed and labeled arrows between states
denote state transitions.

SLIDES FOR 15-453 LECTURE 2 FALL 2015

7131

A SIMPLE DFA EXAMPLE

This DFA stays in the same state when the next input symbol is a
0.

@ In state qg, an input of 1 moves the DFA to state g.

e In state gy, an input of 1 moves the DFA to state qo.

@ In state o, an input of 1 moves the DFA back to state qq.

e If the DFA is in state g; when the input is finished, the DFA
accepts the input string.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 8/31

A SIMPLE DFA EXAMPLE

o What kinds of strings does this DFA accept?
It accepts w = 00010000

e It accepts w = 00010011001

e ltacceptsw =1

e ltrejects w = 1100001

e ltrejects w =0110000

o It accepts all strings w € {0, 1}* such that
ni(w)=1 mod 3

SLIDES FOR 15-453 LECTURE 2 FALL 2015

9/31

DFA — FORMAL DEFINITION

o A Deterministic Finite State Acceptor (DFA) is
defined as the 5-tuple M = (Q, ¥, 6, qo, F) where

Q is a finite set of states

¥ is a finite set of symbols — the alphabet
0 : Q x ¥ — Qisthe next-state function
Qo € Qs the (label of the) start state

F C Qs the set of final (accepting) states

SLIDES FOR 15-453 LECTURE 2 FALL 2015 10/31

FORMAL DESCRIPTION OF THE EXAMPLE DFA

o Q= {QOaCﬁaCIZ} ® Qo
oy =1{01} o F={ai}
s [0

% |l % | o We will almost always use the graphical
qr || G| @ description for . The other components
9 || 92 | 9 will always be implicit!

@ i

SLIDES FOR 15-453 LECTURE 2 FALL 2015 11731

How THE DFA WORKS

o The DFA accepts astringw = xyx2--- X, if a
shequence of states rorira-- -y, ri € Q, exists, such
that

Q h = Qo (Start in the initial state)
@ ri=46(riq,x)fori=12...n
e Move from state to state.
Q@rneF
e End up in afinal state.
o If the DFA is NOT in an accepting state when the
input string is exhausted, then the string is

rejected.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 12731

DFA EXAMPLE

[a b a
R e i S
V. }f Q
b

o This DFA accepts strings that have aba
somewhere in it.

e Once the existence of aba is ascertained, the rest
of the input is ignored!

o What do the states “remember”?

SLIDES FOR 15-453 LECTURE 2 FALL 2015 13731

DFA EXAMPLE

o This DFA accepts strings that start with ab

e Once the string starts with ab the rest is ignored!

e The state g; is known as a sink state.
e Once a machine enters a sink state, there is no getting out!
It is rejected.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 14 /31

o This DFA accepts strings of the sort a’b™ such
that n+ m s odd.

A MORE INTERESTING DFA EXAMPLE

e Input is a string over © = {0,1}

e We interpret the string as a binary number.

o We want to accept strings where the
corresponding binary number is divisible by 3.

e Accepte.g., 0,11,1001, 1100, 1111, 111100, ...
e Rejecte.g., 1,10, 101, 10000, ...

e The most significant (leftmost) digit comes first!
e No obvious pattern at first sight!

SLIDES FOR 15-453 LECTURE 2 FALL 2015 16 /31

A MORE INTERESTING DFA EXAMPLE

e How do we find the decimal equivalent of binary

number digit-by-digit?
Q value=0
@ repeat as long as there is another
binary-digit
@ value=valuex2+binary-digit

e 1101 -0-241=1—->1-2+1=3—
3:2+40=6—-6-2+1=1349

o We can not compute this number with a DFA,
since the number can be arbitrarily large!

e However, for our problem, we can compute a
running modulo 3 with a DFA!!

SLIDES FOR 15-453 LECTURE 2 FALL 2015

17731

COMPUTING A RUNNING MODULO 3
REMAINDER

@ Consider any number n = 3p + r. It has remainder r when divided by 3

@ Multiply by 2 and add 0
er=0:2n+0=2(3p+0)+0=23(2p)+0 — New ris 0.
er=1:2n+0=23p+1)+0=3(2p)+2 — New ris 2.
er=2:2n+0=28p+2)+0=312p+1)+1—Newris 1.

@ Multiply by 2 and add 1
er=0:2n+1=23p+0)+1=
or=1:2n+1=23p+1)+1=
er=2:2n+1=28p+2)+1=

@ This information now defines the state transition function

e We let each state denote the remainder. So § maps each
remainder and input digit combination, to a new remainder.

3(2p) +1 — New ris 1.
3(2p+1)+0— New risO.
32p+1)+2— Newris 2.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 18731

A DFA FOR BINARY NUMBERS DIVISIBLE BY 3

e Running some examples:
e For11,=810=0—-1—-0=
e For1100, =121p=0—-1—-2—-1=0
e For1111, =153=0—-1—-0—-1=0
e For1010o =101 =0—1—> 0 — 1 = 2 Reject

SLIDES FOR 15-453 LECTURE 2 FALL 2015 19731

THE EXTENDED STATE TRANSITION FUNCTION

e 0 : Q x X — Qis the state transition function. The
input is a symbol.
e 0" : Qx X" — Qisthe extended state transition
function.
e 0%(g,€) =q
e 0*(q,w-a)=4(0*(q,w),a), whereac X andw € *
e First, go (sort of recursively) where w (a string) takes you,

(6*(q,w) =q')
e Then, make a single transition with symbol a (6(q’, a))

SLIDES FOR 15-453 LECTURE 2 FALL 2015 20/31

THE LANGUAGE ACCEPTED BY A DFA

L(M) denotes the language accepted by a DFA M

L(M) = {w|w € £* and §*(qo,w) € F}
o Similarly

L(M) = {w|w € £* and §*(qo,w) & F}

SLIDES FOR 15-453 LECTURE 2 FALL 2015 21/31

REGULAR LANGUAGES

A language L is called a regular language if and only
if there exists a DFA M such that L(M) = L.

Infinite

Set of Languages/Family/Class of Languages

SLIDES FOR 15-453 LECTURE 2 FALL 2015 22/31

SAMPLE PROBLEMS

o Design a DFA for all strings over the alphabet
Y = {a, b} that contain aba but not abaa as a
substring.

A substring is any consecutive sequence of symbols that occurs
anywhere in a string. For example, ab and bc are substrings in abc while ¢cb

or ac are not.
SLIDES FOR 15-453 LECTURE 2 FALL 2015 23/31

o Design a DFA for the language
L = {w | w contains at least one 0 and at most one 1}

o Design a DFA for the language
L = {w | w does not contain 100 as a substring}

SAMPLE PROBLEMS

o Design a DFA for all strings over the alphabet
A ={a, b, c} in which no two consecutive
positions are the same symbol. (5 states should
be sufficient)

SLIDES FOR 15-453 LECTURE 2 FALL 2015 26/31

SAMPLE PROBLEMS

o Design a DFA for all strings over the alphabet
{0, 1} where the 3 symbol from the end is a 0.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 271731

SAMPLE PROBLEMS

o Design a DFA all strings over the alphabet {0, 1}
where the leftmost and the rightmost symbols are
different.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 28/31

SAMPLE PROBLEMS

o Design a DFA all strings over the alphabet
{a, b, c} where only two of the symbols occur odd
number of times.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 29/31

SAMPLE PROBLEMS

o Design a DFA all strings over the alphabet {a, b}
in which every substring of length four has at
least two b’s.

o For example, abbababbbaabbabba is accepted,
while abbaaabbbb is not, because the substring
aaab does not contain two b’s. (At most 8 states
should suffice.)

SLIDES FOR 15-453 LECTURE 2 FALL 2015 30/31

SAMPLE PROBLEMS

o Design a DFA all strings over {a, b} in which
every pair of adjacent 0’s appears before any pair
of adjacent 1’s.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 31/31

SUMMARY

e Symbols, Alphabet, Strings, ¥*, Languages, 2%
e Deterministic Finite State Automata

e States, Labels, Start State, Final States, Transitions
o Extended State Transition Function
e DFAs accept regular languages

SLIDES FOR 15-453 LECTURE 3 FALL 2015 2/34

REGULAR LANGUAGES

e Since regular languages are sets, we can
combine them with the usual set operations
e Union
e Intersection
e Difference

THEOREM
If Ly and Ly are regular languages, so are Ly U Lo,
LiNL>and Ly — Lo.

PROOF IDEA
Construct cross-product DFAs

SLIDES FOR 15-453 LECTURE 3 FALL 2015

3/34

CROSS-PRODUCT DFASs

o A single DFA which simulates operation of two
DFAs in parallel!
o Let the two DFAs be M; and M., accepting regular
languages Ly and L,
o M1 = (01727517%1)7/:1)
Q@ My =(Q,%,5,G5, F2)
o We want to construct DFAs M = (Q, %, 6, qo, F)
that recognize
o L1UL
o LiNnLs
o Ly —Lp

SLIDES FOR 15-453 LECTURE 3 FALL 2015 4/34

CONSTRUCTING THE CROSS-PrRODUCT DFA M

o We need to construct M = (Q, X, 9, qo, F)

e Q =pairs of states, one from M; and one from M,
Q= {(QMQZ)‘CH € @y and Qo € Qz}
Q = Q1 X Qz

° o = (dp, %)

o 3((q], 7). x) = (51(q} . x), 62(q7, X))

o Union: F={(q1,q)|q1 € F1or g € F>}

o Intersection: F = {(qg1,q2)|g1 € F1 and @z € F>}

o Difference: F = {(g1, ®2)|q1 € F1 and qo¢F2}

SLIDES FOR 15-453 LECTURE 3 FALL 2015 5/34

e DFA for Ly U L, accepts when either My or My
accepts.

e DFA for Ly N L, accepts when both M; and M-
accept.

o DFA for Ly — L, accepts when M; accepts and M-
rejects. 0

o DFA for binary numbers divisible by 3
o DFA for binary numbers divisible by 2

o Reverse: LAi={w=ay...a)w"=a,...a1 e L}
o Concatenation: Ly - Lp = {wv|w € Ly and v € Lo}
o Star Closure: L* = {wjwz ... wk|k > 0 and w; € L}

THE REVERSE OF A REGULAR LANGUAGE

THEOREM
The reverse of a regular language is also a regular
language.

e If a language can be recognized by a DFA that
reads strings from right to left, then there is an
“normal” DFA (one that reads from left to right)
that accepts the same language.

o Counter-intuitive! DFAs have finite memory. ..

SLIDES FOR 15-453 LECTURE 3 FALL 2015 12734

REVERSING A DFA

e Assume L is a regular language. Let M be a DFA
that recognizes L

o We will build a machine M” that accepts L”

o If M accepts w, then w describes a directed path,
in M, from the start state to a final state.

o First attempt: Try to define M as M as follows
e Reverse all transitions
e Turn the start state to a final state
e Turn the final states to start states!
e But, as such, M is not always a DFA.
e It could have many start states.
e Some states may have too many outgoing transitions or
none at all!

SLIDES FOR 15-453 LECTURE 3 FALL 2015 13734

EXAMPLE

o What language does this DFA recognize?
e All strings that contain a substring of 2 or more Os followed
by a 1.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 14734

REVERSING THE DFA

o What happens with input 1007
e There are multiple transitions from a state labeled with the
same symbol.
e State transitions are not deterministic any more: the next
state is not uniquely determined by the current state and the
current input. — Nondeterminism

SLIDES FOR 15-453 LECTURE 3 FALL 2015 15734

REVERSING THE DFA

o We will say that this machine accepts a string if
there is some path that reaches an accept state
from a start state.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 16 /34

HoOWw DOES NONDETERMINISM WORK?

o When a nondeterministic finite state automaton
(NFA) reads an input symbol and there are
multiple transitions labeled with that symbol

e It splits into multiple copies of itself, and
o follows all possibilities in parallel.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 17734

DETERMINISTIC VS NONDETERMINISTIC
COMPUTATION

Non-Deterministic
Computation

Deterministic
Computation

:
:
:
1
:
l

accept or reject

SLIDES FOR 15-453 LECTURE 3 FALL 2015 18734

HoOWw DOES NONDETERMINISM WORK?

o When a nondeterministic finite state automaton
(NFA) reads an input symbol and there are
multiple transitions with labeled with that symbol

e It splits into multiple copies of itself, and
o follows all possibilities in parallel.
o Each copy of the machine takes one of the
possible ways to proceed and continues as
before.

o If there are subsequent choices, the machine
splits again.
e We have an unending supply of these machines that we can
boot at any point to any state!

SLIDES FOR 15-453 LECTURE 3 FALL 2015 19734

DFAS AND NFAS — OTHER DIFFERENCES

o A state need not have a transition with every
symbol in &

e No transition with the next input symbol? = that copy of the
machine dies, along with the branch of computation
associated with it.

e If any copy of the machine is in a final state at the end of the
input, the NFA accepts the input string.

e NFAs can have transitions labeled with € — the
empty string.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 20/ 34

€-TRANSITIONS

o If a state with only transitions with an ¢ label is
encountered, something similar happens:
e The machine does not read the next input symbol.
e It splits into multiple copies:
e a separate copy follows each e transition
e one stays at the current state

af @;h 7y

o What the NFA arrives at p (say after having read
input a, it splits into 3 copies

SLIDES FOR 15-453 LECTURE 3 FALL 2015 21/34

NFA EXAMPLE

@ Accepts all strings over
Y ={a, b, c} with at
least one of the symbols
occuring an odd number
of times.

@ For example, the
machine copy taking the
upper e transition
guesses that there are
an odd number of a's
and then tries to verify it.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 22/34

NONDETERMINISM

e So nondeterminism can also be viewed as

e guessing the future, and
e then verifying it as the rest of the input is read in.

e If the machine’s guess is not verifiable, it dies!

SLIDES FOR 15-453 LECTURE 3 FALL 2015 23/34

NFA EXAMPLE

01 1 0,1 0,1
& & ®

o Accepts all strings over ¥ = {0, 1} where the 3
symbol from the end is a 1.

e How do you know that a symbol is the 3™ symbol from the
end?

o The start state guesses every 1 is the 3™ from the
end, and then the rest tries to verify that it is or it
IS not.

e The machine dies if you reach the final state and you get

one more symbol.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 24/34

NFA-FORMAL DEFINITION

o A Nondeterministic Finite State Acceptor (NFA) is
defined as the 5-tuple M = (Q, %, 4, qo, F) where

e Qs a finite set of states

e X is a finite set of symbols — the alphabet

o §:Qx (ZU{e}) — 29 is the next-state function
o 20={PIPCQ}

e qo € Qis the (label of the) start state

e F C Qisthe set of final (accepting) states

e 0 maps states and inputs (including ¢) to a set of
possible next states
o Similarly * : Q x ¥* — 29

o 5(q.¢) = {q}
e 0*(q,w-a) = {p|3r € §*(q,w) such that p € 6(r,a)}
e acouldbe e

SLIDES FOR 15-453 LECTURE 3 FALL 2015 25/34

How AN NFA ACCEPTS STRINGS

o An NFA accepts a string w = x1Xo - - - X if 2
sequence of states ryrirz--- ry, i € Q exist such
that

Q@ o = qo (Start in the initial state)

©Q rici(ri_q,x;) fori=1,2,...n(Move from state to state —
nondeterministically: r; is one of the allowable next states)

© rh € F (End upin afinal state)

SLIDES FOR 15-453 LECTURE 3 FALL 2015 26/34

NONDETERMINISTIC VS DETERMINISTIC FA

o We know that DFAs accept regular languages.
o Are NFAs strictly more powerful than DFAs?

e Are there languages that some NFA will accept but no DFA
can accept?
e It turns out that NFAs and DFAs accept the same
set of languages.
o Qisfinite = |29 = |{P|P C Q}| = 2!% is also finite.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 27134

NFAS AND DFAS ARE EQUIVALENT

THEOREM
Every NFA has an equivalent DFA.

PROOF IDEA
o Convert the NFA to an equivalent DFA that
accepts the same language.

o If the NFA has k states, then there are 2 possible
subsets (still finite)

e The states of the DFA are labeled with subsets of
the states of the NFA

e Thus the DFA can have up to 2 states.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 28/34

NFAS AND DFAS ARE EQUIVALENT

THEOREM
Every NFA has an equivalent DFA.

CONSTRUCTION

e Let N=(Q,%,0,qo, F) be an NFA. We construct
M=(Q,%,¢ qpF).

Q@ Q =29 the power set of Q
@ ForRe @ andacX, letd'(R,a)={qec Q|qgee(r,a))for
some r € R}
e For R € Q, the e-closure of R, is defined as
¢(R) = {q|q is reachable from some r € R
by traveling along zero or more e — transitions }

Q g = <({q})
Q F={Rec Q|RNF # ¢}: at least one of the states in R is a
final state of N

SLIDES FOR 15-453 LECTURE 3 FALL 2015 29/34

NFA EXAMPLE

o Note that gy has an e-transition

e Some states (e.g., ;) do not have a transition for
some of the symbols in . Machine dies if it sees
input 1 when it is in state g.

o ¢({Qo}) = {0, G1}

SLIDES FOR 15-453 LECTURE 3 FALL 2015 30/34

NFA 1O DFA CONVERSION EXAMPLE

o Given N = ({1,2,3},{a, b},9,1,{1}), construct

M=(Q,%,0, g, F).

e({1}) ={1,3}

o a b
¢ ¢ ¢
{1} ¢ {2}
{2} {2,3} | {38}
{3} {1,3} ¢
{1,2} {2,3} | {2,3}
{1.3p | {1.3} | {2}
{2,3} | {1,2,3} | {8}
{1,2,3} | {1,2,3} | {2,3}

SLIDES FOR 15-453 LECTURE 3

FALL 2015 31/34

NFA 1O DFA CONVERSION EXAMPLE

e Given N =
M = (Qla 275/7 q(/)a F/)

o

1}) ={1,3}
{1, 3} is the start state of M

SLIDES FOR 15-453 LECTURE 3

({1,2,3},{a,b},s,1,{1}), construct

o’ a b
¢ ¢ ¢
{1} ¢ {2}
{2} {234 | {3}
{3} {1,3} ¢
{1,2} {2,3} |{2,3}
{1.3p | {1.3} | {2}
{2,3} |{1,2,3} | {3}
{1,2,3} | {1,2,3} | {2,3}

FALL 2015 32/34

NFA 1O DFA CONVERSION EXAMPLE

o Given N = ({1,2,3},{a, b},9,1,{1}), construct

M=(Q,%,0, g, F).

e States {1} and {1,2} do
not appear as the next
state in any transition!
They can be removed

e States with labels {1, 3}
and {1,2,3} are the
final states of M.

@ We can now relabel the
states as we wish!

SLIDES FOR 15-453 LECTURE 3

o a b
a5 ¢ ¢ ¢
% | {2} {2,3} | {38}
g | {3} {1,3} ¢
Qo | {1.3} | {1.3} | {2}
a3 {273} {17273} {3}
qs | {1,2,3} | {1,2,3} | {2,3}

FALL 2015

33/34

NFA 1O DFA CONVERSION EXAMPLE

o Given N = ({1,2,3},{a, b},9,1,{1}), construct
M=(Q.X,¥, qpF).

e States {1} and {1,2} do 7 Talb
not appear as the next
state in any transition! % | G5 | 9
They can be removed % | 9 | G
G 19 | O
e States with labels {1, 3} Yo | 9o | 92
and {1,2,3} are the g3 | Qa4 | Q1
final states of M. Qs | Q4 | O3

@ We can now relabel the
states as we wish!

SLIDES FOR 15-453 LECTURE 3 FALL 2015 34/34

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

REGULAR EXPRESSIONS

SLIDES FOR 15-453 LECTURE 4 FALL 2015

SUMMARY

o Nondeterminism
e Clone the FA at choice points
e Guess and verify
o Nondeterministic FA
e Multiple transitions from a state with the same input symbol
e e-transitions
o NFAs are equivalent to DFAs

o Determinization procedure builds a DFA with up to 2~ states
for an NFA with k states.

SLIDES FOR 15-453 LECTURE 4 FALL 2015 2/26

CLOSURE THEOREMS

THEOREM PROOF IDEA BASED ON NFAS

The class of — 7 —
regular 2 @) ~O
languages is Oo© Oo©
closed under the @) ‘ 0" ©
union operation. J L N L
— e2 —_—

SLIDES FOR 15-453 LECTURE 4 FALL 2015

CLOSURE THEOREMS

THEOREM PROOF IDEA BASED ON NFAS

The class of S
regular © 0
languages is go©
closed under the " e .
. \ J
concatfenat/on — o e
operation. | o o °0 ©
O @ N, N @
v ©
Ne > 7)

SLIDES FOR 15-453 LECTURE 4

CLOSURE THEOREMS

THEOREM PROOF IDEA BASED ON NFAS

The class of

regular ey

languages is O

closed under the o ©

star operation. J oo o
e M

SLIDES FOR 15-453 LECTURE 4

REGULAR EXPRESSIONS

o DFAs are finite descriptions of (finite or infinite)
sets of strings

e Finite number of symbols, states, transitions
e Regular Expressions provide an algebraic
expression framework to describe the same class
of strings

o Thus, DFAs and Regular Expressions are
equivalent.

SLIDES FOR 15-453 LECTURE 4 FALL 2015

REGULAR EXPRESSIONS

o For every regular expression, there is a
corresponding regular set or language

o R, Ry, R are regular expressions; L(R) denotes
the corresponding regular set

Regular Expression Regular Set

¢ {}
aforac ¥ {a}
€ {e}
(R U Ry) L(R)) U L(Ry)
(R1R2) L(R1)L(R2)

(R*) L(R)*

REGULAR EXPRESSIONS— MORE SYNTAX

Regular Expression Regular Set

¢ {}
afor € ¥ {a}
€ {e}
(R1 U Rg) L(R1) U L(Rg)
(R1R2) L(R1)L(R2)
(R) L(R)

@ Some books may also use Ry + R» to denote union.

@ In(...), the parenthesis can be deleted

e In which case, interpretation is done in the precedence
order: star, concatenation and then union.

@ R* = RR* and R for k-fold concatenation are useful shorthands.

SLIDES FOR 15-453 LECTURE 4 FALL 2015 8726

REGULAR EXPRESSION EXAMPLES

Regular Expression Regular Language

010" — {w|w contains a single 1}
Qu1n*1(0uUl1)* — {w]|w has at least one 1}
oou1)*out1(Ou1)*Tu0Ul — {w|w starts and ends
with the same symbol}
(0*10*1)*0* — {w|ny(w) is even}

SLIDES FOR 15-453 LECTURE 4 FALL 2015 9/26

WRITING REGULAR EXPRESSIONS

o All strings with at least one pair of consecutive 0s
e (0U1)*00(0U1)*
° AII1$trings such that fourth symbol from the end is
a
e (OUMN*MI(OUT)(OUT)(OUT)
o All strings with no pair of consecutive Os
o (1°011%)*(0U€) U 1%
e Strings consist of repetitions of 1 or 01 or two boundary
cases: (1U01)*(0U¢)
o All strings that do not end in 01.
e (0U1)*(00UT0UT1)UOUTUE

SLIDES FOR 15-453 LECTURE 4 FALL 2015 10726

WRITING REGULAR EXPRESSIONS

o All strings over ¥ = {a, b, ¢} that contain every
symbol at least once.

e (aubuc)fa(aubuc)*b(aubuc)*c(aubuc)*U
(aubuc)*a(aubuc)*c(aubuc)*b(aubuc)*u
(aubuc)*b(aubuc)*a(aubuc)*c(aubuc)*u
(aubuc)*b(aubuc)c(aubuc)*a(aubuc)*u
(aubuc)*claubuc)*a(aubuc)*b(aubuc) U
(aubuc)*c(aubuc)*b(aubuc)*a(aubuc)*

SLIDES FOR 15-453 LECTURE 4 FALL 2015 11726

WRITING REGULAR EXPRESSIONS

o All strings over ¥ = {a, b, ¢} that contain every
symbol at least once.

e DFAs and REs may need different ways of looking
at the problem.

e For the DFA, you count symbols
e For the RE, you enumerate all possible patterns

SLIDES FOR 15-453 LECTURE 4 FALL 2015 12/26

RE IDENTITIES

e RU¢p=R
e Re=cR=R
°o pF =c¢€

o Note that we do not have explicit operators for
intersection or complementation!

SLIDES FOR 15-453 LECTURE 4 FALL 2015 13/26

DIGRESSION: RES IN REAL LIFE

@ Linux/Unix Shell, Perl, Awk, Python all have built in regular
expression support for pattern matching functionality

@ See http://perldoc.perl.org/perlre.html

@ Mostly some syntactic extensions/changes to basic regular
expressions with some additional functionality for remembering
matches

@ Substring matches in a string!

@ Search for and download Regex Coach to learn and experiment
with regular expression matching

SLIDES FOR 15-453 LECTURE 4 FALL 2015 14726

http://perldoc.perl.org/perlre.html

EQUIVALENCE WITH FINITE AUTOMATA

A language is regular if and only if some regular expression describes

It.

LEMMA- THE if PART

If a language is described by a regular expression, then it is regular
PROOF IDEA

Inductively convert a given regular expression to an NFA.

SLIDES FOR 15-453 LECTURE 4 FALL 2015 15726

CONVERTING RES TO NFAS: BASIS CASES

Regular Expression Corresponding NFA

¢
c

aforacy () °

SLIDES FOR 15-453 LECTURE 4

FALL 2015

16/26

CONVERTING RES TO NFAS

Union
e Let Ny and N> be NFAs for Ry and R»
respectively. Then the NFA for Ry UR3 is

FALL 2015 171726

CONVERTING RES TO NFAS

Concatenation
e Let Ny and N> be NFAs for Ry and R»
respectively. Then the NFA for R1Rz is

CONVERTING RES TO NFAS: STAR

Star
o Let N be NFAs for R. Then the NFA for R* is

FALL 2015 19/26

RE TO NFA CONVERSION EXAMPLE

o Let’s convert (a U b)*aba to an NFA.

SLIDES FOR 15-453 LECTURE 4 FALL 2015

RE 1O NFA TO DFA

o Regular Expression — NFA (possibly with
e-transitions)

o NFA — DFA via determinization

SLIDES FOR 15-453 LECTURE 4 FALL 2015

EQUIVALENCE WITH FINITE AUTOMATA

A language is regular if and only if some regular expression describes
it.

LEMMA — THE only if PART
If a language is regular then it is described by a regular expression

PROOF IDEA

o Generalized transitions: label transitions with regular expressions

@ Generalized NFAs (GNFA)

e lteratively eliminate states of the GNFA one by one, until only two
states and a single generalized transition is left.

SLIDES FOR 15-453 LECTURE 4 FALL 2015 22/26

GENERALIZED TRANSITIONS

o DFAs have single symbols as transition labels

e If you are in state p and the next input symbol matches a, go
to state q

o Now consider

e If you are in state p and a prefix of the remaining input
matches the regular expression ab* U bc* then go to state g

SLIDES FOR 15-453 LECTURE 4 FALL 2015 23/26

GENERALIZED TRANSITIONS AND NFA

o A generalized transition is a transition whose
label is a regular expression

........ o ab*U bc* o

o A Generalized NFA is an NFA with generalized
transitions.

e In fact, all standard DFA transitions are generalized
transitions with regular expressions of a single symbol!

SLIDES FOR 15-453 LECTURE 4 FALL 2015 241/26

GENERALIZED TRANSITIONS

e Consider the 2-state DFA

o 0*1 takes the DFA from state qg to g4

e (0U10*1)* takes the machine from gy back to gy

e So ?2=0*1(0 U 10*1)* represents all strings that take the
DFA from state g to gy

SLIDES FOR 15-453 LECTURE 4 FALL 2015 25/26

GENERALIZED NFAS

o Take any NFA and transform it into a GNFA

e with only two states: one start and one accept
e with one generalized transition

e then we can “read” the regular expression from
the label of the generalized transition (as in the
example above)

SLIDES FOR 15-453 LECTURE 4 FALL 2015 26/26

FORMAL LANGUAGES, AUTOMATA AND
COMPUTATION

DFAS TO REGULAR EXPRESSIONS

DFA MINIMIZATION — CLOSURE PROPERTIES

SLIDES FOR 15-453 LECTURE 5 FALL 2015

SUMMARY

o Regular Expression (RE) define regular sets
e RE = NFA = DFA

SLIDES FOR 15-453 LECTURE 5 FALL 2015 2/39

EQUIVALENCE OF RES TO FINITE AUTOMATA

A language is regular if and only if some regular expression describes
it.

LEMMA — THE only if PART
If a language is regular then it is described by a regular expression

PROOF IDEA

o Generalized transitions: label transitions with regular expressions

@ Generalized NFAs (GNFA)

e lteratively eliminate states of the GNFA one by one, until only two
states and a single generalized transition is left.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 3/39

GENERALIZED TRANSITIONS

o DFAs have single symbols as transition labels

e If you are in state p and the next input symbol matches a, go
to state q

o Now consider

e If you are in state p and a prefix of the remaining input
matches the regular expression ab* U bc* then go to state g

SLIDES FOR 15-453 LECTURE 5 FALL 2015 41/39

GENERALIZED TRANSITIONS AND NFA

o A generalized transition is a transition whose
label is a regular expression

........ o ab*U bc* o

o A Generalized NFA is an NFA with generalized
transitions.

e In fact, all standard DFA transitions are generalized
transitions with regular expressions of a single symbol!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 5/39

GENERALIZED TRANSITIONS

e Consider the 2-state DFA

o 0*1 takes the DFA from state qg to g4

e (0U10*1)* takes the machine from gy back to gy

e So ?2=0*1(0 U 10*1)* represents all strings that take the
DFA from state g to gy

SLIDES FOR 15-453 LECTURE 5 FALL 2015 6/39

GENERALIZED NFAS

o Take any DFA and transform it into a GNFA

e with only two states: one start and one accept
e with one generalized transition

e then we can “read” the regular expression from
the label of the generalized transition (as in the
example above)

SLIDES FOR 15-453 LECTURE 5 FALL 2015 7139

DFA 10 GNFA

o We will add two new states to a DFA:
e A new start state with an e-transition to the original start
state, but with no transitions from any other state
e A new final state with an e-transition from all the original final
states, but with no transitions to any other state

o The previous start and final states are no longer!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 8/39

REDUCING A GNFA

o We eliminate all states of the GNFA one-by-one
leaving only the start state and the final state.

Conver ted GNFA

o When the GNFA is fully converted, the label of the
only generalized transition is the regular
expression for the language accepted by the
original DFA.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 91/39

ELIMINATING STATES

o Suppose we want to eliminate state g, and q;
and q; are two of the remaining states (i = j is
possible).

o How can we modify the transition label between
q; and q; to reflect the fact that gk will no longer
be there?

o There are two paths between g; and g;

e Direct path with regular expression r;;
e Path via gk with the regular expression ricry, ryj

SLIDES FOR 15-453 LECTURE 5 FALL 2015 10739

ELIMINATING STATES

o There are two
paths between g;
and g;

e Direct path with
regular expression

rij . Tk
e Path via gx with the !
regular expression
Fik ik ki
o After removing g,
the new label @ iy Y Fidide Fig @
would be

i = Fij U il Py

SLIDES FOR 15-453 LECTURE 5 FALL 2015 11/39

DFA-TO-GNFA-RE CONVERSION EXAMPLE

@ Initial GNFA

e DFA for binary
numbers divisible

DFA-TO-GNFA-RE CONVERSION EXAMPLE

o Let’s eliminate g»

Qg =0a1,9 =01,k = Q2

DFA-TO-GNFA-RE CONVERSION EXAMPLE

o Let’s eliminate g4

1(01*0)*1 L0

DFA-TO-GNFA-RE CONVERSION EXAMPLE

o Let’s eliminate qq

€

& A= © é ©
. & £(1(01%0)*1 L 0)*s =

(1(01*0)*1 L 0)*

1(01*0)*1 w0

o So the regular expression we are looking for is
(1(01*0)*1 U 0)*

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15/39

THE STORY SO FAR

Define

Regular
Expressions

Regular
Languages

Recognize

SLIDES FOR 15- LECTURE 5 FALL 2015 16 /39

THE STORY SO FAR

DFA to Regular
Expression conversion

~—— Regular Expressions

v

Regular Expression to NDFA-e
conversion

NFA with g-transitions

A 4

Determinization

Minimization

Minimal DFA

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17 /39

DFA MINIMIZATION

o Every DFA defines a unique language

e But in general, there may be many DFAs for a
given language.
o These DFAs accept the same language.

1 1 1

& & %

1 1

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18 /39

DFA MINIMIZATION

o In practice, we are interested in the DFA with the
minimal number of states

e Use less memory
e Use less hardware (flip- rops

4—

SLIDES FOR 15-453 LECTURE 5 FALL 2015 19/39

INDISGUISHABLE STATES

o Two states p and g of a DFA are called
indistinguishable if for all w € ¥*,

e *(p,w) € F < 6*(q,w) € F, and
o 0*(p,w) & F« 6*(q,w) € F,
o Basically, these two states behave the same for
all possible strings!

e Hence, a state p is distinguishable from state g

e If there is at least one string w such that either 6*(p,w) € F
or *(q,w) € F and the other is not

SLIDES FOR 15-453 LECTURE 5 FALL 2015 20/39

INDISTINGUISHABILITY

o Indistinguishable states behave the same for all
possible strings!

o So why have indistinguishable states? All but one

can be eliminated!
o Indistinguishability is an equivalence relation
o Reflexive: Each state is indistinguishable from itself
e Symmetric: If p is indistinguishable from q, then g is
indistinguishable from p
e Transitive: If p is indistinguishable from q, and g is
indistinguishable from r, then p is indistinguishable from r.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 21/39

INDISTINGUISHABILITY AND PARTITIONS

o Indistinguishability is an equivalence relation
o Reflexive:Each state is indistinguishable from itself
e Symmetric: If pis indistinguishable from q, then g is
indistinguishable from p
e Transitive: If p is indistinguishable from q, and q is
indistinguishable from r, then p is indistinguishable from r.
o An equivalence relation on a set Q induces a
partitioning m = {my, 72, - - - , ¢} such that
e Foralliandj, mjnm = &,
o Uim=Q

SLIDES FOR 15-453 LECTURE 5 FALL 2015 22 /39

IDENTIFYING DISTINGUISHABLE STATES

e Basis: Any nonaccepting state is distinguishable
from any accepting state (w = ¢).

o Induction: States p and q are distinguishable if
there is some input symbol a such that §(p, a) is
distinguishable from 4(q, a).

o All other pairs of states are indistinguishable, and
can be merged appropriately

SLIDES FOR 15-453 LECTURE 5 FALL 2015 23/39

IDENTIFYING DISTINGUISHABLE STATES

e p is distinguishable
from g and r by basis

e Bothgandrgotop
with 0, so no string
beginning with 0 will
distinguish them

e Starting in either g and
r, an input of 1 takes
us to either, so they

1 are indistinguishable.

