
Formal Languages, Automata and
Computation

Slides for 15-453 Lecture 1 Fall 2015 1 / 25

Administrative Stuff

Textbook: Introduction to the Theory of
Computation, 3rd edition by Michael Sipser (MIT)
Evaluation:

2 Midterm Exams
1 Final Exam
8 Homeworks

See syllabus for details.

Slides for 15-453 Lecture 1 Fall 2015 2 / 25

What is this course about? – Formal
Languages

An abstraction of the notion of a “problem”
Problems are cast either as Languages (= sets of
“Strings”)

”Solutions” determine if a given “string” is in the set or not
e.g., Is a given integer, n, prime?

Or, as transductions between languages
“Solutions” transduce/transform the input string to an output
string

e.g., What is 3+5?

Slides for 15-453 Lecture 1 Fall 2015 3 / 25

What is this course about? – Formal
Languages

So essentially all computational processes can be
reduced to one of

Determining membership in a set (of strings)
Mapping between sets (of strings)

We will formalize the concept of mechanical
computation by

giving a precise definition of the term “algorithm”
characterizing problems that are or are not suitable for
mechanical computation.

Slides for 15-453 Lecture 1 Fall 2015 4 / 25

What is this course about? – Automata

Automata (singular Automaton) are abstract
mathematical devices that can

Determine membership in a set of strings
Transduce strings from one set to another

They have all the aspects of a computer
input and output
memory
ability to make decisions
transform input to output

Memory is crucial:
Finite Memory
Infinite Memory

Limited Access
Unlimited Access

Slides for 15-453 Lecture 1 Fall 2015 5 / 25

What is this course about?– Automata

We have different types of automata for different
classes of languages.
They differ in

the amount of memory then have (finite vs infinite)
what kind of access to the memory they allow.

Automata can behave non-deterministically
A non-deterministic automaton can at any point, among
possible next steps, pick one step and proceed
This gives the conceptual illusion of (infinitely) parallel
computation for some classes of automata

All branches of a computation proceed in parallel (sort of)

More on this later

Slides for 15-453 Lecture 1 Fall 2015 6 / 25

What is this course about?– Complexity

How much resource does a computation
consume?

Time and Space

What are the implications of nondeterminism for
complexity?
How can we classify problems into classes based
on their resource use?

Are there problems with very unreasonable resource usage
(Intractable problems)?
How can we characterize such problems?

P vs. NP, PSPACE, Log Space

Slides for 15-453 Lecture 1 Fall 2015 7 / 25

What is this course about?– Computability

What is computational power?
Automaton 1 tells Automaton 2
“Tell me what kinds of problems you can solve and I will tell
you how powerful you are? “

What does computational power depend on? (it
turns out, not “speed”)
What does it mean for a problem to be
computable ?
Are there any uncomputable functions or
unsolvable problems?

What does this mean?
Why do we care?

Slides for 15-453 Lecture 1 Fall 2015 8 / 25

Applications/Relevance

Pattern matching
Perl Hacking
Bioinformatics
Lexical analysis

Design and Verification
Hardware
Software
Communication Protocols

Parsing Languages
Compiler construction
XML Analysis
Natural language processing, Machine Translation

Algorithm design and analysis

Slides for 15-453 Lecture 1 Fall 2015 9 / 25

Decision Problems

A decision problem is a function with a YES/NO
output
We need to specify

the set A of possible inputs (usually A is infinite)
the subset B ⊆ A of YES instances (usually B is also infinite)

The subset B should have a finite description!

Slides for 15-453 Lecture 1 Fall 2015 10 / 25

Decision Problems – Examples

A: integers
is even?(x)
is prime?(x)

A: integers × integers
is relatively prime?(x,y)

Slides for 15-453 Lecture 1 Fall 2015 11 / 25

Decision Problems – Examples

A: set of all pairs (G, t)
G is a {finite set of triples of the sort (i , j ,w)},
i and j are integers and w is real
The finite set encodes the edges of a weighted directed
graph G.
A = {. . . ({. . . , (3,4,5.6), . . .},8.0), . . .}

Each pair in A, (G, t), represents a graph G and a
threshold t
Does G have a path that goes through all nodes
once with total weight < t?

Travelling Salesperson Problem

A is the set of all TSP instances.

Slides for 15-453 Lecture 1 Fall 2015 12 / 25

Encoding Sets

Sets can be
Finite
Infinite

Countably Infinite: can be put in one-to-one correspondence
with natural numbers (e.g., rational numbers, integers)
Uncountably Infinite: can NOT be put in one-to-one
correspondence with natural numbers (e.g., real numbers)

Slides for 15-453 Lecture 1 Fall 2015 13 / 25

Encoding Sets

In real life, we use many different types of data:
integers, reals, vectors, complex numbers,
graphs, programs (your program is somebody
else’s data).
These can all be encoded as strings
So we will have only one data type: strings

Slides for 15-453 Lecture 1 Fall 2015 14 / 25

Strings

An alphabet is any finite set of distinct symbols
{0, 1}, {0,1,2,. . . ,9}, {a,b,c}
We denote a generic alphabet by Σ

A string is any finite-length sequence of elements
of Σ.
e.g., if Σ = {a,b} then a, aba, aaaa,,
abababbaab are some strings over the alphabet Σ

Slides for 15-453 Lecture 1 Fall 2015 15 / 25

Strings

The length of a string ω is the number of symbols
in ω. We denote it by |ω|. |aba| = 3.
The symbol ε denotes a special string called the
empty string

ε has length 0
String concatenation

If ω = a1, . . . ,an and ν = b1, . . . ,bm then ω · ν (or ων)
= a1, . . . ,anb1, . . . ,bm
Concatenation is associative with ε as the identity element.

If a ∈ Σ, we use an to denote a string of n a’s
concatenated

Σ = {0,1},05 = 00000
a0 =def ε
an+1 =def ana

Slides for 15-453 Lecture 1 Fall 2015 16 / 25

Strings

The reverse of a string ω is denoted by ωR.
ωR = an, . . . ,a1

A substring y of a string ω is a string such that
ω = xyz with |x |, |y |, |z| ≥ 0 and
|x |+ |y |+ |z| = |ω|

If ω = xy with |x |, |y | ≥ 0 and |x |+ |y | = |ω|, then
x is prefix of ω and y is a suffix of ω.

For ω = abaab,
ε, a, aba, and abaab are some prefixes
ε, abaab, aab, and baab are some suffixes.

Slides for 15-453 Lecture 1 Fall 2015 17 / 25

Strings

The set of all possible strings over Σ is denoted
by Σ∗.
We define Σ0 = {ε} and Σn = Σn−1 · Σ

with some abuse of the concatenation notation applying to
sets of strings now

So Σn = {ω|ω = xy and x ∈ Σn−1 and y ∈ Σ}
Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · ·Σn ∪ · · · =

⋃∞
0 Σi

Alternatively, Σ∗ = {x1, . . . , xn|n ≥ 0 and xi ∈ Σ for all i}
Φ denotes the empty set of strings Φ = {},

but Φ∗ = {ε}

Slides for 15-453 Lecture 1 Fall 2015 18 / 25

Strings

Σ∗ is a countably infinite set of finite length strings
If x is a string, we write xn for the string obtained
by concatenating n copies of x .

(aab)3 = aabaabaab
(aab)0 = ε

Slides for 15-453 Lecture 1 Fall 2015 19 / 25

Languages

A language L over Σ is any subset of Σ∗

L can be finite or (countably) infinite

Slides for 15-453 Lecture 1 Fall 2015 20 / 25

Some Languages

L = Σ∗ – The mother of all languages!
L = {a,ab,aab} – A fine finite language.

Description by enumeration

L = {anbn : n ≥ 0} = {ε, ab, aabb, aaabbb, . . .}
L = {ω|na(ω) is even}

nx (ω) denotes the number of occurrences of x in ω
all strings with even number of a’s.

L = {ω|ω = ωR}
All strings which are the same as their reverses –
palindromes.

L = {ω|ω = xx}
All strings formed by duplicating some string once.

L = {ω|ω is a syntactically correct Java program }
Slides for 15-453 Lecture 1 Fall 2015 21 / 25

Languages

Since languages are sets, all usual set operations
such as intersection and union, etc. are defined.
Complementation is defined with respect to the
universe Σ∗ : L = Σ∗ − L

Slides for 15-453 Lecture 1 Fall 2015 22 / 25

Languages

If L, L1 and L2 are languages:
L1 · L2 = {xy |x ∈ L1 and y ∈ L2}
L0 = {ε} and Ln = Ln−1 · L
L∗ =

⋃∞
0 Li

L+ =
⋃∞

1 Li = L∗ − {ε}

Slides for 15-453 Lecture 1 Fall 2015 23 / 25

Sets of Languages

The power set of Σ∗, the set of all its subsets, is
denoted as 2Σ∗

Slides for 15-453 Lecture 1 Fall 2015 24 / 25

Describing Languages

Interesting languages are infinite
We need finite descriptions of infinite sets

L = {anbn : n ≥ 0} is fine but not terribly useful!

We need to be able to use these descriptions in
mechanizable procedures

Slides for 15-453 Lecture 1 Fall 2015 25 / 25

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

FINITE STATE MACHINES

SLIDES FOR 15-453 LECTURE 2 FALL 2015 1 / 31

SUMMARY

Alphabet Σ,
Set of all Strings, Σ∗,
Language L ⊆ Σ∗,
Set of all languages 2Σ∗

SLIDES FOR 15-453 LECTURE 2 FALL 2015 2 / 31

AUTOMATA

Abstract Models of computing devices

Each step of operation is like:
If the current input symbol is X and memory state is Z, then
output Y, move (left/right)

SLIDES FOR 15-453 LECTURE 2 FALL 2015 3 / 31

AUTOMATA

The control unit has some finite memory and it
keeps track of what step to execute next.
Additional memory (if any) is infinite - we never
run out of memory!

Infinite but like a stack - only the top item is accessible at a
given time.
Infinite but like a tape, any cell is (sequentially) accessible.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 4 / 31

FINITE STATE AUTOMATA

Finite State Automata (FSA) are the simplest
automata.
Only the finite memory in the control unit is
available.
The memory can be in one of a finite number
states at a given time – hence the name.

One can remember only a (fixed) finite number of properties
of the past input.
Since input strings can be of arbitrary length, it is not
possible to remember unbounded portions of the input string.

It comes in Deterministic and Nondeterministic
flavors.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 5 / 31

DETERMINISTIC FINITE STATE AUTOMATA

(DFA)

A DFA starts in a start state and is presented with
an input string.
It moves from state to state, reading the input
string one symbol at a time.
What state the DFA moves next depends on

the current state,
current input symbol

When the last input symbol is read, the DFA
decides whether it should accept the input string

SLIDES FOR 15-453 LECTURE 2 FALL 2015 6 / 31

A SIMPLE DFA EXAMPLE

States are shown with circles. We usually have
labels on the states.

One designated state is the start state, (State q0 here).
States with double circles denote the accepting or final
states (State q1 here)

Directed and labeled arrows between states
denote state transitions.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 7 / 31

A SIMPLE DFA EXAMPLE

This DFA stays in the same state when the next input symbol is a

0.

In state q0, an input of 1 moves the DFA to state q1.

In state q1, an input of 1 moves the DFA to state q2.

In state q2, an input of 1 moves the DFA back to state q0.

If the DFA is in state q1 when the input is finished, the DFA

accepts the input string.
SLIDES FOR 15-453 LECTURE 2 FALL 2015 8 / 31

A SIMPLE DFA EXAMPLE

What kinds of strings does this DFA accept?
It accepts ω = 00010000
It accepts ω = 00010011001
It accepts ω = 1
It rejects ω = 1100001
It rejects ω = 0110000

It accepts all strings ω ∈ {0,1}∗ such that
n1(ω) = 1 mod 3

SLIDES FOR 15-453 LECTURE 2 FALL 2015 9 / 31

DFA – FORMAL DEFINITION

A Deterministic Finite State Acceptor (DFA) is
defined as the 5-tuple M = (Q,Σ, δ,q0,F) where

Q is a finite set of states
Σ is a finite set of symbols – the alphabet
δ : Q × Σ→ Q is the next-state function
q0 ∈ Q is the (label of the) start state
F ⊆ Q is the set of final (accepting) states

SLIDES FOR 15-453 LECTURE 2 FALL 2015 10 / 31

FORMAL DESCRIPTION OF THE EXAMPLE DFA

Q = {q0,q1,q2}

Σ = {0,1}

δ :

δ 0 1
q0 q0 q1
q1 q1 q2
q2 q2 q0

q0

F = {q1}

We will almost always use the graphical

description for δ. The other components

will always be implicit!
SLIDES FOR 15-453 LECTURE 2 FALL 2015 11 / 31

HOW THE DFA WORKS

The DFA accepts a string ω = x1x2 · · · xn if a
sequence of states r0r1r2 · · · rn, ri ∈ Q, exists, such
that

1 r0 = q0 (Start in the initial state)
2 ri = δ(ri−1, xi) for i = 1,2, . . .n

Move from state to state.
3 rn ∈ F

End up in a final state.

If the DFA is NOT in an accepting state when the
input string is exhausted, then the string is
rejected.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 12 / 31

DFA EXAMPLE

This DFA accepts strings that have aba
somewhere in it.
Once the existence of aba is ascertained, the rest
of the input is ignored!
What do the states “remember”?

SLIDES FOR 15-453 LECTURE 2 FALL 2015 13 / 31

DFA EXAMPLE

This DFA accepts strings that start with ab
Once the string starts with ab the rest is ignored!
The state q1 is known as a sink state.

Once a machine enters a sink state, there is no getting out!
It is rejected.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 14 / 31

DFA EXAMPLE

This DFA accepts strings of the sort anbm such
that n + m is odd.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 15 / 31

A MORE INTERESTING DFA EXAMPLE

Input is a string over Σ = {0,1}
We interpret the string as a binary number.
We want to accept strings where the
corresponding binary number is divisible by 3.

Accept e.g., 0, 11, 1001, 1100, 1111, 111100, . . .
Reject e.g., 1, 10, 101, 10000, . . .

The most significant (leftmost) digit comes first!
No obvious pattern at first sight!

SLIDES FOR 15-453 LECTURE 2 FALL 2015 16 / 31

A MORE INTERESTING DFA EXAMPLE

How do we find the decimal equivalent of binary
number digit-by-digit?

1 value=0
2 repeat as long as there is another
binary-digit

value=value*2+binary-digit

11012 → 0 · 2 + 1 = 1→ 1 · 2 + 1 = 3→
3 · 2 + 0 = 6→ 6 · 2 + 1 = 1310

We can not compute this number with a DFA,
since the number can be arbitrarily large!
However, for our problem, we can compute a
running modulo 3 with a DFA!!

SLIDES FOR 15-453 LECTURE 2 FALL 2015 17 / 31

COMPUTING A RUNNING MODULO 3
REMAINDER

Consider any number n = 3p + r . It has remainder r when divided by 3

Multiply by 2 and add 0

r = 0 : 2n + 0 = 2(3p + 0) + 0 = 3(2p) + 0→ New r is 0.
r = 1 : 2n + 0 = 2(3p + 1) + 0 = 3(2p) + 2→ New r is 2.
r = 2 : 2n + 0 = 2(3p + 2) + 0 = 3(2p + 1) + 1→ New r is 1.

Multiply by 2 and add 1

r = 0 : 2n + 1 = 2(3p + 0) + 1 = 3(2p) + 1→ New r is 1.
r = 1 : 2n + 1 = 2(3p + 1) + 1 = 3(2p + 1) + 0→ New r is 0.
r = 2 : 2n + 1 = 2(3p + 2) + 1 = 3(2p + 1) + 2→ New r is 2.

This information now defines the state transition function

We let each state denote the remainder. So δ maps each
remainder and input digit combination, to a new remainder.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 18 / 31

A DFA FOR BINARY NUMBERS DIVISIBLE BY 3

Running some examples:
For 112 = 310 ⇒ 0→ 1→ 0⇒ Accept
For 11002 = 1210 ⇒ 0→ 1→ 2→ 1⇒ 0 Accept
For 11112 = 1510 ⇒ 0→ 1→ 0→ 1⇒ 0 Accept
For 10102 = 1010 ⇒ 0→ 1→ 0→ 1⇒ 2 Reject

SLIDES FOR 15-453 LECTURE 2 FALL 2015 19 / 31

THE EXTENDED STATE TRANSITION FUNCTION

δ : Q × Σ→ Q is the state transition function. The
input is a symbol.
δ∗ : Q × Σ∗ → Q is the extended state transition
function.

δ∗(q, ε) = q
δ∗(q, ω · a) = δ(δ∗(q, ω),a), where a ∈ Σ and ω ∈ Σ∗

First, go (sort of recursively) where ω (a string) takes you,
(δ∗(q, ω) = q′)
Then, make a single transition with symbol a (δ(q′,a))

SLIDES FOR 15-453 LECTURE 2 FALL 2015 20 / 31

THE LANGUAGE ACCEPTED BY A DFA

L(M) denotes the language accepted by a DFA M

L(M) = {ω|ω ∈ Σ∗ and δ∗(q0, ω) ∈ F}
Similarly

L(M) = {ω|ω ∈ Σ∗ and δ∗(q0, ω) 6∈ F}

SLIDES FOR 15-453 LECTURE 2 FALL 2015 21 / 31

REGULAR LANGUAGES

A language L is called a regular language if and only
if there exists a DFA M such that L(M) = L.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 22 / 31

SAMPLE PROBLEMS

Design a DFA for all strings over the alphabet
Σ = {a,b} that contain aba but not abaa as a
substring.1

1A substring is any consecutive sequence of symbols that occurs
anywhere in a string. For example, ab and bc are substrings in abc while cb
or ac are not.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 23 / 31

SAMPLE PROBLEMS

Design a DFA for the language
L = {w | w contains at least one 0 and at most one 1}

SLIDES FOR 15-453 LECTURE 2 FALL 2015 24 / 31

SAMPLE PROBLEMS

Design a DFA for the language
L = {w | w does not contain 100 as a substring}

SLIDES FOR 15-453 LECTURE 2 FALL 2015 25 / 31

SAMPLE PROBLEMS

Design a DFA for all strings over the alphabet
A = {a,b, c} in which no two consecutive
positions are the same symbol. (5 states should
be sufficient)

SLIDES FOR 15-453 LECTURE 2 FALL 2015 26 / 31

SAMPLE PROBLEMS

Design a DFA for all strings over the alphabet
{0,1} where the 3rd symbol from the end is a 0.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 27 / 31

SAMPLE PROBLEMS

Design a DFA all strings over the alphabet {0,1}
where the leftmost and the rightmost symbols are
different.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 28 / 31

SAMPLE PROBLEMS

Design a DFA all strings over the alphabet
{a,b, c} where only two of the symbols occur odd
number of times.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 29 / 31

SAMPLE PROBLEMS

Design a DFA all strings over the alphabet {a,b}
in which every substring of length four has at
least two b’s.
For example, abbababbbaabbabba is accepted,
while abbaaabbbb is not, because the substring
aaab does not contain two b’s. (At most 8 states
should suffice.)

SLIDES FOR 15-453 LECTURE 2 FALL 2015 30 / 31

SAMPLE PROBLEMS

Design a DFA all strings over {a,b} in which
every pair of adjacent 0’s appears before any pair
of adjacent 1’s.

SLIDES FOR 15-453 LECTURE 2 FALL 2015 31 / 31

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION
REGULAR LANGUAGES

NONDETERMINISTIC FINITE STATE AUTOMATA

SLIDES FOR 15-453 LECTURE 3 FALL 2015 1 / 34

SUMMARY

Symbols, Alphabet, Strings, Σ∗, Languages, 2Σ∗

Deterministic Finite State Automata
States, Labels, Start State, Final States, Transitions
Extended State Transition Function
DFAs accept regular languages

SLIDES FOR 15-453 LECTURE 3 FALL 2015 2 / 34

REGULAR LANGUAGES

Since regular languages are sets, we can
combine them with the usual set operations

Union
Intersection
Difference

THEOREM

If L1 and L2 are regular languages, so are L1 ∪ L2,
L1 ∩ L2 and L1 − L2.

PROOF IDEA

Construct cross-product DFAs

SLIDES FOR 15-453 LECTURE 3 FALL 2015 3 / 34

CROSS-PRODUCT DFAS

A single DFA which simulates operation of two
DFAs in parallel!
Let the two DFAs be M1 and M2 accepting regular
languages L1 and L2

1 M1 = (Q1,Σ, δ1,q1
0 ,F1)

2 M2 = (Q2,Σ, δ2,q2
0 ,F2)

We want to construct DFAs M = (Q,Σ, δ,q0,F)
that recognize

L1 ∪ L2
L1 ∩ L2
L1 − L2

SLIDES FOR 15-453 LECTURE 3 FALL 2015 4 / 34

CONSTRUCTING THE CROSS-PRODUCT DFA M

We need to construct M = (Q,Σ, δ,q0,F)

Q =pairs of states, one from M1 and one from M2

Q = {(q1,q2)|q1 ∈ Q1 and q2 ∈ Q2}
Q = Q1 ×Q2

q0 = (q1
0 ,q

2
0)

δ((q1
i ,q

2
j), x) = (δ1(q1

i , x), δ2(q2
j , x))

Union: F = {(q1,q2)|q1 ∈ F1 or q2 ∈ F2}
Intersection: F = {(q1,q2)|q1 ∈ F1 and q2 ∈ F2}
Difference: F = {(q1,q2)|q1 ∈ F1 and q2 6∈F2}

SLIDES FOR 15-453 LECTURE 3 FALL 2015 5 / 34

CROSS-PRODUCT DFA EXAMPLE

STRINGS WITH EVEN NUMBER OF 1S

M1

STRINGS WITH ODD NUMBER OF 0S

M2

SLIDES FOR 15-453 LECTURE 3 FALL 2015 6 / 34

DFA FOR L1 ∪ L2

DFA for L1 ∪ L2 accepts when either M1 or M2

accepts.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 7 / 34

DFA FOR L1 ∩ L2

DFA for L1 ∩ L2 accepts when both M1 and M2

accept.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 8 / 34

DFA FOR L1 − L2

DFA for L1 − L2 accepts when M1 accepts and M2

rejects.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 9 / 34

ANOTHER EXAMPLE: FIND THE

CROSS-PRODUCT DFA FOR

DFA for binary numbers divisible by 3
DFA for binary numbers divisible by 2

SLIDES FOR 15-453 LECTURE 3 FALL 2015 10 / 34

OTHER REGULAR OPERATIONS

Reverse: LR = {ω = a1 . . . an|ωR = an . . . a1 ∈ L}
Concatenation: L1 · L2 = {ων|ω ∈ L1 and ν ∈ L2}
Star Closure: L∗ = {ω1ω2 . . . ωk |k ≥ 0 and ωi ∈ L}

SLIDES FOR 15-453 LECTURE 3 FALL 2015 11 / 34

THE REVERSE OF A REGULAR LANGUAGE

THEOREM

The reverse of a regular language is also a regular
language.

If a language can be recognized by a DFA that
reads strings from right to left, then there is an
“normal” DFA (one that reads from left to right)
that accepts the same language.
Counter-intuitive! DFAs have finite memory. . .