SLIDES FOR 15-453 LECTURE 5 FALL 2015

IDENTIFYING DISTINGUISHABLE STATES

The Procedure MARK

@ Remove all inaccessible states
@ Consider all pairs of states (p, q)
eifpeFandq¢ Forp¢ Fand g e F, mark (p,q) as
distinguishable
@ Repeat the following until no previously unmarked
pairs are marked
e Vp,ge QandVae %, find §(p,a) =p' and §(q,a) =¢q',
e if (P, @) is marked distinguishable then mark (p, q)
distinguishable.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 25/39

MINIMIZATION EXAMPLE

@ g; and @ are equivalent
@ g3 and g, are equivalent
@ g5 and gg are equivalent

°
)
&
RIS I I |

SLIDES FOR 15-453 LECTURE 5

FALL 2015 26/39

THE MINIMIZED DFA

@ g; and @ are equivalent q5
@ g3 and g, are equivalent CIG
@ g5 and gg are equivalent

RN || || |

SLIDES FOR 15-453 LECTURE 5

FALL 2015

IS THE MINIMIZED DFA REALLY MINIMAL?

o Let M be the DFA found by the previous
procedure (with states P = {po, p1, ..., Pm})

e Suppose there is an equivalent DFA M; with 61
but with fewer states (Q = {qo, g1 ..., qn}n < m).

o Since all states of M are distinguishable, there
must be distinct strings, w1, wo, ..., wmn such that
6*(po, wi) = p; for all i.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 28/39

IS THE MINIMIZED DFA REALLY MINIMAL?

e Since M; has fewer states than M, then there
must be strings wx and w; (among the previous
w;S) such that 65(qgo, wk) = 5(qo, ws) (Pigeonhole
principle-see later)

e Since p, and p; are distinguishable, there must be
some string x such that
o 3*(po,wk - X) = 6*(pk, X) is a final state and
5*(po,wy - X) = 6*(py, x) is NOT a final state, or vice versa.
So wy - x is accepted and wy - x is not (or vice versa)

SLIDES FOR 15-453 LECTURE 5 FALL 2015 29/39

IS THE MINIMIZED DFA REALLY MINIMAL?

e But

01(qo, wk - X) = 67(61(qo, wk), X)
= 07(61(qo, wi), X)
= 01(qo,w; - X)
o So M, either accepts both wy - x and w; - x or
rejects both. So M; and M can not be equivalent.
e S0 M; can not exist.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 30/39

MORE ON DFA MINIMIZATION

o DFA minimization is not covered in the textbook.
° See
e en.wikipedia.org/wiki/DFA_minimization
e Introduction to Automata Theory, Languages and
Computation, by Hopcroft, Motwani and Ullman, Addison
Wesley, 3" edition, Section 4.4

for more formal details.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 31/39

en.wikipedia.org/wiki/DFA_minimization

CLOSURE PROPERTIES OF REGULAR

LANGUAGES

o Regular languages are closed under
e Union

Intersection

Difference

Concatenation

Star Closure

Complementation

Reversal

operations

SLIDES FOR 15-453 LECTURE 5 FALL 2015 32/39

HOMOMORPHISM

e Suppose X and I are alphabets, the function
h:%¥ — I'*is called a homomorphism

e It is a substitution in which a single symbol a € &
is replaced by a string x € ['*, that is. h(a) = x

o Extend to strings: h(w) = h(ay) ..., h(a,) where
weXand g €L

o Extend to languages h(L) = {h(w)|w € L}

e h(L) is called the homomorphic image of L.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 33/39

HOMOMORPHISM EXAMPLE

o LetX ={a b} andl ={a,b,c}
e h(a) = ab and h(b) = bbc
o h(aba) = abbbcab

THEOREM
Let h be a homomorphism. If L is regular then h(L) is
also regular.

PROOF
Obvious: Modify the DFA transitions

| A

SLIDES FOR 15-453 LECTURE 5 FALL 2015 34/39

DECISION PROPERTIES OF REGULAR
LANGUAGES

Given a standard representation (DFA, NFA, RE) of
any regular language L on ¥ and any w in **, there
exists an algorithm to determine if w is in L or not.

Represent the language with a DFA and test if w is
accepted or not O

SLIDES FOR 15-453 LECTURE 5 FALL 2015 35/39

DECISION PROPERTIES OF REGULAR
LANGUAGES

There exist algorithms for determining whether a
regular language in standard representation is empty
or not.

Represent the language with a DFA. If there is a path
from the start state to some final state, the language
is not empty. O]

SLIDES FOR 15-453 LECTURE 5 FALL 2015 36/39

DECISION PROPERTIES OF REGULAR
LANGUAGES

THEOREM

There exist algorithms for determining whether a
regular language in standard representation is finite
or infinite.

| A

PROOF.

Find all states that form a cycle. If any of these are on path from the
start state to a final state, then the language is infinite. O

|

PROOF.

If DFA with n states accepts some string of length between n and
2n — 1 then it accepts an infinite set of strings.(needs Pumping
Lemma) 0l

SLIDES FOR 15-453 LECTURE 5 FALL 2015 37/39

DECISION PROPERTIES OF REGULAR
LANGUAGES

Given standard representations of two regular
languages Ly and L,, there exists an algorithm to
determine if Ly = L.

Compute L3 = (L1 — L) U (L2 — Ly) which has to be
regular. If L3 = ® then L; = L. N

SLIDES FOR 15-453 LECTURE 5 FALL 2015 38/39

MORE DECISION PROBLEMS

e Todecide if L1 C Lo, checkif L1 — Lo = &
o Todecideife € L, checkif o € F

o To decide if L contains w such that w = wf

o Let M be the DFA for L. Construct MF.
e Construct M n MF using the cross-product construction
o Check if LM N MR £ o.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 39/39

o DFAs to Regular Expressions

it
v
a
it
v

«O» < F»r « 12N G4

o DFAs to Regular Expressions
e Minimizing DFA’s

12N G4

a
n}
v
a
v
a
it
v
a
it
v
it

e Minimizing DFA’s

o DFAs to Regular Expressions

o Closure Properties

o DFAs to Regular Expressions
e Minimizing DFA’s

o Closure Properties

e Decision Properties

o Given language L how can we check if it is not a
regular language ?

12N G4

a
n}
v
a
]
v
a
it
v
a
it
v
it

IDENTIFYING NONREGULAR LANGUAGES

o Given language L how can we check if it is not a
regular language ?
e The answer is not obvious.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 3/21

IDENTIFYING NONREGULAR LANGUAGES

o Given language L how can we check if it is not a
regular language ?
e The answer is not obvious.
e Not being able to design a DFA does not constitute a proof!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 3/21

THE PIGEONHOLE PRINCIPLE

o If there are n pigeons and m holes and n > m,
then at least one hole has > 1 pigeons.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 4/21

THE PIGEONHOLE PRINCIPLE

e If there are n pigeons and m holes and n > m,
then at least one hole has > 1 pigeons.

[}
SLIDES FOR 15-453 LECTURE 5

12N G4

FALL 2015 4/21

THE PIGEONHOLE PRINCIPLE

e If there are n pigeons and m holes and n > m,
then at least one hole has > 1 pigeons.

o What do pigeons have to do with regular
languages? By @ zh2r B 00

SLIDES FOR 15-453 LECTURE 5 FALL 2015 4/21

e Consider the DFA

e Consider the DFA

o With strings a, aa or aab, no state is repeated

12N G4

THE PIGEONHOLE PRINCIPLE

e Consider the DFA

a a

o With strings a, aa or aab, no state is repeated
o With strings aabb, bbaa, abbabb or abbbabbabb,
a state is repeated

SLIDES FOR 15-453 LECTURE 5 FALL 2015 5/21

THE PIGEONHOLE PRINCIPLE

e Consider the DFA

b b b
a a

o With strings a, aa or aab, no state is repeated

o With strings aabb, bbaa, abbabb or abbbabbabb,
a state is repeated

o In fact, for any w where |w| > 4, some state has to
repeat? Whv?

SLIDES FOR 15-453 LECTURE 5 FALL 2015 5/21

THE PIGEONHOLE PRINCIPLE

o When traversing the DFA with the string w, if the
number of transitions > number of states, some
state g has to repeat!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 6/21

THE PIGEONHOLE PRINCIPLE

o When traversing the DFA with the string w, if the
number of transitions > number of states, some
state g has to repeat!

o Transitions are pigeons, states are holes.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 6/21

THE PIGEONHOLE PRINCIPLE

o When traversing the DFA with the string w, if the
number of transitions > number of states, some
state g has to repeat!

o Transitions are pigeons, states are holes.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 6/21

o Consider a string w = xyz

«0O)» «F»

it
a

12N G4

o Consider a string w = xyz

o Consider a string w = xyz

)
o ly|>1

o [xy| < m (m the number of states)

o »

o Consider a string w = xyz

«0O)» «F»

it
a

12N G4

o Consider a string w = xyz

o If w=xyz c Lthatsoare xy’zforall i >0

o Consider a string w = xyz

zZ
o If w=xyz c Lthatsoare xy’zforall i >0
e The substring y can be pumped.

12N G4

o Consider a string w = xyz

zZ
o If w=xyz c Lthatsoare xy’zforall i >0
e The substring y can be pumped.

e So if a DFA accepts a sulfficiently long string, then
it accepts an infinite number of strings!

12N G4

o Consider the language L = {a"b"|n > 0}

A NONREGULAR LANGUAGE
o Consider the language L = {a"b"|n > 0}

e Suppose L is regular and a DFA with p states
accepts L

SLIDES FOR 15-453 LECTURE 5 FALL 2015 9/21

A NONREGULAR LANGUAGE

o Consider the language L = {a"b"|n > 0}

e Suppose L is regular and a DFA with p states
accepts L

o Consider 6*(qo, &) fori=0,1,2,...

SLIDES FOR 15-453 LECTURE 5 FALL 2015

9/21

A NONREGULAR LANGUAGE

o Consider the language L = {a"b"|n > 0}

e Suppose L is regular and a DFA with p states
accepts L

o Consider 6*(qo, &) fori=0,1,2,...

e Since there are infinite i’s, but a finite number
states, the Pigeonhole Principle tells us that there
is some state g such that

o 6*(qo,a@") = gand 6*(qo,@") = q,but n# m

SLIDES FOR 15-453 LECTURE 5 FALL 2015 9/21

A NONREGULAR LANGUAGE

o Consider the language L = {a"b"|n > 0}

e Suppose L is regular and a DFA with p states
accepts L

o Consider 6*(qo, &) fori=0,1,2,...

e Since there are infinite /'s, but a finite number
states, the Pigeonhole Principle tells us that there
is some state g such that

e 5*(qo,a") =qgand d*(qu,a")=q,butn#m
e Thus if M accepts a"b" it must also accept a”b", since in
state g is does not “remember” if there were nor m a’s.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 9/21

A NONREGULAR LANGUAGE

o Consider the language L = {a"b"|n > 0}

e Suppose L is regular and a DFA with p states
accepts L

o Consider 6*(qo, &) fori=0,1,2,...

e Since there are infinite /'s, but a finite number
states, the Pigeonhole Principle tells us that there
is some state g such that

e 5*(qo,a") =qgand d*(qu,a")=q,butn#m
e Thus if M accepts a"b" it must also accept a”b", since in
state g is does not “remember” if there were nor m a’s.

e Thus M can not exist and L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 9/21

Lemmya
Given an infinite regular language L

«O0>» «Fr «Z» « E» Q>

Lemma
Given an infinite regular language L
@ There exists an integer m such that

a
n}
v
a
it
v
a
it
v
it

12N G4

THE PUMPING LEMMA

LEMMA
Given an infinite regular language L

@ There exists an integer m such that
@ for any string w € L with length |w| > m,

SLIDES FOR 15-453 LECTURE 5 FALL 2015

10/21

THE PUMPING LEMMA

LEMMA
Given an infinite regular language L

@ There exists an integer m such that
@ for any string w € L with length |w| > m,
@ we can write w = xyz with |y| > 1 and |xy| < m,

SLIDES FOR 15-453 LECTURE 5 FALL 2015 10/21

THE PUMPING LEMMA

LEMMA
Given an infinite regular language L

@ There exists an integer m such that
@ for any string w € L with length |w| > m,
@ we can write w = xyz with |y| > 1 and |xy| < m,

© such that the strings xy'z fori =0,1,2... are
also in L

SLIDES FOR 15-453 LECTURE 5 FALL 2015 10/21

THE PUMPING LEMMA

LEMMA
Given an infinite regular language L

@ There exists an integer m such that
@ for any string w € L with length |w| > m,
@ we can write w = xyz with |y| > 1 and |xy| < m,

© such that the strings xy'z fori =0,1,2... are
also in L

Thus any sufficiently long string can be ‘pumped.”

SLIDES FOR 15-453 LECTURE 5 FALL 2015 10/21

THE PUMPING LEMMA

LEMMA
Given an infinite regular language L

@ There exists an integer m such that
@ for any string w € L with length |w| > m,
@ we can write w = xyz with |y| > 1 and |xy| < m,

© such that the strings xy'z fori =0,1,2... are
also in L

Thus any sufficiently long string can be ‘pumped.”

PROOF IDEA
We already have some hints.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 10/21

e If Lis regular then M with p states recognizes L. Take a string
S=251S---Sp € Lwithn>p.

THE PUMPING LEMMA

PROOF.

e If Lis regular then M with p states recognizes L. Take a string
S=81S---8p € Lwithn>p.

@ Letrir---rpq be the sequence of n+1(> p+ 1) states M
enters while processing s (ri,1 = d(r;, Sj))

SLIDES FOR 15-453 LECTURE 5 FALL 2015

11721

THE PUMPING LEMMA

PROOF.

e If Lis regular then M with p states recognizes L. Take a string
S=81S---8p € Lwithn>p.

@ Letrir---rpq be the sequence of n+1(> p+ 1) states M
enters while processing s (ri,1 = d(r;, Sj))

@ rjand r; (for some jand / (j < / < p+ 1) should be the same state
(Pigeons!)

SLIDES FOR 15-453 LECTURE 5 FALL 2015 11721

THE PUMPING LEMMA

PROOF.

e If Lis regular then M with p states recognizes L. Take a string
S=81S---8p € Lwithn>p.

@ Letrir---rpq be the sequence of n+1(> p+ 1) states M
enters while processing s (ri,1 = d(r;, Sj))

@ rjand r; (for some jand / (j < / < p+ 1) should be the same state
(Pigeons!)

@ Nowletx =sy---85;_4,y=8;---S_y,and z=s;--- sp.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 11721

THE PUMPING LEMMA

PROOF.

e If Lis regular then M with p states recognizes L. Take a string
S=81S---8p € Lwithn>p.

@ Letrir---rpq be the sequence of n+1(> p+ 1) states M
enters while processing s (ri,1 = d(r;, Sj))

@ rjand r; (for some jand / (j < / < p+ 1) should be the same state
(Pigeons!)

@ Nowletx =sy---85;_4,y=8;---S_y,and z=s;--- sp.

o x takes M from ry to r;, y takes M from r; to r;, and z takes M from
rj to rp41, which is an accepting state. So M must also accept
xy'z fori > 0.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 11721

THE PUMPING LEMMA

PROOF.

If Lis regular then M with p states recognizes L. Take a string
S=81S---8p € Lwithn>p.

Let rira--- rpq be the sequence of n+ 1(> p+ 1) states M
enters while processing s (ri,1 = d(r;, Sj))

riand r; (for some jand / (j < / < p+ 1) should be the same state
(Pigeons!)

Now let x = sy ---8j_1,y =8§;---S_y,and Z2=§;- - - Sp.

x takes M from ry to r;, y takes M from r; to r;, and z takes M from
rj to rp41, which is an accepting state. So M must also accept
xy'z fori > 0.

We know j # /,s0 |y| >0and /< p+1so|xy|<p

SLIDES FOR 15-453 LECTURE 5 FALL 2015 11721

o If a language violates the pumping lemma, then it
can not be regular.

USING THE PUMPING LEMMA

o If a language violates the pumping lemma, then it
can not be regular.
o Two Player Proof Strategy:

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12/21

USING THE PUMPING LEMMA

o If a language violates the pumping lemma, then it
can not be regular.
o Two Player Proof Strategy:

e Opponent picks m

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12/21

USING THE PUMPING LEMMA

o If a language violates the pumping lemma, then it
can not be regular.

o Two Player Proof Strategy:
e Opponent picks m
e Given m, we pick w in L such that |w| > m. We are free to
choose w as we please, as long as those conditions are
satisfied.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12/21

USING THE PUMPING LEMMA

o If a language violates the pumping lemma, then it
can not be regular.
o Two Player Proof Strategy:

e Opponent picks m

e Given m, we pick w in L such that |w| > m. We are free to
choose w as we please, as long as those conditions are
satisfied.

e Opponent picks w = xyz - the decomposition subject to
|xy| < mand |y| > 1.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12/21

USING THE PUMPING LEMMA

o If a language violates the pumping lemma, then it
can not be regular.
o Two Player Proof Strategy:

e Opponent picks m

e Given m, we pick w in L such that |w| > m. We are free to
choose w as we please, as long as those conditions are
satisfied.

e Opponent picks w = xyz - the decomposition subject to
|xy| < mand |y| > 1.

o We try to pick an i such that xy'z ¢ L

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12/21

USING THE PUMPING LEMMA

o If a language violates the pumping lemma, then it
can not be regular.

o Two Player Proof Strategy:

e Opponent picks m

e Given m, we pick w in L such that |w| > m. We are free to
choose w as we please, as long as those conditions are
satisfied.

e Opponent picks w = xyz - the decomposition subject to
|xy| < mand |y| > 1.

o We try to pick an i such that xy'z ¢ L

o If for all possible decompositions the opponent can pick, we
can find an i, then L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12/21

Consider L = {a"b"|n > 0}

Consider L = {a"b"|n > 0}

@ Opponent picks m

12N G4

a
n}
v
a
v
a
it
v
a
it
v
it

Consider L = {a"b"|n > 0}

@ Opponent picks m

@ We pick w = a”b™. Clearly |w| > m.

12N G4

a
n}
v
a
v
a
it
v
a
it
v
it

USING THE PUMPING LEMMA

Consider L = {a"b"|n > 0}
@ Opponent picks m
@ We pick w = a”b™. Clearly |w| > m.
@ Since the first m symbols are all a's, the opponent
is forced to pick x = &, y = a8 and z = a'b™, with
j+k<mand/>0andj+k+/=m

w:a-;-ga-;-ga...azb-.-b

SLIDES FOR 15-453 LECTURE 5 FALL 2015 13721

USING THE PUMPING LEMMA

Consider L = {a"b"|n > 0}
@ Opponent picks m
@ We pick w = a”b™. Clearly |w| > m.
@ Since the first m symbols are all a's, the opponent
is forced to pick x = &, y = a8 and z = a'b™, with
j+k<mand/>0andj+k+/=m

w:a-;-ga-;-ga...ab-.-b

Q We choose i = 2 which means
adakakab™ = am™tkp™ e L but it can not be!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 13721

USING THE PUMPING LEMMA

Consider L = {a"b"|n > 0}
@ Opponent picks m
@ We pick w = a”b™. Clearly |w| > m.
@ Since the first m symbols are all a's, the opponent
is forced to pick x = &, y = a8 and z = a'b™, with
j+k<mand/>0andj+k+/=m

w:a-;-ga-;-ga...azb-.-b

@ We choose i = 2 which means
aakakab™ = a™kp™ < L but it can not be!

@ The opponent does not have any other way of
partitioning w, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 13721

Consider L = {w|na(w) < np(w)}

Consider L = {w|na(w) < np(w)}
@ Opponent picks m

a
n}
v
a
v
a
it
v
a
it
v
it

12N G4

Consider L = {w|na(w) < np(w)}
@ Opponent picks m

@ We pick a"b™*'. Clearly |w| > m.

USING THE PUMPING LEMMA

Consider L = {w|na(w) < np(w)}
@ Opponent picks m
@ We pick a"b™*!. Clearly |w| > m.

@ Opponent is forced to pick y = a* for some
1<k<m

SLIDES FOR 15-453 LECTURE 5 FALL 2015

14 /21

USING THE PUMPING LEMMA

Consider L = {w|na(w) < np(w)}

@ Opponent picks m

@ We pick a"b™*!. Clearly |w| > m.

@ Opponent is forced to pick y = a* for some
1<k<m

@ We pick i = 2 which means @™ *b™" ¢ L but it
can not be!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 14 /21

USING THE PUMPING LEMMA

Consider L = {w|na(w) < np(w)}

@ Opponent picks m

@ We pick a"b™*!. Clearly |w| > m.

@ Opponent is forced to pick y = a* for some
1<k<m

@ We pick i = 2 which means @™ *b™" ¢ L but it
can not be!

@ The opponent does not have any other way of
partitioning w, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 14 /21

Consider L = {1"2|n o)

Consider L = {1""|n > 0}

@ Opponent picks m

Q>

a
u]
v
a
v
a
it
v
a
it
v
it

Consider L = {1™|n > 0}

@ Opponent picks m

@ We pick w = 1. Clearly |w| > m.

12N G4

a
n}
v
a
v
a
it
v
a
it
v
it

USING THE PUMPING LEMMA

Consider L = {1"|n > 0}
@ Opponent picks m
@ We pick w = 1™. Clearly |w| > m.

@ Opponent chooses any partitioning of
w=xyz=11M"with1 <k <mandj+k<m

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15721

USING THE PUMPING LEMMA

Consider L = {1"|n > 0}

@ Opponent picks m

@ We pick w = 1™. Clearly |w| > m.

@ Opponent chooses any partitioning of
w=xyz=11M"with1 <k <mandj+k<m

@ With |xyz| = m* and i = 2, m* < |xyyz| < m*+ m.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15721

USING THE PUMPING LEMMA

Consider L = {1"|n > 0}

@ Opponent picks m

@ We pick w = 1. Clearly |w| > m.

@ Opponent chooses any partitioning of
w=xyz=11M"with1 <k <mandj+k<m

@ With |xyz| = m* and i = 2, m* < |xyyz| < m*+ m.
Butm? <m?+m<m?+2m+1=(m+1)>2

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15721

USING THE PUMPING LEMMA

Consider L = {1"|n > 0}

Opponent picks m

We pick w = 1. Clearly |w| > m.

Opponent chooses any partitioning of
w=xyz=11K1"with1 <k <mandj+k<m
With |xyz| = m? and i = 2, m? < |xyyz| < m? + m.
Butm? <m?+m<m?+2m+1=(m+1)>2

|xyyz| lies between two consecutive perfect
squares. So xyyz ¢ L.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15721

USING THE PUMPING LEMMA

Consider L = {1"|n > 0}

Opponent picks m

We pick w = 1. Clearly |w| > m.

Opponent chooses any partitioning of
w=xyz=11K1"with1 <k <mandj+k<m
With |xyz| = m? and i = 2, m? < |xyyz| < m? + m.
Butm? <m?+m<m?+2m+1=(m+1)>2

|xyyz| lies between two consecutive perfect
squares. So xyyz ¢ L.

L can not be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15721

e Symbols, Strings, Languages, Set of all
Languages

12N G4

a
n}
v
a
v
a
it
v
a
it
v
it

SUMMARY

e Symbols, Strings, Languages, Set of all
Languages

o DFAs, Regular Languages, NFAs, Regular
Expressions

SLIDES FOR 15-453 LECTURE 5 FALL 2015 16 /21

SUMMARY

e Symbols, Strings, Languages, Set of all
Languages

o DFAs, Regular Languages, NFAs, Regular
Expressions

o DFA & REs

SLIDES FOR 15-453 LECTURE 5 FALL 2015 16 /21

SUMMARY

e Symbols, Strings, Languages, Set of all
Languages

o DFAs, Regular Languages, NFAs, Regular
Expressions

o DFA < REs
o Minimal DFAs

SLIDES FOR 15-453 LECTURE 5 FALL 2015 16 /21

SUMMARY

e Symbols, Strings, Languages, Set of all
Languages

o DFAs, Regular Languages, NFAs, Regular
Expressions

o DFA & REs
o Minimal DFAs
o Closure properties, Decision properties

SLIDES FOR 15-453 LECTURE 5 FALL 2015 16 /21

SUMMARY

e Symbols, Strings, Languages, Set of all
Languages

o DFAs, Regular Languages, NFAs, Regular
Expressions

o DFA & REs

o Minimal DFAs

o Closure properties, Decision properties

e Nonregular Languages, Pumping Lemma

SLIDES FOR 15-453 LECTURE 5 FALL 2015 16 /21

True or False?

@ If Ly is not regular and L, is regular then

L=LiL, ={xy:x € Lyand y € Lo} is not regular.

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

@ If L is not regular and L, is regular then
L=LiL, ={xy:x € Lyand y € Lo} is not regular.

@ L={aba:i+k<10andj> 10} is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

@ If L is not regular and L, is regular then
L=LiL, ={xy:x € Lyand y € Lo} is not regular.

@ L={aba:i+k<10andj> 10} is not regular.
@ L={we{ab}*: nyw)x ny(w)=0mod 2} is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

@ If L is not regular and L, is regular then
L=LiL, ={xy:x € Lyand y € Lo} is not regular.

@ L={aba:i+k<10andj> 10} is not regular.
@ L={we{ab}*: nyw)x ny(w)=0mod 2} is regular.
Q@ L={ab :i+j>10}is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

@ If L is not regular and L, is regular then
L=LiL, ={xy:x € Lyand y € Lo} is not regular.

@ L={aba:i+k<10andj> 10} is not regular.

@ L={we{ab}*: nyw)x ny(w)=0mod 2} is regular.
Q@ L={ab :i+j>10}is not regular.

@ L={ab :i—j>10}isnotregular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

@ If L is not regular and L, is regular then
L=LiL, ={xy:x € Lyand y € Lo} is not regular.

@ L={aba:i+k<10andj> 10} is not regular.

@ L={we{ab}*: nyw)x ny(w)=0mod 2} is regular.
Q L={ab :i+j>10}is notregular.

@ L={ab :i—j>10}isnotregular.

Q@ L={d4d :i/j=5}isnotregular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

@ If L is not regular and L, is regular then
L=LiL, ={xy:x € Lyand y € Lo} is not regular.

@ L={aba:i+k<10andj> 10} is not regular.

@ L={we{ab}*: nyw)x ny(w)=0mod 2} is regular.
Q L={ab :i+j>10}is notregular.

@ L={ab :i—j>10}isnotregular.

Q@ L={d4d :i/j=5}isnotregular.

@ If Ly n Ly isregularthen Ly and L, are regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

@ If L is not regular and L, is regular then
L=LiL, ={xy:x € Lyand y € Lo} is not regular.

@ L={aba:i+k<10andj> 10} is not regular.

@ L={we{ab}*: nyw)x ny(w)=0mod 2} is regular.
Q@ L={ab :i+j>10}is not regular.

@ L={ab :i—j>10}isnotregular.

Q@ L={d4d :i/j=5}isnotregular.

@ If Ly n Ly isregularthen Ly and L, are regular.

Q If Ly C Ly and L, is regular, then Ly must be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17721

True or False?

@ There are subsets of a regular language which are not regular.

it
v

«0>» «Fr» « E)» « Q>

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

@ There are subsets of a regular language which are not regular.

© If Ly and L, are nonregular, then Ly U L, must be nonregular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

@ There are subsets of a regular language which are not regular.
© If Ly and L, are nonregular, then Ly U L, must be nonregular.

© If Fis a finite language and L is some language, and L — F is a
regular language, then L must be a regular language.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

@ There are subsets of a regular language which are not regular.
© If Ly and L, are nonregular, then Ly U L, must be nonregular.

© If Fis a finite language and L is some language, and L — F is a
regular language, then L must be a regular language.

Q@ L={w e {a b} : the number a’s times the number of b’s in w is
greater than 1333} is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

@ There are subsets of a regular language which are not regular.
© If Ly and L, are nonregular, then Ly U L, must be nonregular.

© If Fis a finite language and L is some language, and L — F is a
regular language, then L must be a regular language.

Q@ L={w e {a b} : the number a’s times the number of b’s in w is
greater than 1333} is not regular.

@ If the start state of a DFA has a self-loop, then the language
accepted by that DFA is infinite.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?
@ There are subsets of a regular language which are not regular.
© If Ly and L, are nonregular, then Ly U L, must be nonregular.

© If Fis a finite language and L is some language, and L — F is a
regular language, then L must be a regular language.

Q@ L={w e {a b} : the number a’s times the number of b’s in w is
greater than 1333} is not regular.

@ If the start state of a DFA has a self-loop, then the language
accepted by that DFA is infinite.

@ The set of strings of 0’s, 1’s, and 2’s with at least 100 of each of
the three symbols is a regular language.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?
@ There are subsets of a regular language which are not regular.
© If Ly and L, are nonregular, then Ly U L, must be nonregular.

© If Fis a finite language and L is some language, and L — F is a
regular language, then L must be a regular language.

Q@ L={w e {a b} : the number a’s times the number of b’s in w is
greater than 1333} is not regular.

@ If the start state of a DFA has a self-loop, then the language
accepted by that DFA is infinite.

@ The set of strings of 0’s, 1’s, and 2’s with at least 100 of each of
the three symbols is a regular language.

@ The union of a countable number of regular languages is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18721

True or False?

@ If Lis nonregular then L is nonregular.

it
v

«0>» «Fr» « E)» « Q>

True or False?

@ If Lis nonregular then L is nonregular.

@ If Ly n Ly is finite then Ly and L, are regular.

it
v

«0>» «Fr» « E)» « Q>

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?
@ If Lis nonregular then Lis nonregular.
Q If Ly N Ly is finite then Ly and L, are regular.

@ The family of regular languages is closed under nor operation,
nor(Ly, L) ={w : wé¢ Liand w ¢ Ly}

SLIDES FOR 15-453 LECTURE 5 FALL 2015 19721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?
@ If Lis nonregular then Lis nonregular.
Q If Ly N Ly is finite then Ly and L, are regular.

@ The family of regular languages is closed under nor operation,
nor(Ly, L) ={w : wé¢ Liand w ¢ Ly}

Q If Lis aregular language, thensois {xy: x € Land y ¢ L}

SLIDES FOR 15-453 LECTURE 5 FALL 2015 19721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?
@ If Lis nonregular then Lis nonregular.
Q If Ly N Ly is finite then Ly and L, are regular.

@ The family of regular languages is closed under nor operation,
nor(Ly, L) ={w : wé¢ Liand w ¢ Ly}

If L is a regular language, then sois {xy: x € Land y ¢ L}

Let L be a regular language over © = {a, b, c}. Let us define
SINGLE(L) = {w € L : all symbols in w are the same}. SINGLE(L)
is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 19721

LET’S SEE IF WE CAN TIE THINGS TOGETHER

Let ¥ = {a} and let M be a deterministic finite state acceptor that
accepts a regular language L C ¥*.

A) Describe with very simple diagrams, possible structures of the
state graph of M, if M has only a single final state. Show any
relevant parameters that you feel are necessary.

B) Describe with a regular expression the language accepted by M,
if M has a single final state. If necessary, use any parameters you
showed in part a).

c) Describe mathematically the language accepted by M, if M has
more than one final state.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 20/21

How can we characterize these languages

just outside the boundary of RLs?

«0O0» «F» « =)»

<

12N G4

How can we characterize these languages
just outside the boundary of RLs?

A NONREGULAR LANGUAGE

o We showed that L = {a"b" | n > 0} was not
regular.
e No DFA
e No Regular Expression

o How can we describe such languages?
o Remember: the description has to be finite!

SLIDES FOR 15-453 LECTURE 7 FALL 2015

3/24

A NONREGULAR LANGUAGE

o Consider L ={a"b" | n > 0} again.
e How can we generate such strings?
o Remember DFAs did recognition, not generation.

o Consider the following inductive way to generate
elements of L
e Basis: e is in the language (n = 0)
e Recursion: If the string w (for some n) is in the language,
then so is the string awb (for n+ 1).

oc—ab— aabb--- — a®b>®. ..

o Looks like we have simple and finite length
process to generate all the strings in L

o How can we generalize this kind of description?