SLIDES FOR 15-453 LECTURE 3 FALL 2015 12 / 34

REVERSING A DFA

Assume L is a regular language. Let M be a DFA
that recognizes L
We will build a machine MR that accepts LR

If M accepts ω, then ω describes a directed path,
in M, from the start state to a final state.
First attempt: Try to define MR as M as follows

Reverse all transitions
Turn the start state to a final state
Turn the final states to start states!

But, as such, MR is not always a DFA.
It could have many start states.
Some states may have too many outgoing transitions or
none at all!

SLIDES FOR 15-453 LECTURE 3 FALL 2015 13 / 34

EXAMPLE

What language does this DFA recognize?
All strings that contain a substring of 2 or more 0s followed
by a 1.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 14 / 34

REVERSING THE DFA

What happens with input 100?
There are multiple transitions from a state labeled with the
same symbol.
State transitions are not deterministic any more: the next
state is not uniquely determined by the current state and the
current input. → Nondeterminism

SLIDES FOR 15-453 LECTURE 3 FALL 2015 15 / 34

REVERSING THE DFA

We will say that this machine accepts a string if
there is some path that reaches an accept state
from a start state.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 16 / 34

HOW DOES NONDETERMINISM WORK?

When a nondeterministic finite state automaton
(NFA) reads an input symbol and there are
multiple transitions labeled with that symbol

It splits into multiple copies of itself, and
follows all possibilities in parallel.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 17 / 34

DETERMINISTIC VS NONDETERMINISTIC

COMPUTATION

SLIDES FOR 15-453 LECTURE 3 FALL 2015 18 / 34

HOW DOES NONDETERMINISM WORK?

When a nondeterministic finite state automaton
(NFA) reads an input symbol and there are
multiple transitions with labeled with that symbol

It splits into multiple copies of itself, and
follows all possibilities in parallel.

Each copy of the machine takes one of the
possible ways to proceed and continues as
before.
If there are subsequent choices, the machine
splits again.

We have an unending supply of these machines that we can
boot at any point to any state!

SLIDES FOR 15-453 LECTURE 3 FALL 2015 19 / 34

DFAS AND NFAS – OTHER DIFFERENCES

A state need not have a transition with every
symbol in Σ

No transition with the next input symbol? ⇒ that copy of the
machine dies, along with the branch of computation
associated with it.
If any copy of the machine is in a final state at the end of the
input, the NFA accepts the input string.

NFAs can have transitions labeled with ε – the
empty string.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 20 / 34

ε-TRANSITIONS

If a state with only transitions with an ε label is
encountered, something similar happens:

The machine does not read the next input symbol.
It splits into multiple copies:

a separate copy follows each ε transition
one stays at the current state

What the NFA arrives at p (say after having read
input a, it splits into 3 copies

SLIDES FOR 15-453 LECTURE 3 FALL 2015 21 / 34

NFA EXAMPLE

Accepts all strings over
Σ = {a,b, c} with at
least one of the symbols
occuring an odd number
of times.

For example, the
machine copy taking the
upper ε transition
guesses that there are
an odd number of a’s
and then tries to verify it.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 22 / 34

NONDETERMINISM

So nondeterminism can also be viewed as
guessing the future, and
then verifying it as the rest of the input is read in.

If the machine’s guess is not verifiable, it dies!

SLIDES FOR 15-453 LECTURE 3 FALL 2015 23 / 34

NFA EXAMPLE

Accepts all strings over Σ = {0,1} where the 3rd

symbol from the end is a 1.
How do you know that a symbol is the 3rd symbol from the
end?

The start state guesses every 1 is the 3rd from the
end, and then the rest tries to verify that it is or it
is not.

The machine dies if you reach the final state and you get
one more symbol.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 24 / 34

NFA–FORMAL DEFINITION

A Nondeterministic Finite State Acceptor (NFA) is
defined as the 5-tuple M = (Q,Σ, δ,q0,F) where

Q is a finite set of states
Σ is a finite set of symbols – the alphabet
δ : Q × (Σ ∪ {ε})→ 2Q, is the next-state function

2Q = {P|P ⊆ Q}
q0 ∈ Q is the (label of the) start state
F ⊆ Q is the set of final (accepting) states

δ maps states and inputs (including ε) to a set of
possible next states
Similarly δ∗ : Q × Σ∗ → 2Q

δ∗(q, ε) = {q}
δ∗(q, ω · a) = {p|∃r ∈ δ∗(q, ω) such that p ∈ δ(r ,a)}

a could be ε
SLIDES FOR 15-453 LECTURE 3 FALL 2015 25 / 34

HOW AN NFA ACCEPTS STRINGS

An NFA accepts a string ω = x1x2 · · · xn if a
sequence of states r0r1r2 · · · rn, ri ∈ Q exist such
that

1 r0 = q0 (Start in the initial state)
2 ri∈δ(ri−1, xi) for i = 1,2, . . .n (Move from state to state –

nondeterministically: ri is one of the allowable next states)
3 rn ∈ F (End up in a final state)

SLIDES FOR 15-453 LECTURE 3 FALL 2015 26 / 34

NONDETERMINISTIC VS DETERMINISTIC FA

We know that DFAs accept regular languages.
Are NFAs strictly more powerful than DFAs?

Are there languages that some NFA will accept but no DFA
can accept?

It turns out that NFAs and DFAs accept the same
set of languages.

Q is finite⇒ |2Q| = |{P|P ⊆ Q}| = 2|Q| is also finite.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 27 / 34

NFAS AND DFAS ARE EQUIVALENT

THEOREM

Every NFA has an equivalent DFA.

PROOF IDEA

Convert the NFA to an equivalent DFA that
accepts the same language.
If the NFA has k states, then there are 2k possible
subsets (still finite)
The states of the DFA are labeled with subsets of
the states of the NFA
Thus the DFA can have up to 2k states.

SLIDES FOR 15-453 LECTURE 3 FALL 2015 28 / 34

NFAS AND DFAS ARE EQUIVALENT

THEOREM

Every NFA has an equivalent DFA.

CONSTRUCTION

Let N = (Q,Σ, δ,q0,F) be an NFA. We construct
M = (Q′,Σ, δ′,q′0,F

′).

1 Q′ = 2Q, the power set of Q
2 For R ∈ Q′ and a ∈ Σ, let δ′(R,a) = {q ∈ Q|q ∈ ε(δ(r ,a)) for

some r ∈ R}
For R ∈ Q, the ε-closure of R, is defined as
ε(R) = {q|q is reachable from some r ∈ R
by traveling along zero or more ε− transitions}

3 q′0 = ε({q0})
4 F ′ = {R ∈ Q′|R ∩ F 6= φ}: at least one of the states in R is a

final state of N
SLIDES FOR 15-453 LECTURE 3 FALL 2015 29 / 34

NFA EXAMPLE

Note that q0 has an ε-transition
Some states (e.g., q1) do not have a transition for
some of the symbols in Σ. Machine dies if it sees
input 1 when it is in state q1.
ε({q0}) = {q0,q1}

SLIDES FOR 15-453 LECTURE 3 FALL 2015 30 / 34

NFA TO DFA CONVERSION EXAMPLE

Given N = ({1,2,3}, {a,b}, δ,1, {1}), construct
M = (Q′,Σ, δ′,q′0,F

′).

ε({1}) = {1,3}

δ′ a b
φ φ φ

{1} φ {2}
{2} {2,3} {3}
{3} {1,3} φ

{1,2} {2,3} {2,3}
{1,3} {1,3} {2}
{2,3} {1,2,3} {3}
{1,2,3} {1,2,3} {2,3}

SLIDES FOR 15-453 LECTURE 3 FALL 2015 31 / 34

NFA TO DFA CONVERSION EXAMPLE

Given N = ({1,2,3}, {a,b}, δ,1, {1}), construct
M = (Q′,Σ, δ′,q′0,F

′).

ε({1}) = {1,3}
{1,3} is the start state of M

δ′ a b
φ φ φ

{1} φ {2}
{2} {2,3} {3}
{3} {1,3} φ

{1,2} {2,3} {2,3}
{1,3} {1,3} {2}
{2,3} {1,2,3} {3}
{1,2,3} {1,2,3} {2,3}

SLIDES FOR 15-453 LECTURE 3 FALL 2015 32 / 34

NFA TO DFA CONVERSION EXAMPLE

Given N = ({1,2,3}, {a,b}, δ,1, {1}), construct
M = (Q′,Σ, δ′,q′0,F

′).

States {1} and {1,2} do
not appear as the next
state in any transition!
They can be removed

States with labels {1,3}
and {1,2,3} are the
final states of M.

We can now relabel the
states as we wish!

δ′ a b
q5 φ φ φ

q2 {2} {2,3} {3}
q1 {3} {1,3} φ

q0 {1,3} {1,3} {2}
q3 {2,3} {1,2,3} {3}
q4 {1,2,3} {1,2,3} {2,3}

SLIDES FOR 15-453 LECTURE 3 FALL 2015 33 / 34

NFA TO DFA CONVERSION EXAMPLE

Given N = ({1,2,3}, {a,b}, δ,1, {1}), construct
M = (Q′,Σ, δ′,q′0,F

′).

States {1} and {1,2} do
not appear as the next
state in any transition!
They can be removed

States with labels {1,3}
and {1,2,3} are the
final states of M.

We can now relabel the
states as we wish!

δ′ a b
q5 q5 q5
q2 q3 q1
q1 q0 q5
q0 q0 q2
q3 q4 q1
q4 q4 q3

SLIDES FOR 15-453 LECTURE 3 FALL 2015 34 / 34

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

REGULAR EXPRESSIONS

SLIDES FOR 15-453 LECTURE 4 FALL 2015 1 / 26

SUMMARY

Nondeterminism
Clone the FA at choice points
Guess and verify

Nondeterministic FA
Multiple transitions from a state with the same input symbol
ε-transitions

NFAs are equivalent to DFAs
Determinization procedure builds a DFA with up to 2k states
for an NFA with k states.

SLIDES FOR 15-453 LECTURE 4 FALL 2015 2 / 26

CLOSURE THEOREMS

THEOREM

The class of
regular
languages is
closed under the
union operation.

PROOF IDEA BASED ON NFAS

SLIDES FOR 15-453 LECTURE 4 FALL 2015 3 / 26

CLOSURE THEOREMS

THEOREM

The class of
regular
languages is
closed under the
concatenation
operation.

PROOF IDEA BASED ON NFAS

SLIDES FOR 15-453 LECTURE 4 FALL 2015 4 / 26

CLOSURE THEOREMS

THEOREM

The class of
regular
languages is
closed under the
star operation.

PROOF IDEA BASED ON NFAS

SLIDES FOR 15-453 LECTURE 4 FALL 2015 5 / 26

REGULAR EXPRESSIONS

DFAs are finite descriptions of (finite or infinite)
sets of strings

Finite number of symbols, states, transitions

Regular Expressions provide an algebraic
expression framework to describe the same class
of strings
Thus, DFAs and Regular Expressions are
equivalent.

SLIDES FOR 15-453 LECTURE 4 FALL 2015 6 / 26

REGULAR EXPRESSIONS

For every regular expression, there is a
corresponding regular set or language
R,R1,R2 are regular expressions; L(R) denotes
the corresponding regular set

Regular Expression Regular Set
φ {}

a for a ∈ Σ {a}
ε {ε}

(R1 ∪ R2) L(R1) ∪ L(R2)
(R1R2) L(R1)L(R2)

(R∗) L(R)∗

SLIDES FOR 15-453 LECTURE 4 FALL 2015 7 / 26

REGULAR EXPRESSIONS– MORE SYNTAX

Regular Expression Regular Set
φ {}

a for ∈ Σ {a}
ε {ε}

(R1 ∪ R2) L(R1) ∪ L(R2)
(R1R2) L(R1)L(R2)

(R∗) L(R)∗

Some books may also use R1 + R2 to denote union.

In (. . .), the parenthesis can be deleted

In which case, interpretation is done in the precedence
order: star, concatenation and then union.

R+ = RR∗ and Rk for k -fold concatenation are useful shorthands.

SLIDES FOR 15-453 LECTURE 4 FALL 2015 8 / 26

REGULAR EXPRESSION EXAMPLES

Regular Expression Regular Language
0∗10∗ → {ω|ω contains a single 1}

(0 ∪ 1)∗1(0 ∪ 1)∗ → {ω|ω has at least one 1}
0(0 ∪ 1)∗0 ∪ 1(0 ∪ 1)∗1 ∪ 0 ∪ 1 → {ω|ω starts and ends

with the same symbol}
(0∗10∗1)∗0∗ → {ω|n1(ω) is even}

SLIDES FOR 15-453 LECTURE 4 FALL 2015 9 / 26

WRITING REGULAR EXPRESSIONS

All strings with at least one pair of consecutive 0s
(0 ∪ 1)∗00(0 ∪ 1)∗

All strings such that fourth symbol from the end is
a 1

(0 ∪ 1)∗1(0 ∪ 1)(0 ∪ 1)(0 ∪ 1)
All strings with no pair of consecutive 0s

(1∗011∗)∗(0 ∪ ε) ∪ 1∗
Strings consist of repetitions of 1 or 01 or two boundary
cases: (1 ∪ 01)∗(0 ∪ ε)

All strings that do not end in 01.
(0 ∪ 1)∗(00 ∪ 10 ∪ 11) ∪ 0 ∪ 1 ∪ ε

SLIDES FOR 15-453 LECTURE 4 FALL 2015 10 / 26

WRITING REGULAR EXPRESSIONS

All strings over Σ = {a,b, c} that contain every
symbol at least once.
(a ∪ b ∪ c)∗a(a ∪ b ∪ c)∗b(a ∪ b ∪ c)∗c(a ∪ b ∪ c)∗∪
(a ∪ b ∪ c)∗a(a ∪ b ∪ c)∗c(a ∪ b ∪ c)∗b(a ∪ b ∪ c)∗∪
(a ∪ b ∪ c)∗b(a ∪ b ∪ c)∗a(a ∪ b ∪ c)∗c(a ∪ b ∪ c)∗∪
(a ∪ b ∪ c)∗b(a ∪ b ∪ c)∗c(a ∪ b ∪ c)∗a(a ∪ b ∪ c)∗∪
(a ∪ b ∪ c)∗c(a ∪ b ∪ c)∗a(a ∪ b ∪ c)∗b(a ∪ b ∪ c)∗∪
(a ∪ b ∪ c)∗c(a ∪ b ∪ c)∗b(a ∪ b ∪ c)∗a(a ∪ b ∪ c)∗

SLIDES FOR 15-453 LECTURE 4 FALL 2015 11 / 26

WRITING REGULAR EXPRESSIONS

All strings over Σ = {a,b, c} that contain every
symbol at least once.

DFAs and REs may need different ways of looking
at the problem.

For the DFA, you count symbols
For the RE, you enumerate all possible patterns

SLIDES FOR 15-453 LECTURE 4 FALL 2015 12 / 26

RE IDENTITIES

R ∪ φ = R
Rε = εR = R
φ∗ = ε

Note that we do not have explicit operators for
intersection or complementation!

SLIDES FOR 15-453 LECTURE 4 FALL 2015 13 / 26

DIGRESSION: RES IN REAL LIFE

Linux/Unix Shell, Perl, Awk, Python all have built in regular
expression support for pattern matching functionality

See http://perldoc.perl.org/perlre.html

Mostly some syntactic extensions/changes to basic regular
expressions with some additional functionality for remembering
matches

Substring matches in a string!

Search for and download Regex Coach to learn and experiment
with regular expression matching

SLIDES FOR 15-453 LECTURE 4 FALL 2015 14 / 26

http://perldoc.perl.org/perlre.html

EQUIVALENCE WITH FINITE AUTOMATA

THEOREM
A language is regular if and only if some regular expression describes
it.

LEMMA- THE if PART
If a language is described by a regular expression, then it is regular

PROOF IDEA
Inductively convert a given regular expression to an NFA.

SLIDES FOR 15-453 LECTURE 4 FALL 2015 15 / 26

CONVERTING RES TO NFAS: BASIS CASES

Regular Expression Corresponding NFA

φ

ε

a for a ∈ Σ

SLIDES FOR 15-453 LECTURE 4 FALL 2015 16 / 26

CONVERTING RES TO NFAS

Union
Let N1 and N2 be NFAs for R1 and R2

respectively. Then the NFA for R1 ∪ R2 is

SLIDES FOR 15-453 LECTURE 4 FALL 2015 17 / 26

CONVERTING RES TO NFAS

Concatenation
Let N1 and N2 be NFAs for R1 and R2

respectively. Then the NFA for R1R2 is

SLIDES FOR 15-453 LECTURE 4 FALL 2015 18 / 26

CONVERTING RES TO NFAS: STAR

Star
Let N be NFAs for R. Then the NFA for R∗ is

SLIDES FOR 15-453 LECTURE 4 FALL 2015 19 / 26

RE TO NFA CONVERSION EXAMPLE

Let’s convert (a ∪ b)∗aba to an NFA.

SLIDES FOR 15-453 LECTURE 4 FALL 2015 20 / 26

RE TO NFA TO DFA

Regular Expression→ NFA (possibly with
ε-transitions)
NFA→ DFA via determinization

SLIDES FOR 15-453 LECTURE 4 FALL 2015 21 / 26

EQUIVALENCE WITH FINITE AUTOMATA

THEOREM
A language is regular if and only if some regular expression describes
it.

LEMMA – THE only if PART

If a language is regular then it is described by a regular expression

PROOF IDEA

Generalized transitions: label transitions with regular expressions

Generalized NFAs (GNFA)

Iteratively eliminate states of the GNFA one by one, until only two
states and a single generalized transition is left.

SLIDES FOR 15-453 LECTURE 4 FALL 2015 22 / 26

GENERALIZED TRANSITIONS

DFAs have single symbols as transition labels

If you are in state p and the next input symbol matches a, go
to state q

Now consider

If you are in state p and a prefix of the remaining input
matches the regular expression ab∗ ∪ bc∗ then go to state q

SLIDES FOR 15-453 LECTURE 4 FALL 2015 23 / 26

GENERALIZED TRANSITIONS AND NFA

A generalized transition is a transition whose
label is a regular expression

A Generalized NFA is an NFA with generalized
transitions.

In fact, all standard DFA transitions are generalized
transitions with regular expressions of a single symbol!

SLIDES FOR 15-453 LECTURE 4 FALL 2015 24 / 26

GENERALIZED TRANSITIONS

Consider the 2-state DFA

↓

0∗1 takes the DFA from state q0 to q1
(0 ∪ 10∗1)∗ takes the machine from q1 back to q1
So ?= 0∗1(0 ∪ 10∗1)∗ represents all strings that take the
DFA from state q0 to q1

SLIDES FOR 15-453 LECTURE 4 FALL 2015 25 / 26

GENERALIZED NFAS

Take any NFA and transform it into a GNFA
with only two states: one start and one accept
with one generalized transition

then we can “read” the regular expression from
the label of the generalized transition (as in the
example above)

SLIDES FOR 15-453 LECTURE 4 FALL 2015 26 / 26

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION
DFAS TO REGULAR EXPRESSIONS

DFA MINIMIZATION – CLOSURE PROPERTIES

SLIDES FOR 15-453 LECTURE 5 FALL 2015 1 / 39

SUMMARY

Regular Expression (RE) define regular sets
RE⇒ NFA⇒ DFA

SLIDES FOR 15-453 LECTURE 5 FALL 2015 2 / 39

EQUIVALENCE OF RES TO FINITE AUTOMATA

THEOREM
A language is regular if and only if some regular expression describes
it.

LEMMA – THE only if PART

If a language is regular then it is described by a regular expression

PROOF IDEA

Generalized transitions: label transitions with regular expressions

Generalized NFAs (GNFA)

Iteratively eliminate states of the GNFA one by one, until only two
states and a single generalized transition is left.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 3 / 39

GENERALIZED TRANSITIONS

DFAs have single symbols as transition labels

If you are in state p and the next input symbol matches a, go
to state q

Now consider

If you are in state p and a prefix of the remaining input
matches the regular expression ab∗ ∪ bc∗ then go to state q

SLIDES FOR 15-453 LECTURE 5 FALL 2015 4 / 39

GENERALIZED TRANSITIONS AND NFA

A generalized transition is a transition whose
label is a regular expression

A Generalized NFA is an NFA with generalized
transitions.

In fact, all standard DFA transitions are generalized
transitions with regular expressions of a single symbol!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 5 / 39

GENERALIZED TRANSITIONS

Consider the 2-state DFA

↓

0∗1 takes the DFA from state q0 to q1
(0 ∪ 10∗1)∗ takes the machine from q1 back to q1
So ?= 0∗1(0 ∪ 10∗1)∗ represents all strings that take the
DFA from state q0 to q1

SLIDES FOR 15-453 LECTURE 5 FALL 2015 6 / 39

GENERALIZED NFAS

Take any DFA and transform it into a GNFA
with only two states: one start and one accept
with one generalized transition

then we can “read” the regular expression from
the label of the generalized transition (as in the
example above)

SLIDES FOR 15-453 LECTURE 5 FALL 2015 7 / 39

DFA TO GNFA

We will add two new states to a DFA:
A new start state with an ε-transition to the original start
state, but with no transitions from any other state
A new final state with an ε-transition from all the original final
states, but with no transitions to any other state

The previous start and final states are no longer!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 8 / 39

REDUCING A GNFA

We eliminate all states of the GNFA one-by-one
leaving only the start state and the final state.

When the GNFA is fully converted, the label of the
only generalized transition is the regular
expression for the language accepted by the
original DFA.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 9 / 39

ELIMINATING STATES

Suppose we want to eliminate state qk , and qi

and qj are two of the remaining states (i = j is
possible).

How can we modify the transition label between
qi and qj to reflect the fact that qk will no longer
be there?