SLIDES FOR 15-453 LECTURE 7 FALL 2015 4/24

ANOTHER NONREGULAR LANGUAGE

o Consider L = {w | nag(w) = np(w)}.
o Now consider the following inductive way to
generate elements of L
e Basis: ¢ is in the language
e Recursion 1: If the string w is in the language, then so are
awb and bwa
e Recursion 2: If the strings w and v are in the language, so is
wv.

o The first recursion rules makes sure that the a’s
and b’s are generated in the same number
(regardless of order)

e The second recursion takes any two strings each
with equal number of a's and b’'s and generates a
new such string by concatenating them.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 5/24

GRAMMARS

o Grammars provide the generative mechanism to
generate all strings in a language.

o A grammar is essentially a collection of
substitution rules, called productions

o Each production rule has a left-hand-side and a
right-hand-side.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 6/24

GRAMMARS - AN EXAMPLE

o Consider once again L = {a"b" | n > 0}
e Basis: e isin the language
e Production: S — ¢

e Recursion: If wis in the language, then so is the
string awb.
e Production: S — aSb

o Sis called a variable or a nonterminal symbol
e a, b etc., are called terminal symbols

o One variable is designated as the start variable or
start symbol.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 7124

HoOw DOES A GRAMMAR WORK?

o Consider the set of rules R = {S — ¢, S — aSb}

o Start with the start variable S
o Apply the following until all remaining symbols are
terminal.

e Choose a production in R whose left-hand sides matches
one of the variables.
e Replace the variable with the rule’s right hand side.

o S= aSb = aaSbb = aaaSbbb = aaaaSbbbb
= aaaabbbb

o The string aaaabbbb is in the language L

e The sequence of rule applications above is called
a derivation.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 8/24

PARSE TREES

e Derivations can also be
represented with a parse
tree.

o The leaves constitute the
yield of the tree.

e Terminal symbols can
occur only at the leaves.

e Variables can occur only
at the internal nodes.

The terminals concatenated

from left to right give us the
string.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 91/24

LANGUAGE OF A GRAMMAR

o All strings generated this way starting with the
start variable constitute the language of the
grammar.

o We write L(G) for the language of the grammar G.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 10724

A GRAMMAR FOR A FRAGMENT OF ENGLISH

S
NP
VP
PP
CN
0%
DT

N

v

P

A

4

1

NP VP Nomenclature:
CN| CN PP o S: Sentence

Cv|CVPP e NP: Noun Phrase

g#l/l;"/ o CN: Complex

V| VNP Noun

a | the e PP: Prepositional
boy | girl | flower | Fhrase

telescope o VP: Verb Phrase
touches | likes | o CV: Complex Verb
sees | gives o P: Preposition
with | to

e DT: Determiner

SLIDES FOR 15-453 LECTURE 7 FALL 2015 11724

A GRAMMAR FOR A FRAGMENT OF ENGLISH

S - NPVP S = NPVP
NP — CN|CNPP = CNPPVP
VP — CV|CVPP = DTNPPVP
PP —» PNP = aNPPVP
CN — DTN =
CV — V|VNP = aboy with a flower VP
DT — althe = a boy with a flower CV PP
N — boy|girl | flower| ~
telescope = a boy with a flower sees a girl
V — touches | likes | with a telescope
sees | gives
P — with|to

SLIDES FOR 15-453 LECTURE 7 FALL 2015 12724

ENGLISH PARSE TREE

e This structure is for the interpretation where the
boy is seeing with the telescope!

SLIDES FOR 15-453 LECTURE 7 FALL 2015 13724

telescope

e This is for the interpretation where the girl is carrying a telescope.

STRUCTURAL AMBIGUITY

o A set of rules can assign multiple structures to the
same string.

e Which rule one chooses determines the eventual
structure.

VP — CV|CVPP

CV— V| VNP

NP — CN| CN PP

-+ [vp [cv sees [np a girl] [pp With a telescope]].

-+ [vp [cv sees] [np [cn a girl] [pp with a telescopel]].
o (Not all brackets are shown!)

SLIDES FOR 15-453 LECTURE 7 FALL 2015 15724

OTHER EXAMPLES OF GRAMMAR
APPLICATIONS

e Programming Languages

e Users need to know how to “generate” correct programs.

e Compilers need to know how to “check” and “translate”
programs.

e XML Documents

e Documents need to have a structure defined by a DTD
grammar.

o Natural Language Processing, Machine
Translation

SLIDES FOR 15-453 LECTURE 7 FALL 2015

16 /24

FORMAL DEFINITION OF A GRAMMAR

o A Grammar is a 4-tuple G = (V, X, R, S) where
e Vis afinite set of variables
e X is a finite set of terminals, disjoint from V.
e Risasetofrulesofthe X - Y
e S e Vs the start variable

o Ingeneral X e (VuX)tand Y € (VUYL)*

e A context-free grammar is a grammar where all
rules have X € V (remember V C (VU X)")

e The substitution is independent of the context V appears in.
o The right hand side of the rules can be any
combination of variables and terminals, including
e (hence Y € (VUX)").

SLIDES FOR 15-453 LECTURE 7 FALL 2015 17724

FORMAL DEFINITION OF A GRAMMAR

o If u, v and w are strings of variables and
terminals and A — w is a rule of the grammar, we
say uAv yields uwv, notated as uAv = uwv

o We say u derives v, notated as, u = v, if either

e U=V,oOr
e asequence Uy, Uo, ..., U, kK > 0 exists such that

U= Uy = Uoy - = Uk = V.
e We call u, v, and all u; as sentential forms.

e The language of the grammar is
(wexr |S=w)

SLIDES FOR 15-453 LECTURE 7 FALL 2015 18724

DESIGNING CONTEXT FREE GRAMMARS

o Consider once again the language

L ={w | na(w) = np(w)}.
e The grammar for this language is
G = ({S},{a, b}, R, S) with R as follows:
Q@ S—asb
Q@ S— bSa
©@ S—SS
Q S—e¢

e From now we will only list the productions, the
others will be implicit.

o We will also combine productions with the same
left-hand side using | symbol.

o S—aSb|bSa|SS|e

SLIDES FOR 15-453 LECTURE 7 FALL 2015 19724

DESIGNING CONTEXT FREE GRAMMARS

o L=A{w| ng(w)=np(w)}.
o S—aSb|bSa| SS|e

o Clearly the strings generated by G have equal
number of a's and b’s. (Obvious from the rules!)

o We also have to show that all strings in L can be
generated with this grammar.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 20/24

DESIGNING CONTEXT FREE GRAMMARS

ASSERTION
Grammar G with R ={S — aSb | bSa | SS | ¢}
generates L = {w | ng(w) = np(w)}.

PROOF (BY INDUCTION)
@ The grammar generates the basis strings of ¢, ab and ba.

@ All other strings in L have even length and can be in one of the 4
possible forms (w € ¥¥)

Q@ awb
Q bwa
@ awa
Q bwb

SLIDES FOR 15-453 LECTURE 7 FALL 2015 21/24

DESIGNING CONTEXT FREE GRAMMARS

PROOF (CONTINUED)

@ Assume that G generates all strings of equal number of a's and
b’s of (even) length n.

@ Consider a string like awb of length n 4 2.

e awb will be generated from w by using the rule S — aSb
provided S = w.

@ But w is of length n, so S = w by the induction hypothesis.

@ There is a symmetric argument for strings like bwa.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 22/24

DESIGNING CONTEXT FREE GRAMMARS

PROOF (CONTINUED)
e Consider a string like awa. Clearly w ¢ L. Consider (symbols of)

this string annotated as follows
0d1 - -14o
where the subscripts after a prefix v of awa denotes
Ng(V) — Np(V).

@ Think of this as count starting as 0, each a adding one and each
b subtracting 1. We should end with 0 at the end.

@ Note that right after the first symbol we have 1 and right before
the last a we must have —1.

@ Somewhere along the string (in w) the counter crosses 0.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 23/24

DESIGNING CONTEXT FREE GRAMMARS

PROOF (CONTINUED)
@ Somewhere along the string (in w) the counter crosses 0.

u

—
odt---Xo)---—1480 X,y € {a, b}

"4

@ So u and v have equal numbers of a’'s and b’s and are shorter.

@ u, v € L by the induction hypothesis and the rule S — SS
generates awa = uv, given S = vand S = v

@ There is a symmetric argument for strings like bwb.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 24 /24

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

CONTEXT FREE LANGUAGES

SLIDES FOR 15-453 LECTURE 8 FALL 2015 1/33

SUMMARY

e Describing nonregular languages

o Grammars as finite descriptions of infinite sets

o Context-free Grammars and context-free
languages

o Derivations and parse trees

o Ambiguity

o Writing grammars

SLIDES FOR 15-453 LECTURE 8 FALL 2015

GRAMMAR EXAMPLES

o Consider L ={a"b" | n > 0}
e S— asSb

e as and b’s are generated in the right order and in equal
numbers

e S e
e getrid of any remaining S at the end.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 3/33

GRAMMAR EXAMPLES

o Consider L={a"b™ | m>n> 0}

e S— AB
oA—)&Ab‘E

e a's and b’s are generated in the right order and in equal
numbers, followed by B

oB—>bB|b

e Generate 1 or more (additional) b’s

SLIDES FOR 15-453 LECTURE 8 FALL 2015 4/33

GRAMMAR EXAMPLES

o L=1{a"b®"| n>0}
o S aShb|e

o L=1{a™2p"| n>1}
o S — aaA,
o A aAb|ab

SLIDES FOR 15-453 LECTURE 8 FALL 2015 5/33

GRAMMAR FOR ARITHMETIC EXPRESSIONS

oL—a|b]|---|z(letters)

o D—0]---|9 (digits)

oV L|VL|VD (variables)

o N— D | N D (positive numbers)

o F— V| N|(E) (factors)

o T — F|TxF|T/F (terms)

o ET|E+T|E—T (expressions)
o E is the start symbol.

Let us generate (v23 + 456) « k23/(a — b 34) as an
exercise.

AMBIGUITY

e Remember a boy with a flower sees a girl with a
telescope?

o We say that a grammar generates a string
ambiguously, if the string has two different parse
trees (not just two different derivations)

o A derivation of a string w in a grammar G is a
leftmost derivation if at every step, the leftmost
remaining variable is the one replaced.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 7133

AMBIGUITY

DEFINITION

A string w is derived ambiguously in context-free
grammar G if it has two or more different leftmost
derivations. Grammar G is ambiguous if it generates
some string ambiguously.

o Sometimes an ambiguous grammar can be
transformed into an unambiguous grammar for

the same language.

e Some context-free grammars can be generated
only by ambiguous grammars. These are known
as inherently ambiguous languages.

o L={abck|i=jorj=k}

SLIDES FOR 15-453 LECTURE 8 FALL 2015 8/33

GRAMMAR TRANSFORMATIONS

o Some types of productions cause problems in
some uses of grammars.

e e-productions: A — ¢

e Intermediate sentential forms in a derivation get shorter and
this has computational implications.

e Unit productions: A — B.

e Such a rule does not achieve much except for lengthening
the derivation sequence.
o There may be inadvertent “infinite loops”: e.g., if A= A

SLIDES FOR 15-453 LECTURE 8 FALL 2015 9/33

REMOVING e-PRODUCTIONS

o If e € L, then we can notdo much. S — €is
needed for this.

o For all rules of the type A — ¢ and A is not the
start symbol, we proceed as follows:

o For occurrence of an A on the right-hand side of a
rule, we add a rule with that occurence deleted.
e For arule like R — uAv, we add the rule R — uv (either u or
v not ¢)
o Forarule like R — A, we add R — ¢, unless we removed
R — ¢ earlier.
e For a rule with multiple occurences of A, we add one rule for
each combination. R — uAvAw would add R — uvAw,
R — uAvw, and R — uvw.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 10/33

REMOVING e-PRODUCTIONS

@ Remove B — ¢

e Consider So —+ S
S — ASA|aB S — ASA|aB|a
A — BI|S A — BJ[S]|e
B — ble B — b
@ Add a new start symbol S ® Remove A — ¢
So — S SO - 8
S — ASA|aB S — ASA|aB]|a|
A — BI|S SA[AS|S
B — ble A —- B|S
B — b

SLIDES FOR 15-453 LECTURE 8 FALL 2015 11/33

REMOVING UNIT PRODUCTIONS

e To remove a unit rule like A — B,

e We first add to the grammar a rule A — u whenever B — u is
in the grammar, unless this is a unit rule previously removed.
e We then delete A — B, from the grammar.

o We repeat these until we eliminate all unit rules.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 12/33

REMOVING UNIT PRODUCTIONS

@ After e-rule removal
So - S
S — ASA|aBl|a|SA|AS|S
A —- B|S
B — b

@ Remove S — S
So - S
S — ASA|aB|a|SA|AS
A —- B|S
B — b

@ Remove S; — S
So — ASA|aB|a|SA|AS
— ASA|aB|a|SA|AS
A — B|S
— b

SLIDES FOR 15-453 LECTURE 8 FALL 2015 13/33

REMOVING UNIT PRODUCTIONS

o After Sy — S removal
So — ASA|aB|a|SA|AS
S — ASA|aB|a|SA|AS
A —- B|S
B — b

@ Remove A— B
Sy — ASA|aB|a|SA|AS
S — ASA|aB|a|SA|AS
A — b|S
B — b

@ Remove A— S

So — ASA|aB|a|SA|AS
— ASA|aB|a|SA|AS
A — b|ASA|aB|al|SA|AS
— b

SLIDES FOR 15-453 LECTURE 8 FALL 2015

CHOMSKY NORMAL FORM

o CFGs in certain standard forms are quite useful
for some computational problems.

CHOMSKY NORMAL FORM
A context-free grammar is in Chomsky normal
form(CNF) if every rule is either of the form

A—-BCorA— a

where ais a terminal and A, B, C are variables —
except B and C may not be the start variable. In
addition, we allow the rule S — ¢ if necessary.

SLIDES FOR 15-453 LECTURE 8 FALL 2015

CHOMSKY NORMAL FORM

THEOREM

Every context-free language can be generated by a
context-free grammar in Chomksy normal form.

PROOF IDEA
o Add a new start variable and the production
So — S.

o Remove all e-productions
o Remove all unit productions.

e Add new variables and rules so that all rules have
the right forms.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 16 /33

CHOMSKY NORMAL FORM

PROOF

u; below is either a terminal or a variable.

o Replace each rule like A — uyus - - - ux Where
k > 3, with rules A — uiAq, A — WA, ---
Ak—2 — Ux_1Ug

o After this stage, all rules have right-hand side of
length either 2 or 1

e For each rule like A — uju> where either or both
uj is a terminal, replace u; with the new variable
U; and add the rule U; — u; to the grammar.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 17733

CONVERSION TO CHOMSKY NORMAL FORM

e Grammar after e and unit production removal
Sy — ASA|aB|a|SA|AS
S — ASA|aB|a|SA|AS
A — b|ASA|aB|a|SA|AS
B — b

Remove Sp — ASA and add Sy — AA; and A; — SA

Remove S —+ ASAand add S — AA; (A1 — SA already added)

Remove A — ASA and add A — AA; (A1 — SA already added)

Replace Sy — aB with Sy — UBand U — a

Replace S — aB with S — UB (U — a already added)

Replace A — aB with A — UB (U — a already added)

SLIDES FOR 15-453 LECTURE 8 FALL 2015 18/33

CONVERSION TO CHOMSKY NORMAL FORM

o Final grammar in Chomsky normal form

So — AA{|UB|a|SA|AS
S — AA{|UB|a|SA|AS
A — b|AA | UB|a|SA|AS
A1 — SA

U — a

B — b

FALL 2015 19/33

ANOTHER EXAMPLE

e Let’s convert
R={S— 85 S— aSb,S— bSa,S — ¢} to
Chomsky Normal Form.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 20/33

OTHER INTERESTING FORMS FOR GRAMMARS

o If all productions of a grammar are like A — bB or
A — b where b is aterminal and B is a variable,
then it is called a right-linear grammar.

o If all productions of a grammar are like A — Bb or
A — b where bis a terminal and B is a variable,
then it is called a left-linear grammar.

o Right-linear grammars generate regular
languages.

o Left-linear grammars generate regular languages.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 21/33

THE RECOGNITION PROBLEM FOR CFL’S

o Given a context-free grammar G and a string
w € ¥* how can we tell if w € L(G)?

o If w € L(G), what are the possible structures
assigned to w by G?

o Different grammars for the same language
o will answer the first question the same, but
o will assign possibly different structures to strings in the
language.
e Consider original and Chomsky Normal Form of some
example grammars earlier!

SLIDES FOR 15-453 LECTURE 8 FALL 2015 22/33

THE COCKE-YOUNGER-KASAMI (CYK)

ALGORITHM

o The CYK parsing algorithm determines if
w € L(G) for a grammar G in Chomsky Normal
Form
e with some extensions, it can also determine possible
structures.

e Assume w # ¢ (if so, check if the grammar has the rule
S —e)

SLIDES FOR 15-453 LECTURE 8 FALL 2015 23/33

THE CYK ALGORITHM

o Consider w = aja>---an, a € X

e Suppose we could cut up the string into two parts
U= aia..aiand v = aj 18j.2---an

o Now suppose A= u and B= v and that S — AB
is a rule.

/ \ \

’
’ \ / \
’ \ / \
/7 \ 7/ \
<_u_>\.a HV%'@

SLIDES FOR 15-453 LECTURE 8 FALL 2015 24/33

THE CYK ALGORITHM

’ N ’ N

7/ A 7/ N
/7 N 7/ A
.a/eua\.a <—v—>\'a

o Now we apply the same idea to Aand B
recursively.

.47 u *). (— %] ' ‘(— Us %. (— Vo *)'

THE CYK ALGORITHM

(o) (€) (F)
ORROID RO B OICH RO
o What is the problem here?
e We do not know what /,j and k are!
o No Problem! We can try all possible /’s, j’s and
K's.
e Dynamic programming to the rescue.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 26/33

DIGRESSION - DYNAMIC PROGRAMMING

o An algorithmic paradigm

o Essentially like divide-and-conquer but
subproblems overlap!

o Results of subproblem solutions are reusable.

o Subproblem results are computed once and then
memoized

o Used in solutions to many problems

Length of longest common subsequence

Knapsack

Optimal matrix chain multiplication

Shortest paths in graphs with negative weights
(Bellman-Ford Alg.)

SLIDES FOR 15-453 LECTURE 8 FALL 2015

(BACK TO) THE CYK ALGORITHM

o Let W= aqas---ap.
o We define
o w;;= a;---a; (substring between positions / and j)
o Vij={AcV|A = w;;}(j > i) (all variables which derive
W,'j)

oweL(G)iff Se Vq,
o How do we compute V;;(j > i)?

SLIDES FOR 15-453 LECTURE 8 FALL 2015 28/33

THE CYK ALGORITHM

o How do we compute V;;?

o Observethat Ac V;;if A— a;is arule.

e So Vj; can easily be computed for 1 < j < n by an inspection
of w and the grammar.

o A wyif
e There is a production A — BC, and
o B= w;x and C = w1, for some k, i < k < j.

e So
Vij= | J {A:l/A— BCand B€ Vi and C € Vis1,}

i<k<j

SLIDES FOR 15-453 LECTURE 8 FALL 2015 29/33

THE CYK ALGORITHM

Vij= | J{A:A— BCand B€ Vixand C € Vii1,}

i<k<j

o Compute in the following order:

-
L Vi Voo Vgz --r -e Vin
Vi Vog Vagq -0 - Voin
Vi3 Vou Vas -+ Vpop
Vinot Von
V1,n

o For example to compute V> 4 one needs V>, and
V54, and then V, 3 and V4 4 all of which are
computed earlier!

SLIDES FOR 15-453 LECTURE 8

FALL 2015 30/33

THE CYK ALGORITHM

for i=1 to n do // Initialization
Vii={A|A—a is a rule and w;; = g
for j=2 to n do
for i=1 to n—-j+1 do
begin
V"J‘:{}; // Set ViJ‘ to empty set
for k=1 to j-1 do
Vij=VijUu{A:|A— BC is a rule and
Be Vi and C e Viiq)}

@ This algorithm has 3 nested loops with the bound for each being
O(n). So the overall time/work is O(n?).

O J oy O b W N

@ The size of the grammar factors in as a constant factor as it is
independent of n — the length of the string.

e Certain special CFGs have subcubic recognition algorithms.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 31/33

THE CYK ALGORITHM IN ACTION

@ Consider the following grammar in CNF
S — AB
A — BB|a
B — AB|b

e The input string is w = aabbb

e i— 1 2 3 4 5
a a b b b
Ay {A4 {By {B} {B)

{+ {s.Bt {A {A}
{s,8} {A} {S.B}

{A} {§,B}
{S. B}

@ Since S € V5, this string is in L(G).

SLIDES FOR 15-453 LECTURE 8 FALL 2015 32/33

THE CYK ALGORITHM IN ACTION

e Consider the following grammar in CNF
S — AB
A — BBja
B — AB|b

@ Let us see how we compute V5 4

o We needtolook at Vo » and V5 4
e We need to look at V>3 and V4

i— 1 2 3 4 5
a a b b b
{A} {A} {B} {B} {B}

{+ {s.B} A {A}
{s,B} {Ar {S.B}

{At {S.,B}
{S.B}

SLIDES FOR 15-453 LECTURE 8 FALL 2015 33/33

PUSHDOWN AUTOMATA

e Pushdown automata (PDA) are abstract automata

that accept all context-free languages.
o PDAs are essentially NFAs with an additional
infinite stack memory.
e (Or NFAs are PDAs with no additional memory!)

finite top

)
control 1
? state

input tape

stack

SLIDES FOR 15-453 LECTURE 9 FALL 2015

2/17

PUSHDOWN AUTOMATA

e Input is read
finite top left-to-right

8
contrel e Control has finite
? memory (NFA)
(T [«]~ o State transition
input tape depends on input

and top of stack

e Control can push
and pop symbols
to/from the infinite

ctark
SLIDES FOR 15-453 LECTURE 9 FALL 2015 3/17

PUSHDOWN AUTOMATA — INFORMAL

o Let'slook at L = {a"b" | n> 0}
e How can we use a stack to recognize w € L?

@ Push a special bottom of stack symbol $ to the stack

© As long as you are seeing a’s in the input, push an a onto
the stack.

© While there are b’s in the input AND there is a corresponding
a on the top of the stack, pop a from the stack

© If at any point there is no a on the stack (hence you
encounter $), you should reject the string — not enough a’s!

© If at the end of w, the top of the stack is NOT $ reject the
string — not enough b’s.

@ Otherwise accept the string.

SLIDES FOR 15-453 LECTURE 9 FALL 2015 4/17

PUSHDOWN AUTOMATA — INFORMAL

e How can we use a PDA to recognize

L ={w | na(w) = np(w)}
o Remember how we argued that the grammar

generates such strings

e Keep track of the difference of counts

o We do something similar but using the stack.
Push a special bottom of stack symbol $ to the stack
An ain the input “cancels” a b on the top of the stack,
otherwise pushes an a
e A bin the input “cancels” an a on the top of the stack,
otherwise pushes a b
At the end nothing should be left on the stack except for the
$, if not reject.

SLIDES FOR 15-453 LECTURE 9 FALL 2015 5/17

PUSHDOWN AUTOMATA —FORMAL DEFINITION

o We have two alphabets X for symbols of the input
string and I for symbols for the stack. They need

not be disjoint.

o Define X, =X U{e}and . =T U{e}

e A pushdown automaton is a 6-tuple
(Q,X,T,0,q0, F)where Q X, T, and F are finite
sets, and

e Qisthe set of states

e Y is the input alphabet, I is the stack alphabet

e §:QxX.xTl.— P(QxT,)is the state transition function.
(P(S)is the power set of S. Earlier we used 2°.)

e qo € Qis the start state, and
e F C Qisthe set of final or accepting states.

SLIDES FOR 15-453 LECTURE 9 FALL 2015 6/17

COMPUTATION ON A PDA

e A PDA computes as follows:

e Input w can be written as w = wyws - - - W, where each
w; € .. So some w; can be e.

e There is a sequence of states ry, r1,--- ,rm, i € Q.

e There is a sequence of strings sg, S1, -+ ,Sm, Sj € ['*. These
represent sequences of stack contents along an accepting
branch of M’s computation.

e Iy = Qo and sy = e.
° (ri—|—17b) € 5(’77 Wi-l-‘lva)al = 0717"' am_1
e ais popped, b is pushed, t is the rest of the stack.

e sj=atand s; 1 = btforsomea,bel.andtecrl*

ol’mGF

SLIDES FOR 15-453 LECTURE 9 FALL 2015 7117

o PDAfor L={a"b" | n> 0}

o X ={ab},={0,%}
o $ keeps track of the “bottom” of the stack

e,e—$
start — a,e—0

b,0 — ¢

b,0 — €
6% —e

EXAMPLE PDA

o PDAfor L = {ww” | w € {0,1}*}

e Palindromes: See
http://norvig.com/palindrome.html for
interesting examples:

o A 17,826 word palindrome starts and ends as:

e A man, a plan, a cameo, Zena, Bird, Mocha, Prowel, a rave,
Uganda, Wait, a lobola, Argo, Goto, Koser, lhab, Udall, a
revocation, Ebarta, Muscat, eyes, Rehm, a cession, Udella,
E-boat, OAS, a mirage, IPBM, a caress, Etam, ..., a lobo,
Lati, a wadna, Guevara, Lew, Orpah, Comdr, Ibanez, OEM,
a canal, Panama

SLIDES FOR 15-453 LECTURE 9 FALL 2015 9/17

o PDA for L = {ww” | w € {0,1}*}
e ¥ ={0,1},F ={0,1,$} 1,e— 1

e,e—$
start — 0,e—0

€,€ €

0,0 —» ¢
6% —e

1,1 — ¢

e Let’s construct a PDA for
L= {w | na(w) = np(w)}

PDA SHORTHANDS

e It is usually better and more succinct to represent
a series of PDA transitions using a shorthand

@a,s—u

a,s— xyz represents = ey

o
o @&

SLIDES FOR 15-453 LECTURE 9

FALL 2015

12717

PDAS AND CFGS
o PDAs and CFGs are equivalent in power: they
both describe context-free languages.

THEOREM
A language is context free if and only if some
pushdown automaton recognizes it.

SLIDES FOR 15-453 LECTURE 9 FALL 2015

13717

PDAS AND CFGS

LEMMA

If a language is context free, then some pushdown
automaton recognizes it.

PROOF IDEA

If Ais a CFL, then it has a CFG G for generating it.
Convert the CFG to an equivalent PDA.

e Each rule maps to a transition.

SLIDES FOR 15-453 LECTURE 9 FALL 2015

14717

CFGs 10 PDAS

o We simulate the leftmost derivation of a string
US|ng a 3'State PDA W|th Q - {qstart, q/oop, qaccept}
e One transition from Qgsar pushes the start symbol

S onto the stack (along with $).
o Transitions from qj,0p Simulate either a rule
expansion, or matching an input symbol.
 (Qoop» €, A) = {(Qloop, W) | A — w is a production in G}
e If the top of the stack is A, nondeterministically expand it in
all possible ways.

 (Qroop, @ @) = {(Qloop- €)}, forall a € X.
e If the input symbol matches the top of the stack, consume
the input and pop the stack.

o One transition takes the PDA from qioop 10 Qaccept
when $ is seen on the stack.

SLIDES FOR 15-453 LECTURE 9 FALL 2015 15717

start —
e, e — S$

foreachac ¥, a,a— ¢ Qloop e, A~ wforrule A—w

6% —e

o Let’s convert the following grammar for
L={w | na(w) = np(w)}.

S — aSb

S — bSa

S— SS

S—e¢

FORMAL LANGUAGES, AUTOMATA AND
COMPUTATION

PUSHDOWN AUTOMATA

PROPERTIES OF CFLS

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUSHDOWN AUTOMATA-SUMMARY

o Pushdown automata (PDA) are abstract automata
that accept all context-free languages.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUSHDOWN AUTOMATA-SUMMARY

o Pushdown automata (PDA) are abstract automata

that accept all context-free languages.
o PDAs are essentially NFAs with an additional
infinite stack memory.

finite top
control | &

Yo,

[

input tape
stack

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUSHDOWN AUTOMATA-SUMMARY

o Pushdown automata (PDA) are abstract automata

that accept all context-free languages.
o PDAs are essentially NFAs with an additional
infinite stack memory.
e (Or NFAs are PDAs with no additional memory!)

finite top
control | &

Yo,

[

input tape
stack

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 10 CFG

LEMMA

If a PDA recognizes some language, then it is context
free.

| \

PROOF IDEA
Create from P a CFG G that generates all strings that
P accepts, i.e., G generates a string if that string
takes PDA from the start state to some accepting
state.

\

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

Let us modify the PDA P slightly
o The PDA has a single accept state qaccept

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

Let us modify the PDA P slightly

o The PDA has a single accept state qaccept
o Easy — use additional ¢, ¢ — ¢ transitions.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

Let us modify the PDA P slightly

o The PDA has a single accept state qaccept
o Easy — use additional ¢, ¢ — ¢ transitions.
o The PDA empties its stack before accepting.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

Let us modify the PDA P slightly
o The PDA has a single accept state qaccept
o Easy — use additional ¢, ¢ — ¢ transitions.
o The PDA empties its stack before accepting.
e Easy — add an additional loop to flush the stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

More modifications to the PDA P:

e Each transition either pushes a symbol to the
gtacr;]lf or pops a symbol from the stack, but not
oth!.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

More modifications to the PDA P:

e Each transition either pushes a symbol to the
gtacr;]lf or pops a symbol from the stack, but not
oth!.

@ Replace each transition with a pop-push, with a
two-transition sequence.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

More modifications to the PDA P:

e Each transition either pushes a symbol to the
gtacr;]lf or pops a symbol from the stack, but not
oth!.

@ Replace each transition with a pop-push, with a
two-transition sequence.
e For example replace a, b — ¢ with a, b — ¢ followed by
€, € — C, Using an intermediate state.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

More modifications to the PDA P:

e Each transition either pushes a symbol to the
gtacr;]lf or pops a symbol from the stack, but not
oth!.

@ Replace each transition with a pop-push, with a
two-transition sequence.
e For example replace a, b — ¢ with a, b — ¢ followed by
€, € — C, Using an intermediate state.
© Replace each transition with no pop-push, with a transition
that pops and pushes a random symbol.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 5/29

PDA 1O CFG-PRELIMINARIES

More modifications to the PDA P:

e Each transition either pushes a symbol to the
gtacr;]lf or pops a symbol from the stack, but not
oth!.

@ Replace each transition with a pop-push, with a
two-transition sequence.
e For example replace a, b — ¢ with a, b — ¢ followed by
€, € — C, Using an intermediate state.
© Replace each transition with no pop-push, with a transition
that pops and pushes a random symbol.
e For example, replace a, ¢ — ¢ with a,¢ — x followed by
€, X — €, using an intermediate state.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 5/29

PDA 1O CFG-PRELIMINARIES

o For each pair of states p and g in P, the grammar
with have a variable Ay.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

o For each pair of states p and g in P, the grammar
with have a variable Ay.
o Apq generates all strings that take P from p with an empty
stack, to q, leaving the stack empty.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 6/29

PDA 1O CFG-PRELIMINARIES

o For each pair of states p and g in P, the grammar
with have a variable Ay.
o Apq generates all strings that take P from p with an empty
stack, to q, leaving the stack empty.
e Apg also takes P from p to q, leaving the stack as it was
before p!

SLIDES FOR 15-453 LECTURE 10 FALL 2015 6/29

PDA 1O CFG-PRELIMINARIES

o Let x be a string that takes P from p to g with an
empty stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

o Let x be a string that takes P from p to g with an
empty stack.
e First move of the PDA should involve a push! (Why?)

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

o Let x be a string that takes P from p to g with an
empty stack.
e First move of the PDA should involve a push! (Why?)
e Last move of the PDA should involve a pop! (Why?)

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

e There are two cases:

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 1O CFG-PRELIMINARIES

e There are two cases:

@ Symbol pushed after p, is the same symbol popped just
before q

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8/29

PDA 1O CFG-PRELIMINARIES

e There are two cases:

@ Symbol pushed after p, is the same symbol popped just
before q

@ If not, that symbol should be popped at some point before!
(Why?)

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8/29

PDA 1O CFG-PRELIMINARIES

o There are two cases:
@ Symbol pushed after p, is the same symbol popped just
before q
@ If not, that symbol should be popped at some point before!
(Why?)
o First case can be simulated by rule A,; — aA;sb

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8/29

PDA 1O CFG-PRELIMINARIES

o There are two cases:
@ Symbol pushed after p, is the same symbol popped just
before q
@ If not, that symbol should be popped at some point before!
(Why?)
o First case can be simulated by rule A,; — aA;sb
e Read a, go to state r, then transit to state s somehow, and
then read b.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8/29

PDA 1O CFG-PRELIMINARIES

o There are two cases:
@ Symbol pushed after p, is the same symbol popped just
before q
@ If not, that symbol should be popped at some point before!
(Why?)
o First case can be simulated by rule A,; — aA;sb
e Read a, go to state r, then transit to state s somehow, and
then read b.

e Second case can be simulated by rule
Apg = AorArg

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8/29

PDA 1O CFG-PRELIMINARIES

o There are two cases:
@ Symbol pushed after p, is the same symbol popped just
before q
@ If not, that symbol should be popped at some point before!
(Why?)
o First case can be simulated by rule A,; — aA;sb
e Read a, go to state r, then transit to state s somehow, and
then read b.
e Second case can be simulated by rule
Apg = AorArg
e ris the state the stack becomes empty on the way from p to
q

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8/29

PDA 10 CFG — PROOF

e Assume P = (07 T, 57 Qo, {Qaccept})'

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 10 CFG — PROOF

o Assume P = (Q, %, T, 0, 9o, {Qaccept })-
o The variables of G are {Apq | p.q € Q}

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 10 CFG — PROOF

e Assume P = (07 T, 57 Qo, {Qaccept})'
o The variables of G are {Apq | p.q € Q}
o The start variable is Ag; q.ce

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 10 CFG — PROOF

o Assume P = (Q, %, T, 0, 9o, {Qaccept })-

o The variables of G are {Apq | p.q € Q}
o The start variable is Ag; q.ce

o The rules of G are as follows:

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PDA 10 CFG — PROOF

e Assume P = (07 T, 57 Qo, {Qaccept})'
o The variables of G are {Apq | p.q € Q}
o The start variable is Ag; q.ce

e The rules of G are as follows:
e Foreachp,q,r,sc Q,tel,andabe %, if
e J(p, a,¢) contains (r,t) and
e 4(s,b,t) contains (q,¢)
Add rule Apq — aArsbto G.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 9/29

PDA 10 CFG — PROOF

e Assume P = (07 T, 57 Qo, {Qaccept})'
o The variables of G are {Apq | p.q € Q}
o The start variable is Ag; q.ce

e The rules of G are as follows:
e Foreachp,q,r,sc Q,tel,andabe %, if
e J(p, a,¢) contains (r,t) and
e 4(s,b,t) contains (q,¢)
Add rule Apq — aArsbto G.
e Foreach p,q,r € Q, add rule Apg — AprArg to G.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 9/29

PDA 10 CFG — PROOF

e Assume P = (07 T, 57 Qo, {Qaccept})'
o The variables of G are {Apq | p.q € Q}
o The start variable is Ag; q.ce

o The rules of G are as follows:
e Foreachp,q,r,sc Q,tel,andabe %, if
e J(p, a,¢) contains (r,t) and
e 4(s,b,t) contains (q,¢)
Add rule Apq — aArsbto G.
e Foreach p,q,r € Q, add rule Apg — AprArg to G.
e Foreach, p € Q, add the rule Ay, — ¢ to G.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 9/29

PDA 10 CFG INTUITION

o PDA computation for A,y — aArsb

T

Stack

height _—— generated

by Apg

Input string

-

generated
by Ars

SLIDES FOR 15-453 LECTURE 10 FALL 2015 10/29

PDA 10 CFG INTUITION

T

Stack
height

_— generated
by Apg
Input string

—
\ I\ J
S Y
generated generated
by A,, by Arq

SLIDES FOR 15-453 LECTURE 10 FALL 2015 11/29

PDA TO CFG PROOF (CONT’D)

If Aoy generates x, then x can bring P from p with
empty stack to g with empty stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 12729

PDA TO CFG PROOF (CONT’D)

If Aoy generates x, then x can bring P from p with
empty stack to g with empty stack.

o Basis Case: Derivation has 1 step.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 12729

PDA TO CFG PROOF (CONT’D)

If Aoy generates x, then x can bring P from p with
empty stack to g with empty stack.

o Basis Case: Derivation has 1 step.

e This can only be possible with a production of the sort
App — €. We have such a rule!

SLIDES FOR 15-453 LECTURE 10 FALL 2015 12729

PDA TO CFG PROOF (CONT’D)

If Aoy generates x, then x can bring P from p with
empty stack to g with empty stack.

o Basis Case: Derivation has 1 step.
e This can only be possible with a production of the sort
App — €. We have such a rule!

o Assume true for derivations of length at most k,
kK> 1

SLIDES FOR 15-453 LECTURE 10 FALL 2015 12729

PDA TO CFG PROOF (CONT’D)

If Aoy generates x, then x can bring P from p with
empty stack to g with empty stack.

o Basis Case: Derivation has 1 step.
e This can only be possible with a production of the sort
App — €. We have such a rule!

o Assume true for derivations of length at most k,
k> 1
o Suppose that Apg = x with k + 1 steps. The first step in this
derivation would either be Ay — aArsb or Apg — AprArg

SLIDES FOR 15-453 LECTURE 10 FALL 2015 12729

PDA TO CFG PROOF (CONT’D)

If Aoy generates x, then x can bring P from p with
empty stack to g with empty stack.

o Basis Case: Derivation has 1 step.
e This can only be possible with a production of the sort
App — €. We have such a rule!

o Assume true for derivations of length at most k,
kK> 1

o Suppose that Apg = x with k + 1 steps. The first step in this
derivation would either be Apy — aArsb or Apg — AprArg

o We handle these cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 12729

PDA TO CFG PROOF (CONT’D)

Case Apqg — @Aisb :

SLIDES FOR 15-453 LECTURE 10 FALL 2015 13/29

PDA TO CFG PROOF (CONT’D)

Case Apqg — @Aisb :

o Ais = y in k steps where x = ayb and by
induction hypothesis, P can go from r to s with an
empty stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 13/29

PDA TO CFG PROOF (CONT’D)

Case Apqg — @Aisb :
o Ais = y in k steps where x = ayb and by
induction hypothesis, P can go from r to s with an
empty stack.

o If P pushes t onto the stack after p, after
processing y it will leave t back on stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 13729

PDA TO CFG PROOF (CONT’D)

Case Apqg — @Aisb :

o Ais = y in k steps where x = ayb and by
induction hypothesis, P can go from r to s with an
empty stack.

o If P pushes t onto the stack after p, after
processing y it will leave t back on stack.

o Reading b will have to pop the t to leave an empty
stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 13729

PDA TO CFG PROOF (CONT’D)

Case Apqg — @Aisb :

o Ais = y in k steps where x = ayb and by
induction hypothesis, P can go from r to s with an
empty stack.

o If P pushes t onto the stack after p, after
processing y it will leave t back on stack.

e Reading b will have to pop the t to leave an empty
stack.

e Thus, x can bring P from p to g with an empty
stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 13729

PDA TO CFG PROOF (CONT’D)

Case Apg = AprArg

SLIDES FOR 15-453 LECTURE 10 FALL 2015 14/29

PDA TO CFG PROOF (CONT’D)

Case Apg — AprAg
o Suppose A, = y and A, = z, where x = yz.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 14/29

PDA TO CFG PROOF (CONT’D)

Case Apg — AprAg
o Suppose A, = y and A, = z, where x = yz.
o Since these derivations are at most k steps,

before p and after r we have empty stacks, and
thus also after g.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 14729

PDA TO CFG PROOF (CONT’D)

Case Apg — AprAg
o Suppose A, = y and A, = z, where x = yz.
o Since these derivations are at most k steps,

before p and after r we have empty stacks, and
thus also after g.

e Thus x can bring P from p to g with an empty
stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 14729

PDA TO CFG PROOF (CONT’D)

If x can bring P from p to g with empty stack,
Apg = X.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 15729

PDA TO CFG PROOF (CONT’D)

If x can bring P from p to g with empty stack,
Apg = X.

o Basis Case: Suppose PDA takes 0 steps.

PDA TO CFG PROOF (CONT’D)

If x can bring P from p to g with empty stack,
Apg = X.

o Basis Case: Suppose PDA takes 0 steps.

e It should stay in the same state. Since we have a rule in the
grammar App — €, Agp = €.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 15729

PDA TO CFG PROOF (CONT’D)

If x can bring P from p to g with empty stack,
Apg = X.

o Basis Case: Suppose PDA takes 0 steps.
e It should stay in the same state. Since we have a rule in the
grammar App — €, Agp = €.
o Assume true for all computations of P of length at
most k, k > 0.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 15729

PDA TO CFG PROOF (CONT’D)

If x can bring P from p to g with empty stack,
Apg = X.

o Basis Case: Suppose PDA takes 0 steps.
e It should stay in the same state. Since we have a rule in the
grammar App — €, Agp = €.
o Assume true for all computations of P of length at
most k, k > 0.
e Suppose with x, P can go from p to g with an empty stack.
Either the stack is empty only at the beginning and at the
end, or it becomes empty elsewhere, too.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 15729

PDA TO CFG PROOF (CONT’D)

If x can bring P from p to g with empty stack,
Apg = X.

o Basis Case: Suppose PDA takes 0 steps.
e It should stay in the same state. Since we have a rule in the
grammar Ap, — ¢, App = €.
o Assume true for all computations of P of length at
most k, k > 0.
e Suppose with x, P can go from p to g with an empty stack.
Either the stack is empty only at the beginning and at the
end, or it becomes empty elsewhere, too.

o We handle these two cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 15729

PDA TO CFG PROOF (CONT’D)

Case: Stack is empty only at the beginning and at the
end of a derivation of length k + 1

SLIDES FOR 15-453 LECTURE 10 FALL 2015 16/29

PDA TO CFG PROOF (CONT’D)

Case: Stack is empty only at the beginning and at the
end of a derivation of length k + 1
e Suppose x = ayb. a and b are consumed at the
beginning and at the end of the computation (with
t being pushed and popped).

FALL 2015 16729

PDA TO CFG PROOF (CONT’D)

Case: Stack is empty only at the beginning and at the
end of a derivation of length k + 1
e Suppose x = ayb. a and b are consumed at the
beginning and at the end of the computation (with
t being pushed and popped).

o Ptakes k — 2 steps on y.

FALL 2015 16729

PDA TO CFG PROOF (CONT’D)

Case: Stack is empty only at the beginning and at the
end of a derivation of length k + 1
e Suppose x = ayb. a and b are consumed at the
beginning and at the end of the computation (with
t being pushed and popped).

o Ptakes k — 2 steps on y.
o By hypothesis, A,s = y where (r,t) € §(q, a, €)
and (q,¢) € 6(s, b, 1).

SLIDES FOR 15-453 LECTURE 10 FALL 2015 16729

PDA TO CFG PROOF (CONT’D)

Case: Stack is empty only at the beginning and at the
end of a derivation of length k + 1

e Suppose x = ayb. a and b are consumed at the
beginning and at the end of the computation (with
t being pushed and popped).

o Ptakes k — 2 steps on y.

o By hypothesis, A;s = y where (r, t) € §(q, a,¢)
and (q,¢) € 6(s, b, 1).

o Thus, using rule Apg — aAsb, Apg = X.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 16729

PDA TO CFG PROOF (CONT’D)

Case: Stack becomes empty at some intermediate
stage in the computation of x

SLIDES FOR 15-453 LECTURE 10 FALL 2015 17729

PDA TO CFG PROOF (CONT’D)

Case: Stack becomes empty at some intermediate
stage in the computation of x

e Suppose x = yz, such that P has the stack empty
after consuming y.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 17729

PDA TO CFG PROOF (CONT’D)

Case: Stack becomes empty at some intermediate
stage in the computation of x

e Suppose x = yz, such that P has the stack empty
after consuming y.

o By induction hypothesis A, = y and A = z
since P takes at most k steps on y and z.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 17729

PDA TO CFG PROOF (CONT’D)

Case: Stack becomes empty at some intermediate
stage in the computation of x

e Suppose x = yz, such that P has the stack empty
after consuming y.

o By induction hypothesis A, = y and A = z
since P takes at most k steps on y and z.

e Since rule Apq — AprArq is in the grammar,
Apg = X.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 17729

REGULAR LANGUAGES ARE CONTEXT FREE

COROLLARY
Every regular language is context free.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 18/29

REGULAR LANGUAGES ARE CONTEXT FREE

COROLLARY

Every regular language is context free.

| A

PROOF.

Since a regular language L is recognized by a DFA
and every DFA is a PDA that ignores it stack, there is
aCFGfor L 1]

SLIDES FOR 15-453 LECTURE 10 FALL 2015 18729

REGULAR LANGUAGES ARE CONTEXT FREE

COROLLARY

Every regular language is context free.

| A

PROOF.

Since a regular language L is recognized by a DFA
and every DFA is a PDA that ignores it stack, there is
aCFGfor L 1]

¢ Right-linear grammars
o Left-linear grammars

SLIDES FOR 15-453 LECTURE 10 FALL 2015 18729

NON-CONTEXT-FREE LANGUAGES

o There are non-context-free languages.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19/29

NON-CONTEXT-FREE LANGUAGES

o There are non-context-free languages.
o For example L = {a"b"c" | n > 0} is not
context-free.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19/29

NON-CONTEXT-FREE LANGUAGES

o There are non-context-free languages.
o For example L = {a"b"c" | n > 0} is not
context-free.

e Intuitively, once the PDA reads the a's and then matches the
b’s, it “forgets” what the n was, so can not properly check the

Ccs.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19729

NON-CONTEXT-FREE LANGUAGES

o There are non-context-free languages.
o For example L = {a"b"c" | n > 0} is not
context-free.

e Intuitively, once the PDA reads the a's and then matches the
b’s, it “forgets” what the n was, so can not properly check the

CSs.
o There is an analogue of the Pumping Lemma we
studied earlier for regular languages.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19729

NON-CONTEXT-FREE LANGUAGES

o There are non-context-free languages.
o For example L = {a"b"c" | n > 0} is not
context-free.

e Intuitively, once the PDA reads the a's and then matches the
b’s, it “forgets” what the n was, so can not properly check the

CSs.
o There is an analogue of the Pumping Lemma we
studied earlier for regular languages.

o It states that there is a pumping length, such that all longer
strings can be pumped.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19729

NON-CONTEXT-FREE LANGUAGES

o There are non-context-free languages.
o For example L = {a"b"c” | n > 0} is not
context-free.
e Intuitively, once the PDA reads the a's and then matches the
b’s, it “forgets” what the n was, so can not properly check the
c’s.
o There is an analogue of the Pumping Lemma we
studied earlier for regular languages.
o It states that there is a pumping length, such that all longer
strings can be pumped.
e For regular languages, we related the pumping length to the
number of states of the DFA.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19729

NON-CONTEXT-FREE LANGUAGES

o There are non-context-free languages.
o For example L = {a"b"c" | n > 0} is not
context-free.
e Intuitively, once the PDA reads the a's and then matches the
b’s, it “forgets” what the n was, so can not properly check the

c’s.
o There is an analogue of the Pumping Lemma we
studied earlier for regular languages.
o It states that there is a pumping length, such that all longer
strings can be pumped.
e For regular languages, we related the pumping length to the
number of states of the DFA.
e For CFLs, we relate the pumping length to the properties of
the grammar!.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19729

PUMPING LEMMA FOR CFLS - INTUITION

o Let s be a “sufficiently long” string in L.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUMPING LEMMA FOR CFLS - INTUITION

o Let s be a “sufficiently long” string in L.

e S = uvxyz should have a parse tree of the
following sort:

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUMPING LEMMA FOR CFLS - INTUITION

o Let s be a “sufficiently long” string in L.

e S = uvxyz should have a parse tree of the
following sort:

——D===> W0

o Some variable R must repeat somewhere on the
path from S to some leaf. (Why?)

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUMPING LEMMA FOR CFLS - INTUITION

o Then the string s’ = uvvxyyz, should also be in
the language.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUMPING LEMMA FOR CFLS - INTUITION

o Then the string s’ = uvvxyyz, should also be in
the language.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUMPING LEMMA FOR CFLS - INTUITION

e Also the string s” = uxz, should also be in the
language.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUMPING LEMMA FOR CFLS - INTUITION

e Also the string s” = uxz, should also be in the
language.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUMPING LEMMA FOR CFLS

LEMMA

If L is a CFL, then

e there is a number p (the pumping length) such
that

o if s is any string in L of length at least p,

e then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUMPING LEMMA FOR CFLS

LEMMA

If L is a CFL, then

e there is a number p (the pumping length) such
that

o if s is any string in L of length at least p,

e then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:

Q |vw| >0

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUMPING LEMMA FOR CFLS

LEMMA

If L is a CFL, then

e there is a number p (the pumping length) such
that

o if s is any string in L of length at least p,
e then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:
Q |vw| >0
Q [wy|<p

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUMPING LEMMA FOR CFLS

LEMMA

If L is a CFL, then

e there is a number p (the pumping length) such
that

o if s is any string in L of length at least p,
e then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:
Q |vw| >0

O |wy|<p o
@ foreachi>0,uv'xy'ze L

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PUMPING LEMMA FOR CFLS

LEMMA

If L is a CFL, then

e there is a number p (the pumping length) such
that

o if s is any string in L of length at least p,
e then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:
Q |vw| >0

O |wy|<p o
@ foreachi>0,uv'xy'ze L

o Either v or y is not e otherwise, it would be trivially
true.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF — THE PUMPING LENGTH

o Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF — THE PUMPING LENGTH

o Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.

e Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 24/29

PROOF — THE PUMPING LENGTH

o Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.
e Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.

o In any parse tree, a node can have at most b
children.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 241729

PROOF — THE PUMPING LENGTH

o Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.
e Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.
o In any parse tree, a node can have at most b
children.
o At most b" leaves are within h steps of the start variable.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 24/29

PROOF — THE PUMPING LENGTH

o Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.

e Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.

o In any parse tree, a node can have at most b
children.

o At most b" leaves are within h steps of the start variable.
e If the parse tree has height h, the length of the
string generated is at most b".

SLIDES FOR 15-453 LECTURE 10 FALL 2015 24/29

PROOF — THE PUMPING LENGTH

o Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.

e Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.

o In any parse tree, a node can have at most b
children.

o At most b" leaves are within h steps of the start variable.
e If the parse tree has height h, the length of the
string generated is at most b".
o Conversely, if the string is at least b” + 1 long,
each of its parse trees must be at least h+ 1 high.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF — THE PUMPING LENGTH

A
v

Length at most b"

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - THE PUMPING LENGTH

o Let |V| be the number of variables in G.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - THE PUMPING LENGTH

o Let |V| be the number of variables in G.
o We set the pumping length p = blVI+1,

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - THE PUMPING LENGTH

o Let |V| be the number of variables in G.
o We set the pumping length p = blVI+1,

o If sisastringin L and |s| > p, its parse tree must
be at least | V| + 1 high.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - THE PUMPING LENGTH

o Let |V| be the number of variables in G.
o We set the pumping length p = blVI+1,
o If sisastringin L and |s| > p, its parse tree must

be at least | V| + 1 high.
o BIVIHT > pIVI 4 4

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - HOW TO PUMP A STRING

o Let 7 be the parse tree of s that has the smallest
number of nodes. 7 must be at least | V| + 1 high.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - HOW TO PUMP A STRING

o Let 7 be the parse tree of s that has the smallest
number of nodes. 7 must be at least | V| + 1 high.

o This means some path from the root to some leaf
has length at least | V| + 1.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - HOW TO PUMP A STRING

o Let 7 be the parse tree of s that has the smallest
number of nodes. 7 must be at least | V| + 1 high.

o This means some path from the root to some leaf
has length at least | V| + 1.

o So the path has at least | V| + 2 nodes: 1 terminal
and at least | V| + 1 variables.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - HOW TO PUMP A STRING

o Let 7 be the parse tree of s that has the smallest
number of nodes. 7 must be at least | V| + 1 high.

o This means some path from the root to some leaf
has length at least | V| + 1.

o So the path has at least | V| + 2 nodes: 1 terminal
and at least | V| + 1 variables.

e Some variable R must appear more than once on
that path (Pigeons!)

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - HOW TO PUMP A STRING

o Let 7 be the parse tree of s that has the smallest
number of nodes. 7 must be at least | V| + 1 high.

o This means some path from the root to some leaf
has length at least | V| + 1.

o So the path has at least | V| + 2 nodes: 1 terminal
and at least | V| + 1 variables.

e Some variable R must appear more than once on
that path (Pigeons!)
e Choose R as the variable that repeats among the lowest
|V| + 1 variables on this path.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - HOW TO CHOOSE A STRING

VAN

u v X y z

o We divide s
into uvxyz
according to
this figure.

e, S

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - HOW TO CHOOSE A STRING

o Upper R generates

vxy while the lower R
/“\ generates x.

u v X y z

o We divide s
into uvxyz
according to
this figure.

e, S

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - HOW TO CHOOSE A STRING

o Upper R generates
vxy while the lower R
/R\ generates x.
P W % 5 3 e Since the same
variable generates
o We divide s g

int both subtrees, they are
nio Uvxyz interchangeable!
according to

this figure.

e, S

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF - HOW TO CHOOSE A STRING

o Upper R generates
vxy while the lower R
generates x.

P W % 5 3 e Since the same
variable generates

° .Wte divide s both subtrees, they are
:cgoli;ﬁ]y Zto interchangeable!
this figurg e So all strings of the

form uv'xy’z should
also be in the
language for i > 0.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF — HOW TO CHOOSE A STRING

o We must make sure both v and y are not both e.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF — HOW TO CHOOSE A STRING

o We must make sure both v and y are not both e.

o If they were, then 7 would not be smallest tree for
S.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF — HOW TO CHOOSE A STRING

o We must make sure both v and y are not both e.

o If they were, then 7 would not be smallest tree for
S.
e We could get a smaller tree for s by substituting the smaller
tree!

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF — HOW TO CHOOSE A STRING

o We must make sure both v and y are not both e.

o If they were, then 7 would not be smallest tree for
S.
e We could get a smaller tree for s by substituting the smaller
tree!

o R= wxy.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF — HOW TO CHOOSE A STRING

o We must make sure both v and y are not both e.

o If they were, then 7 would not be smallest tree for
S.
e We could get a smaller tree for s by substituting the smaller
tree!

o R= wxy.
e We chose R so that both its occurrences were
within the last | V| 4 1 variables on the path.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF — HOW TO CHOOSE A STRING

o We must make sure both v and y are not both e.

o If they were, then 7 would not be smallest tree for
S.
e We could get a smaller tree for s by substituting the smaller
tree!

o R= wxy.
e We chose R so that both its occurrences were
within the last | V| 4 1 variables on the path.

o We chose the longest path in the tree, so the
subtree for R = vxy is at most | V| + 1 high.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

PROOF — HOW TO CHOOSE A STRING

o We must make sure both v and y are not both e.

o If they were, then 7 would not be smallest tree for
S.
e We could get a smaller tree for s by substituting the smaller
tree!

o R= wxy.

o We chose R so that both its occurrences were
within the last | V| 4 1 variables on the path.

o We chose the longest path in the tree, so the
subtree for R = vxy is at most | V| + 1 high.

o A tree of this height can generate a string of
length at most b!/VI*! = p.

SLIDES FOR 15-453 LECTURE 10 FALL 2015

FORMAL LANGUAGES, AUTOMATA AND
COMPUTATION

PUMPING LEMMA

PROPERTIES OF CFLS

SLIDES FOR 15-453 LECTURE 11 FALL 2015

SUMMARY

e Context-free Languages and Context-free Grammars
e Pushdown Automata

e PDAs accept all languages CFGs generate.

e CFGs generate all languages that PDAs accept.

e There are languages which are NOT context free.

SLIDES FOR 15-453 LECTURE 11 FALL 2015

PUMPING LEMMA FOR CFLS

LEMMA
If L is a CFL, then there is a number p (the pumping
length) such that if s is any string in L of length at
least p, then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:

Q |vwy|>0

@ vy <p

Q@ foreachi >0, uvixy'ze L

v

e The pumping length is determined by the number
of variables the grammar for L has.

SLIDES FOR 15-453 LECTURE 11

APPLICATION OF THE PUMPING LEMMA

e Just as for regular languages we employ the
pumping lemma in a two-player game setting.
o If a language violates the CFL pumping lemma,

then it can not be a CFL.
o Two Player Proof Strategy:

e Opponent picks p, the pumping length

e Given p, we pick s in L such that |s| > p. We are free to
choose s as we please, as long as those conditions are
satisfied.

e Opponent picks s = uvxyz - the decomposition subject to
lvxy| < pand |vy| > 1.

o We try to pick an i such that uv/xy’z ¢ L

o If for all possible decompositions the opponent can pick, we
can find an i/, then L is not context-free.

SLIDES FOR 15-453 LECTURE 11 FALL 2015 4/16

USING PUMPING LEMMA — EXAMPLE-1

o Consider the language L = {a"b"c" | n > 0}

o Opponent picks p.

o We pick s = a’bPcP. Clearly |s| > p.

o Opponent may pick the string partitioning in a
number of ways.

o Let’'s look at each of these possibilities:

SLIDES FOR 15-453 LECTURE 11 FALL 2015

USING PUMPING LEMMA—-EXAMPLE 1

o Cases 1,2 and 3: vxy contains symbols of only
one kind

Q@ Onlyas:a---ga---aga---ab---bc---c
SN~

u vXy z
Q@ Onlybs:a---abb---bb---bc---c
N N e
u vxy z
@ Onlycs:a---ab---bcc---cc---C
—_—
u vxy z

e Pumping v and y will introduce more symbols of
one type into the string.

e The resulting strings will not be in the language.

SLIDES FOR 15-453 LECTURE 11 FALL 2015 6/16

USING PUMPING LEMMA—-EXAMPLE 1

o Cases 4 and 5: vxy contains two symbols —
crosses symbol boundaries.

Q@ Onlyasand bs: a---ga---ab---bb---bc---c
N—— - -~ -

u vxy z
Q@ Onlybsandcs: a---ab---bb---cc---C
N e e N —

u vXy z

o Note that vxy has length at most p so can not
have 3 different symbols.

o Pumping v and y will both upset the symbol
counts and the symbol patterns.

o The resulting strings will not be in the language.

SLIDES FOR 15-453 LECTURE 11 FALL 2015 7116

USING PUMPING LEMMA—-EXAMPLE 2

o Consider the language L = {&" | nis prime}
o Opponent picks (prime) p.
o We pick s = a. Clearly |s| > p.
o Opponent may pick any partitioning s = uvxyz.
e Let m = |uxz| for the partitioning selected, that is, the length
of everything else but v and y.
e Any pumped string uv'xy’z will have length m+ i(p — m).
e We choosei=p—+1.
o The pumped string has length m + (p + 1)(p — m). But:
m+((p+1)p—m) = m+p>—pm+p—m
= pP+p—pm
= p(p—m+1)
which is not prime since both p and p — m + 1 are greater
than 1. (Note 0 < m<p—1

SLIDES FOR 15-453 LECTURE 11 FALL 2015 8/16

CLOSURE PROPERTIES OF CONTEXT-FREE

LANGUAGES

o Context-free languages are closed under
e Union
e Concatenation
e Star Closure
e Intersection with a regular language

o We will provide very informal arguments for these.

SLIDES FOR 15-453 LECTURE 11 FALL 2015 9/16

CLOSURE PROPERTIES OF CFLS-UNION

o Let Gy and Go be the grammars with start
variables Sy and S,, variables V4 and V., and
rules Ry and Ro.

o Rename the variables in Vs if they are also used
in V1
o The grammar Gfor L = L(Gy) U L(Gz) has
o V=ViUWU{S} (Sisthe new start symbol S ¢ V; and
S¢ Vs
° R:R1UR2U{S—>S1 |52}

SLIDES FOR 15-453 LECTURE 11 FALL 2015 10/16

CLOSURE PROPERTIES OF CFLS —

CONCATENATION

o Let Gy and G be the grammars with start
variables Sy and Sy, variables V; and V5, and
rules Ry and Ro.

o Rename the variables in Vs if they are also used
in V1
o The grammar G for
L={wv|welL(Gy),veLG)} has
o V=ViUW,U{S} (Sisthe new start symbol S ¢ V; and
S¢ Vo
e R=RiURU{S — 55}

SLIDES FOR 15-453 LECTURE 11 FALL 2015 11/16

CLOSURE PROPERTIES OF CFLS — STAR

CLOSURE

o Let Gy be the grammar with start variable Sy,
variables Vj, rules R;.
o The grammar Gfor L={w | w € L(Gy)*} has

o V=V, U{S} (Sisthe new start symbol S ¢ V4).
e R=R1U{S— S1S|¢}

SLIDES FOR 15-453 LECTURE 11 FALL 2015 12/16

CLOSURE PROPERTIES OF CFLS —

INTERSECTION WITH A REGULAR LANGUAGE

o Let P be the PDA for the CFL L.s and M be the
DFA for the regular language L eguiar

o We have a procedure for building the
cross-product PDA from P and M.
e Very similar to the cross-product construction for DFAs.
e Details are not terribly interesting. (Perhaps later.)

SLIDES FOR 15-453 LECTURE 11 FALL 2015 13/16

CLOSURE PROPERTIES OF CFLS

o CFLs are NOT closed under intersection.
o Ly ={a"b"c¢™ | n,m>0}isaCFL.
o Lo ={a™"c" | n,m>0}is aCFL.
o L=LinLy={a""c" | n>0}is NOT a CFL.
o CFLs are not closed under complementation.
o L={ww | weX*}is NOT a CFL (Prove it using pumping
lemmal)
o LisactuallyaCFLand L =L UL

o L has all strings of odd length (L1)
e L has all strings where at least one pair of symbols n/2 apart

are different (n length of the string!) (Lz)

S—aA|bAlalb S— AB| BA

A— aS| bS A—ZAZ | a

generates L4 B—ZBZ|b
Z—alb

generates Lp
FALL 2015 14716

SLIDES FOR 15-453 LECTURE 11

CFL CLOSURE PROPERTIES IN ACTION

olsL={a"h"|n>0,n#100} a CFL?
o L={a"t"|n>0}n(L(a'b") - {a'®b'?})

CFL RL
e The intersection of a CFL and a RL is a CFL!

olsL={w|we{ahb,c} and ny(w) = ny(w) =
n.(w)} a CFL?
L nL(ab*c*)={a"b"c" | n> 0}

v ;v "

CFL? RL Not CFL

e Thus Lis NOT a CFL.

SLIDES FOR 15-453 LECTURE 11 FALL 2015 15716

MOVING BEYOND THE MILKY WAY

WHAT OTHER KINDS OF LANGUAGES ARE OUT THERE?

How can we characterize these languages
outside the boundary of CFLs?

SLIDES FOR 15-453 LECTURE 11 FALL 2015 16/16

FORMAL LANGUAGES, AUTOMATA AND
COMPUTATION

TURING MACHINES

] SLIDES FOR 15-453 LECTURE 12 FALL2015 1/13

TURING MACHINES-SYNOPSIS

e We now turn to a much more powerful model of
computation called Turing Machines (TM).

e TMs are similar to a finite automaton, but a TM has an
unlimited and unrestricted memory.

e A TMis a much more accurate model of a general purpose
computer.

e Bad News: Even a TM can not solve certain problems.
e Such problems are beyond theoretical limits of computation.

] SLIDES FOR 15-453 LECTURE 12 FALL2015 2/13

TURING MACHINES

@ =

D States:! 1...n

Control device

] SLIDES FOR 15-453 LECTURE 12 FALL2015 3/13

TURING MACHINES VS FINITE AUTOMATA

e A TM can both read from the tape and write on the tape.

e The read-write head can move both to the left (L) and to the
right (R).

e The tape is infinite (to the right).

e The states for rejecting and accepting take effect
immediately (not at the end of input.)

] SLIDES FOR 15-453 LECTURE 12 FALL2015 4/13

How DOES A TM COMPUTE?

e Consider B = {w#w | w € {0,1}*}.
e The TM starts with the input on the tape.

011000401100 0ULLL
X1 1000#011000ULLU

X11000#X1100O0UuUuUY

X

X X X X # X X X X X XUUulACCEPT

FALL 2015

5/13

FORMAL DEFINITION OF A TURING MACHINE

A TMis 7-tuple M = (Q. X, T, 0, Qo, Qaccept, Greject) Where Q, X, T
are all finite sets.

@ Qs the set of states,

@ X is the input alphabet (blank symbol LI ¢ ¥),

@ T is the tape alphabet (L eTand X C T,

Q 0: QxTI— QxT x{L, R} isthe state transition function,
@ Qo € Qs the start state,

Q Qaccept € Q is the accept state,

@ Quject € Qis the reject state and Greject 7# Gaccept

] SLIDES FOR 15-453 LECTURE 12 FALL2015 6/13

How DOES A TM COMPUTE?

@ M receives its input w = wyws - - - wy, on the leftmost n squares on
the tape. The rest of the tape is blank.

@ The head starts on the leftmost square on the tape.
@ The first blank symbol on the tape marks the end of the input.
@ The computation proceeds according to 6.

@ The head of M never moves left of the beginning of the tape
(stays there!)

@ The computation proceeds until M enters either gaccept OF Qreject:
when it halts.

@ M may go on forever, never halting!

] SLIDES FOR 15-453 LECTURE 12 FALL2015 7/13

CONFIGURATION OF A TM

@ As a TM proceeds with its computation, the state changes, the
tape changes, the head moves.

@ We capture each step of a TM computation, by the notion of a
configuration.

1 0 1 1 0 1 1 1 1 L

@ The machine is in state g7, u = 1011 is to the left of the head,
v = 01111 is under and to the right of the head. Tape has
uv =101101111 on it.

@ We represent the configuration by 1011g,01111.
] SLIDES FOR 15-453 LECTURE 12 FALL2015 8/13

CONFIGURATIONS

Configuration C; yields (=)configuration C, if TM can
legally go from C; to C..

e uaq; bv=ugqg acvifi(q,b)=(q,c,L)
e uaq; bv=-uac q; vifé(qi,b)=(q;c, R)

o If the head is at the left end, g;bv = gjcv if the transition is
left-moving.

e If the head is at the left end, g;bv = cq;v if the transition is
right-moving.

e Think of a configuration as the contents of memory and a
transition as an instruction.

] SLIDES FOR 15-453 LECTURE 12 FALL2015 9/13

CONFIGURATIONS

e The start configuration is gow.
® UQacceptV 1S @N accepting configuration,
® UQrejectV IS @ rejecting configuration.

e Accepting and rejecting configurations are halting
configurations.

] SLIDES FOR 15-453 LECTURE 12 FALL2015 10/13

ACCEPTING COMPUTATION

e A TM M accepts input w if a sequence of configurations
Cy, Co, - - -, C exists, where

© C; is the start configuration of M in input w,
Q@ C = Ci4,and
© Cx is an accepting configuration.

e L(M) is the set of strings w recognized by M.

e A language L is Turing-recognizable if some TM recognizes
it (also called Recursively enumerable)

e A TMis called a decider if it halts on all inputs.

e A language is Turing-decidable if some TM decides it (also
called Recursive)

e Every decidable language is Turing recognizable!

] SLIDES FOR 15-453 LECTURE 12 FALL2015 11/13

EXAMPLE TM-1

X—R
0—-X,R

0,1—-RCI Qo

#—>Fih

X—-RC/ Qs

— g1 — start

#—R 1—-X,R

Qs O X—R g3 D01-R

U—R ‘#—h‘?