There are two paths between qi and qj
Direct path with regular expression rij
Path via qk with the regular expression rikr∗kkrkj

SLIDES FOR 15-453 LECTURE 5 FALL 2015 10 / 39

ELIMINATING STATES

There are two
paths between qi
and qj

Direct path with
regular expression
rij
Path via qk with the
regular expression
rikr∗kkrkj

After removing qk ,
the new label
would be
r′ij = rij ∪ rikr∗kkrkj

↓

SLIDES FOR 15-453 LECTURE 5 FALL 2015 11 / 39

DFA-TO-GNFA-RE CONVERSION EXAMPLE

DFA for binary
numbers divisible
by 3

Initial GNFA

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12 / 39

DFA-TO-GNFA-RE CONVERSION EXAMPLE

Let’s eliminate q2

qi = q1,qj = q1,qk = q2

SLIDES FOR 15-453 LECTURE 5 FALL 2015 13 / 39

DFA-TO-GNFA-RE CONVERSION EXAMPLE

Let’s eliminate q1

SLIDES FOR 15-453 LECTURE 5 FALL 2015 14 / 39

DFA-TO-GNFA-RE CONVERSION EXAMPLE

Let’s eliminate q0

So the regular expression we are looking for is
(1(01∗0)∗1 ∪ 0)∗

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15 / 39

THE STORY SO FAR

SLIDES FOR 15-453 LECTURE 5 FALL 2015 16 / 39

THE STORY SO FAR

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17 / 39

DFA MINIMIZATION

Every DFA defines a unique language
But in general, there may be many DFAs for a
given language.
These DFAs accept the same language.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18 / 39

DFA MINIMIZATION

In practice, we are interested in the DFA with the
minimal number of states

Use less memory
Use less hardware (flip-flops)

SLIDES FOR 15-453 LECTURE 5 FALL 2015 19 / 39

INDISGUISHABLE STATES

Two states p and q of a DFA are called
indistinguishable if for all ω ∈ Σ∗,

δ∗(p, ω) ∈ F ⇔ δ∗(q, ω) ∈ F , and
δ∗(p, ω) 6∈ F ⇔ δ∗(q, ω) 6∈ F ,

Basically, these two states behave the same for
all possible strings!
Hence, a state p is distinguishable from state q

If there is at least one string ω such that either δ∗(p, ω) ∈ F
or δ∗(q, ω) ∈ F and the other is not

SLIDES FOR 15-453 LECTURE 5 FALL 2015 20 / 39

INDISTINGUISHABILITY

Indistinguishable states behave the same for all
possible strings!
So why have indistinguishable states? All but one
can be eliminated!
Indistinguishability is an equivalence relation

Reflexive: Each state is indistinguishable from itself
Symmetric: If p is indistinguishable from q, then q is
indistinguishable from p
Transitive: If p is indistinguishable from q, and q is
indistinguishable from r , then p is indistinguishable from r .

SLIDES FOR 15-453 LECTURE 5 FALL 2015 21 / 39

INDISTINGUISHABILITY AND PARTITIONS

Indistinguishability is an equivalence relation
Reflexive:Each state is indistinguishable from itself
Symmetric: If p is indistinguishable from q, then q is
indistinguishable from p
Transitive: If p is indistinguishable from q, and q is
indistinguishable from r , then p is indistinguishable from r .

An equivalence relation on a set Q induces a
partitioning π = {π1, π2, · · · , πk} such that

For all i and j , πi ∩ πj = Φ,⋃
i πi = Q

SLIDES FOR 15-453 LECTURE 5 FALL 2015 22 / 39

IDENTIFYING DISTINGUISHABLE STATES

Basis: Any nonaccepting state is distinguishable
from any accepting state (ω = ε).
Induction: States p and q are distinguishable if
there is some input symbol a such that δ(p,a) is
distinguishable from δ(q,a).
All other pairs of states are indistinguishable, and
can be merged appropriately

SLIDES FOR 15-453 LECTURE 5 FALL 2015 23 / 39

IDENTIFYING DISTINGUISHABLE STATES

p is distinguishable
from q and r by basis
Both q and r go to p
with 0, so no string
beginning with 0 will
distinguish them
Starting in either q and
r , an input of 1 takes
us to either, so they
are indistinguishable.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 24 / 39

IDENTIFYING DISTINGUISHABLE STATES

The Procedure MARK
1 Remove all inaccessible states
2 Consider all pairs of states (p,q)

if p ∈ F and q 6∈ F or p 6∈ F and q ∈ F , mark (p,q) as
distinguishable

3 Repeat the following until no previously unmarked
pairs are marked

∀p,q ∈ Q and ∀a ∈ Σ, find δ(p,a) = p′ and δ(q,a) = q′ ,
if (p′,q′) is marked distinguishable then mark (p,q)
distinguishable.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 25 / 39

MINIMIZATION EXAMPLE

q1 and q2 are equivalent

q3 and q4 are equivalent

q5 and q6 are equivalent

q1 × x x x x x
q2 × X x x x x
q3 × × × x x x
q4 × × × X x x
q5 × × × × × x
q6 × × × × × X

x q0 q1 q2 q3 q4 q5

SLIDES FOR 15-453 LECTURE 5 FALL 2015 26 / 39

THE MINIMIZED DFA

q1 and q2 are equivalent

q3 and q4 are equivalent

q5 and q6 are equivalent

q1 × x x x x x
q2 × X x x x x
q3 × × × x x x
q4 × × × X x x
q5 × × × × × x
q6 × × × × × X

x q0 q1 q2 q3 q4 q5

SLIDES FOR 15-453 LECTURE 5 FALL 2015 27 / 39

IS THE MINIMIZED DFA REALLY MINIMAL?

Let M be the DFA found by the previous
procedure (with states P = {p0,p1, . . . ,pm})
Suppose there is an equivalent DFA M1 with δ1

but with fewer states (Q = {q0,q1 . . . ,qn}n < m).
Since all states of M are distinguishable, there
must be distinct strings, ω1, ω2, . . . , ωm such that
δ∗(p0, ωi) = pi for all i .

SLIDES FOR 15-453 LECTURE 5 FALL 2015 28 / 39

IS THE MINIMIZED DFA REALLY MINIMAL?

Since M1 has fewer states than M, then there
must be strings ωk and ωl (among the previous
ω′is) such that δ∗1(q0, ωk) = δ∗1(q0, ωl) (Pigeonhole
principle-see later)
Since pk and pl are distinguishable, there must be
some string x such that

δ∗(p0, ωk · x) = δ∗(pk , x) is a final state and
δ∗(p0, ωl · x) = δ∗(pl , x) is NOT a final state, or vice versa.
So ωk · x is accepted and ωl · x is not (or vice versa)

SLIDES FOR 15-453 LECTURE 5 FALL 2015 29 / 39

IS THE MINIMIZED DFA REALLY MINIMAL?

But

δ∗1(q0, ωk · x) = δ∗1(δ∗1(q0, ωk), x)

= δ∗1(δ∗1(q0, ωl), x)

= δ∗1(q0, ωl · x)

So M1 either accepts both ωk · x and ωl · x or
rejects both. So M1 and M can not be equivalent.
So M1 can not exist.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 30 / 39

MORE ON DFA MINIMIZATION

DFA minimization is not covered in the textbook.
See

en.wikipedia.org/wiki/DFA_minimization
Introduction to Automata Theory, Languages and
Computation, by Hopcroft, Motwani and Ullman, Addison
Wesley, 3rd edition, Section 4.4

for more formal details.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 31 / 39

en.wikipedia.org/wiki/DFA_minimization

CLOSURE PROPERTIES OF REGULAR

LANGUAGES

Regular languages are closed under
Union
Intersection
Difference
Concatenation
Star Closure
Complementation
Reversal

operations

SLIDES FOR 15-453 LECTURE 5 FALL 2015 32 / 39

HOMOMORPHISM

Suppose Σ and Γ are alphabets, the function
h : Σ→ Γ∗ is called a homomorphism
It is a substitution in which a single symbol a ∈ Σ
is replaced by a string x ∈ Γ∗, that is. h(a) = x
Extend to strings: h(ω) = h(a1) . . . ,h(an) where
ω ∈ Σ∗ and ai ∈ Σ
Extend to languages h(L) = {h(ω)|ω ∈ L}

h(L) is called the homomorphic image of L.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 33 / 39

HOMOMORPHISM EXAMPLE

Let Σ = {a,b} and Γ = {a,b, c}
h(a) = ab and h(b) = bbc
h(aba) = abbbcab

THEOREM

Let h be a homomorphism. If L is regular then h(L) is
also regular.

PROOF

Obvious: Modify the DFA transitions

SLIDES FOR 15-453 LECTURE 5 FALL 2015 34 / 39

DECISION PROPERTIES OF REGULAR

LANGUAGES

THEOREM

Given a standard representation (DFA, NFA, RE) of
any regular language L on Σ and any ω in Σ∗, there
exists an algorithm to determine if ω is in L or not.

PROOF.
Represent the language with a DFA and test if ω is
accepted or not

SLIDES FOR 15-453 LECTURE 5 FALL 2015 35 / 39

DECISION PROPERTIES OF REGULAR

LANGUAGES

THEOREM

There exist algorithms for determining whether a
regular language in standard representation is empty
or not.

PROOF.
Represent the language with a DFA. If there is a path
from the start state to some final state, the language
is not empty.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 36 / 39

DECISION PROPERTIES OF REGULAR

LANGUAGES

THEOREM

There exist algorithms for determining whether a
regular language in standard representation is finite
or infinite.

PROOF.
Find all states that form a cycle. If any of these are on path from the
start state to a final state, then the language is infinite.

PROOF.
If DFA with n states accepts some string of length between n and
2n − 1 then it accepts an infinite set of strings.(needs Pumping
Lemma)

SLIDES FOR 15-453 LECTURE 5 FALL 2015 37 / 39

DECISION PROPERTIES OF REGULAR

LANGUAGES

THEOREM

Given standard representations of two regular
languages L1 and L2, there exists an algorithm to
determine if L1 = L2.

PROOF.
Compute L3 = (L1 − L2) ∪ (L2 − L1) which has to be
regular. If L3 = Φ then L1 = L2.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 38 / 39

MORE DECISION PROBLEMS

To decide if L1 ⊆ L2, check if L1 − L2 = Φ

To decide if ε ∈ L, check if q0 ∈ F
To decide if L contains ω such that ω = ωR

Let M be the DFA for L. Construct MR.
Construct M ∩MR using the cross-product construction
Check if L(M ∩MR) 6= Φ.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 39 / 39

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION
IDENTIFYING NONREGULAR LANGUAGES

PUMPING LEMMA

SLIDES FOR 15-453 LECTURE 5 FALL 2015 1 / 21

SUMMARY

DFAs to Regular Expressions

Minimizing DFA’s
Closure Properties
Decision Properties

SLIDES FOR 15-453 LECTURE 5 FALL 2015 2 / 21

SUMMARY

DFAs to Regular Expressions
Minimizing DFA’s

Closure Properties
Decision Properties

SLIDES FOR 15-453 LECTURE 5 FALL 2015 2 / 21

SUMMARY

DFAs to Regular Expressions
Minimizing DFA’s
Closure Properties

Decision Properties

SLIDES FOR 15-453 LECTURE 5 FALL 2015 2 / 21

SUMMARY

DFAs to Regular Expressions
Minimizing DFA’s
Closure Properties
Decision Properties

SLIDES FOR 15-453 LECTURE 5 FALL 2015 2 / 21

IDENTIFYING NONREGULAR LANGUAGES

Given language L how can we check if it is not a
regular language ?

The answer is not obvious.
Not being able to design a DFA does not constitute a proof!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 3 / 21

IDENTIFYING NONREGULAR LANGUAGES

Given language L how can we check if it is not a
regular language ?

The answer is not obvious.

Not being able to design a DFA does not constitute a proof!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 3 / 21

IDENTIFYING NONREGULAR LANGUAGES

Given language L how can we check if it is not a
regular language ?

The answer is not obvious.
Not being able to design a DFA does not constitute a proof!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 3 / 21

THE PIGEONHOLE PRINCIPLE

If there are n pigeons and m holes and n > m,
then at least one hole has > 1 pigeons.

What do pigeons have to do with regular
languages?

SLIDES FOR 15-453 LECTURE 5 FALL 2015 4 / 21

THE PIGEONHOLE PRINCIPLE

If there are n pigeons and m holes and n > m,
then at least one hole has > 1 pigeons.

What do pigeons have to do with regular
languages?

SLIDES FOR 15-453 LECTURE 5 FALL 2015 4 / 21

THE PIGEONHOLE PRINCIPLE

If there are n pigeons and m holes and n > m,
then at least one hole has > 1 pigeons.

What do pigeons have to do with regular
languages?

SLIDES FOR 15-453 LECTURE 5 FALL 2015 4 / 21

THE PIGEONHOLE PRINCIPLE

Consider the DFA

With strings a, aa or aab, no state is repeated
With strings aabb, bbaa, abbabb or abbbabbabb,
a state is repeated
In fact, for any ω where |ω| ≥ 4, some state has to
repeat? Why?

SLIDES FOR 15-453 LECTURE 5 FALL 2015 5 / 21

THE PIGEONHOLE PRINCIPLE

Consider the DFA

With strings a, aa or aab, no state is repeated

With strings aabb, bbaa, abbabb or abbbabbabb,
a state is repeated
In fact, for any ω where |ω| ≥ 4, some state has to
repeat? Why?

SLIDES FOR 15-453 LECTURE 5 FALL 2015 5 / 21

THE PIGEONHOLE PRINCIPLE

Consider the DFA

With strings a, aa or aab, no state is repeated
With strings aabb, bbaa, abbabb or abbbabbabb,
a state is repeated

In fact, for any ω where |ω| ≥ 4, some state has to
repeat? Why?

SLIDES FOR 15-453 LECTURE 5 FALL 2015 5 / 21

THE PIGEONHOLE PRINCIPLE

Consider the DFA

With strings a, aa or aab, no state is repeated
With strings aabb, bbaa, abbabb or abbbabbabb,
a state is repeated
In fact, for any ω where |ω| ≥ 4, some state has to
repeat? Why?

SLIDES FOR 15-453 LECTURE 5 FALL 2015 5 / 21

THE PIGEONHOLE PRINCIPLE

When traversing the DFA with the string ω, if the
number of transitions ≥ number of states, some
state q has to repeat!

Transitions are pigeons, states are holes.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 6 / 21

THE PIGEONHOLE PRINCIPLE

When traversing the DFA with the string ω, if the
number of transitions ≥ number of states, some
state q has to repeat!
Transitions are pigeons, states are holes.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 6 / 21

THE PIGEONHOLE PRINCIPLE

When traversing the DFA with the string ω, if the
number of transitions ≥ number of states, some
state q has to repeat!
Transitions are pigeons, states are holes.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 6 / 21

PUMPING A STRING

Consider a string ω = xyz

|y | ≥ 1
|xy | ≤ m (m the number of states)

SLIDES FOR 15-453 LECTURE 5 FALL 2015 7 / 21

PUMPING A STRING

Consider a string ω = xyz

|y | ≥ 1

|xy | ≤ m (m the number of states)

SLIDES FOR 15-453 LECTURE 5 FALL 2015 7 / 21

PUMPING A STRING

Consider a string ω = xyz

|y | ≥ 1
|xy | ≤ m (m the number of states)

SLIDES FOR 15-453 LECTURE 5 FALL 2015 7 / 21

PUMPING A STRING

Consider a string ω = xyz

If ω = xyz ∈ L that so are xy iz for all i ≥ 0
The substring y can be pumped.
So if a DFA accepts a sufficiently long string, then
it accepts an infinite number of strings!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 8 / 21

PUMPING A STRING

Consider a string ω = xyz

If ω = xyz ∈ L that so are xy iz for all i ≥ 0

The substring y can be pumped.
So if a DFA accepts a sufficiently long string, then
it accepts an infinite number of strings!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 8 / 21

PUMPING A STRING

Consider a string ω = xyz

If ω = xyz ∈ L that so are xy iz for all i ≥ 0
The substring y can be pumped.

So if a DFA accepts a sufficiently long string, then
it accepts an infinite number of strings!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 8 / 21

PUMPING A STRING

Consider a string ω = xyz

If ω = xyz ∈ L that so are xy iz for all i ≥ 0
The substring y can be pumped.
So if a DFA accepts a sufficiently long string, then
it accepts an infinite number of strings!

SLIDES FOR 15-453 LECTURE 5 FALL 2015 8 / 21

A NONREGULAR LANGUAGE

Consider the language L = {anbn|n ≥ 0}

Suppose L is regular and a DFA with p states
accepts L
Consider δ∗(q0,ai) for i = 0,1,2, . . .
Since there are infinite i ’s, but a finite number
states, the Pigeonhole Principle tells us that there
is some state q such that

δ∗(q0,an) = q and δ∗(q0,am) = q, but n 6= m
Thus if M accepts anbn it must also accept ambn, since in
state q is does not “remember” if there were n or m a’s.

Thus M can not exist and L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 9 / 21

A NONREGULAR LANGUAGE

Consider the language L = {anbn|n ≥ 0}
Suppose L is regular and a DFA with p states
accepts L

Consider δ∗(q0,ai) for i = 0,1,2, . . .
Since there are infinite i ’s, but a finite number
states, the Pigeonhole Principle tells us that there
is some state q such that

δ∗(q0,an) = q and δ∗(q0,am) = q, but n 6= m
Thus if M accepts anbn it must also accept ambn, since in
state q is does not “remember” if there were n or m a’s.

Thus M can not exist and L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 9 / 21

A NONREGULAR LANGUAGE

Consider the language L = {anbn|n ≥ 0}
Suppose L is regular and a DFA with p states
accepts L
Consider δ∗(q0,ai) for i = 0,1,2, . . .

Since there are infinite i ’s, but a finite number
states, the Pigeonhole Principle tells us that there
is some state q such that

δ∗(q0,an) = q and δ∗(q0,am) = q, but n 6= m
Thus if M accepts anbn it must also accept ambn, since in
state q is does not “remember” if there were n or m a’s.

Thus M can not exist and L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 9 / 21

A NONREGULAR LANGUAGE

Consider the language L = {anbn|n ≥ 0}
Suppose L is regular and a DFA with p states
accepts L
Consider δ∗(q0,ai) for i = 0,1,2, . . .
Since there are infinite i ’s, but a finite number
states, the Pigeonhole Principle tells us that there
is some state q such that

δ∗(q0,an) = q and δ∗(q0,am) = q, but n 6= m

Thus if M accepts anbn it must also accept ambn, since in
state q is does not “remember” if there were n or m a’s.

Thus M can not exist and L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 9 / 21

A NONREGULAR LANGUAGE

Consider the language L = {anbn|n ≥ 0}
Suppose L is regular and a DFA with p states
accepts L
Consider δ∗(q0,ai) for i = 0,1,2, . . .
Since there are infinite i ’s, but a finite number
states, the Pigeonhole Principle tells us that there
is some state q such that

δ∗(q0,an) = q and δ∗(q0,am) = q, but n 6= m
Thus if M accepts anbn it must also accept ambn, since in
state q is does not “remember” if there were n or m a’s.

Thus M can not exist and L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 9 / 21

A NONREGULAR LANGUAGE

Consider the language L = {anbn|n ≥ 0}
Suppose L is regular and a DFA with p states
accepts L
Consider δ∗(q0,ai) for i = 0,1,2, . . .
Since there are infinite i ’s, but a finite number
states, the Pigeonhole Principle tells us that there
is some state q such that

δ∗(q0,an) = q and δ∗(q0,am) = q, but n 6= m
Thus if M accepts anbn it must also accept ambn, since in
state q is does not “remember” if there were n or m a’s.

Thus M can not exist and L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 9 / 21

THE PUMPING LEMMA

LEMMA

Given an infinite regular language L

1 There exists an integer m such that
2 for any string ω ∈ L with length |ω| ≥ m,
3 we can write ω = xyz with |y | ≥ 1 and |xy | ≤ m,
4 such that the strings xy iz for i = 0,1,2 . . . are

also in L
Thus any sufficiently long string can be “pumped.”

PROOF IDEA

We already have some hints.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 10 / 21

THE PUMPING LEMMA

LEMMA

Given an infinite regular language L
1 There exists an integer m such that

2 for any string ω ∈ L with length |ω| ≥ m,
3 we can write ω = xyz with |y | ≥ 1 and |xy | ≤ m,
4 such that the strings xy iz for i = 0,1,2 . . . are

also in L
Thus any sufficiently long string can be “pumped.”

PROOF IDEA

We already have some hints.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 10 / 21

THE PUMPING LEMMA

LEMMA

Given an infinite regular language L
1 There exists an integer m such that
2 for any string ω ∈ L with length |ω| ≥ m,

3 we can write ω = xyz with |y | ≥ 1 and |xy | ≤ m,
4 such that the strings xy iz for i = 0,1,2 . . . are

also in L
Thus any sufficiently long string can be “pumped.”

PROOF IDEA

We already have some hints.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 10 / 21

THE PUMPING LEMMA

LEMMA

Given an infinite regular language L
1 There exists an integer m such that
2 for any string ω ∈ L with length |ω| ≥ m,
3 we can write ω = xyz with |y | ≥ 1 and |xy | ≤ m,

4 such that the strings xy iz for i = 0,1,2 . . . are
also in L

Thus any sufficiently long string can be “pumped.”

PROOF IDEA

We already have some hints.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 10 / 21

THE PUMPING LEMMA

LEMMA

Given an infinite regular language L
1 There exists an integer m such that
2 for any string ω ∈ L with length |ω| ≥ m,
3 we can write ω = xyz with |y | ≥ 1 and |xy | ≤ m,
4 such that the strings xy iz for i = 0,1,2 . . . are

also in L

Thus any sufficiently long string can be “pumped.”

PROOF IDEA

We already have some hints.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 10 / 21

THE PUMPING LEMMA

LEMMA

Given an infinite regular language L
1 There exists an integer m such that
2 for any string ω ∈ L with length |ω| ≥ m,
3 we can write ω = xyz with |y | ≥ 1 and |xy | ≤ m,
4 such that the strings xy iz for i = 0,1,2 . . . are

also in L
Thus any sufficiently long string can be “pumped.”

PROOF IDEA

We already have some hints.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 10 / 21

THE PUMPING LEMMA

LEMMA

Given an infinite regular language L
1 There exists an integer m such that
2 for any string ω ∈ L with length |ω| ≥ m,
3 we can write ω = xyz with |y | ≥ 1 and |xy | ≤ m,
4 such that the strings xy iz for i = 0,1,2 . . . are

also in L
Thus any sufficiently long string can be “pumped.”

PROOF IDEA

We already have some hints.
SLIDES FOR 15-453 LECTURE 5 FALL 2015 10 / 21

THE PUMPING LEMMA

PROOF.
If L is regular then M with p states recognizes L. Take a string
s = s1s2 · · · sn ∈ L with n ≥ p.

Let r1r2 · · · rn+1 be the sequence of n + 1(≥ p + 1) states M
enters while processing s (ri+1 = δ(ri , si))

rj and rl (for some j and l (j < l ≤ p + 1) should be the same state
(Pigeons!)

Now let x = s1 · · · sj−1, y = sj · · · sl−1, and z = sl · · · sn.

x takes M from r1 to rj , y takes M from rj to rj , and z takes M from
rj to rn+1, which is an accepting state. So M must also accept
xy iz for i ≥ 0.

We know j 6= l , so |y | > 0 and l ≤ p + 1 so |xy | ≤ p

SLIDES FOR 15-453 LECTURE 5 FALL 2015 11 / 21

THE PUMPING LEMMA

PROOF.
If L is regular then M with p states recognizes L. Take a string
s = s1s2 · · · sn ∈ L with n ≥ p.

Let r1r2 · · · rn+1 be the sequence of n + 1(≥ p + 1) states M
enters while processing s (ri+1 = δ(ri , si))

rj and rl (for some j and l (j < l ≤ p + 1) should be the same state
(Pigeons!)

Now let x = s1 · · · sj−1, y = sj · · · sl−1, and z = sl · · · sn.

x takes M from r1 to rj , y takes M from rj to rj , and z takes M from
rj to rn+1, which is an accepting state. So M must also accept
xy iz for i ≥ 0.

We know j 6= l , so |y | > 0 and l ≤ p + 1 so |xy | ≤ p

SLIDES FOR 15-453 LECTURE 5 FALL 2015 11 / 21

THE PUMPING LEMMA

PROOF.
If L is regular then M with p states recognizes L. Take a string
s = s1s2 · · · sn ∈ L with n ≥ p.