Qa Qs O X—R
— X, L

Qe D0, 1,X—L

J#HL

g7 Do1-L

SLIDES FOR 15-453 LECTURE 12 FALL 2015

12/13

EXAMPLE TM-1

o Let us see how this TM operates on input 001101#001101

] SLIDES FOR 15-453 LECTURE 12 FALL2015 13/13

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

TURING MACHINES

SLIDES FOR 15-453 LECTURE 13 FALL 2015 1/32

TURING MACHINES-SYNOPSIS

e The most general model of computation
e Computations of a TM are described by a sequence of
configurations.
e Accepting Configuration
e Rejecting Configuration
e Turing-recognizable languages
e TM halts in an accepting configuration if w is in the
language.
e TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.
e Turing-decidable languages
e TM halts in an accepting configuration if w is in the
language.
e TM halts in a rejecting configuration if w is not in the
language.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 2/32

EXAMPLE TM-2

e A Turing machine that decides A = {0%" | n > 0}
e M = “On Input string w
@ Sweep left-to-right across the tape, crossing off every other
0.
© Ifin 1) that tape has one 0 left, accept (Why?)
© Ifin 1) tape has more than one 0, and the number of O’s is
odd, reject. (Why?)
© Return the head to the left end of the tape.
@ Goto1)

e Basically every sweep cuts the number of 0’s by two.

e At the end only 1 should remain and if so the original
number of zeroes was a power of 2

SLIDES FOR 15-453 LECTURE 13 FALL 2015 3/32

EXAMPLE TM-2

@ ugsxxxu

@ g5 LU

. . . @ Lgxxu

Configurations for input 0000. @ Lrapxell

@ gi0000u Q@ ux0gsxu @ Lxq0xu @ LixxgxL

@ Lg000u @ Lxgs0xu @ Lxxgsxu @ UxxxquL

@ Lxg;00u © vugsxoxu @ LxxxgsU @ Lixxx U Gaccept

Q ux0g,0U Q g5 L xoxu @ uxxgsxu
© Lix0xgsL @ ugoxoxu @ Lixgsxxu

SLIDES FOR 15-453 LECTURE 13 FALL 2015 4/32

EXAMPLE TM-3

e ATMto add 1 to a binary number (with a 0 in front)
e M ="“On input w
© Go to the right end of the input string
@ Move left as long as a 1 is seen, changing itto a 0.
© Change the 0to a1, and halt”
e For example, to add 1 to w = 0110011
e Change all the ending 1’s to 0’s = 0110000
e Change the nextOtoa 1= 0110100

e Now let’s design a TM for this problem.

SLIDES FOR 15-453 LECTURE 13 FALL 2015

VARIANTS OF TMS

e We defined the basic Turing Machine

e Single tape (infinite in one direction)

e Deterministic state transitions
e We could have defined many other variants:
Ordinary TMs which need not move after every move.
Multiple tapes — each with its own independent head
Nondeterministic state transitions
Single tape infinite in both directions
Multiple tapes but with a single head
Multidimensional tape (move up/down/left/right)

SLIDES FOR 15-453 LECTURE 13 FALL 2015

EQUIVALENCE OF POWER

e A computational model is robust if the class of languages it
accepts does not change under variants.
e We have seen that DFA’s are robust for nondeterminism.
e But not PDASs!

e The robustness of Turing Machines is by far greater than
the robustness of DFAs and PDAs.

e We introduce several variants on Turing machines and show
that all these variants have equal computational power.

e When we prove that a TM exists with some properties, we
do not deal with questions like

e How large is the TM? or
e How complex is it to “program” that TM?

e At this point we only seek existential proofs.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 7132

TURING MACHINES WITH THE STAY OPTION

e Suppose in addition moving Left or Right, we give the
option to the TM to stay (S) on the current cell, that is:

d:QxIT=QxTx{L R, S}

e Such a TM can easily simulate an ordinary TM: just do not
use the S option in any move.

e An ordinary TM can easily simulate a TM with the stay
option.
e For each transition with the S option, introduce a new state,
and two transitions
o One transition moves the head right, and transits to the new
state.
e The next transition moves the head back to left, and transits
to the previous state.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 8/32

MULTITAPE TURING MACHINES

Finite control of ‘1 ‘1 |— l— ‘— |— ‘— [%
M Tapel

alb [[[[| [_¢
‘—J, Tape2

uiv [_ |- |- |2 ‘_?

MULTITAPE TURING MACHINES

e A multitape Turing Machine is like an ordinary TM
e There are k tapes
e Each tape has its own independent read/write head.
e The only fundamental difference from the ordinary TM is § —
the state transition function.

§:QxTKk— QxTI*x{L R

e Thedentry 6(qg;,a1,...,ak) =(q;, bs,.... b, LR, L, ...L)
reads as :
e Ifthe TMis in state g; and
e the heads are reading symbols ay through ay,
o Then the machine goes to state gj, and
e the heads write symbols by through by, and
e Move in the specified directions.

SLIDES FOR 15-453 LECTURE 13 FALL 2015

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

Finite control of ‘1 ‘1 |— l— ‘— |— ‘— [%

M p—

Finite control of

S °] °
#1011 |#|alb # 0|v | _¢
SLIDES FOR 15-453 LECTURE 13 ALL 2015

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

Finite control of
S

wlafifulafblelufv] ¢

e We use # as a delimiter to separate out the different tape
contents.

e To keep track of the location of heads, we use additional
symbols

e Each symbol in I has a “dotted” version.
e A dotted symbol indicates that the head is on that symbol.
o Between any two #’s there is only one symbol that is dotted.

e Thus we have 1 real tape with k “virtual’ tapes, and
e 1 real read/write head with k “virtual” heads.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 12 /32

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

e Given input w = w; - - - w,, S puts its tape into the format
that represents all k tapes of M

LW Wo-o Wtk D 4

e To simulate a single move of M, S starts at the leftmost #
and scans the tape to the rightmost #.
o It determines the symbols under the “virtual” heads.
e This is remembered in the finite state control of S. (How
many states are needed?)
e S makes a second pass to update the tapes according to M.
e If one of the virtual heads, moves right to a #, the rest of
tape to the right is shifted to “open up” space for that “virtual
tape”. If it moves left to a #, it just moves right again.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 13732

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

e Thus from now on, whenever needed or convenient we will
use multiple tapes in our constructions.

e You can assume that these can always be converted to a
single tape standard TM.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 14 /32

NONDETERMINISTIC TURING MACHINES

o We defined the state transition of the ordinary TM as
§:QxT—=QxTx{L R}

e A nondeterministic TM would proceed computation with
multiple next cnfigurations. ¢ for a nondeterministic TM
would be

d:QxT =>P@xT x{L R})

(P(S) is the power set of S.)
e This definition is analogous to NFAs and PDAs.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 15732

NONDETERMINISTIC TURING MACHINES

e A computation of a Nondeterministic TM is a tree, where

each branch of the tree is looks like a computation of an
ordinary TM.

Deterministic
Computation

Non-Deterministic
Computation

Pt S+

accept or reject

SLIDES FOR 15-453 LECTURE 13 FALL 2015 16/32

NONDETERMINISTIC TURING MACHINES

e If a single branch reaches the accepting state, the
Nondeterministic TM accepts, even if other branches reach
the rejecting state.

e What is the power of Nondeterministic TMs?

e Is there a language that a Nondeterministic TM can accept
but no deterministic TM can accept?

SLIDES FOR 15-453 LECTURE 13 FALL 2015 17732

NONDETERMINISTIC TURING MACHINES

Every nondeterministic Turing machine has an equivalent
deterministic Turing Machine.

PROOF IDEA
e Timeshare a deterministic TM to different branches of the
nondeterministic computation!
e Try out all branches of the nondeterministic computation
until an accepting configuration is reached on one branch.

e Otherwise the TM goes on forever.

18732

SLIDES FOR 15-453 LECTURE 13 FALL 2015

NONDETERMINISTIC TURING MACHINES

e Deterministic TM D simulates the Nondeterministic TM N.

e Some of branches of the N’s computations may be infinite,
hence its computation tree has some infinite branches.

e If D starts its simulation by following an infinite branch, D
may loop forever even though N’s computation may have a
different branch on which it accepts.

e This is a very similar problem to processor scheduling in
operating systems.

e If you give the CPU to a (buggy) process in an infinite loop,
other processes “starve”.

e In order to avoid this unwanted situation, we want D to
execute all of N’s computations concurrently.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 19732

NONDETERMINISTIC COMPUTATION

QoW Wsern W, 44— |Initial Configuration

Configurations of the e
nondeterministic

computation

Nondeterministic choices

/ available from C4

SLIDES FOR 15-453 LECTURE 13 FALL 2015 20/32

NONDETERMINISTIC COMPUTATION

Configurations of the -'_“"'—-;"\ Wy W w, & |nitial Configuration

nondeterministic
computation

Nondeterministic choices

SLIDES FOR 15-453 LECTURE 13 FALL 2015 AWAY

NONDETERMINISTIC COMPUTATION

Configurations of the \\ _____ W, 44— |Initial Configuration
A

nondeterministic
computation

Nondeterministic choices
available from C4

Accepting Configuration

= '
A
O ‘\I U Qaccept V
1
1

X

An accepting branch \

SLIDES FOR 15-453 LECTURE 13 FALL 2015 22/32

Nondeterministic choices
available from C4

NONDETERMINISTIC COMPUTATION
w, 4— |Initial Configuration

Configurations of the
nondeterministic
computation

i .
I
{3 .
5 O
23/32

]
]
!
] 5 i
i
]) I
FALL 2015

SIMULATING NONDETERMINISTIC
COMPUTATION

w. a@— |Initial Configuration
..... i

Order of simulation

SLIDES FOR 15-453 LECTURE 13 FALL 2015 24/32

SIMULATING NONDETERMINISTIC

COMPUTATION

ERTAT— < Initial Configuration
Wy

@ D gets the next
configuration from the

2 head of the queue.

@ D creates copies of this
i - configuration (as many
as needed)

Order of simulation

v @ On each copy, D

@ During simulation, D processes the simulates one of the
9 , 2P nondeterministic moves

configurations of N in a breadth-first
: of N.
fashion.

I @ D places the resulting
@ Thus D needs to maintain a queue configurations to the

of N's cnflguratlons (Remember back of the queLe.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 25/32

STRUCTURE OF THE SIMULATING DTM

e N is simulated with 2-tape DTM, D
e Note that this is different from the construction in the book!

D

Finite Control

Queue of Configurations

*

Tape 1

L]
= Cc1 / o c2 c3 & ca

Tape 2

Scratch Tape

SLIDES FOR 15-453 LECTURE 13 FALL 2015 26/32

How D SIMULATES N

D

Finite Control

/\ Queue of Configurations

.
wer] of -] @ 1] & I-] = [-]
iaanElNENNEEEEREEEEE

Scratch Tape

e Built into the finite control of D is the knowledge of what
choices of moves N has for each state and input.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 27132

How D SIMULATES N

D
Finite Control
/\ Queue of Configurations
wer || af [-] @ [} o [-] @ [.]
wez (I PIPT Il rT]
Scratch Tape

@ D examines the state and the input symbol of the current
configuration (right after the dotted separator)

@ If the state of the current configuration is the accept state of
N, then D accepts the input and stops simulating N.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 28 /32

How D SIMULATES N

D
Finite Control
/\ Queue of Configurations
.
wer o] af [-] @ [} o [-] & [.]
wer LTI rd]
Scratch Tape

@ D copies k copies of the current configuration to the scratch
tape.

@ D then applies one nondeterministic move of N to each
copy.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 29/32

How D SIMULATES N

D

Finite Control

/\ Queue of Configurations

= [T TTe [Te [
we [T}

Scratch Tape

© D then copies the new configurations from the scratch tape,
back to the end of tape 1 (so they go to the back of the
queue), and then clears the scratch tape.

@ D then returns to the marked current configuration, and
“erases” the mark, and “marks” the next configuration.

@ D returns to step 1), if there is a next configuration.
Otherwise rejects.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 30/32

How D SIMULATES N

e Let m be the maximum number of choices N has for any of
its states.

e Then, after n steps, N can reach at most
14+ m+ m?+ ...+ m" configurations (which is at most nm")
e Thus D has to process at most this many configurations to
simulate n steps of N.

e Thus the simulation can take exponentially more time than
the nondeterministic TM.

e It is not known whether or not this exponential slowdown is
necessary.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 31/32

IMPLICATIONS

COROLLARY

A language is Turing-recognizable if and only if some
nondeterministic TM recognizes it.

COROLLARY

A language is decidable if and only of some nondeterministic
TM decides it.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 32/32

TURING MACHINES-SYNOPSIS

e The most general model of computation
e Computations of a TM are described by a sequence of
configurations.
e Accepting Configuration
e Rejecting Configuration
e Turing-recognizable languages
e TM halts in an accepting configuration if w is in the
language.
e TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.
e Turing-decidable languages
e TM halts in an accepting configuration if w is in the
language.
e TM halts in a rejecting configuration if w is not in the
language.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 2/30

NONDETERMINISTIC TURING MACHINES

e We defined the state transition of the ordinary TM as
§:QxT—=QxTx{L R}

e A nondeterministic TM would proceed computation with
multiple next cnfigurations. ¢ for a nondeterministic TM
would be

§:QxT—>PQ@xT x{L R})
(P(S) is the power set of S.)
e This definition is analogous to NFAs and PDAs.

SLIDES FOR 15-453 LECTURE 14 FALL 2015

3/30

NONDETERMINISTIC TURING MACHINES

e A computation of a Nondeterministic TM is a tree, where
each branch of the tree is looks like a computation of an
ordinary TM.

Deterministic
Computation

Non-Deterministic
Computation

:
:
:
:
:
1

:
3
o
=
o
(1]
11

SLIDES FOR 15-453 LECTURE 14 FALL 2015 4/30

NONDETERMINISTIC TURING MACHINES

e If a single branch reaches the accepting state, the
Nondeterministic TM accepts, even if other branches reach
the rejecting state.

e What is the power of Nondeterministic TMs?

e Is there a language that a Nondeterministic TM can accept
but no deterministic TM can accept?

SLIDES FOR 15-453 LECTURE 14 FALL 2015 5730

NONDETERMINISTIC TURING MACHINES

THEOREM

Every nondeterministic Turing machine has an equivalent
deterministic Turing Machine.

PROOF IDEA

e Timeshare a deterministic TM to different branches of the
nondeterministic computation!

e Try out all branches of the nondeterministic computation
until an accepting configuration is reached on one branch.

e Otherwise the TM goes on forever.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 6/30

NONDETERMINISTIC TURING MACHINES

@ Deterministic TM D simulates the Nondeterministic TM N.

e Some of branches of the N’'s computations may be infinite,
hence its computation tree has some infinite branches.

e If D starts its simulation by following an infinite branch, D
may loop forever even though N’s computation may have a
different branch on which it accepts.

e This is a very similar problem to processor scheduling in
operating systems.

e If you give the CPU to a (buggy) process in an infinite loop,
other processes “starve”.

e In order to avoid this unwanted situation, we want D to
execute all of N’s computations concurrently.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 7130

Configurations of the
nondeterministic
computation

'

Configurations of the { % Initial Configuration
R \ gq,W,Ws.....W,
nondeterministic i \ s GoWiWz .

computation

A rejecting branch -—b\\
Y
‘\

Configurations of the
nondeterministic
computation

X

An accepting branch \

Configurations of the
nondeterministic
computation

_____ w, ‘.’-—' Initial Configuration

Order of simulation

=D

SIMULATING NONDETERMINISTIC
COMPUTATION

ERR— < Initial Configuration
Wy

@ D gets the next
configuration from the

— head of the queue.

@ D creates copies of this
. configuration (as many

Order of simulation

: as needed)
X O 109
v @ On each copy, D
e During simulation, D processes the simulates one of the
configurations of N in a breadth-first nondeterministic moves
fashion. of N.
@ Thus D needs to maintain a queue e D places the resulting
of N’s configurations (Remember configurations to the
aueues?) back of the queue.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 13730

e N is simulated with 2-tape DTM, D
e Note that this is different from the construction in the book!

D
Finite Control
Queue of Configurations
[]
Tape 1 * c1 * c2 * c3 * c4

Tape 2

Scratch Tape

D
Finite Control
/\ Queue of Configurations
.
wer (] of |- @ [T] o [-] & |.]
wer [JTTLTTTTPTTETTT
Scratch Tape

e Built into the finite control of D is the knowledge of what
choices of moves N has for each state and input.

How D SIMULATES N

D
Finite Control
/\ Queue of Configurations
mer [af [-[@ [(] & [-] @ |.]
mer [JTTTTTTTITTITTITT]
Scratch Tape

© D examines the state and the input symbol of the current
configuration (right after the dotted separator)

@ If the state of the current configuration is the accept state of
N, then D accepts the input and stops simulating N.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 16 /30

How D SIMULATES N

D
Finite Control
/\ Queue of Configurations
.
mer (] of [] @ [] o [-] @ [.]
wer [[TTTTTTTTTIITTT]
Scratch Tape

@ D copies k copies of the current configuration to the scratch
tape.

@ D then applies one nondeterministic move of N to each
copy.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 17730

How D SIMULATES N

D

Finite Control

/\ Queue of Configurations

= [T TTe [Te [
we [T}

Scratch Tape

© D then copies the new configurations from the scratch tape,
back to the end of tape 1 (so they go to the back of the
queue), and then clears the scratch tape.

@ D then returns to the marked current configuration, and
“erases” the mark, and “marks” the next configuration.

© D returns to step 1), if there is a next configuration.
Otherwise rejects.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 18730

How D SIMULATES N

e Let m be the maximum number of choices N has for any of
its states.

e Then, after n steps, N can reach at most
14+ m+ m?+ ...+ m" configurations (which is at most nm")

e Thus D has to process at most this many configurations to
simulate n steps of N.

e Thus the simulation can take exponentially more time than
the nondeterministic TM.

e It is not known whether or not this exponential slowdown is
necessary.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 19730

A language is Turing-recognizable if and only if some
nondeterministic TM recognizes it.

A language is decidable if and only of some nondeterministic
TM decides it.

ENUMERATORS

e Remember we noted that some books used the term
recursively enumerable for Turing-recognizable.

e This term arises from a variant of a TM called an
enumerator.

Finite Control —

e TM generates strings one by one.
e Everytime the TM wants to add a string to the list, it sends it
to the printer.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 21/30

ENUMERATORS

e The enumerator E starts with a blank input tape.
e If it does not halt, it may print an infinite list of strings.

e The strings can be enumerated in any order; repetitions are
possible.

e The language of the enumerator is the collection of strings it
eventually prints out.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 22/30

ENUMERATORS

THEOREM

A language is Turing recognizable if and only if some
enumerator enumerates it.

PROOF.
The If-part: If an enumerator E enumerates the language A then
a TM M recognizes A.
M = “On input w
@ Run E. Everytime E outputs a string, compare it with w.
@ If w ever appears in the output of E, accept.”

Clearly M accepts only those strings that appear on E’s list.
L]

SLIDES FOR 15-453 LECTURE 14 FALL 2015 23/30

ENUMERATORS

THEOREM

A language is Turing recognizable if and only if some
enumerator enumerates it.

PROOF.

The Only-If-part: If a TM M recognizes a language A, we can
construct the following enumerator for A. Assume s;, S, Ss, ... IS
a list of possible strings in X*.
E = “Ignore the input

© Repeat the following for i =1,2,3,...

©@ Run M for j steps on each input s1, S5, S3, . . . S;.

@ If any computations accept, print out corresponding s;.”

If M accepts a particular string, it will appear on the list
generated by E (in fact infinitely many times)

SLIDES FOR 15-453 LECTURE 14 FALL 2015 24/30

THE DEFINITION OF ALGORITHM - HISTORY

@ in 1900, Hilbert posed the following problem:

“Given a polynomial of several variables with
integer coefficients, does it have an integer root —
an assignment of integers to variables, that make
the polynomial evaluate to 0”

e For example, 6x3yz2 + 3xy? — x® — 10 has a root at
x=95y=382z=0.

e Hilbert explicitly asked that an algorithm/procedure to be
“devised”. He assumed it existed; somebody needed to find
it!

e 70 years later it was shown that no algorithm exists.

e The intuitive notion of an algorithm may be adequate for
giving algorithms for certain tasks, but was useless for
showing no algorithm exists for a particular task.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 25/30

THE DEFINITION OF ALGORITHM - HISTORY

e In early 20" century, there was no formal definition of an
algorithm.

e In 1936, Alonzo Church and Alan Turing came up with
formalisms to define algorithms. These were shown to be
equivalent, leading to the

CHURCH-TURING THESIS
Intutitive notion of algorithms = Turing Machine Algorithms

SLIDES FOR 15-453 LECTURE 14 FALL 2015 26/30

THE DEFINITION OF AN ALGORITHM

e Let D = {p| pis a polynomial with integral roots}

e Hilbert’s 10" problem in TM terminology is “Is D

decidable?” (No!)

However D is Turing-recognizable!

Consider a simpler version

Dy = {p | pis a polynomial over x with integral roots}

e M; = “The input is polynomial p over x.
@ Evaluate p with x successively setto 0,1,-1,2,-2,3,-3,
@ If at any point, p evaluates to 0, accept”

D, is actually decidable since only a finite number of x
values need to be tested (math!)

D is also recognizable: just try systematically all integer
combinations for all variables.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 271730

DESCRIBING TURING MACHINES AND THEIR
INPUTS

e For the rest of the course we will have a rather standard
way of describing TMs and their inputs.

e The input to TMs have to be strings.

e Every object O that enters a computation will be
represented with an string (O), encoding the object.

e For example if G is a 4 node undirected graph with 4 edges
(O)=(1,2,3,4) ((1,2),(2,3),(3,1),(1,4))
e Then we can define problems over graphs,e.g., as:

A = {(G) | Gis a connected undirected graph}

SLIDES FOR 15-453 LECTURE 14 FALL 2015 28/30

DESCRIBING TURING MACHINES AND THEIR
INPUTS

e A TM for this problem can be given as:
e M ="“On input (G), the encoding of a graph G:
@ Select the first node of G and mark it.
© Repeat 3) until no new nodes are marked
© Foreach node in G, mark i, if there is edge attaching it to
an already marked node.
@ Scan all the nodes in G. If all are marked, the accept, else
reject”

SLIDES FOR 15-453 LECTURE 14 FALL 2015 29/30

OTHER OBJECT ENCODINGS

o DFAs: Represent as a graph with 4 components, qo, F, 6 as
a list of labeled edges.

e TMs: Represent as a string encoding ¢ with blocks of 5
components, e.g., g;, &, g, b, L. Assume that q is always
the start state and g is the final state.

e Individual symbols can even be encoded using only two
symbols e.g. just {0, 1}.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 30/30

TURING MACHINES-SYNOPSIS

e The most general model of computation
e Computations of a TM are described by a sequence of
configurations. (Accepting Configuration, Rejecting
Configuration)
e Turing-recognizable languages
e TM halts in an accepting configuration if w is in the
language.
e TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.
e Turing-decidable languages
e TM halts in an accepting configuration if w is in the
language.
e TM halts in a rejecting configuration if w is not in the
language.
e Nondeterministic TMs are equivalent to Deterministic TMs.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 2/34

DESCRIBING TURING MACHINES AND THEIR
INPUTS

e For the rest of the course we will have a rather standard
way of describing TMs and their inputs.

e The inputs to TMs have to be strings.

e Every object O that enters a computation will be
represented with a string (O), encoding the object.

e For example if G is a 4 node undirected graph with 4 edges
(G) = (1,2,3,4) ((1,2),(2,3),(3,1), (1,4))
e Then we can define problems over graphs,e.g., as:

A ={(G) | Gis a connected undirected graph}

SLIDES FOR 15-453 LECTURE 15 FALL 2014 3/34

DECIDABILITY

e We investigate the power of algorithms to solve problems.
e We discuss certain problems that can be solved
algorithmically and others that can not be.
e Why discuss unsolvability?
e Knowing a problem is unsolvable is useful because
e you realize it must be simplified or altered before you find an
algorithmic solution.

e you gain a better perspective on computation and its
limitations.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 4/34

e Decidable Languages

e Diagonalization

e Halting Problem as a undecidable problem
e Turing-unrecognizable languages.

e (B) represents the encoding of the description of an
automaton (DFA/NFA).

e We need to encode Q,%,6 and F.

ENCODING FINITE AUTOMATA AS STRINGS

Here is one possible encoding scheme:
Encode Q using unary encoding:
e For Q=1{q0,q1,...9n_1}, encode g; using i + 1 0’s, i.e.,
using the string 0/+1.
o We assume that qp is always the start state.
Encode ¥ using unary encoding:
o Forx = {a1, a0, ...am}, encode a; using i 0’s, i.e., using the
string 0'.
With these conventions, all we need to encode is § and F!
Each entry of 9, e.g., 6(q;, @) = g« is encoded as

0*'1 o 10F
~~ ~ =
qi aj Ak

SLIDES FOR 15-453 LECTURE 15 FALL 2014 7134

ENCODING FINITE AUTOMATA AS STRINGS

e The whole § can now be encoded as

00100001000 1 000001001000000 - - - 1 000000100000010

transition, transition, transition;

e F can be encoded just as a list of the encodings of all the
final states. For example, if states 2 and 4 are the final
states, F could be encoded as

000 1 00000
~N =
Q2 Q4

e The whole DFA would be encoded by
1100100010000100000 - - - 011 0000000010000000 11

Vv Vv
encoding of the transitions encoding of the final states

SLIDES FOR 15-453 LECTURE 15 FALL 2014 8/34

ENCODING FINITE AUTOMATA AS STRINGS

e (B) representing the encoding of the description of an
automaton (DFA/NFA) would be something like

(B) =1100100010000100000 - --0 11 0000000010000000 11

vV Vv
encoding of the transitions encoding of the final states

e In fact, the description of all DFAs could be described by a
regular expression like

11(071071071)*1(0"1) "1

e Similarly strings over ¥ can be encoded with (the same
convention)

SLIDES FOR 15-453 LECTURE 15 FALL 2014 91/34

ENCODING FINITE AUTOMATA AS STRINGS

e (B, w) represents the encoding of a machine followed by an
input string, in the manner above (with a suitable separator
between (B) and (w).

e Now we can describe our problems over languages and
automata as problems over strings (representing automata
and languages).

SLIDES FOR 15-453 LECTURE 15 FALL 2014 10/ 34

e Does B accept w?
e Is L(B) empty?
e Is L(A) = L(B)?

THE ACCEPTANCE PROBLEM FOR DFAS

THEOREM 4.1
Apma = {(B, w) | Bis a DFA that accepts input string w} is a
decidable language.

PROOF
e Simulate with a two-tape TM.

e One tape has (B, w)
e The other tape is a work tape that keeps track of which state
of B the simulation is in.
e M ="Oninput (B, w)
@ Simulate B on input w
@ If the simulation ends in an accept state of B, accept; if it
ends in a nonaccepting state, reject”

SLIDES FOR 15-453 LECTURE 15 FALL 2014 12734

THE ACCEPTANCE PROBLEM FOR NFAS

THEOREM 4.2
Anea = {(B, w) | Bis a NFA that accepts input string w} is a
decidable language.

PROOF
e Convert NFA to DFA and use Theorem 4.1
e N ="“Oninput (B, w) where B is an NFA
@ Convert NFA B to an equivalent DFA C, using the
determinization procedure.
© Run TM M in Thm 4.1 on input (C, w)
© If M accepts accept; otherwise reject”

SLIDES FOR 15-453 LECTURE 15 FALL 2014

13734

THE GENERATION PROBLEM FOR REGULAR
EXPRESSIONS

THEOREM 4.3

Agex = {(R, w) | R is a regular exp. that generates string w} is
a decidable language.

PROOF
e Note R is already a string!!
e Convert R to an NFA and use Theorem 4.2
e P ="Oninput (R, w) where R is a regular expression

© Convert R to an equivalent NFA A, using the Regular
Expression-to-NFA procedure

©@ Run TM N in Thm 4.2 on input (A, w)

@ If N accepts accept; otherwise reject”

SLIDES FOR 15-453 LECTURE 15 FALL 2014 14734

THE EMPTINESS PROBLEM FOR DFAS

THEOREM 4.4

Epra = {(A) | Ais a DFA and L(A) = ¢} is a decidable
language.

PROOF
e Use the DFS algorithm to mark the states of DFA
e T ="“Oninput (A) where Ais a DFA.

Q@ Mark the start state of A
© Repeat until no new states get marked.

e Mark any state that has a transition coming into it from any
state already marked.

© If no final state is marked, accept; otherwise reject”

SLIDES FOR 15-453 LECTURE 15 FALL 2014 15734

THE EQUIVALENCE PROBLEM FOR DFAS

THEOREM 4.5

EQpra = {(A,B) | Aand B are DFAs and L(A) = L(B)} is a
decidable language.

PROOF
e Construct the machine for

L(C) = (L(A) N L(B)) U (L(A) N L(B)) and check if L(C) =

e T ="“Oninput (A, B) where A and B are DFAs.

@ Construct the DFA for L(C) as described above.
© Run TM T of Theorem 4.4 on input (C).
© If T accepts, accept; otherwise reject”

SLIDES FOR 15-453 LECTURE 15 FALL 2014

o.

16 /34

e Does grammar G generate w?
e Is L(G) empty?

THE GENERATION PROBLEM FOR CFGS

THEOREM 4.7
Acre = {(G, w) | Gis a CFG that generates string w} is a
decidable language.

PROOF
e Convert G to Chomsky Normal Form and use the CYK
algorithm.
e C="Oninput (G,w) where Gis a CFG
© Convert G to an equivalent grammar in CNF

© Run CYK algorithm on w of length n
@ If S €V, , accept, otherwise reject.”

SLIDES FOR 15-453 LECTURE 15 FALL 2014

18734

THE GENERATION PROBLEM FOR CFGS

ALTERNATIVE PROOF

e Convert G to Chomsky Normal Form and check all
derivations up to a certain length (Why!)
e S="Oninput (G, w) where Gis a CFG
@ Convert G to an equivalent grammar in CNF
© List all derivations with 2n — 1 steps where n is the length of
w. If n = 0 list all derivations of length 1.

© If any of these strings generated is equal to w, accept;
otherwise reject”

@ This works because every derivation using a CFG in CNF either
increase the length of the sentential form by 1 (using a rule like
A — BC or leaves it the same (using a rule like A — a)

@ Obviously this is not very efficient as there may be exponentially
many strings of length up to 2n — 1.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 19734

THE EMPTINESS PROBLEM FOR CFGS

THEOREM 4.8

Ecre = {(G) | Gisa CFG and L(G) = ¢} is a decidable
language.

PROOF
e Mark variables of G systematically if they can generate
terminal strings, and check if S is unmarked.
e R ="Oninput (G) where Gis a CFG.

© Mark all terminal symbols G
© Repeat until no new variable get marked.

e Mark any variable A such that Ghasarule A— Uy Us - -- Uy
and Uy, Us, ... Uy are already marked.

© If start symbol is NOT marked, accept; otherwise reject.”

SLIDES FOR 15-453 LECTURE 15 FALL 2014 20/ 34

THE EQUIVALENCE PROBLEM FOR CFGS

EQcrc = {(G,H) | Gand H are CFGs and L(G) = L(H)} |

e It turns out that EQpga is not a decidable language.

e The construction for DFAs does not work because CFLs are
NQOT closed under intersection and complementation.

@ Proof comes later.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 21/34

DECIDABILITY OF CFLS

THEOREM 4.9
Every context free language is decidable.

PROOF
e Design a TM Mg that has G built into it and use the result of
Acra-
@ Mg = “On input w
©@ Run TM S (from Theorem 4.7) on input (G, w)
@ If S accepts, accept, otherwise reject.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 22/34

ACCEPTANCE PROBLEM FOR TMS

THEOREM 4.11
Am = {(M,w) | MisaTM and M accepts w} is undecidable.

e Note that Ay is Turing-recognizable. Thus this theorem
when proved, shows that recognizers are more powerful
than deciders.

e We can encode TMs with strings just like we did for DFA’s
(How?)

SLIDES FOR 15-453 LECTURE 15 FALL 2014 23/34

ACCEPTANCE PROBLEM FOR TMS

e The TM U recognizes Ay
e U="0Oninput (M, w) where Mis a TM and w is a string:

Q@ Simulate M on w
@ If M ever enters its accepts state, accept; if M ever enters its
reject state, reject.

e Note that if M loops on w, then U loops on (M, w), which is
why it is NOT a decider!

e U can not detect that M halts on w.
e Ay is also known as the Halting Problem

e U is known as the Universal Turing Machine because it can
simulate every TM (including itself!)

SLIDES FOR 15-453 LECTURE 15 FALL 2014 24/34

THE DIAGONALIZATION METHOD

SOME BASIC DEFINITIONS

e Let A and B be any two sets (not necessarily finite) and f be
a function from A to B.

e fis one-to-one if f(a) # f(b) whenever a # b.

e fis onto if for every b € B there is an a € A such that
f(a) = b.

e We say A and B are the same size if there is a one-to-one
and onto function f: A — B.

e Such a function is called a correspondence for pairing A
and B.

e Every element of A maps to a unique element of B
e Each element of B has a unique element of A mapping to it.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 25/34

THE DIAGONALIZATION METHOD

e Let \V be the set of natural numbers {1,2,...} and let £ be
the set of even numbers {2,4,...}.

e f(n) =2nis a correspondence between N and £.

e Hence, NV and £ have the same size (though £ C N).

e A set Ais countable if it is either finite or has the same size
as V.

e Q={"|mne N}is countable!

e Z the set of integers is countable:

g neven
f(n) =

—21 nodd

SLIDES FOR 15-453 LECTURE 15 FALL 2014 26/34

THE DIAGONALIZATION METHOD

THEOREM
‘R is uncountable

PROOF.
@ Assume f exists and every number in R is n f(n)
listed. 1 3.14159. ..
@ Assume x € R is a real number such that g 58:;;;; .
x differs from the j% number in the j A 0'50000' "
decimal digit. . e
o If x is listed at some position k, then it x:: 4527 :
. . th P . . . DR
differs from itself at k™ position; otherwise Al e

the premise does not hold
such, can not

e f does not exist be on this list.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 27134

DIAGONALIZATION OVER LANGUAGES

COROLLARY
Some languages are not Turing-recognizable.

PROOF

e For any alphabet ¥, ¥* is countable. Order strings in ©* by length
and then alphanumerically, so ©* = {s¢, $p,...,Sj,...}

@ The set of all TMs is a countable language.

e Each TM M corresponds to a string (M).
e Generate a list of strings and remove any strings that do not
represent a TM to get a list of TMs.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 28/34

DIAGONALIZATION OVER LANGUAGES

PROOF (CONTINUED)

@ The set of infinite binary sequences, B, is uncountable. (Exactly

the same proof we gave for uncountability of R)

o Let £ be the set of all languages over %.

@ For each language A € L there is unique infinite binary sequence

Xa
o The i bitin X, is 1if s; € A, 0 otherwise.
>*={ ¢ O, 1, 00, 01, 10, 11, 000, 001,

A={ 0, 00, 01, 000, 001,
Xap={ 0 1 0 1 1 0 0 1 1

e

SLIDES FOR 15-453 LECTURE 15

FALL 2014

29/34

@ The function f: £L — B is a correspondence. Thus L is
uncountable.

@ So, there are languages that can not be recognized by some TM.
There are not enough TMs to go around.

THE HALTING PROBLEM IS UNDECIDABLE

THEOREM

Am = {(M,w) | M isa TM and M accepts w}, is undecidable.

PROOF
e We assume A7y is decidable and obtain a contradiction.
e Suppose H decides A7y

| accept it M accepts w
H(M, w)) = { reject it M does not accept w

SLIDES FOR 15-453 LECTURE 15 FALL 2014

31/34

THE HALTING PROBLEM IS UNDECIDABLE

PROOF (CONTINUED)

e We now construct a new TM D
D = “On input (M), where M is a TM

@ Run Hon input (M, (M)).

© |If H accepts, reject, if H rejects, accept’
e So .

D((M)) = accept if M does not accept (M)
| reject if M accepts (M)

e When D runs on itself we get

D((D)) = accept if D does not accept (D)
| reject if D accepts (D)

@ Neither D nor H can exist.

SLIDES FOR 15-453 LECTURE 15 FALL 2014

32/34

WHAT HAPPENED TO DIAGONALIZATION?

Consider the behaviour of all possible deciders:

(D)
(M) (M) — (Ms) (M) - (M)
M, | accept reject accept reject --- accept
M, | accept accept accept accept --- accept
Ms | reject reject reject reject --- reject
M, | accept accept reject reject --- accept
D= M; | reject reject accept accept --- ?

e D computes the opposite of the diagonal entries!

SLIDES FOR 15-453 LECTURE 15 FALL 2014 33/34

A TURING UNRECOGNIZABLE LANGUAGE

e A language is co-Turing-recognizable if it is the complement
of a Turing-recognizable language.

e A language is decidable if it is Turing-recognizable and
co-Turing-recognizable.

e Arpy is not Turing recognizable.

e We know A7y is Turing-recognizable.

o If A7y were also Turing-recognizable, A7y, would have to be
decidable.

e We know Ary is not decidable.

o Aqy must not be Turing-recognizable.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 34/34

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

REDUCIBILITY

SLIDES FOR 15-453 LECTURE 16 FALL 2015 1/20

THE LANDSCAPE OF THE CHOMSKY HIERARCHY

SLIDES FOR 15-453 LECTURE 16 FALL 2015

REDUCIBILITY-THE FUNDAMENTAL IDEAS

e A reduction is a way of converting one problem to another problem, so
that the solution to the second problem can be used to solve the first
problem.

e Finding the area of a rectangle, reduces to measuring its width and height
e Solving a set of linear equations, reduces to inverting a matrix.

e Reducibility involves two problems A and B.
e If Areduces to B, you can use a solution to B to solve A

e When A s reducible to B, solving A can not be “harder” than solving B.
e Two very important observations:
e If Ais reducible to B and B is decidable, then A is also decidable.

o If you want to show a problem (A) is decidable, find a decidable problem (B), and
see if you can reduce Ato B.

e If Ais undecidable and reducible to B, then B is undecidable.

e If you want to show a problem (B) is undecidable, find an undecidable problem
(A), and see if you can reduce Ato B.

SLIDES FOR 15-453 LECTURE 16

FALL 2015 3/20

PROVING UNDECIDABILITY VIA REDUCTIONS

HALT7y = {(M,w) | Mis a TM and M halts on input w} is undecidable.

e Use the idea that “ If A is undecidable and reducible to B, then B is
undecidable.”
@ Suppose R decides HALTTy. We construct S to decide A7y.
e S="Oninput (M, w)
@ Run Roninput (M, w).
© If R rejects reject.
© If R accepts, simulate M on w until it halts.
© If M has accepted, accept; If M has rejected, reject.”
e So if R exists, then | can build S which can decide A7y (which we already
know is undecidable.)

@ Since Aqy is reduced to HALTty, HALTy, is undecidable.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 4/20

PROVING UNDECIDABILITY VIA REDUCTIONS

Em = {{(M) | MisaTM and L(M) = ¢} is undecidable.

e Suppose R decides Ery. We try to construct S to decide Amy using R.
o Note that S takes (M, w) as input.

e Oneideais to run R on (M) to check if M accepts some string or not —
but that that does not tell us if M accepts w.

o Instead we modify M to M;. M rejects all strings other than w but on w,
it does what M does.

o Now we can check if L(M;) = .

SLIDES FOR 15-453 LECTURE 16 FALL 2015

PROVING UNDECIDABILITY VIA REDUCTIONS

Em = {{(M) | MisaTM and L(M) = ¢} is undecidable.

e For any w define M; as
M; = “On input x:
Q If x # w, reject.
@ If x = w, run M on input w and accept if M does.”

o Note that M; either accepts w only or nothing!

SLIDES FOR 15-453 LECTURE 16 FALL 2015 6/20

PROVING UNDECIDABILITY VIA REDUCTIONS

PROOF CONTINUED

e Assume R decides E7y

e S defines below uses R to decide on Ary
S =“On input (M, w)
@ Use (M, w) to construct M; above.
© Run Ron input (My)
@ If R accepts, reject, if R rejects, accept.”
e So, if R decides My is empty,
e then M does NOT accept w,
e else M accepts w.

o If R decides Ery then S decides A7y — Contradiction.

SLIDES FOR 15-453 LECTURE 16 FALL 2015

TESTING FOR REGULARITY (OR OTHER PROPERTIES)

e Can we find out if a language accepted by a Turing machine M is
accepted by a simpler computational model?
e Is the language of a TM actually a regular language? (REGULAR)

e Is the language of a TM actually a CFL? (CFL7u)
e Does the language of a TM have an “interesting” property?

o Rice’s Theorem.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 8/20

TESTING FOR REGULARITY

REGULARmy = {{(M) | Mis a TM and L(M) is a regular language } is
undecidable. J

PROOF IDEA

o We assume REGULARTy is decidable by a TM R and use this
assumption to construct a TM S that decides Ary.

e The basic idea is for S to take as input (M) and modify M into M> so that

the resulting TM recognizes a regular language if and only if M accepts
w.

o M,

e accepts {0"1" | n > 0} if M does not accept w,
e but recognizes X* if M accepts w.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 9/20

TESTING FOR REGULARITY

PROOF IDEA —CONTINUED

e M, accepts {017 | n > 0} if M does not accept w, but recognizes X* if M
accepts w.
e What does M- look like?
e M, ="On input x
@ If x has the form 071", accept.

© If x does not have this form, run M on input w and accept if M accepts w.”
(w is set in an outer scope!)

e All strings x (that is X*) are accepted if M accepts w.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 10/20

TESTING FOR REGULARITY

<M, w>

TN (o

Isx=a"h"™? M,
d Y
S Build Mz = Run M onw
M accepts w?
Accept Reject
<M,>
v v
Accept Reject
R
IsL(M,) Regular?

SoL(M,) is = Z* if M accepts w
L(M,) is = {a"b"} otherwise

Yes

No

M accepts w

M rejects w

SLIDES FOR

15-453 LECTURE 16

FALL 2015 11/20

TESTING FOR REGULARITY

e S="Oninput (M, w), where M is a TM and w is a string:

@ Construct the following TM M.
Q@ M, =“Oninput x
1. If x has the form 0717, accept.
2. If x does not have this form, run M on input w and accept if M accepts w.”

@ Run Ron (M)
Q If R accepts, accept, if R rejects, reject.”

e So, R will say M, is a regular language, if M accepts w.
@ Ssays “M accepts w” if R decides M- is regular — Contradiction!

SLIDES FOR 15-453 LECTURE 16 FALL 2015

TESTING FOR LANGUAGE EQUALITY

EQm = {(My, Mo) | My and M, are TMs and L(M;) = L(M>)} is undecidable.

PROOF IDEA

o We reduce E7y (the emptiness problem) to this problem.

o If one of the languages is empty, determining equality is the same as
determining if the second language is empty!

o In fact, the E7y is a special case of the EQry, problem!!

SLIDES FOR 15-453 LECTURE 16 FALL 2015 13/20

TESTING FOR LANGUAGE EQUALITY

EQm = {(My, Mo) | My and M, are TMs and L(M;) = L(M>)} is undecidable.

e Assume R decides EQ7y
e S ="Oninput (M) where M is a TM:

@ Run Ron input (M, M;) where My is a TM that rejects all inputs.
@ If R accepts, accept; if R rejects reject”

e Thus, if R decides EQ7y, then S decides E7y
e But Eqy is undecidable, so EQmy, must be undecidable.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 14/20

REDUCTIONS VIA COMPUTATION HISTORIES

e An accepting computation history for a TM is a sequence of
configurations
C1aC27~--7C/
such that

e C; is the start configuration for input w
e C;is an accepting configuration, and
e each C; follows legally from the preceding configuration.

e A rejecting computation history is defined similarly.

e Computation histories are finite sequences — if M does not halt on w,
there is no computation history.

e Deterministic v.s nondeterministic computation histories.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 15/20

LINEAR BOUNDED AUTOMATON

e Suppose we cripple a TM so that the head never moves outside the
boundaries of the input string.

e Such a TM is called a linear bounded automaton (LBA)
o Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with g states, g symbols in the tape alphabet. There are
exactly gng” distinct configurations for a tape of length n.

PROOF.

e The machine can be in one of g states.
e The head can be on one of the n cells.
o At most g” distinct strings can occur on the tape.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 16 /20

DECIDABILITY OF LBA PROBLEMS

Aiga = {(M,w) | M is an LBA that accepts string w} is decidable.

PROOF IDEA

e We simulate LBA M on w with a TM L (which is NOT an LBA!)
e If during simulation M accepts or rejects, we accept or reject accordingly.
e What happens if the LBA M loops?
e Can we detect if it loops?
@ M has a finite number of configurations.

o If it repeats any configuration during simulation, it is in a loop.
e If Mis in a loop, we will know this after a finite number of steps.
e So if the LBA M has not halted by then, it is looping.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 17/20

DECIDABILITY OF LBA PROBLEMS

Aiga = {(M,w) | M is an LBA that accepts string w} is decidable.

e The following TM decides A;ga-
e L ="Oninput (M, w)
@ Simulate M on for gng” steps or until it halts.

@ If M has halted, accept if it has accepted, and reject if it has rejected. If it
has NOT halted, reject.”

e LBAs and TMs differ in one important way. A; g4 is decidable.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 18/20

COMPUTATION OVER “COMPUTATION HISTORIES”

o Now for a really wild and crazy idea!
o Consider an accepting computation history of a TM M, Cy, Cs, ..., C;
o Note that each C; is a string.
e Consider the string
#--#

N S T N —
Cy Co Cs G
e The set of all valid accepting histories is also a language!!

e This string has length m and an LBA B can check if this is a valid
computation history for a TM M accepting w.
o Checkif Cy = gqowiwa - - - Wy
o Check if C; = - - Gaccept - - -
e Check if each Ci.1 follows from C; legally.
e Note that B is not constructed for the purpose of running it on any input!

o If L(B) # ¢ then M accepts w

SLIDES FOR 15-453 LECTURE 16 FALL 2015 19/20

DECIDABILITY OF LBA PROBLEMS

Eiga = {(M) | Mis an LBA and L(M) = ¢} is undecidable.

e Suppose TM R decides E;ga, we can construct a TM S which decides
Amm
e S ="“Oninput (M, w), where Mis a TM and w is a string

@ Construct LBA B from M and w as described earlier.
@ Run Ron (B).
© If R rejects, accept; if R accepts, reject.”

e Soif R says L(B) = ¢, the M does NOT accept w.
e If R says L(B) # ¢, the M accepts w.
e But, A7y is undecidable — contradiction.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 20/20

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

POST CORRESPONDENCE PROBLEM

Slides for 15-453 Lecture 17 Fall 2015 1/28

REVIEW OF DECIDABILITY AND REDUCTIONS

Slides for 15-453 Lecture 17 Fall 2015 2/28

REDUCIBILITY

e A reduction is a way of converting one problem to another problem, so
that the solution to the second problem can be used to solve the first
problem.

e Finding the area of a rectangle, reduces to measuring its width and height
e Solving a set of linear equations, reduces to inverting a matrix.

e Reducibility involves two problems A and B.
e If Areduces to B, you can use a solution to B to solve A
e When A s reducible to B, solving A can not be “harder” than solving B.
e If Ais reducible to B and B is decidable, then A is also decidable.
e If Ais undecidable and reducible to B, then B is undecidable.

Slides for 15-453 Lecture 17 Fall 2015 3/28

PROVING UNDECIDABILITY VIA REDUCTIONS

Em = {(M) | MisaTM and L(M) = ¢} is undecidable.

e Suppose R decides Ery. We try to construct S to decide Amy using R.
o Note that S takes (M, w) as input.

e Oneideais to run R on (M) to check if M accepts some string or not —
but that that does not tell us if M accepts w.

o Instead we modify M to M;. M; rejects all strings other than w but on w,
it does what M does.

o Now we can check if L(M;) = .

Slides for 15-453 Lecture 17 Fall 2015 4/28

PROVING UNDECIDABILITY VIA REDUCTIONS

Em = {(M) | MisaTM and L(M) = ¢} is undecidable.

e For any w define M, as
M; = “On input x:
Q If x # w, reject.
@ If x = w, run M on input w and accept if M does.”

o Note that M; either accepts w only or nothing!

Slides for 15-453 Lecture 17 Fall 2015 5/28

PROVING UNDECIDABILITY VIA REDUCTIONS

PROOF CONTINUED

e Assume R decides E7y

e S defines below uses R to decide on Ary
S =“On input (M, w)
@ Use (M, w) to construct M; above.
© Run R on input (M;)
© |If R accepts, reject, if R rejects, accept.
e So, if R decides L(M;) is empty,
e then M does NOT accept w,
e else M accepts w.

o If R decides Ery then S decides A7y — Contradiction.

Slides for 15-453 Lecture 17 Fall 2015 6/28

REDUCTIONS VIA COMPUTATION HISTORIES

e An accepting computation history for a TM is a sequence of
configurations
C1,CQ,...,C/
such that

e C; is the start configuration for input w
e C;is an accepting configuration, and
e each C; follows legally from the preceding configuration.

e A rejecting computation history is defined similarly.

e Computation histories are finite sequences — if M does not halt on M,
there is no computation history.

e Deterministic v.s nondeterministic computation histories.

Slides for 15-453 Lecture 17 Fall 2015 7/28

LINEAR BOUNDED AUTOMATON

e Suppose we cripple a TM so that the head never moves outside the
boundaries of the input string.

e Such a TMis called a linear bounded automaton (LBA)

o Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with g states, g symbols in the tape alphabet. There are
exactly gng” distinct configurations for a tape of length n.

vy

PROOF.

e The machine can be in one of g states.
e The head can be on one of the n cells.
e At most g” distinct strings can occur on the tape.

Aiga = {(M,w) | M is an LBA that accepts string w} is decidable.

Slides for 15-453 Lecture 17 Fall 2015 8/28

COMPUTATION OVER “COMPUTATION HISTORIES”

o Now for a really wild and crazy idea!

e Consider an accepting computation history of a TM M, Cy, Cs, ..., C;
o Note that each C; is a string.

e Consider the string

7. 7* H# #e# #

Cy Co Cs G
e The set of all valid accepting histories is also a language!!

e This string has length m and an LBA B can check if this is a valid
computation history for a TM M accepting w.
e Checkif Ci = qowiws - - - wp
e Checkif Cj="--- Qaccept * * -
e Check if each Cj.1 follows from C; legally.

e Note that B is not constructed for the purpose of running it on any input!
o If L(B) # ¢ then M accepts w

Slides for 15-453 Lecture 17 Fall 2015 9/28

POST CORRESPONDENCE PROBLEM

e Undecidability is not just confined to problems concerning automata and
languages.

e There are other “natural” problems which can be proved undecidable.

e The Post correspondence problem (PCP) is a tiling problem over strings.
e Atile or a domino contains two strings, t and b; e.g., [£].

@ Suppose we have dominos

el [[

e A match is a list of these dominos so that when concatenated the top and
the bottom strings are identical. For example,

a|[b]fcal[a]labc| _ abcaaabc
ab||cal| allab|| ¢ | abcaaabc

e The set of dominos { [?f} [”} [%‘{f} , } does not have a solution.

a

Slides for 15-453 Lecture 17 Fall 2015 10/28

POST CORRESPONDENCE PROBLEM

AN INSTANCE OF THE PCP

A PCP instance over % is a finite collection P of dominos

(&) 4]

where forall i,1 < i < Kk, t;, bj € *.

y

MATCH
Given a PCP instance P, a match is a nonempty sequence

I,y ooyl

of numbers from {1,2,..., k} (with repetition) such that
tit, - ti, = b by, - - by,

Slides for 15-453 Lecture 17 Fall 2015 11/28

POST CORRESPONDENCE PROBLEM

Does a given PCP instance P have a match? I

LANGUAGE FORMULATION:
PCP = {(P) | P is a PCP instance and it has a match}

PCP is undecidable. I

Proof: By reduction using computation histories. If PCP is decidable then so
is Ary. That is, if PCP has a match, then M accepts w.

Slides for 15-453 Lecture 17 Fall 2015 12/28

PCP — THE STRUCTURE OF THE UNDECIDABILITY

PROOF

The reduction works in two steps:
@ We reduce Ay to Modified PCP (MPCP).
@ We reduce MPCP to PCP.

MPCP AS A LANGUAGE PROBLEM

MPCP = {(P) | P is a PCP instance and it has a match which starts with
index 1}

@ So the solution to MPCP starts with the domino [g} . We later remove

this restriction in the second part of the proof.

e We also assume that the decider for M never moves its head to the left of
the input w.

Slides for 15-453 Lecture 17 Fall 2015 13/28

PCP — THE PROOF

For input (M, w) of Ary, construct an MPCP instance such that M accepts w
iff P’ has a match starting with domino 1 J

e The first part of the proof proceeds in 7 stages where we add different
types of dominos to P’ depending on the TM
M = (Q,%,T,6,qo, Gaccept: Qreject)-

e Using the dominos, we try to construct an accepting computation history
for M accepting w.

Slides for 15-453 Lecture 17 Fall 2015 14/28

PCP — ADDING THE RIGHT KIND OF DOMINOS

@ The first domino kicks of the computation history

5] - 7wt

bi] [#gowiwz - W]’

@ Handle right moving transitions. For every a,b € I’ and every q,r € Q
where g # Qreject

br

© Handle left moving transitions. For every a,b,c € I and every q,r € Q
where q 3’é Qreject

it 5(g, @) = (r, b, R), put [qa] into P’

it 6(q,a) = (r, b, L), put [Cq;']mto P

Q Forevery acT put {]lnto =
|
@ Put {#] and [u#] into P'.

Slides for 15-453 Lecture 17 Fall 2015 15/28

PCP - HOW THE DOMINOS WORK

e Letusassumel ={0,1,2,u},w = 0100 and that 6(qo,0) = (g7,2, R)
e Part 1 places the first domino and the match begins

g 0 1 0 0
@ 0 1 0 0 # 2 g, 1 0 0

e Part 2 places the domino {q‘"’}

7

29
e Part 4 places the dominos [8} {]} [g] and [H} into P’ so we can
extend the match.
e Part 5 puts in the domino {f}

e What exactly is going on ?

o We force the bottom string to create a copy on the top which is forced to
generate the next configuration on the bottom — We are simulating M on
w!

e The process continues until M reaches a halting state and we then pad
the upper string.

Slides for 15-453 Lecture 17 Fall 2015 16/28

PCP — MORE DOMINO TYPES

Q Foreveryacer,

put [aqaccept] and |:qaccepta] into P’
Qaccept Jaccept

These dominos “clean-up” by adding any symbols to the top string while
adding just the state symbol to the lower string.

Just before these apply the upper and lower strings are like
L #
o e #21 qacceptoz#

After using these dominos, we end up with
R 4
s #qaccept #

@ Finally we add the domino

qaccept##
#

to complete the match.
Slides for 15-453 Lecture 17 Fall 2015 17 /28

PCP PROOF — SUMMARY OF PART 1

e This concludes the construction of P’.

e Thus if M accepts w, the set of MPCP dominos constructed have a
solution to the MPCP problem.

e But not yet to the PCP problem.

Slides for 15-453 Lecture 17 Fall 2015 18/28

PCP PROOF — PART 2

e Suppose we have the MPCP instance

{58 3]

e We let P be the collection

([) i)

e The only domino that could possibly start a match is the first one!
e The last domino just adds the missing = at the end of the match.

PCP is undecidable! l

Slides for 15-453 Lecture 17 Fall 2015 19/28

SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want to show
that the language B is also undecidable. J

@ Assume that we have a decider Mg for B.
© Using Mg we construct a decider My for the language A:

Mp = “On input (/)
1. Algorithmically construct an input (/g) for Mg, such that

a) Either b) or
If (Ia) € Athen (Ig) € B If (Is) € Athen (Ig) Z B
If (Ia) ¢ Athen (Ig) ¢ B J If (Ia) ¢ Athen (Ig) € B J

2. Run the decider Mg on (/g) for Mg
Case a): My accepts if Mg accepts, and rejects if Mg rejects
Case b): M, rejects if Mg accepts, and accepts if Mg reject.

@ We know M, can not exist so Mg can not exist.
© B s undecidable.

Slides for 15-453 Lecture 17 Fall 2015 20/28

COMPUTABLE FUNCTIONS

Turing Machines can also compute function f : ¥* — ¥*.

COMPUTABLE FUNCTION
A function f: ©* — ¥* is a computable function if and only if there exists a
TM My, which on any given input w € *

e always halts, and
e leaves just f(w) on its tape.

Examples:
o Letf(w) % ww be a function. Then f is computable.

o Let f((ny,n2)) def (ny where ny and n, are integers and n = ny * no. Then

f is computable.

Slides for 15-453 Lecture 17 Fall 2015 21/28

MAPPING REDUCIBILITY

Let A, B C Y*. We say that language A is mapping reducible to language B,
written A <, B, if and only if

@ There is a computable function f : ¥* — ¥* such that
@ Forevery w e X*, w € Aif and only if f(w) € B.
The function f is called a reduction of Ato B.

If A<, B and B is decidable, then A is decidable. \

Let M be a decider for B and f be a mapping from Ato B. Then N decides A.
N = “On input w

@ Compute f(w)
© Run M on input f(w) and output whatever M outputs.”

If A <, Band Ais undecidable, then B is undecidable.

Slides for 15-453 Lecture 17 Fall 2015 22/28

MAPPING REDUCIBILITY
Am <m HALT 1y \

Construct a computable function f which maps (M, w) to (M’, w’) such that

(M, w) € Any if and only if (M', w') € HALTy

M; = “On input (M, w)
1. Construct the following machine M’:
M’ = “On input x
1. Run Mon x.

2. If M accepts accept
3. If M rejects enter a loop.”

2. Output (M', w).

O

v

Slides for 15-453 Lecture 17 Fall 2015 23/28

MORE EXAMPLES OF MAPPING REDUCIBILITY

o Earlier we showed

° ATM <m MPCP
e MPCP <, PCP

o In Theorem 5.4 we showed E7y <, EQmy. The reduction f maps from
(M) to the output (M, My) where M; is the machine that rejects all inputs.

If A<, Band B is Turing-recognizable, then A is Turing-recognizable. I
PROOF
Essentially the same as the previous proof.

Slides for 15-453 Lecture 17 Fall 2015 24/28

SUMMARY OF MAPPING REDUCIBILITY RESULTS

SUMMARY OF THEOREMS

Assume that A <, B. Then
@ If Bis decidable then A is decidable.
@ If Ais undecidable then B is undecidable.
@ If Bis Turing-recognizable then A is Turing-recognizable.
@ If Ais not Turing-recognizable then B is not Turing-recognizable.
Q@ A<, B

Useful observation:
e Suppose you can show A7y <m B
e This means Ay <m B
e Since Aqy is Turing-unrecognizable then B is Turing-unrecognizable.

Slides for 15-453 Lecture 17 Fall 2015 25/28

EXAMPLE OF USE

THEOREM 5.30

EQm = {(M1, M2) | My and M, are TMs and L(M;) = L(Mz)} is neither Turing
recognizable nor co-Turing-recognizable.

y

PROOF IDEA
We show
o A <m EQru
o Ay <m EQm
e These then imply the theorem.

Slides for 15-453 Lecture 17 Fall 2015 26/28

EXAMPLE OF USE

PROOF FOR A7y <m EQ7y

We show A7y <m EQmy (and hence Ary <, EQmy) with the following f:

F ="“On input (M, w) where M is a TM and w is a string:
1. Construct the following two machines M; and M-
M; = “On any input:
1. Reject”
M, = “On any input:
1. Run M on w. If it accepts, accept.”
2. Output (M, Mb)”

e M; accepts nothing.
o If M accepts w then M. accepts everything. So M; and M, are not
equivalent.
o |f M does not accept w then M, accepts nothing. So M; and M. are
equivalent.

e So Ary <m EQmy (and hence Amy <m EQrw)

vy

Slides for 15-453 Lecture 17 Fall 2015 27/28

EXAMPLE OF USE

PROOF FOR A7y <m EQ7y

We show A7y <m EQy (and hence Ary <, EQmy) with the following g:

G = “On input (M, w) where M is a TM and w is a string:

1. Construct the following two machines M; and M-
M; = “On any input:

1. Accept’
M, = “On any input:
1. Run M on w. If it accepts, accept.”
2. Output (My, Mp)”

e M; accepts everything.

o If M accepts w then M. accepts everything. So M; and M, are equivalent.

o |f M does not accept w then M» accepts nothing. So M; and M. are not
equivalent.

o So Ay <m EQmy (and hence Aty <m EQmu)

4

Slides for 15-453 Lecture 17 Fall 2015 28/28

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

RICE’S THEOREM — SELF-REPRODUCING TMS

Slides for 15-453 Lecture 18 Fall 2015 1/1

RICE’S THEOREM — MOTIVATION

Consider the following undecidable languages:
Emmy={(M) | MisaTMand L(M) = ¢}

TOTALty = {(M) | MisaTM and L(M) = X*}
REGULAR7y = {(M) | Mis a TM and L(M) is regular}
L0101010 = {<M> ‘ MisaTM and 0101010 € L(M)}

What do these questions about languages have in common, so that
they are all undecidable?
e They ask whether the language defined by a TM has a certain

property.
e The propertles are nontr|V|aI

We can generalize the undecidability proofs into a meta-theorem that
works for all languages that talk about nontrivial properties of Turing
machine languages.

Slides for 15-453 Lecture 18 Fall 2015 2/1

WHAT IS A NONTRIVIAL PROPERTY?

DEFINITION (PROPERTY)

A language P is called a property of Turing machine languages iff
e PC{(M)|MisaTM}

e For any two TMs M, My, if L(My) = L(My) then
<M1> € P iff <M2> e P.

DEFINITION (NONTRIVIAL PROPERTY)

A language P which is a property of Turing machine languages is
nontrivial iff:

e Thereis a TM M; such that (My) € P, and
e There is a TM M, such that (My) & P.

e All these languages are nontrivial
o Ery={(M)|MisaTM and L(M) = ¢}
o TOTALty ={(M) | MisaTMand L(M) = X*}
° L0101010 = {<M> | MisaTM and 0101010 € L(M)}

Slides for 15-453 Lecture 18 Fall 2015 3/1

RICE’S THEOREM

Every language ‘P which is a nontrivial property of Turing machine
languages is undecidable!

PROOF — PRELIMINARIES

Assume a nontrivial property language P C {(M) | M is a TM}. We
want to show P is undecidable.
Consider the following two Turing machines:
o Let M, =“On input x: reject’.
o We can assume (M;) ¢ P.
o If (M) € P, then we show P is undecidable.

o Let Mp be a TM such that (Mp) € P.
o Mp exists because P is nontrivial.)

Slides for 15-453 Lecture 18 Fall 2015 4/1

PROOF BY REDUCTION FROM A7y TO P

Q@ Assume we have a decider Rp for P.
© We show that using Rp we can construct a decider S for Aqy,.

S = “Oninput (M, w) e If M accepts w, then
1. Constructa TM M,, as L(My) = L(Mp). So (My) € P.
follows: e If M does not accept w, then
My, = “On input x: L(My) = o.
1. Run Mon w. So (My) € P.

If M rejects then reject e So if Rp decides P, then S
2. Else run Mp on x.

If Mp accepts then decides Ary-
accept” e But we know the S does not
2. Run Re (the decider for P) e?f['r?t’ S0 Ap can not exist
on <Mw> eltner. . .
3. If Rp accepts then accept ° CO(;]CIL.J;I%T' fIP 'S an
If Rp rejects then reject’ undecidable language.)

Slides for 15-453 Lecture 18 Fall 2015 5/1

APPLYING RICE’S THEOREM

e The following languages are all undecidable:
o EPSILONmy = {(M) | MisaTMand e € L(M)}
CFLmy = {(M)| MisaTMand L(M)is a CFL}
o DECIDABLEm, = {(M) | Mis a TM and L(M) is decidable}
PALmy = {(M) | Mis a TM and L(M) contains all palindromes}

e Rice’s Theorem is a very powerful tool

e Very Important: we need to be checking a property of the language
of the TM, not a property of the TM and the behaviour of the TM.

Slides for 15-453 Lecture 18 Fall 2015 6/1

COMMON PITFALLS

Rice’s Theorem can not be applied to the following languages:
o ALL={(M) | MisaTM}
o Note that ALL is decidable!

e There is no language property involved here.We need to check a
property of the representation!
o TWICE = {{(M) | M is a TM that visits the initial state
more than twice}

e Again, this is not a question about the language defined by M but
rather on the behaviour of M (Undecidable)

o EQry = {(My, Ms) | My and M, are TMs and L(My) = L(M5)}

e Again, this is not a question about the property of a language.
(Undecidable)

Slides for 15-453 Lecture 18 Fall 2015 7/1

SELF-REFERENCE

e Can automata self-reproduce?
e What do you mean?
e Living things are “machines” and they reproduce!

There is a computable function g : ¥* — ¥* where
e if wis any string,

e g(w) is the description of a Turing machine P, that prints out w
and halt.

Slides for 15-453 Lecture 18 Fall 2015 8/1

SELF-REFERENCE

LEMMA

There is a computable function g : ¥* — ¥* where if w is any string,
g(w) is the description of a Turing machine Py, that prints out w and
halt.

The following TM Q computes g(w).
Q = “On input string w:
1. Construct the following Turing machine Py,
Py = “On any input:
1. Erase input.

2. Write w on tape.
3. Halt”

2. Output (Py).”

v

Slides for 15-453 Lecture 18 Fall 2015 9/1

THE TM SELF

e Next we build a TM, SELF, that ignores its own input and prints
out a copy of its description.
e Print out this sentence.
e Not clear what “this” refers to.

e Print out two copies of the following, the second one in quotes:
“Print out two copies of the following, the second one in quotes:”

@ AX.X(X)(Ax.x(x)) = Ax.x(x)(Ax.x(x))

Slides for 15-453 Lecture 18 Fall 2015 10/1

A TM THAT PRINTS ITSELF

A B
[=P{51)

control for SELF

e Part A runs first and upon completion passes control to part B.
e The job of Ais to print a description of B on the tape (hence

e The job of Bis (essentially) to print out a description of A.

e The tasks are similar, but are carried out differently.

Slides for 15-453 Lecture 18 Fall 2015 11/1

A TM THAT PRINTS ITSELF

A B
[=P{51)

control for SELF

e If B can obtain (B), it can apply g to that and obtain (A).
e What how can B obtain (B)?
e Well, it was printed on the tape, just before A passed control to B.

e So, B computes g((B)) = (A) and combines these and writes a
complete description (AB) = (SELF).

Slides for 15-453 Lecture 18 Fall 2015 12/1

A TM THAT PRINTS ITSELF

o A= Pg: Ais the TM that prints out the description of B (But we
do not have B yet!)
e B ="0On input (M) where M is a portion of a TM:

1. Compute q({M)), (find the description of the machine which prints
(M)

2. Combine the result with (M) to make a complete TM.

3. Print the description of this TM and halt”

Slides for 15-453 Lecture 18 Fall 2015 13/1

How SELF BEHAVES

Q First Aruns. It prints (B).
@ B starts. It looks at the tape and finds its input (B).