Let r1r2 · · · rn+1 be the sequence of n + 1(≥ p + 1) states M
enters while processing s (ri+1 = δ(ri , si))

rj and rl (for some j and l (j < l ≤ p + 1) should be the same state
(Pigeons!)

Now let x = s1 · · · sj−1, y = sj · · · sl−1, and z = sl · · · sn.

x takes M from r1 to rj , y takes M from rj to rj , and z takes M from
rj to rn+1, which is an accepting state. So M must also accept
xy iz for i ≥ 0.

We know j 6= l , so |y | > 0 and l ≤ p + 1 so |xy | ≤ p

SLIDES FOR 15-453 LECTURE 5 FALL 2015 11 / 21

THE PUMPING LEMMA

PROOF.
If L is regular then M with p states recognizes L. Take a string
s = s1s2 · · · sn ∈ L with n ≥ p.

Let r1r2 · · · rn+1 be the sequence of n + 1(≥ p + 1) states M
enters while processing s (ri+1 = δ(ri , si))

rj and rl (for some j and l (j < l ≤ p + 1) should be the same state
(Pigeons!)

Now let x = s1 · · · sj−1, y = sj · · · sl−1, and z = sl · · · sn.

x takes M from r1 to rj , y takes M from rj to rj , and z takes M from
rj to rn+1, which is an accepting state. So M must also accept
xy iz for i ≥ 0.

We know j 6= l , so |y | > 0 and l ≤ p + 1 so |xy | ≤ p

SLIDES FOR 15-453 LECTURE 5 FALL 2015 11 / 21

THE PUMPING LEMMA

PROOF.
If L is regular then M with p states recognizes L. Take a string
s = s1s2 · · · sn ∈ L with n ≥ p.

Let r1r2 · · · rn+1 be the sequence of n + 1(≥ p + 1) states M
enters while processing s (ri+1 = δ(ri , si))

rj and rl (for some j and l (j < l ≤ p + 1) should be the same state
(Pigeons!)

Now let x = s1 · · · sj−1, y = sj · · · sl−1, and z = sl · · · sn.

x takes M from r1 to rj , y takes M from rj to rj , and z takes M from
rj to rn+1, which is an accepting state. So M must also accept
xy iz for i ≥ 0.

We know j 6= l , so |y | > 0 and l ≤ p + 1 so |xy | ≤ p

SLIDES FOR 15-453 LECTURE 5 FALL 2015 11 / 21

THE PUMPING LEMMA

PROOF.
If L is regular then M with p states recognizes L. Take a string
s = s1s2 · · · sn ∈ L with n ≥ p.

Let r1r2 · · · rn+1 be the sequence of n + 1(≥ p + 1) states M
enters while processing s (ri+1 = δ(ri , si))

rj and rl (for some j and l (j < l ≤ p + 1) should be the same state
(Pigeons!)

Now let x = s1 · · · sj−1, y = sj · · · sl−1, and z = sl · · · sn.

x takes M from r1 to rj , y takes M from rj to rj , and z takes M from
rj to rn+1, which is an accepting state. So M must also accept
xy iz for i ≥ 0.

We know j 6= l , so |y | > 0 and l ≤ p + 1 so |xy | ≤ p

SLIDES FOR 15-453 LECTURE 5 FALL 2015 11 / 21

USING THE PUMPING LEMMA

If a language violates the pumping lemma, then it
can not be regular.

Two Player Proof Strategy:

Opponent picks m
Given m, we pick ω in L such that |ω| ≥ m. We are free to
choose ω as we please, as long as those conditions are
satisfied.
Opponent picks ω = xyz - the decomposition subject to
|xy | ≤ m and |y | ≥ 1.
We try to pick an i such that xy iz 6∈ L
If for all possible decompositions the opponent can pick, we
can find an i , then L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12 / 21

USING THE PUMPING LEMMA

If a language violates the pumping lemma, then it
can not be regular.
Two Player Proof Strategy:

Opponent picks m
Given m, we pick ω in L such that |ω| ≥ m. We are free to
choose ω as we please, as long as those conditions are
satisfied.
Opponent picks ω = xyz - the decomposition subject to
|xy | ≤ m and |y | ≥ 1.
We try to pick an i such that xy iz 6∈ L
If for all possible decompositions the opponent can pick, we
can find an i , then L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12 / 21

USING THE PUMPING LEMMA

If a language violates the pumping lemma, then it
can not be regular.
Two Player Proof Strategy:

Opponent picks m

Given m, we pick ω in L such that |ω| ≥ m. We are free to
choose ω as we please, as long as those conditions are
satisfied.
Opponent picks ω = xyz - the decomposition subject to
|xy | ≤ m and |y | ≥ 1.
We try to pick an i such that xy iz 6∈ L
If for all possible decompositions the opponent can pick, we
can find an i , then L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12 / 21

USING THE PUMPING LEMMA

If a language violates the pumping lemma, then it
can not be regular.
Two Player Proof Strategy:

Opponent picks m
Given m, we pick ω in L such that |ω| ≥ m. We are free to
choose ω as we please, as long as those conditions are
satisfied.

Opponent picks ω = xyz - the decomposition subject to
|xy | ≤ m and |y | ≥ 1.
We try to pick an i such that xy iz 6∈ L
If for all possible decompositions the opponent can pick, we
can find an i , then L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12 / 21

USING THE PUMPING LEMMA

If a language violates the pumping lemma, then it
can not be regular.
Two Player Proof Strategy:

Opponent picks m
Given m, we pick ω in L such that |ω| ≥ m. We are free to
choose ω as we please, as long as those conditions are
satisfied.
Opponent picks ω = xyz - the decomposition subject to
|xy | ≤ m and |y | ≥ 1.

We try to pick an i such that xy iz 6∈ L
If for all possible decompositions the opponent can pick, we
can find an i , then L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12 / 21

USING THE PUMPING LEMMA

If a language violates the pumping lemma, then it
can not be regular.
Two Player Proof Strategy:

Opponent picks m
Given m, we pick ω in L such that |ω| ≥ m. We are free to
choose ω as we please, as long as those conditions are
satisfied.
Opponent picks ω = xyz - the decomposition subject to
|xy | ≤ m and |y | ≥ 1.
We try to pick an i such that xy iz 6∈ L

If for all possible decompositions the opponent can pick, we
can find an i , then L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12 / 21

USING THE PUMPING LEMMA

If a language violates the pumping lemma, then it
can not be regular.
Two Player Proof Strategy:

Opponent picks m
Given m, we pick ω in L such that |ω| ≥ m. We are free to
choose ω as we please, as long as those conditions are
satisfied.
Opponent picks ω = xyz - the decomposition subject to
|xy | ≤ m and |y | ≥ 1.
We try to pick an i such that xy iz 6∈ L
If for all possible decompositions the opponent can pick, we
can find an i , then L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 12 / 21

USING THE PUMPING LEMMA

Consider L = {anbn|n ≥ 0}

1 Opponent picks m
2 We pick ω = ambm. Clearly |ω| ≥ m.
3 Since the first m symbols are all a’s, the opponent

is forced to pick x = aj , y = ak and z = albm, with
j + k ≤ m and l ≥ 0 and j + k + l = m

ω = a · · · a︸ ︷︷ ︸
x

a · · · a︸ ︷︷ ︸
y

a . . . ab · · · b︸ ︷︷ ︸
z

4 We choose i = 2 which means
ajakakalbm = am+kbm ∈ L but it can not be!

5 The opponent does not have any other way of
partitioning ω, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 13 / 21

USING THE PUMPING LEMMA

Consider L = {anbn|n ≥ 0}
1 Opponent picks m

2 We pick ω = ambm. Clearly |ω| ≥ m.
3 Since the first m symbols are all a’s, the opponent

is forced to pick x = aj , y = ak and z = albm, with
j + k ≤ m and l ≥ 0 and j + k + l = m

ω = a · · · a︸ ︷︷ ︸
x

a · · · a︸ ︷︷ ︸
y

a . . . ab · · · b︸ ︷︷ ︸
z

4 We choose i = 2 which means
ajakakalbm = am+kbm ∈ L but it can not be!

5 The opponent does not have any other way of
partitioning ω, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 13 / 21

USING THE PUMPING LEMMA

Consider L = {anbn|n ≥ 0}
1 Opponent picks m
2 We pick ω = ambm. Clearly |ω| ≥ m.

3 Since the first m symbols are all a’s, the opponent
is forced to pick x = aj , y = ak and z = albm, with
j + k ≤ m and l ≥ 0 and j + k + l = m

ω = a · · · a︸ ︷︷ ︸
x

a · · · a︸ ︷︷ ︸
y

a . . . ab · · · b︸ ︷︷ ︸
z

4 We choose i = 2 which means
ajakakalbm = am+kbm ∈ L but it can not be!

5 The opponent does not have any other way of
partitioning ω, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 13 / 21

USING THE PUMPING LEMMA

Consider L = {anbn|n ≥ 0}
1 Opponent picks m
2 We pick ω = ambm. Clearly |ω| ≥ m.
3 Since the first m symbols are all a’s, the opponent

is forced to pick x = aj , y = ak and z = albm, with
j + k ≤ m and l ≥ 0 and j + k + l = m

ω = a · · · a︸ ︷︷ ︸
x

a · · · a︸ ︷︷ ︸
y

a . . . ab · · · b︸ ︷︷ ︸
z

4 We choose i = 2 which means
ajakakalbm = am+kbm ∈ L but it can not be!

5 The opponent does not have any other way of
partitioning ω, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 13 / 21

USING THE PUMPING LEMMA

Consider L = {anbn|n ≥ 0}
1 Opponent picks m
2 We pick ω = ambm. Clearly |ω| ≥ m.
3 Since the first m symbols are all a’s, the opponent

is forced to pick x = aj , y = ak and z = albm, with
j + k ≤ m and l ≥ 0 and j + k + l = m

ω = a · · · a︸ ︷︷ ︸
x

a · · · a︸ ︷︷ ︸
y

a . . . ab · · · b︸ ︷︷ ︸
z

4 We choose i = 2 which means
ajakakalbm = am+kbm ∈ L but it can not be!

5 The opponent does not have any other way of
partitioning ω, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 13 / 21

USING THE PUMPING LEMMA

Consider L = {anbn|n ≥ 0}
1 Opponent picks m
2 We pick ω = ambm. Clearly |ω| ≥ m.
3 Since the first m symbols are all a’s, the opponent

is forced to pick x = aj , y = ak and z = albm, with
j + k ≤ m and l ≥ 0 and j + k + l = m

ω = a · · · a︸ ︷︷ ︸
x

a · · · a︸ ︷︷ ︸
y

a . . . ab · · · b︸ ︷︷ ︸
z

4 We choose i = 2 which means
ajakakalbm = am+kbm ∈ L but it can not be!

5 The opponent does not have any other way of
partitioning ω, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 13 / 21

USING THE PUMPING LEMMA

Consider L = {ω|na(ω) < nb(ω)}

1 Opponent picks m
2 We pick ambm+1. Clearly |ω| ≥ m.
3 Opponent is forced to pick y = ak for some

1 ≤ k ≤ m
4 We pick i = 2 which means am+kbm+1 ∈ L but it

can not be!
5 The opponent does not have any other way of

partitioning ω, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 14 / 21

USING THE PUMPING LEMMA

Consider L = {ω|na(ω) < nb(ω)}
1 Opponent picks m

2 We pick ambm+1. Clearly |ω| ≥ m.
3 Opponent is forced to pick y = ak for some

1 ≤ k ≤ m
4 We pick i = 2 which means am+kbm+1 ∈ L but it

can not be!
5 The opponent does not have any other way of

partitioning ω, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 14 / 21

USING THE PUMPING LEMMA

Consider L = {ω|na(ω) < nb(ω)}
1 Opponent picks m
2 We pick ambm+1. Clearly |ω| ≥ m.

3 Opponent is forced to pick y = ak for some
1 ≤ k ≤ m

4 We pick i = 2 which means am+kbm+1 ∈ L but it
can not be!

5 The opponent does not have any other way of
partitioning ω, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 14 / 21

USING THE PUMPING LEMMA

Consider L = {ω|na(ω) < nb(ω)}
1 Opponent picks m
2 We pick ambm+1. Clearly |ω| ≥ m.
3 Opponent is forced to pick y = ak for some

1 ≤ k ≤ m

4 We pick i = 2 which means am+kbm+1 ∈ L but it
can not be!

5 The opponent does not have any other way of
partitioning ω, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 14 / 21

USING THE PUMPING LEMMA

Consider L = {ω|na(ω) < nb(ω)}
1 Opponent picks m
2 We pick ambm+1. Clearly |ω| ≥ m.
3 Opponent is forced to pick y = ak for some

1 ≤ k ≤ m
4 We pick i = 2 which means am+kbm+1 ∈ L but it

can not be!

5 The opponent does not have any other way of
partitioning ω, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 14 / 21

USING THE PUMPING LEMMA

Consider L = {ω|na(ω) < nb(ω)}
1 Opponent picks m
2 We pick ambm+1. Clearly |ω| ≥ m.
3 Opponent is forced to pick y = ak for some

1 ≤ k ≤ m
4 We pick i = 2 which means am+kbm+1 ∈ L but it

can not be!
5 The opponent does not have any other way of

partitioning ω, so L is not regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 14 / 21

USING THE PUMPING LEMMA

Consider L = {1n2|n ≥ 0}

1 Opponent picks m
2 We pick ω = 1m2. Clearly |ω| ≥ m.
3 Opponent chooses any partitioning of
ω = xyz = 1j1k1l with 1 ≤ k ≤ m and j + k ≤ m

4 With |xyz| = m2 and i = 2, m2 < |xyyz| ≤ m2 +m.

But m2 < m2 + m < m2 + 2m + 1 = (m + 1)2

5 |xyyz| lies between two consecutive perfect
squares. So xyyz 6∈ L.

6 L can not be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15 / 21

USING THE PUMPING LEMMA

Consider L = {1n2|n ≥ 0}
1 Opponent picks m

2 We pick ω = 1m2. Clearly |ω| ≥ m.
3 Opponent chooses any partitioning of
ω = xyz = 1j1k1l with 1 ≤ k ≤ m and j + k ≤ m

4 With |xyz| = m2 and i = 2, m2 < |xyyz| ≤ m2 +m.

But m2 < m2 + m < m2 + 2m + 1 = (m + 1)2

5 |xyyz| lies between two consecutive perfect
squares. So xyyz 6∈ L.

6 L can not be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15 / 21

USING THE PUMPING LEMMA

Consider L = {1n2|n ≥ 0}
1 Opponent picks m
2 We pick ω = 1m2. Clearly |ω| ≥ m.

3 Opponent chooses any partitioning of
ω = xyz = 1j1k1l with 1 ≤ k ≤ m and j + k ≤ m

4 With |xyz| = m2 and i = 2, m2 < |xyyz| ≤ m2 +m.

But m2 < m2 + m < m2 + 2m + 1 = (m + 1)2

5 |xyyz| lies between two consecutive perfect
squares. So xyyz 6∈ L.

6 L can not be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15 / 21

USING THE PUMPING LEMMA

Consider L = {1n2|n ≥ 0}
1 Opponent picks m
2 We pick ω = 1m2. Clearly |ω| ≥ m.
3 Opponent chooses any partitioning of
ω = xyz = 1j1k1l with 1 ≤ k ≤ m and j + k ≤ m

4 With |xyz| = m2 and i = 2, m2 < |xyyz| ≤ m2 +m.

But m2 < m2 + m < m2 + 2m + 1 = (m + 1)2

5 |xyyz| lies between two consecutive perfect
squares. So xyyz 6∈ L.

6 L can not be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15 / 21

USING THE PUMPING LEMMA

Consider L = {1n2|n ≥ 0}
1 Opponent picks m
2 We pick ω = 1m2. Clearly |ω| ≥ m.
3 Opponent chooses any partitioning of
ω = xyz = 1j1k1l with 1 ≤ k ≤ m and j + k ≤ m

4 With |xyz| = m2 and i = 2, m2 < |xyyz| ≤ m2 +m.

But m2 < m2 + m < m2 + 2m + 1 = (m + 1)2

5 |xyyz| lies between two consecutive perfect
squares. So xyyz 6∈ L.

6 L can not be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15 / 21

USING THE PUMPING LEMMA

Consider L = {1n2|n ≥ 0}
1 Opponent picks m
2 We pick ω = 1m2. Clearly |ω| ≥ m.
3 Opponent chooses any partitioning of
ω = xyz = 1j1k1l with 1 ≤ k ≤ m and j + k ≤ m

4 With |xyz| = m2 and i = 2, m2 < |xyyz| ≤ m2 +m.
But m2 < m2 + m < m2 + 2m + 1 = (m + 1)2

5 |xyyz| lies between two consecutive perfect
squares. So xyyz 6∈ L.

6 L can not be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15 / 21

USING THE PUMPING LEMMA

Consider L = {1n2|n ≥ 0}
1 Opponent picks m
2 We pick ω = 1m2. Clearly |ω| ≥ m.
3 Opponent chooses any partitioning of
ω = xyz = 1j1k1l with 1 ≤ k ≤ m and j + k ≤ m

4 With |xyz| = m2 and i = 2, m2 < |xyyz| ≤ m2 +m.
But m2 < m2 + m < m2 + 2m + 1 = (m + 1)2

5 |xyyz| lies between two consecutive perfect
squares. So xyyz 6∈ L.

6 L can not be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15 / 21

USING THE PUMPING LEMMA

Consider L = {1n2|n ≥ 0}
1 Opponent picks m
2 We pick ω = 1m2. Clearly |ω| ≥ m.
3 Opponent chooses any partitioning of
ω = xyz = 1j1k1l with 1 ≤ k ≤ m and j + k ≤ m

4 With |xyz| = m2 and i = 2, m2 < |xyyz| ≤ m2 +m.
But m2 < m2 + m < m2 + 2m + 1 = (m + 1)2

5 |xyyz| lies between two consecutive perfect
squares. So xyyz 6∈ L.

6 L can not be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 15 / 21

SUMMARY

Symbols, Strings, Languages, Set of all
Languages

DFAs, Regular Languages, NFAs, Regular
Expressions
DFA⇔ REs
Minimal DFAs
Closure properties, Decision properties
Nonregular Languages, Pumping Lemma

SLIDES FOR 15-453 LECTURE 5 FALL 2015 16 / 21

SUMMARY

Symbols, Strings, Languages, Set of all
Languages
DFAs, Regular Languages, NFAs, Regular
Expressions

DFA⇔ REs
Minimal DFAs
Closure properties, Decision properties
Nonregular Languages, Pumping Lemma

SLIDES FOR 15-453 LECTURE 5 FALL 2015 16 / 21

SUMMARY

Symbols, Strings, Languages, Set of all
Languages
DFAs, Regular Languages, NFAs, Regular
Expressions
DFA⇔ REs

Minimal DFAs
Closure properties, Decision properties
Nonregular Languages, Pumping Lemma

SLIDES FOR 15-453 LECTURE 5 FALL 2015 16 / 21

SUMMARY

Symbols, Strings, Languages, Set of all
Languages
DFAs, Regular Languages, NFAs, Regular
Expressions
DFA⇔ REs
Minimal DFAs

Closure properties, Decision properties
Nonregular Languages, Pumping Lemma

SLIDES FOR 15-453 LECTURE 5 FALL 2015 16 / 21

SUMMARY

Symbols, Strings, Languages, Set of all
Languages
DFAs, Regular Languages, NFAs, Regular
Expressions
DFA⇔ REs
Minimal DFAs
Closure properties, Decision properties

Nonregular Languages, Pumping Lemma

SLIDES FOR 15-453 LECTURE 5 FALL 2015 16 / 21

SUMMARY

Symbols, Strings, Languages, Set of all
Languages
DFAs, Regular Languages, NFAs, Regular
Expressions
DFA⇔ REs
Minimal DFAs
Closure properties, Decision properties
Nonregular Languages, Pumping Lemma

SLIDES FOR 15-453 LECTURE 5 FALL 2015 16 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L1 is not regular and L2 is regular then
L = L1L2 = {xy : x ∈ L1and y ∈ L2} is not regular.

2 L = {aibjak : i + k < 10 and j > 10} is not regular.

3 L = {w ∈ {a,b}∗ : na(w)× nb(w) = 0 mod 2} is regular.

4 L = {aibj : i + j ≥ 10} is not regular.

5 L = {aibj : i − j > 10} is not regular.

6 L = {aiaj : i/j = 5} is not regular.

7 If L1 ∩ L2 is regular then L1 and L2 are regular.

8 If L1 ⊆ L2 and L2 is regular, then L1 must be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L1 is not regular and L2 is regular then
L = L1L2 = {xy : x ∈ L1and y ∈ L2} is not regular.

2 L = {aibjak : i + k < 10 and j > 10} is not regular.

3 L = {w ∈ {a,b}∗ : na(w)× nb(w) = 0 mod 2} is regular.

4 L = {aibj : i + j ≥ 10} is not regular.

5 L = {aibj : i − j > 10} is not regular.

6 L = {aiaj : i/j = 5} is not regular.

7 If L1 ∩ L2 is regular then L1 and L2 are regular.

8 If L1 ⊆ L2 and L2 is regular, then L1 must be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L1 is not regular and L2 is regular then
L = L1L2 = {xy : x ∈ L1and y ∈ L2} is not regular.

2 L = {aibjak : i + k < 10 and j > 10} is not regular.

3 L = {w ∈ {a,b}∗ : na(w)× nb(w) = 0 mod 2} is regular.

4 L = {aibj : i + j ≥ 10} is not regular.

5 L = {aibj : i − j > 10} is not regular.

6 L = {aiaj : i/j = 5} is not regular.

7 If L1 ∩ L2 is regular then L1 and L2 are regular.

8 If L1 ⊆ L2 and L2 is regular, then L1 must be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L1 is not regular and L2 is regular then
L = L1L2 = {xy : x ∈ L1and y ∈ L2} is not regular.

2 L = {aibjak : i + k < 10 and j > 10} is not regular.

3 L = {w ∈ {a,b}∗ : na(w)× nb(w) = 0 mod 2} is regular.

4 L = {aibj : i + j ≥ 10} is not regular.

5 L = {aibj : i − j > 10} is not regular.

6 L = {aiaj : i/j = 5} is not regular.

7 If L1 ∩ L2 is regular then L1 and L2 are regular.

8 If L1 ⊆ L2 and L2 is regular, then L1 must be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L1 is not regular and L2 is regular then
L = L1L2 = {xy : x ∈ L1and y ∈ L2} is not regular.

2 L = {aibjak : i + k < 10 and j > 10} is not regular.

3 L = {w ∈ {a,b}∗ : na(w)× nb(w) = 0 mod 2} is regular.

4 L = {aibj : i + j ≥ 10} is not regular.

5 L = {aibj : i − j > 10} is not regular.

6 L = {aiaj : i/j = 5} is not regular.

7 If L1 ∩ L2 is regular then L1 and L2 are regular.

8 If L1 ⊆ L2 and L2 is regular, then L1 must be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L1 is not regular and L2 is regular then
L = L1L2 = {xy : x ∈ L1and y ∈ L2} is not regular.

2 L = {aibjak : i + k < 10 and j > 10} is not regular.

3 L = {w ∈ {a,b}∗ : na(w)× nb(w) = 0 mod 2} is regular.

4 L = {aibj : i + j ≥ 10} is not regular.

5 L = {aibj : i − j > 10} is not regular.

6 L = {aiaj : i/j = 5} is not regular.

7 If L1 ∩ L2 is regular then L1 and L2 are regular.

8 If L1 ⊆ L2 and L2 is regular, then L1 must be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L1 is not regular and L2 is regular then
L = L1L2 = {xy : x ∈ L1and y ∈ L2} is not regular.

2 L = {aibjak : i + k < 10 and j > 10} is not regular.

3 L = {w ∈ {a,b}∗ : na(w)× nb(w) = 0 mod 2} is regular.

4 L = {aibj : i + j ≥ 10} is not regular.

5 L = {aibj : i − j > 10} is not regular.

6 L = {aiaj : i/j = 5} is not regular.

7 If L1 ∩ L2 is regular then L1 and L2 are regular.

8 If L1 ⊆ L2 and L2 is regular, then L1 must be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L1 is not regular and L2 is regular then
L = L1L2 = {xy : x ∈ L1and y ∈ L2} is not regular.

2 L = {aibjak : i + k < 10 and j > 10} is not regular.

3 L = {w ∈ {a,b}∗ : na(w)× nb(w) = 0 mod 2} is regular.

4 L = {aibj : i + j ≥ 10} is not regular.

5 L = {aibj : i − j > 10} is not regular.

6 L = {aiaj : i/j = 5} is not regular.

7 If L1 ∩ L2 is regular then L1 and L2 are regular.

8 If L1 ⊆ L2 and L2 is regular, then L1 must be regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 17 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 There are subsets of a regular language which are not regular.

2 If L1 and L2 are nonregular, then L1 ∪ L2 must be nonregular.

3 If F is a finite language and L is some language, and L− F is a
regular language, then L must be a regular language.

4 L = {w ∈ {a,b} : the number a’s times the number of b’s in w is
greater than 1333} is not regular.

5 If the start state of a DFA has a self-loop, then the language
accepted by that DFA is infinite.

6 The set of strings of 0’s, 1’s, and 2’s with at least 100 of each of
the three symbols is a regular language.

7 The union of a countable number of regular languages is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 There are subsets of a regular language which are not regular.

2 If L1 and L2 are nonregular, then L1 ∪ L2 must be nonregular.

3 If F is a finite language and L is some language, and L− F is a
regular language, then L must be a regular language.

4 L = {w ∈ {a,b} : the number a’s times the number of b’s in w is
greater than 1333} is not regular.

5 If the start state of a DFA has a self-loop, then the language
accepted by that DFA is infinite.

6 The set of strings of 0’s, 1’s, and 2’s with at least 100 of each of
the three symbols is a regular language.

7 The union of a countable number of regular languages is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 There are subsets of a regular language which are not regular.

2 If L1 and L2 are nonregular, then L1 ∪ L2 must be nonregular.

3 If F is a finite language and L is some language, and L− F is a
regular language, then L must be a regular language.

4 L = {w ∈ {a,b} : the number a’s times the number of b’s in w is
greater than 1333} is not regular.

5 If the start state of a DFA has a self-loop, then the language
accepted by that DFA is infinite.

6 The set of strings of 0’s, 1’s, and 2’s with at least 100 of each of
the three symbols is a regular language.

7 The union of a countable number of regular languages is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 There are subsets of a regular language which are not regular.

2 If L1 and L2 are nonregular, then L1 ∪ L2 must be nonregular.

3 If F is a finite language and L is some language, and L− F is a
regular language, then L must be a regular language.

4 L = {w ∈ {a,b} : the number a’s times the number of b’s in w is
greater than 1333} is not regular.

5 If the start state of a DFA has a self-loop, then the language
accepted by that DFA is infinite.

6 The set of strings of 0’s, 1’s, and 2’s with at least 100 of each of
the three symbols is a regular language.

7 The union of a countable number of regular languages is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 There are subsets of a regular language which are not regular.

2 If L1 and L2 are nonregular, then L1 ∪ L2 must be nonregular.

3 If F is a finite language and L is some language, and L− F is a
regular language, then L must be a regular language.

4 L = {w ∈ {a,b} : the number a’s times the number of b’s in w is
greater than 1333} is not regular.

5 If the start state of a DFA has a self-loop, then the language
accepted by that DFA is infinite.

6 The set of strings of 0’s, 1’s, and 2’s with at least 100 of each of
the three symbols is a regular language.

7 The union of a countable number of regular languages is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 There are subsets of a regular language which are not regular.

2 If L1 and L2 are nonregular, then L1 ∪ L2 must be nonregular.

3 If F is a finite language and L is some language, and L− F is a
regular language, then L must be a regular language.

4 L = {w ∈ {a,b} : the number a’s times the number of b’s in w is
greater than 1333} is not regular.

5 If the start state of a DFA has a self-loop, then the language
accepted by that DFA is infinite.

6 The set of strings of 0’s, 1’s, and 2’s with at least 100 of each of
the three symbols is a regular language.

7 The union of a countable number of regular languages is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 There are subsets of a regular language which are not regular.

2 If L1 and L2 are nonregular, then L1 ∪ L2 must be nonregular.

3 If F is a finite language and L is some language, and L− F is a
regular language, then L must be a regular language.

4 L = {w ∈ {a,b} : the number a’s times the number of b’s in w is
greater than 1333} is not regular.

5 If the start state of a DFA has a self-loop, then the language
accepted by that DFA is infinite.

6 The set of strings of 0’s, 1’s, and 2’s with at least 100 of each of
the three symbols is a regular language.

7 The union of a countable number of regular languages is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 18 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L is nonregular then L is nonregular.

2 If L1 ∩ L2 is finite then L1 and L2 are regular.

3 The family of regular languages is closed under nor operation,
nor(L1,L2) = {w : w /∈ L1 and w /∈ L2}

4 If L is a regular language, then so is {xy : x ∈ L and y /∈ L}

5 Let L be a regular language over Σ = {a,b, c}. Let us define
SINGLE(L) = {w ∈ L : all symbols in w are the same}. SINGLE(L)
is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 19 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L is nonregular then L is nonregular.

2 If L1 ∩ L2 is finite then L1 and L2 are regular.

3 The family of regular languages is closed under nor operation,
nor(L1,L2) = {w : w /∈ L1 and w /∈ L2}

4 If L is a regular language, then so is {xy : x ∈ L and y /∈ L}

5 Let L be a regular language over Σ = {a,b, c}. Let us define
SINGLE(L) = {w ∈ L : all symbols in w are the same}. SINGLE(L)
is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 19 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L is nonregular then L is nonregular.

2 If L1 ∩ L2 is finite then L1 and L2 are regular.

3 The family of regular languages is closed under nor operation,
nor(L1,L2) = {w : w /∈ L1 and w /∈ L2}

4 If L is a regular language, then so is {xy : x ∈ L and y /∈ L}

5 Let L be a regular language over Σ = {a,b, c}. Let us define
SINGLE(L) = {w ∈ L : all symbols in w are the same}. SINGLE(L)
is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 19 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L is nonregular then L is nonregular.

2 If L1 ∩ L2 is finite then L1 and L2 are regular.

3 The family of regular languages is closed under nor operation,
nor(L1,L2) = {w : w /∈ L1 and w /∈ L2}

4 If L is a regular language, then so is {xy : x ∈ L and y /∈ L}

5 Let L be a regular language over Σ = {a,b, c}. Let us define
SINGLE(L) = {w ∈ L : all symbols in w are the same}. SINGLE(L)
is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 19 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

True or False?

1 If L is nonregular then L is nonregular.

2 If L1 ∩ L2 is finite then L1 and L2 are regular.

3 The family of regular languages is closed under nor operation,
nor(L1,L2) = {w : w /∈ L1 and w /∈ L2}

4 If L is a regular language, then so is {xy : x ∈ L and y /∈ L}

5 Let L be a regular language over Σ = {a,b, c}. Let us define
SINGLE(L) = {w ∈ L : all symbols in w are the same}. SINGLE(L)
is regular.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 19 / 21

LET’S SEE IF WE CAN TIE THINGS TOGETHER

Let Σ = {a} and let M be a deterministic finite state acceptor that
accepts a regular language L ⊆ Σ∗.

A) Describe with very simple diagrams, possible structures of the
state graph of M, if M has only a single final state. Show any
relevant parameters that you feel are necessary.

B) Describe with a regular expression the language accepted by M,
if M has a single final state. If necessary, use any parameters you
showed in part a).

C) Describe mathematically the language accepted by M, if M has
more than one final state.

SLIDES FOR 15-453 LECTURE 5 FALL 2015 20 / 21

WHERE DO WE GO FROM HERE?

SLIDES FOR 15-453 LECTURE 5 FALL 2015 21 / 21

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

CONTEXT FREE LANGUAGES

SLIDES FOR 15-453 LECTURE 7 FALL 2015 1 / 24

WHERE ARE WE?

SLIDES FOR 15-453 LECTURE 7 FALL 2015 2 / 24

A NONREGULAR LANGUAGE

We showed that L = {anbn | n ≥ 0} was not
regular.

No DFA
No Regular Expression

How can we describe such languages?
Remember: the description has to be finite!

SLIDES FOR 15-453 LECTURE 7 FALL 2015 3 / 24

A NONREGULAR LANGUAGE

Consider L = {anbn | n ≥ 0} again.
How can we generate such strings?

Remember DFAs did recognition, not generation.
Consider the following inductive way to generate
elements of L

Basis: ε is in the language (n = 0)
Recursion: If the string w (for some n) is in the language,
then so is the string awb (for n + 1).

ε→ ab → aabb · · · → a55b55 · · ·
Looks like we have simple and finite length
process to generate all the strings in L
How can we generalize this kind of description?

SLIDES FOR 15-453 LECTURE 7 FALL 2015 4 / 24

ANOTHER NONREGULAR LANGUAGE

Consider L = {w | na(w) = nb(w)}.
Now consider the following inductive way to
generate elements of L

Basis: ε is in the language
Recursion 1: If the string w is in the language, then so are
awb and bwa
Recursion 2: If the strings w and v are in the language, so is
wv .

The first recursion rules makes sure that the a’s
and b’s are generated in the same number
(regardless of order)
The second recursion takes any two strings each
with equal number of a’s and b’s and generates a
new such string by concatenating them.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 5 / 24

GRAMMARS

Grammars provide the generative mechanism to
generate all strings in a language.
A grammar is essentially a collection of
substitution rules, called productions
Each production rule has a left-hand-side and a
right-hand-side.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 6 / 24

GRAMMARS - AN EXAMPLE

Consider once again L = {anbn | n ≥ 0}
Basis: ε is in the language

Production: S → ε

Recursion: If w is in the language, then so is the
string awb.

Production: S → aSb

S is called a variable or a nonterminal symbol
a,b etc., are called terminal symbols
One variable is designated as the start variable or
start symbol.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 7 / 24

HOW DOES A GRAMMAR WORK?

Consider the set of rules R = {S → ε,S → aSb}
Start with the start variable S
Apply the following until all remaining symbols are
terminal.

Choose a production in R whose left-hand sides matches
one of the variables.
Replace the variable with the rule’s right hand side.

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaaaSbbbb
⇒ aaaabbbb
The string aaaabbbb is in the language L
The sequence of rule applications above is called
a derivation.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 8 / 24

PARSE TREES

S

a S

a S

a S

a S

ε

b

b

b

b

The terminals concatenated

from left to right give us the

string.

Derivations can also be
represented with a parse
tree.
The leaves constitute the
yield of the tree.
Terminal symbols can
occur only at the leaves.
Variables can occur only
at the internal nodes.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 9 / 24

LANGUAGE OF A GRAMMAR

All strings generated this way starting with the
start variable constitute the language of the
grammar.
We write L(G) for the language of the grammar G.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 10 / 24

A GRAMMAR FOR A FRAGMENT OF ENGLISH

S → NP VP
NP → CN | CN PP
VP → CV | CV PP
PP → P NP
CN → DT N
CV → V | V NP
DT → a | the

N → boy | girl | flower |
telescope

V → touches | likes |
sees | gives

P → with | to

Nomenclature:
S: Sentence
NP: Noun Phrase
CN: Complex
Noun
PP: Prepositional
Phrase
VP: Verb Phrase
CV: Complex Verb
P: Preposition
DT: Determiner
N: Noun
V: Verb

SLIDES FOR 15-453 LECTURE 7 FALL 2015 11 / 24

A GRAMMAR FOR A FRAGMENT OF ENGLISH

S → NP VP
NP → CN | CN PP
VP → CV | CV PP
PP → P NP
CN → DT N
CV → V | V NP
DT → a | the

N → boy | girl | flower |
telescope

V → touches | likes |
sees | gives

P → with | to

S ⇒ NP VP
⇒ CN PP VP
⇒ DT N PP VP
⇒ a N PP VP
⇒ · · ·
⇒ a boy with a flower VP
⇒ a boy with a flower CV PP
⇒ · · ·
⇒ a boy with a flower sees a girl

with a telescope

SLIDES FOR 15-453 LECTURE 7 FALL 2015 12 / 24

ENGLISH PARSE TREE

S

NP

CN

DT

a

N

boy

PP

P

with

NP

CN

DT

a

N

flower

VP

CV

V

sees

NP

CN

DT

a

N

girl

PP

P

with

NP

CN

DT

a

N

telescope

This structure is for the interpretation where the
boy is seeing with the telescope!

SLIDES FOR 15-453 LECTURE 7 FALL 2015 13 / 24

ENGLISH PARSE TREE
ALTERNATE STRUCTURE

S

NP

CN

DT

a

N

boy

PP

P

with

NP

CN

DT

a

N

flower

VP

CV

V

sees

NP

CN

DT

a

N

girl

PP

P

with

NP

CN

DT

a

N

telescope

This is for the interpretation where the girl is carrying a telescope.
SLIDES FOR 15-453 LECTURE 7 FALL 2015 14 / 24

STRUCTURAL AMBIGUITY

A set of rules can assign multiple structures to the
same string.
Which rule one chooses determines the eventual
structure.

VP→ CV | CV PP
CV→ V | V NP
NP→ CN | CN PP
· · · [VP [CV sees [NP a girl] [PP with a telescope]].
· · · [VP [CV sees] [NP [CN a girl] [PP with a telescope]].

(Not all brackets are shown!)

SLIDES FOR 15-453 LECTURE 7 FALL 2015 15 / 24

OTHER EXAMPLES OF GRAMMAR

APPLICATIONS

Programming Languages
Users need to know how to “generate” correct programs.
Compilers need to know how to “check” and “translate”
programs.

XML Documents
Documents need to have a structure defined by a DTD
grammar.

Natural Language Processing, Machine
Translation

SLIDES FOR 15-453 LECTURE 7 FALL 2015 16 / 24

FORMAL DEFINITION OF A GRAMMAR

A Grammar is a 4-tuple G = (V ,Σ,R,S) where
V is a finite set of variables
Σ is a finite set of terminals, disjoint from V .
R is a set of rules of the X → Y
S ∈ V is the start variable

In general X ∈ (V ∪ Σ)+ and Y ∈ (V ∪ Σ)∗

A context-free grammar is a grammar where all
rules have X ∈ V (remember V ⊂ (V ∪ Σ)+)

The substitution is independent of the context V appears in.

The right hand side of the rules can be any
combination of variables and terminals, including
ε (hence Y ∈ (V ∪ Σ)∗).

SLIDES FOR 15-453 LECTURE 7 FALL 2015 17 / 24

FORMAL DEFINITION OF A GRAMMAR

If u, v and w are strings of variables and
terminals and A→ w is a rule of the grammar, we
say uAv yields uwv , notated as uAv ⇒ uwv
We say u derives v , notated as, u ∗⇒ v , if either

u = v , or
a sequence u1,u2, . . . ,uk , k ≥ 0 exists such that
u ⇒ u1 ⇒ u2, · · · ,⇒ uk ⇒ v .
We call u, v , and all ui as sentential forms.

The language of the grammar is
{w ∈ Σ∗ | S ∗⇒ w}

SLIDES FOR 15-453 LECTURE 7 FALL 2015 18 / 24

DESIGNING CONTEXT FREE GRAMMARS

Consider once again the language
L = {w | na(w) = nb(w)}.
The grammar for this language is
G = ({S}, {a,b},R,S) with R as follows:

1 S → aSb
2 S → bSa
3 S → SS
4 S → ε

From now we will only list the productions, the
others will be implicit.
We will also combine productions with the same
left-hand side using | symbol.
S → aSb | bSa | SS | ε

SLIDES FOR 15-453 LECTURE 7 FALL 2015 19 / 24

DESIGNING CONTEXT FREE GRAMMARS

L = {w | na(w) = nb(w)}.
S → aSb | bSa | SS | ε

Clearly the strings generated by G have equal
number of a’s and b’s. (Obvious from the rules!)
We also have to show that all strings in L can be
generated with this grammar.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 20 / 24

DESIGNING CONTEXT FREE GRAMMARS

ASSERTION

Grammar G with R = {S → aSb | bSa | SS | ε}
generates L = {w | na(w) = nb(w)}.

PROOF (BY INDUCTION)
The grammar generates the basis strings of ε, ab and ba.

All other strings in L have even length and can be in one of the 4
possible forms (w ∈ Σ∗)

1 awb
2 bwa
3 awa
4 bwb

SLIDES FOR 15-453 LECTURE 7 FALL 2015 21 / 24

DESIGNING CONTEXT FREE GRAMMARS

PROOF (CONTINUED)
Assume that G generates all strings of equal number of a’s and
b’s of (even) length n.

Consider a string like awb of length n + 2.

awb will be generated from w by using the rule S → aSb
provided S ∗⇒ w .

But w is of length n, so S ∗⇒ w by the induction hypothesis.

There is a symmetric argument for strings like bwa.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 22 / 24

DESIGNING CONTEXT FREE GRAMMARS

PROOF (CONTINUED)
Consider a string like awa. Clearly w 6∈ L. Consider (symbols of)

this string annotated as follows

0a1 · · ·−1 a0

where the subscripts after a prefix v of awa denotes
na(v)− nb(v).

Think of this as count starting as 0, each a adding one and each
b subtracting 1. We should end with 0 at the end.

Note that right after the first symbol we have 1 and right before
the last a we must have −1.

Somewhere along the string (in w) the counter crosses 0.
SLIDES FOR 15-453 LECTURE 7 FALL 2015 23 / 24

DESIGNING CONTEXT FREE GRAMMARS

PROOF (CONTINUED)
Somewhere along the string (in w) the counter crosses 0.

0

u︷ ︸︸ ︷
a1 · · · x 0 y · · ·−1 a︸ ︷︷ ︸

v

0 x , y ∈ {a,b}

So u and v have equal numbers of a’s and b’s and are shorter.

u, v ∈ L by the induction hypothesis and the rule S → SS
generates awa = uv , given S ∗⇒ u and S ∗⇒ v

There is a symmetric argument for strings like bwb.

SLIDES FOR 15-453 LECTURE 7 FALL 2015 24 / 24

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

CONTEXT FREE LANGUAGES

SLIDES FOR 15-453 LECTURE 8 FALL 2015 1 / 33

SUMMARY

Describing nonregular languages
Grammars as finite descriptions of infinite sets
Context-free Grammars and context-free
languages
Derivations and parse trees
Ambiguity
Writing grammars

SLIDES FOR 15-453 LECTURE 8 FALL 2015 2 / 33

GRAMMAR EXAMPLES

Consider L = {anbn | n ≥ 0}
S → aSb

a’s and b’s are generated in the right order and in equal
numbers

S → ε
get rid of any remaining S at the end.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 3 / 33

GRAMMAR EXAMPLES

Consider L = {anbm | m > n ≥ 0}
S → AB
A→ aAb | ε

a’s and b’s are generated in the right order and in equal
numbers, followed by B

B → bB | b
Generate 1 or more (additional) b’s

SLIDES FOR 15-453 LECTURE 8 FALL 2015 4 / 33

GRAMMAR EXAMPLES

L = {anb2n | n ≥ 0}
S → aSbb | ε

L = {an+2bn | n ≥ 1}
S → aaA,
A→ aAb | ab

SLIDES FOR 15-453 LECTURE 8 FALL 2015 5 / 33

GRAMMAR FOR ARITHMETIC EXPRESSIONS

L→ a | b | · · · | z (letters)
D → 0 | · · · | 9 (digits)
V → L | V L | V D (variables)
N → D | N D (positive numbers)
F → V | N | (E) (factors)
T → F | T ∗ F | T/F (terms)
E → T | E + T | E − T (expressions)
E is the start symbol.

Let us generate (v23 + 456) ∗ k23/(a− b ∗ 34) as an
exercise.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 6 / 33

AMBIGUITY

Remember a boy with a flower sees a girl with a
telescope?
We say that a grammar generates a string
ambiguously, if the string has two different parse
trees (not just two different derivations)
A derivation of a string w in a grammar G is a
leftmost derivation if at every step, the leftmost
remaining variable is the one replaced.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 7 / 33

AMBIGUITY

DEFINITION

A string w is derived ambiguously in context-free
grammar G if it has two or more different leftmost
derivations. Grammar G is ambiguous if it generates
some string ambiguously.

Sometimes an ambiguous grammar can be
transformed into an unambiguous grammar for
the same language.
Some context-free grammars can be generated
only by ambiguous grammars. These are known
as inherently ambiguous languages.

L = {aibjck | i = j or j = k}
SLIDES FOR 15-453 LECTURE 8 FALL 2015 8 / 33

GRAMMAR TRANSFORMATIONS

Some types of productions cause problems in
some uses of grammars.
ε-productions: A→ ε

Intermediate sentential forms in a derivation get shorter and
this has computational implications.

Unit productions: A→ B.
Such a rule does not achieve much except for lengthening
the derivation sequence.
There may be inadvertent “infinite loops”: e.g., if A ∗⇒ A

SLIDES FOR 15-453 LECTURE 8 FALL 2015 9 / 33

REMOVING ε-PRODUCTIONS

If ε ∈ L, then we can not do much. S → ε is
needed for this.
For all rules of the type A→ ε and A is not the
start symbol, we proceed as follows:
For occurrence of an A on the right-hand side of a
rule, we add a rule with that occurence deleted.

For a rule like R → uAv , we add the rule R → uv (either u or
v not ε)
For a rule like R → A, we add R → ε, unless we removed
R → ε earlier.
For a rule with multiple occurences of A, we add one rule for
each combination. R → uAvAw would add R → uvAw ,
R → uAvw , and R → uvw .

SLIDES FOR 15-453 LECTURE 8 FALL 2015 10 / 33

REMOVING ε-PRODUCTIONS

Consider
S → ASA | aB
A → B | S
B → b | ε

Add a new start symbol S0
S0 → S
S → ASA | aB
A → B | S
B → b | ε

Remove B → ε
S0 → S
S → ASA | aB | a
A → B | S | ε
B → b

Remove A→ ε
S0 → S
S → ASA | aB | a |

SA | AS | S
A → B | S
B → b

SLIDES FOR 15-453 LECTURE 8 FALL 2015 11 / 33

REMOVING UNIT PRODUCTIONS

To remove a unit rule like A→ B,
We first add to the grammar a rule A→ u whenever B → u is
in the grammar, unless this is a unit rule previously removed.
We then delete A→ B, from the grammar.