© B computes q({B)) = (A) and combines that with (B) into a TM
description (SELF).

@ B prints this description and halts.

Slides for 15-453 Lecture 18 Fall 2015 14/1

THE RECURSION THEOREM

THEOREM 6.3 — THE RECURSION THEOREM

Let T be a TM that computes a function ¢ : ¥* x ¥* — ¥*. There is a
TM R that computes r : ¥* — ¥*, where for every w,

e What is this Theorem saying?

e Informally, a TM can obtain its own
description and compute with it.

o To make a TM, that can obtain its own
description and then compute with it
@ Make a TM T that receives the description
of the machine as an extra input.
© Then the recursion theorem produces a
new machine, R which operates as T does,
with R’s, description filled in automatically.

Slides for 15-453 Lecture 18 Fall 2015 15/1

PROOF OF THE RECURSION THEOREM

e We construct a machine with 3 parts: A,Band T.

AaBaT
(=P(m'))

control for R

e Aisthe TM Pgr), described by q((BT))
o Technical point: We redesign g so that P gry writes its output
following any preexisting string on the tape.
e So, after A runs, the tape contains w(BT)
e B examines the tape and applies g to (BT) getting (A).
e Bthen combines A, B and T into a single machine and obtains its
description (ABT) = (R)
e It encodes these as (R, w) and places it on the tape and passes

Slides for 15-453 Lecture 18 Fall 2015 16/1

SIGNIFICANCE OF THE RECURSION THEOREM

e It is yet another handy tool for solving certain problems in the
theory of algorithms.
e When you are designing a TM M, you can “make a call” to “obtain
own description (M)” and use this description in the computation.
e Just print out the description
o Count the number of states in M.
e Simulate M.
e Consider the TM
T ="“Oninput (M, w):
1. Print (M) and halt”
The recursion theorem tells us how to construct R which on input
w, behaves just like T on input (R, w).
e Thus R prints the description of R, exactly what is required of the
machine SELF.

e Technology for Computer Viruses (:-)

Slides for 15-453 Lecture 18 Fall 2015 17/1

SIGNIFICANCE OF THE RECURSION THEOREM

A7y is undecidable.

PROOF

e Suppose H decides Ay, we construct B:
e B="Oninput w:
@ Obtain, via the recursion theorem, own description (B).
© Run H on input (B, w).
@ Do the opposite of what H says.
e acceptif H rejects.
e rejectif H accepts.
e B conflicts with itself — hence can not exist

@ H can not exist.

Slides for 15-453 Lecture 18 Fall 2015 18/1

THE FIXED-POINT VERSION OF THE RECURSION

THEOREM

e A fixed-point of a function is a value, that is not changed by the
application of a function, e.g.,

o f(x) = v/x has a fixed-point 1.
o f(y(x)) = y'(x) has a fixed-point y(x) = e*.
e We consider functions that are computable transformations of TM
descriptions.
e The Fixed-point version of the Recursion Theorem shows that
e whatever the transformation is
e there is some TM whose behaviour is unchanged by the
transformation!
e Informally, no computable function maps TMs into non-equivalent
TMs

Slides for 15-453 Lecture 18 Fall 2015 19/1

THE FIXED-POINT VERSION OF THE RECURSION

THEOREM

Lett: X* — X¥*. Then, there is a TM F such that {((F)) describes a
TM equivalent to F. (¢ is the transformation and F is the fixed point.)

o Let F be the following TM:
e F="0Oninputw
@ Obtain via the recursion theorem, own description (F).
@ Compute t((F)) to obtain the description of a TM G.
© Simulate Gon w.”
o ltis clear that (F) and (G) describe equivalent TMs: they both
compute what G computes with w.

Slides for 15-453 Lecture 18 Fall 2015 20/1

SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want
to show that the language B is also undecidable. J

@ Assume that we have a decider Mg for B.
@ Using Mg we construct a decider M, for the language A:

Mp = “Oninput (/)

1. Algorithmically construct an input (/g) for Mg, such that

a) Either b) or
If (In) € Athen (Ig) € B If (Ia) € Athen (Ig) ¢ B
If (Ia) & Athen (Ig) ¢ B J If (Ia) ¢ Athen (Ig) € B J

2. Run the decider Mg on (Ig) for Mg
Case a): My accepts if Mg accepts, and rejects if Mg rejects
Case b): My rejects if Mg accepts, and accepts if Mg reject.

@ We know M, can not exist so Mg can not exist.
Slides for 15-453 Lecture 18 Fall 2015 PAVAI

COMPUTABLE FUNCTIONS

Turing Machines can also compute function f : ©¥* — X*.

COMPUTABLE FUNCTION

A function f : ¥* — ¥* is a computable function if and only if there
exists a TM My, which on any given input w € ©*

e always halts, and
e leaves just f(w) on its tape.

Examples:

o Let f(w) %" ww be a function. Then f is computable.

o Let f((m,no)) ®f (n) where ny and n, are integers and
n=ny x no. Then f is computable.

Slides for 15-453 Lecture 18 Fall 2015 22/1

MAPPING REDUCIBILITY

DEFINITION

Let A, B C ¥*. We say that language A is mapping reducible to
language B, written A <, B, if and only if

© There is a computable function f : ¥* — X* such that

@ Forevery w e X*, w € Aif and only if f(w) € B.
The function f is called a reduction of Ato B.

If A<, Band B is decidable, then A is decidable.

Let M be a decider for B and f be a mapping from Ato B. Then N
decides A. N = “On input w

© Compute f(w)
© Run M on input f(w) and output whatever M outputs.”

Slides for 15-453 Lecture 18 Fall 2015 23/1

MAPPING REDUCIBILITY
A <m HALT 1y

PROOF.

Construct a computable function f which maps (M, w) to (M’ w’) such
that

(M, w) € Any if and only if (M', w') € HALT7y
M; = “On input (M, w)
1. Construct the following machine M’:
M’ = “On input x
1. Run Mon x.

2. If M accepts accept
3. If M rejects enter a loop.”

2. Output (M’ w).”

Ol

Slides for 15-453 Lecture 18 Fall 2015 24/1

MORE EXAMPLES OF MAPPING REDUCIBILITY

e Earlier we showed

° ATM <m MPCP
e MPCP <, PCP

o We showed Ery <m EQry. The reduction f maps from (M) to the
output (M, My) where My is the machine that rejects all inputs.

If A<, Band B is Turing-recognizable, then A is Turing-recognizable. \
PROOF
Essentially the same as the previous proof.

Slides for 15-453 Lecture 18 Fall 2015 25/1

SUMMARY OF MAPPING REDUCIBILITY RESULTS

SUMMARY OF THEOREMS

Assume that A <, B. Then
@ If Bis decidable then A is decidable.

© If Ais undecidable then B is undecidable.

@ |If Bis Turing-recognizable then A is Turing-recognizable.

Q If Ais not Turing-recognizable then B is not Turing-recognizable.
@ A<, B

Useful observation:
e Suppose you can show A7y <m B
@ Thismeans Ary <m B

@ Since Ary is Turing-unrecognizable then B is
Turing-unrecognizable.

Slides for 15-453 Lecture 18 Fall 2015 26/1

EXAMPLE OF USE

EQmy = {(My, M) | My and M, are TMs and L(My) = L(M,)} is
neither Turing recognizable nor co-Turing-recognizable.

PROOF IDEA

We show
o A <m EQruy
o Ay <m EQm
e These then imply the theorem.

Slides for 15-453 Lecture 18 Fall 2015 27/1

EXAMPLE OF USE

PROOF FOR A7y <m EQmm

We show A7y <m EQmu (hence Ay <m EQy) with the following f:
F =*“Oninput (M, w) where M is a TM and w is a string:
1. Construct the following two machines M; and M-
M; = “On any input:
1. Reject”
M, = “On any input:
1. Run Mon w. If it accepts, accept.”

2 %tggé Mé’r%’%’ing.
o If M accepts w then M, accepts everything. So M; and M, are not
equivalent.

e If M does not accept w then M, accepts nothing. So M; and M, are
equivalent.

e So Arm <m EQmym (and hence A7y <m EQrum)

v

Slides for 15-453 Lecture 18 Fall 2015 28/1

EXAMPLE OF USE

PROOF FOR A7y <m EQ1u

We show Ay <m EQmy (hence Amy <m EQmy) with the following g:
G ="“On input (M, w) where M is a TM and w is a string:
1. Construct the following two machines My and M,
M; = “On any input:
1. Accept’
M, = “On any input:
1. Run Mon w. If it accepts, accept.”
2. Output (My, Mp)”

e M; accepts everything.
e If M accepts w then M, accepts everything. So M; and M, are
equivalent.
e If M does not accept w then M, accepts nothing. So M; and M, are
not equivalent.

e S0 Ay <m EQmy (hence Aty <m EQ7uy)

v

Slides for 15-453 Lecture 18 Fall 2015 29/1

TURING REDUCIBILITY

e Reducibility: If Ais reducible to B then we can solve A by solving
B.

e Mapping Reducibility (A <, B) : Use a computable mapping f to
transform an instance of A to an instance of B.

e It turns out that Mapping Reducibility is not general enough!

e Consider A7y and A7y

e Clearly the solution to one can be used as a solution to the other,
by simply reversing the answer.

e But Ary is not mapping reducible to Ay because Ary is
Turing-recognizable while A7y is not.

e We need a more general notion of reducibility.

Slides for 15-453 Lecture 18 Fall 2015 30/1

ORACLES

DEFINITION — ORACLE

An oracle for a language B is an external device that is capable of
answering the question “Is w € B?”

DEFINITION — ORACLE TURING MACHINE

| \

An oracle TM is a modified TM, M8, that has the capability of querying
an oracle for language B.

\

Is (M,w) in

Am?
L]

Lsfefofef TP T T

INFINITE TAPE

|

A S G

Slides for 15-453 Lecture 18 Fall 2015 31/1

TURING REDUCIBILITY

Language A is Turing reducible to language B, written as A <7 B, if A
is decidable relative to B (that is, using an oracle for B)

If A<7 Band B is decidable, then A is decidable.
PROOF
If B is decidable, then replace the oracle with the TM for B.

e Turing reducibility is a generalization of mapping reducibility
A<y B

Slides for 15-453 Lecture 18 Fall 2015 32/1

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

COMPLEXITY

SLIDES FOR 15-453 LECTURE 19 FALL 2015 1/41

COMPLEXITY THEORY

Assume that a problem (language) is decidable. Does that mean we
can realistically solve it?

NO, not always. It can require too much of time or memory resources.

Complexity Theory aims to make general conclusions of the resource J

requirements of decidable problems (languages).

e Henceforth, we only consider decidable languages and deciders.
e Our computational model is a Turing Machine.
e Time: the number of computation steps a TM machine makes to
decide on an input of size n.
e Space: the maximum number of tape cells a TM machine takes to
decide on a input of size n.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 21/41

TIME COMPLEXITY — MOTIVATION

e How much time (or how many steps) does a single tape TM take
to decide A = {0¥1% | k > 0}?
M = “On input w:
@ Scan the tape and reject if w is not of the form 0*1* .
@ Repeat if both 0s and 1s remain on the tape.
@ Scan across the tape crossing off one 0 and one 1.

Q If all 0’'s are crossed and some 1’s left, or all 1’s crossed and some
0’s left, then reject; else accept.

v

How many steps does M take on an input w of length n?

ANSWER (WORST-CASE)
The number of steps M takes x n?.

TIME COMPLEXITY — SOME NOTIONS

e The number of steps in measured as a function of n - the size of
the string representing the input.

e In worst-case analysis, we consider the longest running time of all
inputs of length n.

e In average-case analysis, we consider the average of the running
times of all inputs of length n.

TIME COMPLEXITY

Let M be a deterministic TM that halts on all inputs. The time
complexity of M if the function f : N' — N/, where f(n) is the
maximum number of steps that M uses on any input of length n.
If f(n) is the running time of M we say

e Mruns in time f(n)

e Mis an f(n)-time TM.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 41/41

ASYMPTOTIC ANALYSIS

e We seek to understand the running time when the input is “large”.

@ Hence we use an asymptotic notation or big-O notation to
characterize the behaviour of f(n) when n s large.

e The exact value running time function is not terribly important.
e What is important is how 7(n) grows as a function of n, for large n.
e Differences of a constant factor are not important.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 5/41

ASYMPTOTIC UPPER BOUND

DEFINITION — ASYMPTOTIC UPPER BOUND

Let R™ be the set of nonnegative real numbers. Let f and g be

functions f,g : N' — R™. We say f(n) = O(g(n)), if there are positive
integers ¢ and ng, such that for every n > ng

f(n) <cg(n).

g(n) is an asymptotic upper bound.

SLIDES FOR 15-453 LECTURE 19

FALL 2015

ASYMPTOTIC UPPER BOUND

o 5m® +2n? + 5 = O(n®) (what are ¢ and ng?)
o 5m® +2n? + 5 = O(n*) (what are ¢ and ng?)
log,(n®) = O(log n) (why?)

e 5n3 +2n? 4 5is not O(n?) (why?)

29(") means an upper bound O(2°") for some constant c.
n°") is a polynomial upper bound O(n°) for some constant c.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 717141

REALITY CHECK

Assume that your computer/TM can perform 10° steps per second.

[n/f(n)]| n [nlog(n) T i] ne [2n]
10 0.01 usec | 0.03 usec | 0.1 usec 1 usec 1 usec
20 0.02 usec | 0.09 usec | 0.4 usec 8 usec 1 msec
50 0.05 usec | 0.28 usec | 2.5 usec | 125 usec 13 days
100 0.10 usec | 0.66 usec | 10 usec 1 msec ~ 4 x 10'3 years
1000 1 usec 3 psec 1 msec 1 sec ~ 3.4x1028" centuries

Clearly, if the running time of your TM is an exponential function of n, it
does not matter how fast the TM is!

SLIDES FOR 15-453 LECTURE 19

FALL 2015

8/41

SMALL-0O NOTATION

DEFINITION — STRICT ASYMPTOTIC UPPER BOUND
Let f and g be functions f,g : N — R*. We say f(n) = o(g(n)), if

. f(n)
"o g(n)
o n? = o(n?)
e v/n=o(n)
e nlogn = o(n?)
o ni00 — 0(2'7)
e f(n)is never o(f(n)).

e f(n) = O(g(n)) means “asymptotically f(n) < g(n)”
e f(n) = o(g(n)) means “asymptotically f(n) < g(n)”

SLIDES FOR 15-453 LECTURE 19 FALL 2015 91/41

COMPLEXITY CLASSES

DEFINITION — TIME COMPLEXITY CLASS TIME({(n))

Lett: N — R be a function.
TIME(t(n)) = {L(M) | M is a decider running in time O(t(n))}

e TIME(t(n)) is the class (collection) of languages that are
decidable by TMs, running in time O(t(n)).
e TIME(n) c TIME(n?) c TIME(n®) C ... c TIME(2") C ...
o Examples:
o {01k | k > 0} € TIME(n?)
o {0K1k | k > 0} € TIME(nlog n) (next slide)
o {w#w | we {0,1}*} € TIME(r?)

SLIDES FOR 15-453 LECTURE 19 FALL 2015 10/ 41

{0k1k | k > 0} € TIME(nlog n)

M = “On input w:
@ Scan the tape and reject if w is not of the form 0*1* .

@ Repeat as long as some 0s and some 1s remain on the tape.

e Scan across the tape, checking whether the total number of 0s and
1s is even or odd. Reject if it is odd.

e Scan across the tape, crossing off every other 0 starting with the
first 0, and every other 1, starting with the first 1.

@ Ifno 0’s and no 1’s remain on the tape, accept. Otherwise, reject.

e Steps 2 take O(n) time.

e Step 2 is repeated at most 1 + log, n times. (why?)

e Total time is O(nlog n).

e Hence, {0X1X | k > 0} € TIME(nlog n).

o However, {0¥1% | k > 0} is decidable on a 2-tape TM in time O(n)
(How ?)

SLIDES FOR 15-453 LECTURE 19 FALL 2015 11741

RELATIONSHIP BETWEEN K-TAPE AND SINGLE-TAPE
TMS

THEOREM 7.8

Let {(n) be a function and t(n) > n. Then every multitape TM has an
equivalent O(t?(n)) single tape TM.

o Let’s remind ourselves on how the simulation operates.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 12/41

MULTITAPE TURING MACHINES

Finite control of
M

e L]o¢

MULTITAPE TURING MACHINES

e A multitape Turing Machine is like an ordinary TM
e There are k tapes
e Each tape has its own independent read/write head.
e The only fundamental difference from the ordinary TM is § — the
state transition function.

§:Qxrk = Qxrhx{L Ry
e The ¢ entry 6(q;,ay,...,ax) = (q;, by, ..., bk, L,R,L,...L) reads as

e Ifthe TMis in state g; and

e the heads are reading symbols ay through a,
o Then the machine goes to state g;, and

o the heads write symbols b; through by, and

e Move in the specified directions.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 14741

SIMULATING A MULTITAPE TM WITH AN ORDINARY

™
—
Finite control of FNEY l?ape_1|_ HR:
M

o[[L[[1 ¢

Tape2
v [

Tape3

Finite control of
S

SIMULATING A MULTITAPE TM WITH AN ORDINARY

™

Finite control of
S

wlafifulafblulufv] ¢

o We use # as a delimiter to separate out the different tape
contents.
o To keep track of the location of heads, we use additional symbols

e Each symbol in ' (except LI) has a “dotted” version.
e A dotted symbol indicates that the head is on that symbol.
o Between any two #’s there is only one symbol that is dotted.

e Thus we have 1 real tape with k “virtual’ tapes, and
o 1 real read/write head with k “virtual” heads.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 16/41

SIMULATING A MULTITAPE TM WITH AN ORDINARY

™

e Giveninput w = wy - -- wp, S puts its tape into the format that
represents all k tapes of M

By W Wt O# O # #

e To simulate a single move of M, S starts at the leftmost # and
scans the tape to the rightmost #.

e It determines the symbols under the “virtual” heads.
e This is remembered in the finite state control of S. (How many
states are needed?)

e S makes a second pass to update the tapes according to M.

e If one of the virtual heads, moves right to a #, the rest of tape to
the right is shifted to “open up” space for that “virtual tape”. If it
moves left to a #, it just moves right again.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 17741

ANALYSIS OF THE MULTI-TAPE TM SIMULATION

e Preparing the single simulation tape takes O(n) time.
e Each step of the simulation makes two passes over the tape:

e One pass to see where the heads are.
e One pass to update the heads (possibly with some shifting)

e Each pass takes at most k x t(n) = O(t(n)) steps (why?)

e So each simulation step takes 2 scans + at most k rightward
shifts. So the total time per step is O(t(n)).

o Simulation takes O(n) + t(n) x O(t(n)) steps = O(t2(n)).

e So, a single-tape TM is only polynomially slower than the
multi-tape TM.

o If the multi-tape TM runs in polynomial time, the single-tape TM
will also run in polynomial time (where polynomial time is defined
as O(n™) for some m.)

SLIDES FOR 15-453 LECTURE 19 FALL 2015 18741

NONDETERMINISTIC TMS

DEFINITION — NONDETERMINISTIC RUNNING TIME

Let N be a nondeterministic TM that is a decider. The running time of
N is the function f : N' — A/, where f(n) is the maximum number of
steps that N uses, on any branch of its computation on any input of
length n.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 19741

NONDETERMINISTIC TMS

Let t(n) be a function and t(n) > n. Then every t(n) time
nondeterministic TM has an equivalent 2°(4(") time deterministic
single tape TM.

oWy Woeee W,y 4 Initial Configuration

Order of simulation

SLIDES FOR 15-453 LECTURE 19 FALL 2015

NONDETERMINISTIC TMS

Let {(n) be a function and t(n) > n. Then every t(n) time
nondeterministic TM has an equivalent 2°((") time deterministic
single tape TM.

PROOF

@ On an input of n, every branch of N’s nondeterministic computation has
length at most {(n) (why?)

@ Every node in the tree can have at most b children where b is the
maximum number of nondeterministic choices a state can have.

@ So, the computation tree has at most 1 + b? + - - - + bl(N = O(bl(M)
nodes.

@ The deterministic machine D takes at most O(b!(")) = 20(t(n) gteps,

@ D has 3 tapes. Converting it to a single tape TM at most squares its
running time (previous Theorem):(20(1(M))2 — 220(t(n) — 20(t(n))

SLIDES FOR 15-453 LECTURE 19 FALL 2015 21741

P is the class of languages that are decidable in polynomial time on a
deterministic single-tape TM.

P = TIME(n").
k

e The class P is important for two main reasons:

@ P isrobust: The class remains invariant for all models of
computation that are polynomially equivalent to deterministic
single-tape TMs.

@ P (roughly) corresponds to the class of problems that are
realistically solvable on a computer.

e Even though the exponents can be large (though most useful
algorithms have “low” exponents), the class P provides a
reasonable definition of practical solvability.

SLIDES FOR 15-453 LECTURE 19 FALL 2015

EXAMPLES OF PROBLEMS IN P

e We will give high-level algorithms with numbered stages just as
we gave for decidability arguments.

e We analyze such algorithms to show that they run in polynomial
time.

@ We give a polynomial upper bound on the number of stages the
algorithm uses when it runs on an input of length n.

© We examine each stage, to make sure that each can be
implemented in polynomial time on a reasonable deterministic time.

e We assume a “reasonable” encoding of the input.

e For example, when we represent a graph G, we assume that (G)
has a size that is poynomial the number of nodes.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 23/41

EXAMPLES OF PROBLEMS IN P

PATH = {(G, s, t) | G is a directed graph with n nodes that has a path
fromstot} € P.

PROOF
o Steps 1 and 4 are

M = “On input (G, s,) executed once
Q@ Place amark on s. o Each takes at most
@ Repeat 3 until no new nodes O(n) time on a TM.
are marked e Step 3 is executed at
most n times

© Scan edges of G. If (a,b) is e Each execution takes
an edge and ais marked and at most O(n?) steps
b is unmarked, mark b. (o number of edges)

Q If tis marked, accept else o Total execution time is
reject. thus a polynomial in n.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 24/41

EXAMPLES OF PROBLEMS IN P
Acrg € P \

PROOF.
The CYK algorithm decides Ackg in polynomial time.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 251741

EXAMPLES OF PROBLEMS IN P
Natural numbers x and y are relatively prime iff ged(x, y) = 1.

e gcd(x,y) is the greatest natural number that evenly divides both x
and y.

e RELPRIME = {(x,y) | x and y are relatively prime numbers}

e Remember that the length of (x, y) is log, x + log, y = n, that is
the size of the input is logarithmic in the values of the numbers.

e So if the number of steps is proportional to the values of x and y, it
is exponential in n.

BRUTE FORCE ALGORITHM IS EXPONENTIAL

Given an input (x, y) of length n = log, x + log, y, going through all
numbers between 2 and min{x, y}, and checking if they divide both x
and y takes time exponential in n.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 26/41

EXAMPLES OF PROBLEMS IN P
RELPRIME c P

PROOF PROOF

E implements the Euclidian R solves RELPRIME, using
algorithm. E as a subroutine.
E = "“Oninput (x, y) R =“Oninput (x, y)
© Repeatuntil y =0 © Run Eon (x,y).
(2] Assign x <~ x mod y. @ Iftheresultis 1, accept.
o Exchange x and . Otherwise, reject.”)
@ Output x.”

o IfEc Pthen Re P.

@ Each of x and y is reduced by a factor of 2 every other time through the
loop.

@ Loop is executed at most min{2log, x, 210g, y} times which is O(n).

SLIDES FOR 15-453 LECTURE 19 FALL 2015 271741

THE CLASS NP

e For some problems, even though there is a exponentially large
search space of solutions (e.g., for the path problem), we can
avoid a brute force solution and get a polynomial-time algorithm.

e For some problems, it is not possible to avoid a brute force
solution and such problems have so far resisted a polynomial time
solution.

e We may not yet know the principles that would lead to a
polynomial time algorithm, or they may be “intrinsically difficult.”

e How can we characterize such problems?

SLIDES FOR 15-453 LECTURE 19 FALL 2015 28 /41

THE HAMILTONIAN PATH PROBLEM

DEFINITION — HAMILTONIAN PATH

A Hamiltonian path in a directed graph G is a directed path that goes
through each node exactly once.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 29/41

THE HAMILTONIAN PATH PROBLEM

HAMILTONIAN PATH PROBLEM

HAMPATH = {(G, s, t) | G is a directed graph with a Hamiltonian path
from s to t}.

e We can easily obtain an exponential time algorithm with a brute
force approach.

e Generate all possible paths between s and t and check if all nodes
appear on a path!
e The HAMPATH problem has a property called polynomial
verifiability.
o If we can (magically) get a Hamiltonian path, we can verify that it is
a Hamiltonian path, in polynomial time.
e \Verifying the existence of a Hamiltonian path is “easier” than
determining its existence.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 30/41

POLYNOMIAL VERIFIABILITY

COMPOSITES PROBLEM
COMPOSITES = {x | x = pq, for integers p,q > 1}

e We can easily verify if a number is composite, given a divisor of
that number.

e A recent (but very complicated) algorithm for testing whether a
number is prime or composite has been discovered.

HAMPATH PROBLEM

The HAMPATH problem has a solution if there is NO Hamiltonian path
between s and .

e Even if we knew, the graph did not have a Hamiltonian path, there
is no easy way to verify this fact. We may need to take exponential
time to verify it.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 31/41

VERIFIERS

A verifier for a language A is an algorithm V where

A= {w | V accepts (w, c) for some string c}

e We measure the time of a verifier only in terms of the length of w.

e Alanguage Ais polynomially verifiable if it has a polynomial time
verifier.
e cis called certificate or proof of membership in A.

e Forthe HAMPATH problem, the certificate is simply the Hamiltonian
path from sto t.

e Forthe COMPOSITES problem, the certificate is one of the
divisors.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 32/41

THE CLASS NP
NP is the class of languages that have polynomial time verifiers. l

e NP stands for nondeterministic polynomial time.
e Problems in NP are called NP-Problems.
e PC (C?)NP.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 33/41

A NONDETERMINISTIC DECIDER FOR HAMPATH

Ny = “Oninput (G, s, t)
© Nondeterministically select list of m numbers p1, po, . .. pm with
1<pi<m.
@ Check for repetitions in the list; if found, reject.
@ Check whether p; = s and p,, = t, otherwise reject.

Q@ For1 < i< m,checkif (p;,pi.1) is an edge of G. If any are not,
reject. Otherwise accept”

e Stage 1 runs in polynomial time.

e Stages 2 and 3 take polynomial time.

e Stage 4 takes poynomial time.

e Thus the algorithm runs in nondeterministic polynomial time.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 34/41

THE CLASS NP

THEOREM 7.20

A language is in NP, iff it is decided by some nondeterministic
polynomial time Turing machine.

PROOF IDEA
e We show polynomial time verifier < polynomial time decider TM.

e NTM simulates the verifier by guessing a certificate.
e The verifier simulates the NTM)

PROOF: NTM GIVEN THE VERIFIER.

Let A € NP. Let V be a verifier that runs in time O(n¥). N decides A in
nondeterministic polynomial time.
N = “On input w of length n

@ Nondeterministically select string ¢ of length at most nk.

@ Run V oninput (w, c).

@ If V accepts, accept; otherwise reject.”

FALL 2015 35/41

SLIDES FOR 15-453 LECTURE 19

THE CLASS NP

THEOREM 7.20

A language is in NP, iff it is decided by some nondeterministic
polynomial time Turing machine.

PROOF IDEA
e We show polynomial time verifier < polynomial time decider TM.
e NTM simulates the verifier by guessing a certificate.
e The verifier simulates the NTM)

PROOF: VERIFIER GIVEN THE NTM

Assume A is decided by a polynomial time NTM N. We construct the

following verifier V
V =*“On input (w, c)
@ Simulate N on input w, treating each symbol of ¢ as a description of the
nondeterministic choice at each step.

@ I[f this branch of N’s computation accepts, accept; otherwise, reject”
FALL 2015 36/41

SLIDES FOR 15-453 LECTURE 19

NTIME(t(n)) = {L | L is a language decided by a O(t(n)) time
nondeterministic TM.}

COROLLARY
NP = {J, NTIME(n").

SLIDES FOR 15-453 LECTURE 19 FALL 2015 371741

THE CLIQUE PROBLEM

DEFINITION - CLIQUE

A clique in an undirected graph is a subgraph, wherein every two
nodes are connected by an edge.

A k-clique is a clique that contains k nodes.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 381741

THE CLIQUE PROBLEM

CLIQUE = {(G, k) | G is an undirected graph with a k-clique } € NP.

PROOF ALTERNATIVE PROOF

The clique is the certificate.
V ="“Oninput ((G, k), c):
© Test whether cis a set of k
nodes in G.
@ Test whether G has all
edges connecting nodes in
C.

@ If both pass, accept;
otherwise reject”

Use a NTM as a decider.
N = “On input (G, k):
@ Nondeterministically select
a subset ¢ of k nodes of G.
@ Test whether G has all
edges connecting nodes in
C.
@ If yes accept; otherwise
reject”

e All steps take polynomial time.

SLIDES FOR 15-453 LECTURE 19

FALL 2015 39/41

THE SUBSET-SUM PROBLEM

SUBSET-SUM = {(S,1) | S = {x1,

{y1,...

..., Xx} and for some
Y} €S, 2 yi=t eNP.

PROOF ALTERNATIVE PROOF

The clique is the certificate.
V ="“Oninput ((S, t), c):
O Test whether ¢ is a set of
numbers summing to ¢.

© Test whether S contains all
numbers in c.

@ If both pass, accept;

otherwise reject”

Use a NTM as a decider.
N = “On input (S, k):
© Nondeterministically select
a subset ¢ of numbers in S.
© Test whether S contains all
numbers in c.

@ If yes accept; otherwise
reject”

o All steps take polynomial time.

SLIDES FOR 15-453 LECTURE 19

FALL 2015 40/41

THE CLASS CONP

e It turns out CLIQUE or SUBSET-SUM are NOT in NP.

e Verifying something is NOT present seems to be more difficult
than verifying it IS present.

e The class coNP contains all problems that are complements of
languages in NP.

e We do not know if coNP # NP.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 41/41

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

NP-COMPLETENESS

SLIDES FOR 15-453 LECTURE 20 FALL 2015 1/30

SUMMARY

e Time complexity: Big-O notation, asympotic complexity

e Simulation of multi-tape TMs with a single tape deterministic TM
can be done with a polynomial slow-down.

e Simulation of nondeterministic TMs with a deterministic TM is
exponentially slower.

e The Class P: The class of languages for which membership can
be decided quickly.

e The Class NP: The class of languages for which membership can
be verified quickly.

NP Problems

e We do not yet know if P = NP, or not.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 21/30

e The best method known for solving languages in NP
deterministically uses exponential time, that is

NP C EXPTIME = | J TIME(2™)
k

e It is not known whether NP is contained in a smaller deterministic
time complexity class.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 3/30

NP-COMPLETE PROBLEMS

e Cook and Levin in early 1970’s showed that certain problems in
NP were such that
e If any of these problems had a deterministic polynomial-time
algorithm, then
e All problems in NP had deterministic polynomial-time algorithms.
e Such problems are called NP-complete problems.
e This is important for a number of reasons:

@ If one is attempting to show that P#NP, s’/he may focus on an
NP-complete problem and try to show that it needs more than a
polynomial amount of time.

@ If one is attempting to show that P=NP, s/he may focus on an
NP-complete problem and try to come up with a polynomial time
algorithm for it.

© One may avoid wasting searching for a nonexistent polynomial time
algorithm to solve a particular problem, if one can show it reduces
to an NP-complete problem (as it is generally believed that P=£ NP.)

SLIDES FOR 15-453 LECTURE 20 FALL 2015 41/30

THE SATISFIABILITY PROBLEM

DEFINITION — BOOLEAN VARIABLES

A boolean variable is a variable that can taken on values TRUE (1) and
FALSE (0).

e We have Boolean operations of AND (x A y), OR (x vV y) and NOT
(—=x or X) on boolean variables.
AND OR NOT
0OANO=0 ovo=0 0="1
0AN1=0 ovi=1 1=0
1A0=0 1v0o=1
1A1=1 1v1=1

SLIDES FOR 15-453 LECTURE 20 FALL 2015

THE SATISFIABILITY PROBLEM

DEFINITION — BOOLEAN FORMULA

A Boolean formula is an expression involving Boolean variables and
operations.
For example: ¢ = (X Ay) V(X AZ) V (¥ A Z) is a Boolean formula.

DEFINITION — SATISFIABILITY

A Boolean formula is satisfiable if some assignment of Os and 1s to the
variables makes the formula evaluate to 1.

We say the assignment satisfies ¢.

| \

e What possible assignments satisfy the formula above?

DEFINITION — THE SATISFIABILITY PROBLEM
The satisfiability problem checks if a Boolean formula is satisfiable.

SAT = {{(¢) | ¢ is a satisfiable Boolean formula}

SLIDES FOR 15-453 LECTURE 20 FALL 2015 6/30

THE SATISFIABILITY PROBLEM
THEOREM 7.27 — THE COOK-LEVIN THEOREM
SAT € P iff P = NP.

PROOF
Coming slowly!