We repeat these until we eliminate all unit rules.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 12 / 33

REMOVING UNIT PRODUCTIONS

After ε-rule removal
S0 → S
S → ASA | aB | a | SA | AS | S
A → B | S
B → b

Remove S → S
S0 → S
S → ASA | aB | a | SA | AS
A → B | S
B → b

Remove S0 → S
S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → B | S
B → b

SLIDES FOR 15-453 LECTURE 8 FALL 2015 13 / 33

REMOVING UNIT PRODUCTIONS

After S0 → S removal
S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → B | S
B → b

Remove A→ B
S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → b | S
B → b

Remove A→ S
S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → b | ASA | aB | a | SA | AS
B → b

SLIDES FOR 15-453 LECTURE 8 FALL 2015 14 / 33

CHOMSKY NORMAL FORM

CFGs in certain standard forms are quite useful
for some computational problems.

CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal
form(CNF) if every rule is either of the form

A→ BC or A→ a

where a is a terminal and A,B,C are variables –
except B and C may not be the start variable. In
addition, we allow the rule S → ε if necessary.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 15 / 33

CHOMSKY NORMAL FORM

THEOREM

Every context-free language can be generated by a
context-free grammar in Chomksy normal form.

PROOF IDEA

Add a new start variable and the production
S0 → S.
Remove all ε-productions
Remove all unit productions.
Add new variables and rules so that all rules have
the right forms.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 16 / 33

CHOMSKY NORMAL FORM

PROOF

ui below is either a terminal or a variable.
Replace each rule like A→ u1u2 · · · uk where
k ≥ 3, with rules A→ u1A1, A1 → u2A2, · · ·
Ak−2 → uk−1uk

After this stage, all rules have right-hand side of
length either 2 or 1
For each rule like A→ u1u2 where either or both
ui is a terminal, replace ui with the new variable
Ui and add the rule Ui → ui to the grammar.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 17 / 33

CONVERSION TO CHOMSKY NORMAL FORM

Grammar after ε and unit production removal
S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → b | ASA | aB | a | SA | AS
B → b

Remove S0 → ASA and add S0 → AA1 and A1 → SA

Remove S → ASA and add S → AA1 (A1 → SA already added)

Remove A→ ASA and add A→ AA1 (A1 → SA already added)

Replace S0 → aB with S0 → UB and U → a

Replace S → aB with S → UB (U → a already added)

Replace A→ aB with A→ UB (U → a already added)

SLIDES FOR 15-453 LECTURE 8 FALL 2015 18 / 33

CONVERSION TO CHOMSKY NORMAL FORM

Final grammar in Chomsky normal form
S0 → AA1 | UB | a | SA | AS
S → AA1 | UB | a | SA | AS
A → b | AA1 | UB | a | SA | AS

A1 → SA
U → a
B → b

SLIDES FOR 15-453 LECTURE 8 FALL 2015 19 / 33

ANOTHER EXAMPLE

Let’s convert
R = {S → SS,S → aSb,S → bSa,S → ε} to
Chomsky Normal Form.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 20 / 33

OTHER INTERESTING FORMS FOR GRAMMARS

If all productions of a grammar are like A→ bB or
A→ b where b is a terminal and B is a variable,
then it is called a right-linear grammar.
If all productions of a grammar are like A→ Bb or
A→ b where b is a terminal and B is a variable,
then it is called a left-linear grammar.
Right-linear grammars generate regular
languages.
Left-linear grammars generate regular languages.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 21 / 33

THE RECOGNITION PROBLEM FOR CFL’S

Given a context-free grammar G and a string
w ∈ Σ∗ how can we tell if w ∈ L(G)?
If w ∈ L(G), what are the possible structures
assigned to w by G?
Different grammars for the same language

will answer the first question the same, but
will assign possibly different structures to strings in the
language.
Consider original and Chomsky Normal Form of some
example grammars earlier!

SLIDES FOR 15-453 LECTURE 8 FALL 2015 22 / 33

THE COCKE-YOUNGER-KASAMI (CYK)
ALGORITHM

The CYK parsing algorithm determines if
w ∈ L(G) for a grammar G in Chomsky Normal
Form

with some extensions, it can also determine possible
structures.
Assume w 6= ε (if so, check if the grammar has the rule
S → ε)

SLIDES FOR 15-453 LECTURE 8 FALL 2015 23 / 33

THE CYK ALGORITHM

Consider w = a1a2 · · · an, ai ∈ Σ

Suppose we could cut up the string into two parts
u = a1a2..ai and v = ai+1ai+2 · · · an

Now suppose A ∗⇒ u and B ∗⇒ v and that S → AB
is a rule.

S

A

a1 ai

B

ai+1 an
← u → ← v →

SLIDES FOR 15-453 LECTURE 8 FALL 2015 24 / 33

THE CYK ALGORITHM

S

A

a1 ai

B

ai+1 an
← u → ← v →

Now we apply the same idea to A and B
recursively.

S

A

C

a1 aj

D

aj+1 ai

B

E

ai+1 ak

F

ak+1 an
← u1 → ← v1 → ← u2 → ← v2 →

SLIDES FOR 15-453 LECTURE 8 FALL 2015 25 / 33

THE CYK ALGORITHM

S

A

C

a1 aj

D

aj+1 ai

B

E

ai+1 ak

F

ak+1 an
← u1 → ← v1 → ← u2 → ← v2 →

What is the problem here?
We do not know what i , j and k are!
No Problem! We can try all possible i ’s, j ’s and
k ′s.
Dynamic programming to the rescue.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 26 / 33

DIGRESSION - DYNAMIC PROGRAMMING

An algorithmic paradigm
Essentially like divide-and-conquer but
subproblems overlap!
Results of subproblem solutions are reusable.
Subproblem results are computed once and then
memoized
Used in solutions to many problems

Length of longest common subsequence
Knapsack
Optimal matrix chain multiplication
Shortest paths in graphs with negative weights
(Bellman-Ford Alg.)

SLIDES FOR 15-453 LECTURE 8 FALL 2015 27 / 33

(BACK TO) THE CYK ALGORITHM

Let w = a1a2 · · · an.
We define

wi,j = ai · · · aj (substring between positions i and j)
Vi,j = {A ∈ V | A ∗⇒ wi,j}(j ≥ i) (all variables which derive
wij)

w ∈ L(G) iff S ∈ V1,n

How do we compute Vi ,j(j ≥ i)?

SLIDES FOR 15-453 LECTURE 8 FALL 2015 28 / 33

THE CYK ALGORITHM

How do we compute Vi ,j?
Observe that A ∈ Vi ,i if A→ ai is a rule.

So Vii can easily be computed for 1 ≤ i ≤ n by an inspection
of w and the grammar.

A ∗⇒ wij if
There is a production A→ BC, and
B ∗⇒ wi,k and C ∗⇒ wk+1,j for some k , i ≤ k < j .

So

Vi ,j =
⋃

i≤k<j

{A :| A→ BC and B ∈ Vi ,k and C ∈ Vk+1,j}

SLIDES FOR 15-453 LECTURE 8 FALL 2015 29 / 33

THE CYK ALGORITHM

Vi ,j =
⋃

i≤k<j

{A : A→ BC and B ∈ Vi ,k and C ∈ Vk+1,j}

Compute in the following order:
→

↓ V1,1 V2,2 V3,3 · · · · · · · · · Vn,n
V1,2 V2,3 V3,4 · · · · · · Vn−1,n
V1,3 V2,4 V3,5 · · · Vn−2,n
· · ·
V1,n−1 V2,n
V1,n

For example to compute V2,4 one needs V2,2 and
V3,4, and then V2,3 and V4,4 all of which are
computed earlier!

SLIDES FOR 15-453 LECTURE 8 FALL 2015 30 / 33

THE CYK ALGORITHM

1) for i=1 to n do // Initialization
2) Vi,i = {A | A→ a is a rule and wi,i = a]
3) for j=2 to n do
4) for i=1 to n-j+1 do
5) begin
6) Vi,j = {}; // Set Vi,j to empty set
7) for k=1 to j-1 do
8) Vi,j = Vi,j ∪ {A :| A→ BC is a rule and

B ∈ Vi,k and C ∈ Vk+1,j}

This algorithm has 3 nested loops with the bound for each being
O(n). So the overall time/work is O(n3).

The size of the grammar factors in as a constant factor as it is
independent of n – the length of the string.

Certain special CFGs have subcubic recognition algorithms.

SLIDES FOR 15-453 LECTURE 8 FALL 2015 31 / 33

THE CYK ALGORITHM IN ACTION

Consider the following grammar in CNF
S → AB
A → BB | a
B → AB | b

The input string is w = aabbb

i → 1 2 3 4 5
a a b b b
{A} {A} {B} {B} {B}
{} {S,B} {A} {A}
{S,B} {A} {S,B}
{A} {S,B}
{S,B}

Since S ∈ V1,5, this string is in L(G).

SLIDES FOR 15-453 LECTURE 8 FALL 2015 32 / 33

THE CYK ALGORITHM IN ACTION

Consider the following grammar in CNF
S → AB
A → BB | a
B → AB | b

Let us see how we compute V2,4

We need to look at V2,2 and V3,4
We need to look at V2,3 and V4,4

i → 1 2 3 4 5
a a b b b
{A} {A} {B} {B} {B}
{} {S,B} {A} {A}
{S,B} {A} {S,B}
{A} {S,B}
{S,B}

SLIDES FOR 15-453 LECTURE 8 FALL 2015 33 / 33

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

PUSHDOWN AUTOMATA

SLIDES FOR 15-453 LECTURE 9 FALL 2015 1 / 17

PUSHDOWN AUTOMATA

Pushdown automata (PDA) are abstract automata
that accept all context-free languages.
PDAs are essentially NFAs with an additional
infinite stack memory.

(Or NFAs are PDAs with no additional memory!)

SLIDES FOR 15-453 LECTURE 9 FALL 2015 2 / 17

PUSHDOWN AUTOMATA

Input is read
left-to-right
Control has finite
memory (NFA)
State transition
depends on input
and top of stack
Control can push
and pop symbols
to/from the infinite
stackSLIDES FOR 15-453 LECTURE 9 FALL 2015 3 / 17

PUSHDOWN AUTOMATA – INFORMAL

Let’s look at L = {anbn | n ≥ 0}
How can we use a stack to recognize w ∈ L?

1 Push a special bottom of stack symbol $ to the stack
2 As long as you are seeing a’s in the input, push an a onto

the stack.
3 While there are b’s in the input AND there is a corresponding

a on the top of the stack, pop a from the stack
4 If at any point there is no a on the stack (hence you

encounter $), you should reject the string – not enough a’s!
5 If at the end of w , the top of the stack is NOT $ reject the

string – not enough b’s.
6 Otherwise accept the string.

SLIDES FOR 15-453 LECTURE 9 FALL 2015 4 / 17

PUSHDOWN AUTOMATA – INFORMAL

How can we use a PDA to recognize
L = {w | na(w) = nb(w)}
Remember how we argued that the grammar
generates such strings

Keep track of the difference of counts
We do something similar but using the stack.

Push a special bottom of stack symbol $ to the stack
An a in the input “cancels” a b on the top of the stack,
otherwise pushes an a
A b in the input “cancels” an a on the top of the stack,
otherwise pushes a b
At the end nothing should be left on the stack except for the
$, if not reject.

SLIDES FOR 15-453 LECTURE 9 FALL 2015 5 / 17

PUSHDOWN AUTOMATA –FORMAL DEFINITION

We have two alphabets Σ for symbols of the input
string and Γ for symbols for the stack. They need
not be disjoint.
Define Σε = Σ ∪ {ε} and Γε = Γ ∪ {ε}
A pushdown automaton is a 6-tuple
(Q,Σ, Γ, δ,q0,F) where Q,Σ, Γ, and F are finite
sets, and

Q is the set of states
Σ is the input alphabet, Γ is the stack alphabet
δ : Q × Σε × Γε → P(Q × Γε) is the state transition function.
(P(S)is the power set of S. Earlier we used 2S.)
q0 ∈ Q is the start state, and
F ⊆ Q is the set of final or accepting states.

SLIDES FOR 15-453 LECTURE 9 FALL 2015 6 / 17

COMPUTATION ON A PDA

A PDA computes as follows:
Input w can be written as w = w1w2 · · ·wm where each
wi ∈ Σε. So some wi can be ε.
There is a sequence of states r0, r1, · · · , rm, ri ∈ Q.
There is a sequence of strings s0, s1, · · · , sm, si ∈ Γ∗. These
represent sequences of stack contents along an accepting
branch of M ’s computation.

r0 = q0 and s0 = ε.
(ri+1,b) ∈ δ(ri ,wi+1,a), i = 0,1, · · · ,m − 1
a is popped, b is pushed, t is the rest of the stack.

si = at and si+1 = bt for some a,b ∈ Γε and t ∈ Γ∗

rm ∈ F
SLIDES FOR 15-453 LECTURE 9 FALL 2015 7 / 17

EXAMPLE PDA

PDA for L = {anbn | n ≥ 0}
Σ = {a,b}, Γ = {0, $}
$ keeps track of the “bottom” of the stack

q1start q2

q3q4

ε, ε→ $

b,0→ ε

a, ε→ 0

ε, $→ ε
b,0→ ε

SLIDES FOR 15-453 LECTURE 9 FALL 2015 8 / 17

EXAMPLE PDA

PDA for L = {wwR | w ∈ {0,1}∗}
Palindromes: See
http://norvig.com/palindrome.html for
interesting examples:
A 17,826 word palindrome starts and ends as:

A man, a plan, a cameo, Zena, Bird, Mocha, Prowel, a rave,
Uganda, Wait, a lobola, Argo, Goto, Koser, Ihab, Udall, a
revocation, Ebarta, Muscat, eyes, Rehm, a cession, Udella,
E-boat, OAS, a mirage, IPBM, a caress, Etam, . . ., a lobo,
Lati, a wadna, Guevara, Lew, Orpah, Comdr, Ibanez, OEM,
a canal, Panama

SLIDES FOR 15-453 LECTURE 9 FALL 2015 9 / 17

EXAMPLE PDA

PDA for L = {wwR | w ∈ {0,1}∗}
Σ = {0,1}, Γ = {0,1, $}

q1start q2

q3q4

ε, ε→ $

ε, ε→ ε

0, ε→ 0

1, ε→ 1

ε, $→ ε
0,0→ ε

1,1→ ε
SLIDES FOR 15-453 LECTURE 9 FALL 2015 10 / 17

EXAMPLE PDA

Let’s construct a PDA for
L = {w | na(w) = nb(w)}

SLIDES FOR 15-453 LECTURE 9 FALL 2015 11 / 17

PDA SHORTHANDS

It is usually better and more succinct to represent
a series of PDA transitions using a shorthand

q

r

a, s → xyz represents⇒

q

q1

q2

r

a, s → z

ε, ε→ y

ε, ε→ x

SLIDES FOR 15-453 LECTURE 9 FALL 2015 12 / 17

PDAS AND CFGS

PDAs and CFGs are equivalent in power: they
both describe context-free languages.

THEOREM

A language is context free if and only if some
pushdown automaton recognizes it.

SLIDES FOR 15-453 LECTURE 9 FALL 2015 13 / 17

PDAS AND CFGS

LEMMA

If a language is context free, then some pushdown
automaton recognizes it.

PROOF IDEA

If A is a CFL, then it has a CFG G for generating it.
Convert the CFG to an equivalent PDA.

Each rule maps to a transition.

SLIDES FOR 15-453 LECTURE 9 FALL 2015 14 / 17

CFGS TO PDAS

We simulate the leftmost derivation of a string
using a 3-state PDA with Q = {qstart ,qloop,qaccept}
One transition from qstart pushes the start symbol
S onto the stack (along with $).
Transitions from qloop simulate either a rule
expansion, or matching an input symbol.

δ(qloop, ε,A) = {(qloop,w) | A→ w is a production in G}
If the top of the stack is A, nondeterministically expand it in
all possible ways.

δ(qloop,a,a) = {(qloop, ε)}, for all a ∈ Σ.
If the input symbol matches the top of the stack, consume
the input and pop the stack.

One transition takes the PDA from qloop to qaccept

when $ is seen on the stack.
SLIDES FOR 15-453 LECTURE 9 FALL 2015 15 / 17

CFGS TO PDAS

qstartstart

qloop

q2

ε, ε→ S$

ε,A→ w for rule A→ wfor each a ∈ Σ, a,a→ ε

ε, $→ ε

SLIDES FOR 15-453 LECTURE 9 FALL 2015 16 / 17

CFG TO PDA EXAMPLE

Let’s convert the following grammar for
L = {w | na(w) = nb(w)}.

S → aSb
S → bSa
S → SS
S → ε

SLIDES FOR 15-453 LECTURE 9 FALL 2015 17 / 17

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION
PUSHDOWN AUTOMATA

PROPERTIES OF CFLS

SLIDES FOR 15-453 LECTURE 10 FALL 2015 1 / 29

PUSHDOWN AUTOMATA-SUMMARY

Pushdown automata (PDA) are abstract automata
that accept all context-free languages.

PDAs are essentially NFAs with an additional
infinite stack memory.

(Or NFAs are PDAs with no additional memory!)

SLIDES FOR 15-453 LECTURE 10 FALL 2015 2 / 29

PUSHDOWN AUTOMATA-SUMMARY

Pushdown automata (PDA) are abstract automata
that accept all context-free languages.
PDAs are essentially NFAs with an additional
infinite stack memory.

(Or NFAs are PDAs with no additional memory!)

SLIDES FOR 15-453 LECTURE 10 FALL 2015 2 / 29

PUSHDOWN AUTOMATA-SUMMARY

Pushdown automata (PDA) are abstract automata
that accept all context-free languages.
PDAs are essentially NFAs with an additional
infinite stack memory.

(Or NFAs are PDAs with no additional memory!)

SLIDES FOR 15-453 LECTURE 10 FALL 2015 2 / 29

PDA TO CFG

LEMMA

If a PDA recognizes some language, then it is context
free.

PROOF IDEA

Create from P a CFG G that generates all strings that
P accepts, i.e., G generates a string if that string
takes PDA from the start state to some accepting
state.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 3 / 29

PDA TO CFG–PRELIMINARIES

Let us modify the PDA P slightly
The PDA has a single accept state qaccept

Easy – use additional ε, ε→ ε transitions.
The PDA empties its stack before accepting.

Easy – add an additional loop to flush the stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 4 / 29

PDA TO CFG–PRELIMINARIES

Let us modify the PDA P slightly
The PDA has a single accept state qaccept

Easy – use additional ε, ε→ ε transitions.

The PDA empties its stack before accepting.

Easy – add an additional loop to flush the stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 4 / 29

PDA TO CFG–PRELIMINARIES

Let us modify the PDA P slightly
The PDA has a single accept state qaccept

Easy – use additional ε, ε→ ε transitions.
The PDA empties its stack before accepting.

Easy – add an additional loop to flush the stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 4 / 29

PDA TO CFG–PRELIMINARIES

Let us modify the PDA P slightly
The PDA has a single accept state qaccept

Easy – use additional ε, ε→ ε transitions.
The PDA empties its stack before accepting.

Easy – add an additional loop to flush the stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 4 / 29

PDA TO CFG-PRELIMINARIES

More modifications to the PDA P:
Each transition either pushes a symbol to the
stack or pops a symbol from the stack, but not
both!.

1 Replace each transition with a pop-push, with a
two-transition sequence.

For example replace a,b → c with a,b → ε followed by
ε, ε→ c, using an intermediate state.

2 Replace each transition with no pop-push, with a transition
that pops and pushes a random symbol.

For example, replace a, ε→ ε with a, ε→ x followed by
ε, x → ε, using an intermediate state.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 5 / 29

PDA TO CFG-PRELIMINARIES

More modifications to the PDA P:
Each transition either pushes a symbol to the
stack or pops a symbol from the stack, but not
both!.

1 Replace each transition with a pop-push, with a
two-transition sequence.

For example replace a,b → c with a,b → ε followed by
ε, ε→ c, using an intermediate state.

2 Replace each transition with no pop-push, with a transition
that pops and pushes a random symbol.

For example, replace a, ε→ ε with a, ε→ x followed by
ε, x → ε, using an intermediate state.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 5 / 29

PDA TO CFG-PRELIMINARIES

More modifications to the PDA P:
Each transition either pushes a symbol to the
stack or pops a symbol from the stack, but not
both!.

1 Replace each transition with a pop-push, with a
two-transition sequence.

For example replace a,b → c with a,b → ε followed by
ε, ε→ c, using an intermediate state.

2 Replace each transition with no pop-push, with a transition
that pops and pushes a random symbol.

For example, replace a, ε→ ε with a, ε→ x followed by
ε, x → ε, using an intermediate state.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 5 / 29

PDA TO CFG-PRELIMINARIES

More modifications to the PDA P:
Each transition either pushes a symbol to the
stack or pops a symbol from the stack, but not
both!.

1 Replace each transition with a pop-push, with a
two-transition sequence.

For example replace a,b → c with a,b → ε followed by
ε, ε→ c, using an intermediate state.

2 Replace each transition with no pop-push, with a transition
that pops and pushes a random symbol.

For example, replace a, ε→ ε with a, ε→ x followed by
ε, x → ε, using an intermediate state.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 5 / 29

PDA TO CFG-PRELIMINARIES

More modifications to the PDA P:
Each transition either pushes a symbol to the
stack or pops a symbol from the stack, but not
both!.

1 Replace each transition with a pop-push, with a
two-transition sequence.

For example replace a,b → c with a,b → ε followed by
ε, ε→ c, using an intermediate state.

2 Replace each transition with no pop-push, with a transition
that pops and pushes a random symbol.

For example, replace a, ε→ ε with a, ε→ x followed by
ε, x → ε, using an intermediate state.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 5 / 29

PDA TO CFG–PRELIMINARIES

For each pair of states p and q in P, the grammar
with have a variable Apq.

Apq generates all strings that take P from p with an empty
stack, to q, leaving the stack empty.
Apq also takes P from p to q, leaving the stack as it was
before p!

SLIDES FOR 15-453 LECTURE 10 FALL 2015 6 / 29

PDA TO CFG–PRELIMINARIES

For each pair of states p and q in P, the grammar
with have a variable Apq.

Apq generates all strings that take P from p with an empty
stack, to q, leaving the stack empty.

Apq also takes P from p to q, leaving the stack as it was
before p!

SLIDES FOR 15-453 LECTURE 10 FALL 2015 6 / 29

PDA TO CFG–PRELIMINARIES

For each pair of states p and q in P, the grammar
with have a variable Apq.

Apq generates all strings that take P from p with an empty
stack, to q, leaving the stack empty.
Apq also takes P from p to q, leaving the stack as it was
before p!

SLIDES FOR 15-453 LECTURE 10 FALL 2015 6 / 29

PDA TO CFG–PRELIMINARIES

Let x be a string that takes P from p to q with an
empty stack.

First move of the PDA should involve a push! (Why?)
Last move of the PDA should involve a pop! (Why?)

SLIDES FOR 15-453 LECTURE 10 FALL 2015 7 / 29

PDA TO CFG–PRELIMINARIES

Let x be a string that takes P from p to q with an
empty stack.

First move of the PDA should involve a push! (Why?)

Last move of the PDA should involve a pop! (Why?)

SLIDES FOR 15-453 LECTURE 10 FALL 2015 7 / 29

PDA TO CFG–PRELIMINARIES

Let x be a string that takes P from p to q with an
empty stack.

First move of the PDA should involve a push! (Why?)
Last move of the PDA should involve a pop! (Why?)

SLIDES FOR 15-453 LECTURE 10 FALL 2015 7 / 29

PDA TO CFG–PRELIMINARIES

There are two cases:

1 Symbol pushed after p, is the same symbol popped just
before q

2 If not, that symbol should be popped at some point before!
(Why?)

First case can be simulated by rule Apq → aArsb

Read a, go to state r , then transit to state s somehow, and
then read b.

Second case can be simulated by rule
Apq → AprArq

r is the state the stack becomes empty on the way from p to
q

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8 / 29

PDA TO CFG–PRELIMINARIES

There are two cases:
1 Symbol pushed after p, is the same symbol popped just

before q

2 If not, that symbol should be popped at some point before!
(Why?)

First case can be simulated by rule Apq → aArsb

Read a, go to state r , then transit to state s somehow, and
then read b.

Second case can be simulated by rule
Apq → AprArq

r is the state the stack becomes empty on the way from p to
q

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8 / 29

PDA TO CFG–PRELIMINARIES

There are two cases:
1 Symbol pushed after p, is the same symbol popped just

before q
2 If not, that symbol should be popped at some point before!

(Why?)

First case can be simulated by rule Apq → aArsb

Read a, go to state r , then transit to state s somehow, and
then read b.

Second case can be simulated by rule
Apq → AprArq

r is the state the stack becomes empty on the way from p to
q

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8 / 29

PDA TO CFG–PRELIMINARIES

There are two cases:
1 Symbol pushed after p, is the same symbol popped just

before q
2 If not, that symbol should be popped at some point before!

(Why?)
First case can be simulated by rule Apq → aArsb

Read a, go to state r , then transit to state s somehow, and
then read b.

Second case can be simulated by rule
Apq → AprArq

r is the state the stack becomes empty on the way from p to
q

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8 / 29

PDA TO CFG–PRELIMINARIES

There are two cases:
1 Symbol pushed after p, is the same symbol popped just

before q
2 If not, that symbol should be popped at some point before!

(Why?)
First case can be simulated by rule Apq → aArsb

Read a, go to state r , then transit to state s somehow, and
then read b.

Second case can be simulated by rule
Apq → AprArq

r is the state the stack becomes empty on the way from p to
q

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8 / 29

PDA TO CFG–PRELIMINARIES

There are two cases:
1 Symbol pushed after p, is the same symbol popped just

before q
2 If not, that symbol should be popped at some point before!

(Why?)
First case can be simulated by rule Apq → aArsb

Read a, go to state r , then transit to state s somehow, and
then read b.

Second case can be simulated by rule
Apq → AprArq

r is the state the stack becomes empty on the way from p to
q

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8 / 29

PDA TO CFG–PRELIMINARIES

There are two cases:
1 Symbol pushed after p, is the same symbol popped just

before q
2 If not, that symbol should be popped at some point before!

(Why?)
First case can be simulated by rule Apq → aArsb

Read a, go to state r , then transit to state s somehow, and
then read b.

Second case can be simulated by rule
Apq → AprArq

r is the state the stack becomes empty on the way from p to
q

SLIDES FOR 15-453 LECTURE 10 FALL 2015 8 / 29

PDA TO CFG – PROOF

Assume P = (Q,Σ, Γ, δ,q0, {qaccept}).

The variables of G are {Apq | p,q ∈ Q}
The start variable is Aq0,qaccept

The rules of G are as follows:

For each p,q, r , s ∈ Q, t ∈ Γ, and a,b ∈ Σε, if

δ(p,a, ε) contains (r , t) and
δ(s,b, t) contains (q, ε)

Add rule Apq → aArsb to G.
For each p,q, r ∈ Q, add rule Apq → Apr Arq to G.
For each, p ∈ Q, add the rule App → ε to G.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 9 / 29

PDA TO CFG – PROOF

Assume P = (Q,Σ, Γ, δ,q0, {qaccept}).
The variables of G are {Apq | p,q ∈ Q}

The start variable is Aq0,qaccept

The rules of G are as follows:

For each p,q, r , s ∈ Q, t ∈ Γ, and a,b ∈ Σε, if

δ(p,a, ε) contains (r , t) and
δ(s,b, t) contains (q, ε)

Add rule Apq → aArsb to G.
For each p,q, r ∈ Q, add rule Apq → Apr Arq to G.
For each, p ∈ Q, add the rule App → ε to G.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 9 / 29

PDA TO CFG – PROOF

Assume P = (Q,Σ, Γ, δ,q0, {qaccept}).
The variables of G are {Apq | p,q ∈ Q}
The start variable is Aq0,qaccept

The rules of G are as follows:

For each p,q, r , s ∈ Q, t ∈ Γ, and a,b ∈ Σε, if

δ(p,a, ε) contains (r , t) and
δ(s,b, t) contains (q, ε)

Add rule Apq → aArsb to G.
For each p,q, r ∈ Q, add rule Apq → Apr Arq to G.
For each, p ∈ Q, add the rule App → ε to G.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 9 / 29

PDA TO CFG – PROOF

Assume P = (Q,Σ, Γ, δ,q0, {qaccept}).
The variables of G are {Apq | p,q ∈ Q}
The start variable is Aq0,qaccept

The rules of G are as follows:

For each p,q, r , s ∈ Q, t ∈ Γ, and a,b ∈ Σε, if

δ(p,a, ε) contains (r , t) and
δ(s,b, t) contains (q, ε)

Add rule Apq → aArsb to G.
For each p,q, r ∈ Q, add rule Apq → Apr Arq to G.
For each, p ∈ Q, add the rule App → ε to G.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 9 / 29

PDA TO CFG – PROOF

Assume P = (Q,Σ, Γ, δ,q0, {qaccept}).
The variables of G are {Apq | p,q ∈ Q}
The start variable is Aq0,qaccept

The rules of G are as follows:
For each p,q, r , s ∈ Q, t ∈ Γ, and a,b ∈ Σε, if

δ(p,a, ε) contains (r , t) and
δ(s,b, t) contains (q, ε)

Add rule Apq → aArsb to G.

For each p,q, r ∈ Q, add rule Apq → Apr Arq to G.
For each, p ∈ Q, add the rule App → ε to G.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 9 / 29

PDA TO CFG – PROOF

Assume P = (Q,Σ, Γ, δ,q0, {qaccept}).
The variables of G are {Apq | p,q ∈ Q}
The start variable is Aq0,qaccept

The rules of G are as follows:
For each p,q, r , s ∈ Q, t ∈ Γ, and a,b ∈ Σε, if

δ(p,a, ε) contains (r , t) and
δ(s,b, t) contains (q, ε)

Add rule Apq → aArsb to G.
For each p,q, r ∈ Q, add rule Apq → Apr Arq to G.

For each, p ∈ Q, add the rule App → ε to G.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 9 / 29

PDA TO CFG – PROOF

Assume P = (Q,Σ, Γ, δ,q0, {qaccept}).
The variables of G are {Apq | p,q ∈ Q}
The start variable is Aq0,qaccept

The rules of G are as follows:
For each p,q, r , s ∈ Q, t ∈ Γ, and a,b ∈ Σε, if

δ(p,a, ε) contains (r , t) and
δ(s,b, t) contains (q, ε)

Add rule Apq → aArsb to G.
For each p,q, r ∈ Q, add rule Apq → Apr Arq to G.
For each, p ∈ Q, add the rule App → ε to G.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 9 / 29

PDA TO CFG INTUITION

PDA computation for Apq → aArsb

SLIDES FOR 15-453 LECTURE 10 FALL 2015 10 / 29

PDA TO CFG INTUITION

PDA computation for Apq → AprArq

SLIDES FOR 15-453 LECTURE 10 FALL 2015 11 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If Apq generates x , then x can bring P from p with
empty stack to q with empty stack.

Basis Case: Derivation has 1 step.

This can only be possible with a production of the sort
App → ε. We have such a rule!

Assume true for derivations of length at most k ,
k ≥ 1

Suppose that Apq
∗⇒ x with k + 1 steps. The first step in this

derivation would either be Apq → aArsb or Apq → Apr Arq

We handle these cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 12 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If Apq generates x , then x can bring P from p with
empty stack to q with empty stack.

Basis Case: Derivation has 1 step.

This can only be possible with a production of the sort
App → ε. We have such a rule!

Assume true for derivations of length at most k ,
k ≥ 1

Suppose that Apq
∗⇒ x with k + 1 steps. The first step in this

derivation would either be Apq → aArsb or Apq → Apr Arq

We handle these cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 12 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If Apq generates x , then x can bring P from p with
empty stack to q with empty stack.

Basis Case: Derivation has 1 step.
This can only be possible with a production of the sort
App → ε. We have such a rule!

Assume true for derivations of length at most k ,
k ≥ 1

Suppose that Apq
∗⇒ x with k + 1 steps. The first step in this

derivation would either be Apq → aArsb or Apq → Apr Arq

We handle these cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 12 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If Apq generates x , then x can bring P from p with
empty stack to q with empty stack.

Basis Case: Derivation has 1 step.
This can only be possible with a production of the sort
App → ε. We have such a rule!

Assume true for derivations of length at most k ,
k ≥ 1

Suppose that Apq
∗⇒ x with k + 1 steps. The first step in this

derivation would either be Apq → aArsb or Apq → Apr Arq

We handle these cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 12 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If Apq generates x , then x can bring P from p with
empty stack to q with empty stack.

Basis Case: Derivation has 1 step.
This can only be possible with a production of the sort
App → ε. We have such a rule!

Assume true for derivations of length at most k ,
k ≥ 1

Suppose that Apq
∗⇒ x with k + 1 steps. The first step in this

derivation would either be Apq → aArsb or Apq → Apr Arq

We handle these cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 12 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If Apq generates x , then x can bring P from p with
empty stack to q with empty stack.

Basis Case: Derivation has 1 step.
This can only be possible with a production of the sort
App → ε. We have such a rule!

Assume true for derivations of length at most k ,
k ≥ 1

Suppose that Apq
∗⇒ x with k + 1 steps. The first step in this

derivation would either be Apq → aArsb or Apq → Apr Arq

We handle these cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 12 / 29

PDA TO CFG PROOF (CONT’D)

Case Apq → aArsb :

Ars
∗⇒ y in k steps where x = ayb and by

induction hypothesis, P can go from r to s with an
empty stack.
If P pushes t onto the stack after p, after
processing y it will leave t back on stack.
Reading b will have to pop the t to leave an empty
stack.
Thus, x can bring P from p to q with an empty
stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 13 / 29

PDA TO CFG PROOF (CONT’D)

Case Apq → aArsb :

Ars
∗⇒ y in k steps where x = ayb and by

induction hypothesis, P can go from r to s with an
empty stack.

If P pushes t onto the stack after p, after
processing y it will leave t back on stack.
Reading b will have to pop the t to leave an empty
stack.
Thus, x can bring P from p to q with an empty
stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 13 / 29

PDA TO CFG PROOF (CONT’D)

Case Apq → aArsb :

Ars
∗⇒ y in k steps where x = ayb and by

induction hypothesis, P can go from r to s with an
empty stack.
If P pushes t onto the stack after p, after
processing y it will leave t back on stack.

Reading b will have to pop the t to leave an empty
stack.
Thus, x can bring P from p to q with an empty
stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 13 / 29

PDA TO CFG PROOF (CONT’D)

Case Apq → aArsb :

Ars
∗⇒ y in k steps where x = ayb and by

induction hypothesis, P can go from r to s with an
empty stack.
If P pushes t onto the stack after p, after
processing y it will leave t back on stack.
Reading b will have to pop the t to leave an empty
stack.

Thus, x can bring P from p to q with an empty
stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 13 / 29

PDA TO CFG PROOF (CONT’D)

Case Apq → aArsb :

Ars
∗⇒ y in k steps where x = ayb and by

induction hypothesis, P can go from r to s with an
empty stack.
If P pushes t onto the stack after p, after
processing y it will leave t back on stack.
Reading b will have to pop the t to leave an empty
stack.
Thus, x can bring P from p to q with an empty
stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 13 / 29

PDA TO CFG PROOF (CONT’D)

Case Apq → AprArq

Suppose Apr
∗⇒ y and Arq

∗⇒ z, where x = yz.
Since these derivations are at most k steps,
before p and after r we have empty stacks, and
thus also after q.
Thus x can bring P from p to q with an empty
stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 14 / 29

PDA TO CFG PROOF (CONT’D)

Case Apq → AprArq

Suppose Apr
∗⇒ y and Arq

∗⇒ z, where x = yz.

Since these derivations are at most k steps,
before p and after r we have empty stacks, and
thus also after q.
Thus x can bring P from p to q with an empty
stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 14 / 29

PDA TO CFG PROOF (CONT’D)

Case Apq → AprArq

Suppose Apr
∗⇒ y and Arq

∗⇒ z, where x = yz.
Since these derivations are at most k steps,
before p and after r we have empty stacks, and
thus also after q.

Thus x can bring P from p to q with an empty
stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 14 / 29

PDA TO CFG PROOF (CONT’D)

Case Apq → AprArq

Suppose Apr
∗⇒ y and Arq

∗⇒ z, where x = yz.
Since these derivations are at most k steps,
before p and after r we have empty stacks, and
thus also after q.
Thus x can bring P from p to q with an empty
stack.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 14 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If x can bring P from p to q with empty stack,
Apq

∗⇒ x .

Basis Case: Suppose PDA takes 0 steps.

It should stay in the same state. Since we have a rule in the
grammar App → ε, App

∗⇒ ε.

Assume true for all computations of P of length at
most k , k ≥ 0.

Suppose with x , P can go from p to q with an empty stack.
Either the stack is empty only at the beginning and at the
end, or it becomes empty elsewhere, too.

We handle these two cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 15 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If x can bring P from p to q with empty stack,
Apq

∗⇒ x .

Basis Case: Suppose PDA takes 0 steps.

It should stay in the same state. Since we have a rule in the
grammar App → ε, App

∗⇒ ε.

Assume true for all computations of P of length at
most k , k ≥ 0.

Suppose with x , P can go from p to q with an empty stack.
Either the stack is empty only at the beginning and at the
end, or it becomes empty elsewhere, too.

We handle these two cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 15 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If x can bring P from p to q with empty stack,
Apq

∗⇒ x .

Basis Case: Suppose PDA takes 0 steps.
It should stay in the same state. Since we have a rule in the
grammar App → ε, App

∗⇒ ε.

Assume true for all computations of P of length at
most k , k ≥ 0.

Suppose with x , P can go from p to q with an empty stack.
Either the stack is empty only at the beginning and at the
end, or it becomes empty elsewhere, too.

We handle these two cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 15 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If x can bring P from p to q with empty stack,
Apq

∗⇒ x .

Basis Case: Suppose PDA takes 0 steps.
It should stay in the same state. Since we have a rule in the
grammar App → ε, App

∗⇒ ε.

Assume true for all computations of P of length at
most k , k ≥ 0.

Suppose with x , P can go from p to q with an empty stack.
Either the stack is empty only at the beginning and at the
end, or it becomes empty elsewhere, too.

We handle these two cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 15 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If x can bring P from p to q with empty stack,
Apq

∗⇒ x .

Basis Case: Suppose PDA takes 0 steps.
It should stay in the same state. Since we have a rule in the
grammar App → ε, App

∗⇒ ε.

Assume true for all computations of P of length at
most k , k ≥ 0.

Suppose with x , P can go from p to q with an empty stack.
Either the stack is empty only at the beginning and at the
end, or it becomes empty elsewhere, too.

We handle these two cases separately.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 15 / 29

PDA TO CFG PROOF (CONT’D)

CLAIM

If x can bring P from p to q with empty stack,
Apq

∗⇒ x .

Basis Case: Suppose PDA takes 0 steps.
It should stay in the same state. Since we have a rule in the
grammar App → ε, App

∗⇒ ε.

Assume true for all computations of P of length at
most k , k ≥ 0.

Suppose with x , P can go from p to q with an empty stack.
Either the stack is empty only at the beginning and at the
end, or it becomes empty elsewhere, too.

We handle these two cases separately.
SLIDES FOR 15-453 LECTURE 10 FALL 2015 15 / 29

PDA TO CFG PROOF (CONT’D)

Case: Stack is empty only at the beginning and at the
end of a derivation of length k + 1

Suppose x = ayb. a and b are consumed at the
beginning and at the end of the computation (with
t being pushed and popped).
P takes k − 2 steps on y .
By hypothesis, Ars

∗⇒ y where (r , t) ∈ δ(q,a, ε)
and (q, ε) ∈ δ(s,b, t).
Thus, using rule Apq → aArsb, Apq

∗⇒ x .

SLIDES FOR 15-453 LECTURE 10 FALL 2015 16 / 29

PDA TO CFG PROOF (CONT’D)

Case: Stack is empty only at the beginning and at the
end of a derivation of length k + 1

Suppose x = ayb. a and b are consumed at the
beginning and at the end of the computation (with
t being pushed and popped).

P takes k − 2 steps on y .
By hypothesis, Ars

∗⇒ y where (r , t) ∈ δ(q,a, ε)
and (q, ε) ∈ δ(s,b, t).
Thus, using rule Apq → aArsb, Apq

∗⇒ x .

SLIDES FOR 15-453 LECTURE 10 FALL 2015 16 / 29

PDA TO CFG PROOF (CONT’D)

Case: Stack is empty only at the beginning and at the
end of a derivation of length k + 1

Suppose x = ayb. a and b are consumed at the
beginning and at the end of the computation (with
t being pushed and popped).
P takes k − 2 steps on y .

By hypothesis, Ars
∗⇒ y where (r , t) ∈ δ(q,a, ε)

and (q, ε) ∈ δ(s,b, t).
Thus, using rule Apq → aArsb, Apq

∗⇒ x .

SLIDES FOR 15-453 LECTURE 10 FALL 2015 16 / 29

PDA TO CFG PROOF (CONT’D)

Case: Stack is empty only at the beginning and at the
end of a derivation of length k + 1

Suppose x = ayb. a and b are consumed at the
beginning and at the end of the computation (with
t being pushed and popped).
P takes k − 2 steps on y .
By hypothesis, Ars

∗⇒ y where (r , t) ∈ δ(q,a, ε)
and (q, ε) ∈ δ(s,b, t).

Thus, using rule Apq → aArsb, Apq
∗⇒ x .

SLIDES FOR 15-453 LECTURE 10 FALL 2015 16 / 29

PDA TO CFG PROOF (CONT’D)

Case: Stack is empty only at the beginning and at the
end of a derivation of length k + 1

Suppose x = ayb. a and b are consumed at the
beginning and at the end of the computation (with
t being pushed and popped).
P takes k − 2 steps on y .
By hypothesis, Ars

∗⇒ y where (r , t) ∈ δ(q,a, ε)
and (q, ε) ∈ δ(s,b, t).
Thus, using rule Apq → aArsb, Apq

∗⇒ x .

SLIDES FOR 15-453 LECTURE 10 FALL 2015 16 / 29

PDA TO CFG PROOF (CONT’D)

Case: Stack becomes empty at some intermediate
stage in the computation of x

Suppose x = yz, such that P has the stack empty
after consuming y .
By induction hypothesis Apr

∗⇒ y and Arq
∗⇒ z

since P takes at most k steps on y and z.
Since rule Apq → AprArq is in the grammar,
Apq

∗⇒ x .

SLIDES FOR 15-453 LECTURE 10 FALL 2015 17 / 29

PDA TO CFG PROOF (CONT’D)

Case: Stack becomes empty at some intermediate
stage in the computation of x

Suppose x = yz, such that P has the stack empty
after consuming y .

By induction hypothesis Apr
∗⇒ y and Arq

∗⇒ z
since P takes at most k steps on y and z.
Since rule Apq → AprArq is in the grammar,
Apq

∗⇒ x .

SLIDES FOR 15-453 LECTURE 10 FALL 2015 17 / 29

PDA TO CFG PROOF (CONT’D)

Case: Stack becomes empty at some intermediate
stage in the computation of x

Suppose x = yz, such that P has the stack empty
after consuming y .
By induction hypothesis Apr

∗⇒ y and Arq
∗⇒ z

since P takes at most k steps on y and z.

Since rule Apq → AprArq is in the grammar,
Apq

∗⇒ x .

SLIDES FOR 15-453 LECTURE 10 FALL 2015 17 / 29

PDA TO CFG PROOF (CONT’D)

Case: Stack becomes empty at some intermediate
stage in the computation of x

Suppose x = yz, such that P has the stack empty
after consuming y .
By induction hypothesis Apr

∗⇒ y and Arq
∗⇒ z

since P takes at most k steps on y and z.
Since rule Apq → AprArq is in the grammar,
Apq

∗⇒ x .

SLIDES FOR 15-453 LECTURE 10 FALL 2015 17 / 29

REGULAR LANGUAGES ARE CONTEXT FREE

COROLLARY

Every regular language is context free.

PROOF.
Since a regular language L is recognized by a DFA
and every DFA is a PDA that ignores it stack, there is
a CFG for L

Right-linear grammars
Left-linear grammars

SLIDES FOR 15-453 LECTURE 10 FALL 2015 18 / 29

REGULAR LANGUAGES ARE CONTEXT FREE

COROLLARY

Every regular language is context free.

PROOF.
Since a regular language L is recognized by a DFA
and every DFA is a PDA that ignores it stack, there is
a CFG for L

Right-linear grammars
Left-linear grammars

SLIDES FOR 15-453 LECTURE 10 FALL 2015 18 / 29

REGULAR LANGUAGES ARE CONTEXT FREE

COROLLARY

Every regular language is context free.

PROOF.
Since a regular language L is recognized by a DFA
and every DFA is a PDA that ignores it stack, there is
a CFG for L

Right-linear grammars
Left-linear grammars

SLIDES FOR 15-453 LECTURE 10 FALL 2015 18 / 29

NON-CONTEXT-FREE LANGUAGES

There are non-context-free languages.

For example L = {anbncn | n ≥ 0} is not
context-free.

Intuitively, once the PDA reads the a’s and then matches the
b’s, it “forgets” what the n was, so can not properly check the
c’s.

There is an analogue of the Pumping Lemma we
studied earlier for regular languages.

It states that there is a pumping length, such that all longer
strings can be pumped.
For regular languages, we related the pumping length to the
number of states of the DFA.
For CFLs, we relate the pumping length to the properties of
the grammar!.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19 / 29

NON-CONTEXT-FREE LANGUAGES

There are non-context-free languages.
For example L = {anbncn | n ≥ 0} is not
context-free.