SLIDES FOR 15-453 LECTURE 20 FALL 2015 71730

PoOoLYNOMIAL TIME REDUCIBILITY

DEFINITION — POLYNOMIAL TIME COMPUTABLE FUNCTION

A function 7 : ¥* — ¥* is a polynomial time computable function if
some polynomial time TM M exists that halts with f(w) on its tape,
when started on any input w.

| A\

DEFINITION — POLYNOMIAL TIME REDUCIBILITY

Language A is polynomial time mapping reducible or polynomial time
reducible, to language B, notated A <p B, if a polynomial time
computable function f : ¥* — ¥Y* exists, where for every w,

weAs f(w)eB

The function f is called the polynomial time reduction of A to B.

e To test whether w € A we use the reduction f to map w to f(w)
and test whether f(w) € B.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 8730

PoOoLYNOMIAL TIME REDUCIBILITY
If A<p Band Be P,then Ac P. \

o It takes polynomial time to reduce A to B.
e It takes polynomial time to decide B.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 91/30

VARIATIONS ON THE SATISFIABILITY PROBLEM

e A literal is a Boolean variable or its negated version (x or X).
e A clause is several literals connected with v (OR), e.g.,

(X1 VX2 V Xg).
e A Boolean formula is in conjuctive normal form (or is a

cnf-formula) if it consists of several clauses connected with
A(AND), e.g.

(X1 VX2V XaVX5)A(X2V X3V Xg)A(XgV X2V X3V Xs5)
e A cnf-formula is a 3cnf-formula if all clauses have 3 literals, e.g.
(X1 VYQVX4) A (X2 V73V74) A (X1 V X3 V75)

e 3SAT = {(¢) | ¢ is a satisfiable 3cnf-formula }.

o In a satisfiable cnf-formula, each clause must contain at least one
literal that is assigned 1.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 10730

AN EXAMPLE REDUCTION: REDUCING 3SAT TO

CLIQUE

3SAT is polynomial time reducible to CLIQUE.

PROOF IDEA

Take any 3SAT formula and polynomial-time reduce it to a graph such
that if the graph has a clique then the 3cnf-formula is satisfiable.

e Some details:

e ¢ is a formula with k clauses each with 3 literals.

The k clauses in ¢ map to k groups of 3 nodes each called a triple.
Each node in the triple corresponds to one of the literals in the
corresponding clause.

No edges between the nodes in a triple.

No edges between “conflicting” nodes (e.g., x and Xx)

SLIDES FOR 15-453 LECTURE 20 FALL 2015 11730

AN EXAMPLE REDUCTION: REDUCING 3SAT TO
CLIQUE

¢:(X1 V Xq VXg)/\(ZVXig\/Xig)/\(Z\/XQVXg)

AN EXAMPLE REDUCTION: REDUCING 3SAT TO

CLIQUE

¢ = (X1 V X4 VX2)/\(X71\/X72\/X72)/\(Z\/X2\/X2)

e If ¢ has a satisfying assignment,
then at least one literal in each
clause needs to be 1.

e We select the corresponding nodes
in the corresponding triples.

e These nodes should form a k-clique.

e If G has a k-clique, then selected

nodes give a satisfying assignment
to variables.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 13/30

NP-COMPLETENESS

DEFINITION — NP-COMPLETENESS

A language B is NP-complete if it satisfies two conditions:
@ Bisin NP and
@ Every Ain NP is polynomial time reducible to B.

If Bis NP-complete and B € P, then P = NP. (Obvious)

If B is NP-complete and B <p C for C in NP, then C is NP-complete.
PROOF
AllA<pBand B<p Cthusall A<p C.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 14730

THE COOK-LEVIN THEOREM (AGAIN)
SAT is NP-Complete.

PROOF IDEA

e Showing SAT is in NP is easy.
o Nondeterministically guess the assignments to variables and
accept if the assignments satisfy ¢
e We can encode the accepting computation history of a polynomial
time NTM for every problem in NP as a SAT formula ¢.
e Thus every language A € NP is polynomial-time reducible to SAT.

o Nis a NTM that can decide A in time O(n)
e N accepts w if and only if ¢ is satisfiable.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 15730

BIRD’S EYE VIEW OF A POLYNOMIAL TIME

COMPUTATION BRANCH

| 23 4 comnl nK
| |#|qgla|b|a| b|a #
2 (#]|a|p|b b|a H alp|b
3 (#]alc|qgla| bja #H ajciq
4 #: H H H H H : #
#
#
row i # 4 # b a b
blalb
/
#
& # #| Al legal windows
n|# # | can be enumerated.

7
cell[i,j] ...’th configuration, j'th tape cell

SLIDES FOR 15-453 LECTURE 20 FALL 2015 16 /30

BIRD’S EYE VIEW OF A POLYNOMIAL TIME

COMPUTATION BRANCH

e We represent the computation of a
NTM N on w with a n* x n* table,
called a tableau.

e Rows represent configurations

e First row is the start configuration (w
+ lots of blanks to fill the remaining
of the n* cells.)

3
~

»
0o
0o

EN N
B 3 EREY)
o O e | W
o]o|o] &
P &

8

g
ololo| 3
> :

|| | | | | | | |] —

o
o
o

Alllegal windog Each row follows from the previous

can be enumerated.

el -.th configaratiom [th tape cell one using N’s transition function.

™™
I (3 I H |
o
o
o

e A tableau is accepting if any row of the tableau is an accepting
configuration.

e Every accepting tableau for N on w corresponds to an accepting
computation branch of N on w.

e If N accepts w, then an accepting tableau exists!

SLIDES FOR 15-453 LECTURE 20 FALL 2015 17730

SETTING UP FORMULA ¢

THE VARIABLES

o Let C=QUT U {#}.

e For 1 <i,j < n*and for each s € C, we have a variable x; .
e x;; s = 1if the cell[i,] contains the symbol s.

e Note that the number of variables is polynomial function of n.

| A\

THE FORMULA ¢

® = Gcell N\ start N Pmove N ¢accept

@ ¢cey Makes sure that there is only one symbol in every cell!
® ¢siart Makes sure the start configuration is correct.

® ¢accept Makes sure the accept state occurs somewhere.

@ ¢®move Makes sure configurations follow each other legally.

SLIDES FOR 15-453 LECTURE 20 FALL 2015

e Forall i and j, if cell[i, j] contains symbol s, (that is x; ;s = 1), it
can not contain another symbol (that is, no other variable with the
same i and j, but a different symbol, is 1).

IVENA (\/ Xi,j,s) AN Kijs v Xija)

1</ j<nk seC s,teC
S#t

SLIDES FOR 15-453 LECTURE 20 FALL 2015 19/30

e Forall i and j, if cell[i, j] contains symbol s, (that is x; ;s = 1), it
can not contain another symbol (that is, no other variable with the
same i and j, but a different symbol, is 1).

Pcell = /\ (\/ Xi,j,s) A /\ (Xij,s V Xijt)

1</ j<nk seC s,teC
—— s#t
for all iand j

SLIDES FOR 15-453 LECTURE 20 FALL 2015 20/30

e Forall i and j, if cell[i, j] contains symbol s, (that is x; ;s = 1), it
can not contain another symbol (that is, no other variable with the
same i and j, but a different symbol, is 1).

beell = /\ < \/ Xi,j,s) A /\ (Xijs V Xijt)
1<ij<nk seC s,teC
~—— 5751*

for all j andj at least one symbol
L isinacell 4

SLIDES FOR 15-453 LECTURE 20 FALL 2015 PAWARLY

e Forall i and j, if cell[i, j] contains symbol s, (that is x; ;s = 1), it
can not contain another symbol (that is, no other variable with the
same i and j, but a different symbol, is 1).

only one symbol in a cell

—_——
beer =\ \V Xijs | AL AN\ Kijs VXigo)
1<i j<nk seC s,teC
N — —— S#t
foralliandj | a least one symbol
L isinacell -

e Note that ¢.¢y is in a conjuctive normal form.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 22/30

@ ¢siart SEtS UP the first configuration.

Gstart = X114 NX12,g0 N X13m A X dm A X1 ng2,m, A
Xt,n43,0 A - Xy k.0 A XY e

SLIDES FOR 15-453 LECTURE 20 FALL 2015 23/30

@ ¢siart SEtS UP the first configuration.

go and input symbols

Gstart = X114 NX12,60 N X13m N X4 N X1 pg2,w,/\
X130 A e Xq gk A Xq oo

all the blanks to the right

SLIDES FOR 15-453 LECTURE 20 FALL 2015 24/30

® Paccept SAYS Qaccept OCCUrS SOMewhere.

¢accept = \/ Xi,/ﬂaccept
1< j<nk

SLIDES FOR 15-453 LECTURE 20 FALL 2015

@ dmove is the most interesting of the subformulas

~

I 2 3 4 columnj n
| [#|qgla]b|a]| b]a #
2 |#|a|p|b]a]| b]a # alp|b
3 |[#|alclag]la| b|a # ajc|q
4 # H . H H E E #
#
#
row i | # # bla|b
H blal|b
/
#
K # #| Alllegal windows
n|# # | can be enumerated.

7
cell[i,j] ...I’th configuration, j’th tape cell

e How many possible such windows are there?
e There are |C|® possible such windows.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 26/30

DEFINITION — LEGAL WINDOW

A 2 x 3 window is legal if that window does not violate the actions
specified by N’s transition function.

e Suppose § of N has the entries

o d(qr,a) ={(q1,b,R)}
4 6(q17b) = {(q27 C, L)> (q27a7 R)}

e The following windows are legal:

a | | b a |q1 | b a |a | g
g |a C a a Qo a a b
b a a b a b b b
b a a b Qo C b b

SLIDES FOR 15-453 LECTURE 20 FALL 2015 27130

DEFINITION — LEGAL WINDOW

A 2 x 3 window is legal if that window does not violate the actions
specified by N’s transition function.

e Suppose § of N has the entries
° 5((:]1) a) = {(q1 ’ b’ R)}
° 5(Q1) b) = {(q27 o L)7 (q27 a, R)}
e The following windows are NOT legal:

a |b |a a |g |b b |g | Db
a |a |a g |a |a Q@ |b |

If the top row of the table is the start configuration and every window in
the tableau is legal, then every row of the table (after the first) is a
configuration that follows the preceding one!

SLIDES FOR 15-453 LECTURE 20 FALL 2015 28 /30

Thus
Pmove = /\ (the (i, j) window is legal)

1<i<nk 1<j<nk
Where “ (the (i, j) window is legal) “ is actually the following formula
V (Xij 1,20 A Xijap N Xij1.5 N Xit1 1,25 AN Xi jias A\ Xi1,41,6)

21,82,83,34,35,3g
is a legal window

e I, refers to the top middle cell of a window.
o We have O(n?¥) variables (= |C| x nf x n¥)
o The total formula size is O(n?¥), so it is polynomial time reduction.

SLIDES FOR 15-453 LECTURE 20

FALL 2015 29/30

3SAT 1S NP-COMPLETE

COROLLARY
3SAT is NP-complete.

e Every formula in the construction of the NP-completeness proof of
SAT can actually be written as a conjuctive normal form formula
with 3 literals per clause.

o If a clause has less that 3 literals, repeat one.
e Disjunctive normal form clauses can be transformed into
conjunctive normal form clauses, e.g.,

(anb)v(cnd)=(avec)n(avd)a(bvc)A(bVd)

e Clauses longer than 3 clauses can be rewritten as clauses with 3
variable, e.g.,

(avbvevd)=(avbvz)A(Zzvevd)

SLIDES FOR 15-453 LECTURE 20 FALL 2015 30/30

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

PROVING PROBLEMS NP-COMPLETE

SLIDES FOR 15-453 LECTURE 21 FALL 2015

SUMMARY

e Complexity Classes: P and NP
e Polynomial time reducibility
e Satisfiability Problem (SAT)
e CNF, 3CNF Forms
e 3SAT Problem
e NP-Completeness

e NP-Completeness of the SAT problem

e Reduction from accepting computation histories of
nondeterministic TMs to a SAT formula such that
e A polynomial time NTM accepts w iff the corresponding SAT
formula has a satisfying assignment.

e 3SAT is NP-Complete.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 2/27

SHOWING PROBLEMS NP-COMPLETE

e Remember that in order to show a language X to be

NP-complete we need to show
Q@ Xisin NP, and
© Every Y in NP is polynomial time reducible to X,

e Part 1 is (usually) easy. You argue that there is polynomial
time verifier for X, which, given a solution (certificate), will
verify in polynomial time, that, it is a solution.

e For part 2, pick a known NP-complete problem Z

@ We already know that all problems Y in NP reduce to Z in
polynomial time.

© We produce a polynomial time algorithm that reduces all
instances of Z to some instance of X.

Q@ SoY<pZand Z <p XthenY <p X.

3/27

SLIDES FOR 15-453 LECTURE 21 FALL 2015

SHOWING PROBLEMS NP-COMPLETE
CLIQUE is NP-complete. l

@ We know 3SAT is
NP-complete.

© We know that
3SAT <p CLIQUE.

@ Hence CLIQUE is
NP-complete.

SLIDES FOR 15-453 LECTURE 21

THE VERTEX COVER PROBLEM

DEFINITION — VERTEX COVER

Given an undirected graph G, a vertex cover of G is a subset of
the nodes where every edge of G touches one of those nodes.

K k o)

e VERTEX-COVER = {(G, k) | Gis an undirected graph that
has a k-node vertex cover}.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 5/27

THE VERTEX COVER PROBLEM
VERTEX-COVER is NP-complete.

PROOF IDEA

e Show VERTEX-COVER s in NP.

e Easy, the certificate is the vertex cover of size k.

e We reduce an instance of 3SAT, ¢, to a graph G and an
integer k so that ¢ is satisfiable whenever G has a vertex
cover of size k.

e We employ a concept called gadgets, groups of nodes with
specific functions, in the graph.

e Variable gadgets — representing literals
e Clause gadgets — representing clauses

SLIDES FOR 15-453 LECTURE 21 FALL 2015 6/27

THE VERTEX COVER PROBLEM

o Let ¢ be a 3-cnf formula with m variables and / clauses.

e We construct in polynomial-time, an instance of (G, k)
where k = m+ 2.

e For each variable x in ¢, we add two nodes to G labeled x
and X, connected by an edge (variable gadget).

e For every clause (¢4 VV ¢2 \V £3) in ¢, we add 3 nodes labeled
44, o and /3, with edges between every pair so that they
form a triangle (clause gadget)

e We add an edge between any two identically labelled nodes,
one from a variable gadget and one from a clause gadget.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 7127

THE VERTEX COVER PROBLEM

(X1 A\ X1 A\ XZ) AN (_IX1 A\ —|X2 A\ ﬂXz) A (_IX1 A\ Xz A\ Xz)

Variables and negations of variables

#nodes = 2(#variables) + 3(#clauses)

THE VERTEX COVER PROBLEM

(x1 vXqVv x2) A (—|x1 Vv Xy Vv —|X2) A (—|x1 Vv X3 Vv XZ)

Variables and negations of variables

¢ satisfiable = put “true” literals on top in verte
For each clause. pDick a true literal and put other 2 in vertex cover

SLIDES FOR 15-453 LECTURE 21 FALL 2015

91/27

THE VERTEX COVER PROBLEM

(X1 A\ X1 Vv XZ) N (—IX1 A" —IXZ A4 ﬁXz) N\ (—IX1 Vv XZ A4 XZ)

Variables and negations of variables

THE HAMILTONIAN PATH PROBLEM

DEFINITION - HAMILTONIAN PATH

(Recall that) A Hamiltonian path in a directed graph G is a
directed path that goes through each node exactly once.

DEFINITION HAMILTONIAN PATH PROBLEM

HAMPATH = {(G, s, t) | G is a directed graph with a Hamiltonian
path from s to t}.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 11727

THE HAMILTONIAN PATH PROBLEM
HAMPATH is NP-complete.

PROOF IDEA
o We show 3SAT <p HAMPATH.

e We again use gadgets to represent the variables and
clauses.

e For a given 3-cnf formula with k clauses

dp=(ayVbVec)A(@aVbVe)AN---A(akV bk V ck)
- ~~ g N ~~ g N s

Cq Co Ck

where each a;, b; or ¢; is a literal x or x. We have / variables
X1, Xo, ... X].

4

SLIDES FOR 15-453 LECTURE 21 FALL 2015 12/27

THE HAMILTONIAN PATH PROBLEM

e 1-node
gadgets for O C
clauses
e Diamond- O G
shaped
gadgets for
variables
o C,
clauses

SLIDES FOR 15-453 LECTURE 21 FALL 2015 13/27

THE HAMILTONIAN PATH PROBLEM

e The middle spine in each diamond has 3k + 3 nodes.

e 3 nodes per clause + 1 to isolate them from the two literal
nodes and 2 nodes on each side for the literals x;, X;.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 14/27

THE HAMILTONIAN PATH PROBLEM

e If x; appears in clause c;, we add two edges from j group
in the spine to the j* clause node in the i diamond.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 15/27

THE HAMILTONIAN PATH PROBLEM

e If X; appears in clause c;, we add two edges from j group
in the spine to the j# clause node in the i diamond, but in
the reverse direction.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 16 /27

THE HAMILTONIAN PATH PROBLEM

e Suppose ¢ is satisfiable.
e Ignoring the clause nodes, we note that the Hamiltonian
path
o startsat s
e goes through each diamond
e ends up at t.
e In diamond J, it either goes left-to-right or right-to-left
depending on the truth value of variable x;.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 17727

THE HAMILTONIAN PATH PROBLEM

e The clause nodes can be incorporated into the path using
the detours we provided.

e Soif x; is true and is in clause ¢;, we can take a detour to
node for ¢; and back to the spine in the right direction.

x;

e Note that each detour is optional but we have to incorporate
c; only once.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 18727

THE HAMILTONIAN PATH PROBLEM

e The clause nodes can be incorporated into the path using
the detours we provided.

e Soif X; is true and is in clause ¢;, we can take a detour to
node for ¢; and back to the spine in the reverse direction.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 19727

THE HAMILTONIAN PATH PROBLEM

e How about the reverse direction? If G has a Hamiltonian
path then ¢ has a satisfying assignment?

e If the path is normal, that is, it goes through from s
zigzagging through the diamonds, then clearly there is a
satisfying assignment.

e The following case can not happen!

@)

SLIDES FOR 15-453 LECTURE 21 FALL 2015

THE UNDIRECTED HAMILTONIAN PATH

DEFINITION HAMILTONIAN PATH PROBLEM

UHAMPATH = {(G, s, t) | G is an undirected graph with a
Hamiltonian path from s to t}.

UHAMPATH is NP-complete.

PROOF IDEA
o We reduce HAMPATH to UHAMPATH.

e All nodes except s and t in the directed graph G, map to 3
nodes in the undirected graph G'.

e G has a Hamiltonian path < G’ has an undirected
Hamiltonian path.

SLIDES FOR 15-453 LECTURE 21 FALL 2015

THE UNDIRECTED HAMILTONIAN PATH
UHAMPATH is NP-complete. \

PROOF
@ sin G maps to s®tin G.
e tin Gmapsto t"in G.
e Any other node u; maps to u", u™@ yo“in G.
e All arcs coming to u; in G become edges incident on u;” in
G.

e All arcs going out from u; in G become edges incident on
uttin G

SLIDES FOR 15-453 LECTURE 21

FALL 2015 22/27

THE UNDIRECTED HAMILTONIAN PATH

e Note that if
S,U1,U2,...,Uk,t

is @ Hamiltonian path in G then
Sout) UT, anid, U1out7 uén7 Ugﬁd, ugut' . U,?Ut, ttin

is @ Hamiltonian path in G'.

e Any Hamiltonian path between s°“ and ", must go through
the triple of nodes except for the start and end nodes.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 23/27

THE SUBSET SUM PROBLEM

SUBSET-SUM = {(S,t) | S = {x1, ..., Xm} and for some J
t}

W,y €8 Y Y=

SUBSET-SUM is NP-complete.

PROOF IDEA

@ We reduce 3SAT to an instance of the SUBSET-SUM
problem with a set S and a bound t,

e so that if a formula ¢ has a satisfying assignment,
e then S has a subset T that adds to ¢

o We already know that SUBSET-SUM is in NP.

SLIDES FOR 15-453 LECTURE 21 FALL 2015

THE SUBSET SUM PROBLEM

o Let ¢ be a formula with variables x;, x», ..., x; and clauses
Ci,...,Ck.

e We compute m=2 x [+ 2 x k (large) numbers from ¢ and
a bound t

e Such that when we choose the numbers corresponding to
the literals in the satisfying assignment, they add to t.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 25127

THE SUBSET SUM PROBLEM

Storé=0a VXV xa)A(eVXaV YA AGGV V)

1

2

Y1 1 0
Zq 1 0
1

1

o

Yo
Z2

Y3
Z3

—~— o000 ool
B
<

2000 Oow
cocooocoos
[eNeNoNoNoRa] b
o =0 = 0o

Yi
Z
g1
h
92
ho

- - O O0OlO0O0O

SLIDES FOR 15-453 LECTURE 21 FALL 2015 26/27

THE SUBSET SUM PROBLEM

1 2 3 4 I | ¢ o Ck

R s {0 We choose pne of the
211 0 0 o0 0l o0 o0 0 numbers y; if x; = 1,
V. 10 0 ol o 1 0 iy —
zz 1 0 0 ol 1 o 0 or z; if x; = 0.
Y3 1.0 o1 0 | @ The left part of t will
Z3 10 o|lo o 1 .

_ | , add up the right

M ilo o o number.

Z 1 ? 8 g e The right side
4 o o | columns will at least
g2 1 0 be 1 each

ho 1 0

: .. . | e We take enough of
o i | the gand h's to make
Pk ! them add up to 3.

t 1 1 1 1 - 1[3 3 - 3|

SLIDES FOR 15-453 LECTURE 21 FALL 2015 27127

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

SPACE COMPLEXITY

SLIDES FOR 15-453 LECTURE 22 FALL 2015

SPACE COMPLEXITY

e (Disk) Space — the final frontier!
e How much memory do computational problems require?

e We characterize problems based on their memory
requirements.

e Space is reusable, time is not!

e We again use the Turing machine as our model of
computation.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 2/24

SPACE COMPLEXITY

DEFINITION — SPACE COMPLEXITY

Let M be a deterministic Turing machine that halts on all inputs.
The space complexity of M is the function f : N'— N/, where
f(n) is the maximum number of tape cells that M scans on
any input of length n.

For nondeterministic TMs where all branches halt on all inputs,
we take the maximum over all the branches of computation.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 3/24

SPACE COMPLEXITY

DEFINITION — SPACE COMPLEXITY CLASSES

Let f : N — R*. The space complexity classes are defined as
follows:

SPACE(f(n)) ={L| Lisalanguage decided by an O(f(n))
space deterministic TM}
NSPACE(f(n)) ={L| Lis alanguage decided by an O(f(n))
space nondeterministic TM}

e SPACE(f(n)) formalizes the class of problems that can be
solved by computers with bounded memory. (Real world!)

e SPACE(f(n)) problems could potentially take a long time to
solve.

e Intuitively space and time seem to be interchangeable.

e Just because a problem needs only linear space does not
mean it can be solved in linear time.

SLIDES FOR 15-453 LECTURE 22 FALL 2015

DETERMINISTIC SPACE COMPLEXITY OF SAT

e SAT is NP-complete.

e But SAT can be solved in linear space.

e M; =“Oninput (¢), where ¢ is a Boolean formula:
@ For each truth assignment to the variables xq, xo, ..., Xy, of ¢:
Q Evaluate ¢ on that truth assignment.
© If ¢ ever evaluates to 1, accept; if not, reject”

3SAT ¢ SPACE(n)

[AxIvIslyIvIxDT TdylvIxIvyDT TT T T[]
W=V ISIVIXDT TyvlxIvyD T T#lx] [yl |
[Ax[VISIVIXDT TdylvIxIviyD] [#[x[o[y]o]
[xIVISIyIVIXD T [dylvix[vIyD 1 T#]x[o]y]1]

[AxIVEIyIVIXDT TdylvIxIVIyD T T#lx[1]y[o

e Note that M, takes exponential time.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 5/24

NONDETERMINISTIC SPACE COMPLEXITY OF

ALLNEA

e Consider ALLyra = {(A) | Aisa NFA and L(A) = X*}

e The following nondeterministic linear space algorithm
decides ALLnga.

e Nondeterministically guess an input string rejected by the
NFA and use linear space to guess which states the NFA
could be at a given time.

e N ="On input (M) where M is an NFA.

© Place a marker on the start state of NFA.
© Repeat 29 times, where q is the number of states of M.

2.1 Nondeterministically select an input symbol and change the
position of the markers on M’s states, to simulate reading
that symbol.

@ Acceptif stage 2 reveals some string that M rejects, i.e., if at
some point none of the markers lie on accept states of M.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 6/24

NONDETERMINISTIC SPACE COMPLEXITY OF

ALLNEA

e Since there are at most 29 subsets of the states of M, it
must reject one of length at most 29, if M rejects any
strings.

o Remember that determinization could end up with at most 29
states.

e N needs space for

e storing the locations of the markers (O(q) = O(n))
e the repeat loop counter (O(q) = O(n))

e Hence N runs in nondeterministic O(n) space.
e Note that N runs in nondeterministic 2°(" time.
o ALLnga is not known to be in NP or coNP.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 7124

SAVITCH’S THEOREM

e Remember that simulation of a nondeterministic TM with a
deterministic TM requires an exponentional increase in
time.

e Savitch’s Theorem shows that any nondeterministic TM that
uses f(n) space can be converted to a deterministic TM
that uses only f2(n) space, that is,

NSPACE(f(n)) C SPACE(f?(n))

e Obviously, there will be a slowdown.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 8/24

SAVITCH’S THEOREM

THEOREM

For any function f : N' — R ™', where f(n) > n

NSPACE(f(n)) C SPACE(f*(n))

| A

PROOF IDEA
e Let N be a nondeterministic TM with space complexity f(n).

e Construct a deterministic machine M that tries every
possible branch of N.

e Since each branch of N uses at most 7(n) space, then M
uses space at most f(n) space + space for book-keeping.

e We need to simulate the nondeterministic computation and
save as much space as possible.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 91/24

SAVITCH’S THEOREM

e Given two configurations ¢; and ¢, of a f(n) space TM N,
and a number ¢, determine if we can get from ¢, to ¢, within
t steps.
e CANYIELD =" On input ¢y, ¢, and t:
Q Ift=0acceptiffc; =
@ If t =1 accept iff ¢y = ¢ or ¢y yields ¢, in one step.
© If t > 1 then for every possible configuration ¢y, of N for w,
using space f(n)
o Run CANYIELD(cy, Cm,).
() Run CANYIELD(Cm, G2, §).
Qo If steps 4 and 5 both accept, then accept.
@ If haven'’t yet accepted, reject”
e Space is reused during the recursive calls.
e The depth of the recursion is at most log .
e Each recursive step uses O(f(n)) space and t = 20((n)
2

SLIDES FOR 15- 4\1 LI:(lLRl:) ; FALL 2015 10724

SAVITCH’S THEOREM

e M simulates N using CANYIELD.

e If nis the length of w, we choose d so that N has no more
than 29(") configurations each using f(n) tape.

e 291" provides an upper bound on the running time on any
branch of N.

e M ="“On input w:

@ Output the result of CANYIELD(Cstart, Caccept, 297(M).”

e At each stage, CANYIELD stores ¢y, ¢, and t for a total of
O(f(n)) space.

e Minor technical points with the accepting configuration and

the initial value of t (e.g., how does the TM know £(n)?) —
See the book.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 11724

THE CLASS PSPACE

DEFINITION — PSPACE

PSPACE is the class of languages that are decidable in
polynomial space on a deterministic TM.

PSPACE = _ SPACE(n").
k

e NSPACE is defined analogously.

e But PSPACE = NSPACE, due to Savitch’s theorem,
because the square of a polynomial is also a polynomial.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 12724

THE CLASS PSPACE — SOME OBSERVATIONS

o We know SAT € SPACE(n).
e = SAT € PSPACE.
e We know ALLyra € NSPACE(n) and hence
ALLpnga € SPACE(n?), by Savitch’s theorem.
o = ALLNrs € PSPACE.
e Deterministic space complexity classes are closed under
complementation, so ALLyga € SPACE(n?).
o = ALLNes € PSPACE.
e A TM that operates in f(n) > ntime, can use at most f(n)
space.
e = P C PSPACE

e NP C NPSPACE = NP C PSPACE.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 13724

THE CLASS PSPACE — SOME OBSERVATIONS

e We can also bound the time complexity in terms of the
space complexity.
e For f(n) > n, a TM that uses f(n) space, can have at most
f(n)2°U(M) configurations.
o f(n) symbols on tape, so |I/(") possible strings and f(n)
possible state positions and |Q| possible states = 29(f(7)
o PSPACE C EXPTIME = |J, TIME(2™).

@ NP PSPACE EXPTIME

SLIDES FOR 15-453 LECTURE 22

FALL 2015 14724

PSPACE-COMPLETENESS

DEFINITION — PSPACE-COMPLETE

A language B is PSPACE-complete if it satisfies two conditions:
Q@ Bisin PSPACE, and
@ every Ain PSPACE is polynomial time reducible to B.

e Note that we use polynomial-time reducibility!
e The reduction should be easy relative to the complexity of
typical problems in the class.

e In general, whenever we define complete-problems for a
complexity class, the reduction model must be more limited
that the model use for defining the class itself.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 15724

THE TQBF PROBLEM

e Quantified Boolean Formulas are exactly like the Boolean
formulas we define for the SAT problem, but additionally
have existential (3) and universal (V) quantifiers.

o Vx[x VY]

e IxJy[x VY]

o VX[x VX]

o Vx[X]

o VxIy[(xVy)A(XVY)

e A fully quantified Boolean formula is a quantified formula
where every variable is quantified.

o All except the first above are fully quantified.
e A fully quantified Boolean formula is also called a sentence,
and is either true or false.

DEFINITION — TQBF
TQBF = {{¢) | ¢ is a true fully quantified Boolean formula}

SLIDES FOR 15-453 LECTURE 22 FALL 2015 16 /24

THE TQBF PROBLEM

TQBF = {{¢) | ¢ is a true fully quantified Boolean formula} is
PSPACE-complete.

e Assume T decides TQBF.

e If ¢ has no quantifiers, it is an expression with only
constants! Evaluate ¢ and accept if result is 1.

e If ¢ = x4, recursively call T on v, first with x = 0 and then
with x = 1. Accept if either returns 1.

e If ¢ = Vxu, recursively call T on v, first with x = 0 and then
with x = 1. Accept if both return 1.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 17724

THE TQBF PROBLEM

Every language A in PSPACE is polynomial-time reducible to
TQBF.

e We build a polynomial time reduction from A to TQBF

e The reduction turns a string w into a TQBF ¢ that simulates
a PSPACE TM M for Aon w.

e Essentially the same as in the proof of the
NP-completeness of SAT — build a formula from the
accepting computation history.

e But uses the approach in Savitch’s Theorem.

e Details in section 8.3 in the book.

e PSPACE is often called the class of games.

e Formalizations of many popular games are
PSPACE-complete.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 18724

THE CLASSES L AND NL

e We have so far considered time and space complexity
bounds that are at least linear.

e We now examine smaller, sublinear space bounds.

e For time complexity, sublinear bounds are insufficient to read
the entire input!

e For sublinear space complexity, the TM is able to read the
whole input but not store it.

e We must modify the computational model!

SLIDES FOR 15-453 LECTURE 22 FALL 2015 19724

THE CLASSES L AND NL

e We introduce a TM with two-tapes:
@ A read-only input tape.
© A read/write work tape.
e On the input tape, the head always stays in the region
where the input is.
e The work tape can be read and written in the usual way.

e Only the cells scanned on the work tape contribute to the
space complexity.

DEFINITIONS— LOG SPACE COMPLEXITY CLASSES

L = SPACE(log n)
NL = NSPACE(log n)

SLIDES FOR 15-453 LECTURE 22 FALL 2015 20/24

AN ALGORITHM IN L

e Consider the (good old) language A = {0¥1% | kK > 0}

e Previous algorithm (zig-zag and cross out symbols) used
linear space.

e We can not do this now since the input tape is read-only.

e Once the machine is certain the string is of the desired
pattern, it can count the number of 0’s and 1’s.

e The only additional space needed are for the two counters
(in binary).

e A binary counter uses only logarithmic space, O(log k).

SLIDES FOR 15-453 LECTURE 22 FALL 2015 21/24

AN ALGORITHM IN NL

e Consider the PATH problem
PATH = {(G, s, t) | Gis a directed graph that has a directed
path from s to t}

e PATH is in P, but that algorithm uses linear space.

e Itis not known if PATH can be solved in deterministic log
space.
e It can be solved in nondeterministic log space:
@ Starting with s, the nondeterministic log space TM guesses
the next node to go to on the way to t.
© The TM only records the id or the position of the node (so
needs log space).
© The TM nondeterministically guesses the next node, until
either it reaches t or until it has gone for m steps where mis
the number of nodes.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 221/24

THE CLASSES L AND NL

e Log-space reducibility
e NL-completeness
e PATH is NL-complete.

e For a given log space nondeterministic TM and input w, map
the accepting computation history to a graph, with nodes
representing configurations.

NL C P (remember PATH € P)
NL = coNL.
L € NL = coNL CP C PSPACE.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 23/24

AND WE ARE DONE FOR THE SEMESTER

(— THE FINAL)

e Thanks for your patience and for taking the occasional
mental pain.

e But then, no pain no gain!

e We do review in the remaining lecture slots, please come
prepared and let me know what major concepts your still
have problems with.

e Final on Sunday, December 6, 2015, at 13:00-16:00

e Good luck!

SLIDES FOR 15-453 LECTURE 22 FALL 2015

	lecture-1
	lecture-2
	lecture-3
	lecture-4
	lecture-5
	lecture-6
	lecture-7
	lecture-8
	lecture-9
	lecture-10
	lecture-11
	lecture-12
	lecture-13
	lecture-14
	lecture-15
	lecture-16
	lecture-17
	lecture-18
	lecture-19
	lecture-20
	lecture-21
	lecture-22