Intuitively, once the PDA reads the a’s and then matches the
b’s, it “forgets” what the n was, so can not properly check the
c’s.

There is an analogue of the Pumping Lemma we
studied earlier for regular languages.

It states that there is a pumping length, such that all longer
strings can be pumped.
For regular languages, we related the pumping length to the
number of states of the DFA.
For CFLs, we relate the pumping length to the properties of
the grammar!.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19 / 29

NON-CONTEXT-FREE LANGUAGES

There are non-context-free languages.
For example L = {anbncn | n ≥ 0} is not
context-free.

Intuitively, once the PDA reads the a’s and then matches the
b’s, it “forgets” what the n was, so can not properly check the
c’s.

There is an analogue of the Pumping Lemma we
studied earlier for regular languages.

It states that there is a pumping length, such that all longer
strings can be pumped.
For regular languages, we related the pumping length to the
number of states of the DFA.
For CFLs, we relate the pumping length to the properties of
the grammar!.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19 / 29

NON-CONTEXT-FREE LANGUAGES

There are non-context-free languages.
For example L = {anbncn | n ≥ 0} is not
context-free.

Intuitively, once the PDA reads the a’s and then matches the
b’s, it “forgets” what the n was, so can not properly check the
c’s.

There is an analogue of the Pumping Lemma we
studied earlier for regular languages.

It states that there is a pumping length, such that all longer
strings can be pumped.
For regular languages, we related the pumping length to the
number of states of the DFA.
For CFLs, we relate the pumping length to the properties of
the grammar!.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19 / 29

NON-CONTEXT-FREE LANGUAGES

There are non-context-free languages.
For example L = {anbncn | n ≥ 0} is not
context-free.

Intuitively, once the PDA reads the a’s and then matches the
b’s, it “forgets” what the n was, so can not properly check the
c’s.

There is an analogue of the Pumping Lemma we
studied earlier for regular languages.

It states that there is a pumping length, such that all longer
strings can be pumped.

For regular languages, we related the pumping length to the
number of states of the DFA.
For CFLs, we relate the pumping length to the properties of
the grammar!.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19 / 29

NON-CONTEXT-FREE LANGUAGES

There are non-context-free languages.
For example L = {anbncn | n ≥ 0} is not
context-free.

Intuitively, once the PDA reads the a’s and then matches the
b’s, it “forgets” what the n was, so can not properly check the
c’s.

There is an analogue of the Pumping Lemma we
studied earlier for regular languages.

It states that there is a pumping length, such that all longer
strings can be pumped.
For regular languages, we related the pumping length to the
number of states of the DFA.

For CFLs, we relate the pumping length to the properties of
the grammar!.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19 / 29

NON-CONTEXT-FREE LANGUAGES

There are non-context-free languages.
For example L = {anbncn | n ≥ 0} is not
context-free.

Intuitively, once the PDA reads the a’s and then matches the
b’s, it “forgets” what the n was, so can not properly check the
c’s.

There is an analogue of the Pumping Lemma we
studied earlier for regular languages.

It states that there is a pumping length, such that all longer
strings can be pumped.
For regular languages, we related the pumping length to the
number of states of the DFA.
For CFLs, we relate the pumping length to the properties of
the grammar!.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 19 / 29

PUMPING LEMMA FOR CFLS - INTUITION

Let s be a “sufficiently long” string in L.

s = uvxyz should have a parse tree of the
following sort:

Some variable R must repeat somewhere on the
path from S to some leaf. (Why?)

SLIDES FOR 15-453 LECTURE 10 FALL 2015 20 / 29

PUMPING LEMMA FOR CFLS - INTUITION

Let s be a “sufficiently long” string in L.
s = uvxyz should have a parse tree of the
following sort:

Some variable R must repeat somewhere on the
path from S to some leaf. (Why?)

SLIDES FOR 15-453 LECTURE 10 FALL 2015 20 / 29

PUMPING LEMMA FOR CFLS - INTUITION

Let s be a “sufficiently long” string in L.
s = uvxyz should have a parse tree of the
following sort:

Some variable R must repeat somewhere on the
path from S to some leaf. (Why?)

SLIDES FOR 15-453 LECTURE 10 FALL 2015 20 / 29

PUMPING LEMMA FOR CFLS - INTUITION

Then the string s′ = uvvxyyz, should also be in
the language.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 21 / 29

PUMPING LEMMA FOR CFLS - INTUITION

Then the string s′ = uvvxyyz, should also be in
the language.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 21 / 29

PUMPING LEMMA FOR CFLS - INTUITION

Also the string s′′ = uxz, should also be in the
language.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 22 / 29

PUMPING LEMMA FOR CFLS - INTUITION

Also the string s′′ = uxz, should also be in the
language.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 22 / 29

PUMPING LEMMA FOR CFLS

LEMMA

If L is a CFL, then
there is a number p (the pumping length) such
that
if s is any string in L of length at least p,
then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:

1 |vy | > 0
2 |vxy | ≤ p
3 for each i ≥ 0, uv ixy iz ∈ L

Either v or y is not ε otherwise, it would be trivially
true.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 23 / 29

PUMPING LEMMA FOR CFLS

LEMMA

If L is a CFL, then
there is a number p (the pumping length) such
that
if s is any string in L of length at least p,
then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:

1 |vy | > 0

2 |vxy | ≤ p
3 for each i ≥ 0, uv ixy iz ∈ L

Either v or y is not ε otherwise, it would be trivially
true.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 23 / 29

PUMPING LEMMA FOR CFLS

LEMMA

If L is a CFL, then
there is a number p (the pumping length) such
that
if s is any string in L of length at least p,
then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:

1 |vy | > 0
2 |vxy | ≤ p

3 for each i ≥ 0, uv ixy iz ∈ L

Either v or y is not ε otherwise, it would be trivially
true.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 23 / 29

PUMPING LEMMA FOR CFLS

LEMMA

If L is a CFL, then
there is a number p (the pumping length) such
that
if s is any string in L of length at least p,
then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:

1 |vy | > 0
2 |vxy | ≤ p
3 for each i ≥ 0, uv ixy iz ∈ L

Either v or y is not ε otherwise, it would be trivially
true.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 23 / 29

PUMPING LEMMA FOR CFLS

LEMMA

If L is a CFL, then
there is a number p (the pumping length) such
that
if s is any string in L of length at least p,
then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:

1 |vy | > 0
2 |vxy | ≤ p
3 for each i ≥ 0, uv ixy iz ∈ L

Either v or y is not ε otherwise, it would be trivially
true.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 23 / 29

PROOF – THE PUMPING LENGTH

Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.

Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.

In any parse tree, a node can have at most b
children.

At most bh leaves are within h steps of the start variable.

If the parse tree has height h, the length of the
string generated is at most bh.
Conversely, if the string is at least bh + 1 long,
each of its parse trees must be at least h + 1 high.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 24 / 29

PROOF – THE PUMPING LENGTH

Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.

Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.

In any parse tree, a node can have at most b
children.

At most bh leaves are within h steps of the start variable.

If the parse tree has height h, the length of the
string generated is at most bh.
Conversely, if the string is at least bh + 1 long,
each of its parse trees must be at least h + 1 high.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 24 / 29

PROOF – THE PUMPING LENGTH

Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.

Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.

In any parse tree, a node can have at most b
children.

At most bh leaves are within h steps of the start variable.

If the parse tree has height h, the length of the
string generated is at most bh.
Conversely, if the string is at least bh + 1 long,
each of its parse trees must be at least h + 1 high.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 24 / 29

PROOF – THE PUMPING LENGTH

Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.

Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.

In any parse tree, a node can have at most b
children.

At most bh leaves are within h steps of the start variable.

If the parse tree has height h, the length of the
string generated is at most bh.
Conversely, if the string is at least bh + 1 long,
each of its parse trees must be at least h + 1 high.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 24 / 29

PROOF – THE PUMPING LENGTH

Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.

Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.

In any parse tree, a node can have at most b
children.

At most bh leaves are within h steps of the start variable.

If the parse tree has height h, the length of the
string generated is at most bh.

Conversely, if the string is at least bh + 1 long,
each of its parse trees must be at least h + 1 high.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 24 / 29

PROOF – THE PUMPING LENGTH

Let G be the grammar for L. Let b be the
maximum number of symbols of any rule in G.

Assume b is at least 2, that is every grammar has some rule
with at least 2 symbols on the RHS.

In any parse tree, a node can have at most b
children.

At most bh leaves are within h steps of the start variable.

If the parse tree has height h, the length of the
string generated is at most bh.
Conversely, if the string is at least bh + 1 long,
each of its parse trees must be at least h + 1 high.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 24 / 29

PROOF – THE PUMPING LENGTH

SLIDES FOR 15-453 LECTURE 10 FALL 2015 25 / 29

PROOF - THE PUMPING LENGTH

Let |V | be the number of variables in G.

We set the pumping length p = b|V |+1.
If s is a string in L and |s| ≥ p, its parse tree must
be at least |V |+ 1 high.

b|V |+1 ≥ b|V | + 1

SLIDES FOR 15-453 LECTURE 10 FALL 2015 26 / 29

PROOF - THE PUMPING LENGTH

Let |V | be the number of variables in G.
We set the pumping length p = b|V |+1.

If s is a string in L and |s| ≥ p, its parse tree must
be at least |V |+ 1 high.

b|V |+1 ≥ b|V | + 1

SLIDES FOR 15-453 LECTURE 10 FALL 2015 26 / 29

PROOF - THE PUMPING LENGTH

Let |V | be the number of variables in G.
We set the pumping length p = b|V |+1.
If s is a string in L and |s| ≥ p, its parse tree must
be at least |V |+ 1 high.

b|V |+1 ≥ b|V | + 1

SLIDES FOR 15-453 LECTURE 10 FALL 2015 26 / 29

PROOF - THE PUMPING LENGTH

Let |V | be the number of variables in G.
We set the pumping length p = b|V |+1.
If s is a string in L and |s| ≥ p, its parse tree must
be at least |V |+ 1 high.

b|V |+1 ≥ b|V | + 1

SLIDES FOR 15-453 LECTURE 10 FALL 2015 26 / 29

PROOF - HOW TO PUMP A STRING

Let τ be the parse tree of s that has the smallest
number of nodes. τ must be at least |V |+ 1 high.

This means some path from the root to some leaf
has length at least |V |+ 1.
So the path has at least |V |+ 2 nodes: 1 terminal
and at least |V |+ 1 variables.
Some variable R must appear more than once on
that path (Pigeons!)

Choose R as the variable that repeats among the lowest
|V |+ 1 variables on this path.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 27 / 29

PROOF - HOW TO PUMP A STRING

Let τ be the parse tree of s that has the smallest
number of nodes. τ must be at least |V |+ 1 high.
This means some path from the root to some leaf
has length at least |V |+ 1.

So the path has at least |V |+ 2 nodes: 1 terminal
and at least |V |+ 1 variables.
Some variable R must appear more than once on
that path (Pigeons!)

Choose R as the variable that repeats among the lowest
|V |+ 1 variables on this path.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 27 / 29

PROOF - HOW TO PUMP A STRING

Let τ be the parse tree of s that has the smallest
number of nodes. τ must be at least |V |+ 1 high.
This means some path from the root to some leaf
has length at least |V |+ 1.
So the path has at least |V |+ 2 nodes: 1 terminal
and at least |V |+ 1 variables.

Some variable R must appear more than once on
that path (Pigeons!)

Choose R as the variable that repeats among the lowest
|V |+ 1 variables on this path.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 27 / 29

PROOF - HOW TO PUMP A STRING

Let τ be the parse tree of s that has the smallest
number of nodes. τ must be at least |V |+ 1 high.
This means some path from the root to some leaf
has length at least |V |+ 1.
So the path has at least |V |+ 2 nodes: 1 terminal
and at least |V |+ 1 variables.
Some variable R must appear more than once on
that path (Pigeons!)

Choose R as the variable that repeats among the lowest
|V |+ 1 variables on this path.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 27 / 29

PROOF - HOW TO PUMP A STRING

Let τ be the parse tree of s that has the smallest
number of nodes. τ must be at least |V |+ 1 high.
This means some path from the root to some leaf
has length at least |V |+ 1.
So the path has at least |V |+ 2 nodes: 1 terminal
and at least |V |+ 1 variables.
Some variable R must appear more than once on
that path (Pigeons!)

Choose R as the variable that repeats among the lowest
|V |+ 1 variables on this path.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 27 / 29

PROOF - HOW TO CHOOSE A STRING

We divide s
into uvxyz
according to
this figure.

Upper R generates
vxy while the lower R
generates x .
Since the same
variable generates
both subtrees, they are
interchangeable!
So all strings of the
form uv ixy iz should
also be in the
language for i ≥ 0.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 28 / 29

PROOF - HOW TO CHOOSE A STRING

We divide s
into uvxyz
according to
this figure.

Upper R generates
vxy while the lower R
generates x .

Since the same
variable generates
both subtrees, they are
interchangeable!
So all strings of the
form uv ixy iz should
also be in the
language for i ≥ 0.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 28 / 29

PROOF - HOW TO CHOOSE A STRING

We divide s
into uvxyz
according to
this figure.

Upper R generates
vxy while the lower R
generates x .
Since the same
variable generates
both subtrees, they are
interchangeable!

So all strings of the
form uv ixy iz should
also be in the
language for i ≥ 0.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 28 / 29

PROOF - HOW TO CHOOSE A STRING

We divide s
into uvxyz
according to
this figure.

Upper R generates
vxy while the lower R
generates x .
Since the same
variable generates
both subtrees, they are
interchangeable!
So all strings of the
form uv ixy iz should
also be in the
language for i ≥ 0.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 28 / 29

PROOF – HOW TO CHOOSE A STRING

We must make sure both v and y are not both ε.

If they were, then τ would not be smallest tree for
s.

We could get a smaller tree for s by substituting the smaller
tree!

R ∗⇒ vxy .
We chose R so that both its occurrences were
within the last |V |+ 1 variables on the path.
We chose the longest path in the tree, so the
subtree for R ∗⇒ vxy is at most |V |+ 1 high.
A tree of this height can generate a string of
length at most b|V |+1 = p.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 29 / 29

PROOF – HOW TO CHOOSE A STRING

We must make sure both v and y are not both ε.
If they were, then τ would not be smallest tree for
s.

We could get a smaller tree for s by substituting the smaller
tree!

R ∗⇒ vxy .
We chose R so that both its occurrences were
within the last |V |+ 1 variables on the path.
We chose the longest path in the tree, so the
subtree for R ∗⇒ vxy is at most |V |+ 1 high.
A tree of this height can generate a string of
length at most b|V |+1 = p.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 29 / 29

PROOF – HOW TO CHOOSE A STRING

We must make sure both v and y are not both ε.
If they were, then τ would not be smallest tree for
s.

We could get a smaller tree for s by substituting the smaller
tree!

R ∗⇒ vxy .
We chose R so that both its occurrences were
within the last |V |+ 1 variables on the path.
We chose the longest path in the tree, so the
subtree for R ∗⇒ vxy is at most |V |+ 1 high.
A tree of this height can generate a string of
length at most b|V |+1 = p.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 29 / 29

PROOF – HOW TO CHOOSE A STRING

We must make sure both v and y are not both ε.
If they were, then τ would not be smallest tree for
s.

We could get a smaller tree for s by substituting the smaller
tree!

R ∗⇒ vxy .

We chose R so that both its occurrences were
within the last |V |+ 1 variables on the path.
We chose the longest path in the tree, so the
subtree for R ∗⇒ vxy is at most |V |+ 1 high.
A tree of this height can generate a string of
length at most b|V |+1 = p.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 29 / 29

PROOF – HOW TO CHOOSE A STRING

We must make sure both v and y are not both ε.
If they were, then τ would not be smallest tree for
s.

We could get a smaller tree for s by substituting the smaller
tree!

R ∗⇒ vxy .
We chose R so that both its occurrences were
within the last |V |+ 1 variables on the path.

We chose the longest path in the tree, so the
subtree for R ∗⇒ vxy is at most |V |+ 1 high.
A tree of this height can generate a string of
length at most b|V |+1 = p.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 29 / 29

PROOF – HOW TO CHOOSE A STRING

We must make sure both v and y are not both ε.
If they were, then τ would not be smallest tree for
s.

We could get a smaller tree for s by substituting the smaller
tree!

R ∗⇒ vxy .
We chose R so that both its occurrences were
within the last |V |+ 1 variables on the path.
We chose the longest path in the tree, so the
subtree for R ∗⇒ vxy is at most |V |+ 1 high.

A tree of this height can generate a string of
length at most b|V |+1 = p.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 29 / 29

PROOF – HOW TO CHOOSE A STRING

We must make sure both v and y are not both ε.
If they were, then τ would not be smallest tree for
s.

We could get a smaller tree for s by substituting the smaller
tree!

R ∗⇒ vxy .
We chose R so that both its occurrences were
within the last |V |+ 1 variables on the path.
We chose the longest path in the tree, so the
subtree for R ∗⇒ vxy is at most |V |+ 1 high.
A tree of this height can generate a string of
length at most b|V |+1 = p.

SLIDES FOR 15-453 LECTURE 10 FALL 2015 29 / 29

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION
PUMPING LEMMA

PROPERTIES OF CFLS

SLIDES FOR 15-453 LECTURE 11 FALL 2015 1 / 16

SUMMARY

Context-free Languages and Context-free Grammars
Pushdown Automata
PDAs accept all languages CFGs generate.
CFGs generate all languages that PDAs accept.
There are languages which are NOT context free.

SLIDES FOR 15-453 LECTURE 11 FALL 2015 2 / 16

PUMPING LEMMA FOR CFLS

LEMMA

If L is a CFL, then there is a number p (the pumping
length) such that if s is any string in L of length at
least p, then s can be divided into 5 pieces s = uvxyz
satisfying the conditions:

1 |vy | > 0
2 |vxy | ≤ p
3 for each i ≥ 0, uv ixy iz ∈ L

The pumping length is determined by the number
of variables the grammar for L has.

SLIDES FOR 15-453 LECTURE 11 FALL 2015 3 / 16

APPLICATION OF THE PUMPING LEMMA

Just as for regular languages we employ the
pumping lemma in a two-player game setting.
If a language violates the CFL pumping lemma,
then it can not be a CFL.
Two Player Proof Strategy:

Opponent picks p, the pumping length
Given p, we pick s in L such that |s| ≥ p. We are free to
choose s as we please, as long as those conditions are
satisfied.
Opponent picks s = uvxyz - the decomposition subject to
|vxy | ≤ p and |vy | ≥ 1.
We try to pick an i such that uv ixy iz 6∈ L
If for all possible decompositions the opponent can pick, we
can find an i , then L is not context-free.

SLIDES FOR 15-453 LECTURE 11 FALL 2015 4 / 16

USING PUMPING LEMMA – EXAMPLE-1

Consider the language L = {anbncn | n ≥ 0}
Opponent picks p.
We pick s = apbpcp. Clearly |s| ≥ p.
Opponent may pick the string partitioning in a
number of ways.
Let’s look at each of these possibilities:

SLIDES FOR 15-453 LECTURE 11 FALL 2015 5 / 16

USING PUMPING LEMMA–EXAMPLE 1

Cases 1,2 and 3: vxy contains symbols of only
one kind

1 Only a’s: a · · · a︸ ︷︷ ︸
u

a · · · a︸ ︷︷ ︸
vxy

a · · · ab · · · bc · · · c︸ ︷︷ ︸
z

2 Only b’s: a · · · ab︸ ︷︷ ︸
u

b · · · b︸ ︷︷ ︸
vxy

b · · · bc · · · c︸ ︷︷ ︸
z

3 Only c’s: a · · · ab · · · bc︸ ︷︷ ︸
u

c · · · c︸ ︷︷ ︸
vxy

c · · · c︸ ︷︷ ︸
z

Pumping v and y will introduce more symbols of
one type into the string.
The resulting strings will not be in the language.

SLIDES FOR 15-453 LECTURE 11 FALL 2015 6 / 16

USING PUMPING LEMMA–EXAMPLE 1

Cases 4 and 5: vxy contains two symbols –
crosses symbol boundaries.

1 Only a’s and b’s: a · · · a︸ ︷︷ ︸
u

a · · · ab · · · b︸ ︷︷ ︸
vxy

b · · · bc · · · c︸ ︷︷ ︸
z

2 Only b’s and cs: a · · · ab · · · b︸ ︷︷ ︸
u

b · · · c︸ ︷︷ ︸
vxy

c · · · c︸ ︷︷ ︸
z

Note that vxy has length at most p so can not
have 3 different symbols.
Pumping v and y will both upset the symbol
counts and the symbol patterns.
The resulting strings will not be in the language.

SLIDES FOR 15-453 LECTURE 11 FALL 2015 7 / 16

USING PUMPING LEMMA–EXAMPLE 2

Consider the language L = {an | n is prime}
Opponent picks (prime) p.
We pick s = ap. Clearly |s| ≥ p.
Opponent may pick any partitioning s = uvxyz.

Let m = |uxz| for the partitioning selected, that is, the length
of everything else but v and y .
Any pumped string uv ixy iz will have length m + i(p −m).
We choose i = p + 1.
The pumped string has length m + (p + 1)(p −m). But:

m + (p + 1)(p −m) = m + p2 − pm + p −m
= p2 + p − pm
= p(p −m + 1)

which is not prime since both p and p −m + 1 are greater
than 1. (Note 0 ≤ m ≤ p − 1)

SLIDES FOR 15-453 LECTURE 11 FALL 2015 8 / 16

CLOSURE PROPERTIES OF CONTEXT-FREE

LANGUAGES

Context-free languages are closed under
Union
Concatenation
Star Closure
Intersection with a regular language

We will provide very informal arguments for these.

SLIDES FOR 15-453 LECTURE 11 FALL 2015 9 / 16

CLOSURE PROPERTIES OF CFLS-UNION

Let G1 and G2 be the grammars with start
variables S1 and S2, variables V1 and V2, and
rules R1 and R2.
Rename the variables in V2 if they are also used
in V1
The grammar G for L = L(G1) ∪ L(G2) has

V = V1 ∪ V2 ∪ {S} (S is the new start symbol S 6∈ V1 and
S 6∈ V2
R = R1 ∪ R2 ∪ {S → S1 | S2}

SLIDES FOR 15-453 LECTURE 11 FALL 2015 10 / 16

CLOSURE PROPERTIES OF CFLS –
CONCATENATION

Let G1 and G2 be the grammars with start
variables S1 and S2, variables V1 and V2, and
rules R1 and R2.
Rename the variables in V2 if they are also used
in V1
The grammar G for
L = {wv | w ∈ L(G1), v ∈ L(G2)} has

V = V1 ∪ V2 ∪ {S} (S is the new start symbol S 6∈ V1 and
S 6∈ V2
R = R1 ∪ R2 ∪ {S → S1S2}

SLIDES FOR 15-453 LECTURE 11 FALL 2015 11 / 16

CLOSURE PROPERTIES OF CFLS – STAR

CLOSURE

Let G1 be the grammar with start variable S1,
variables V1, rules R1.
The grammar G for L = {w | w ∈ L(G1)

∗} has
V = V1 ∪ {S} (S is the new start symbol S 6∈ V1).
R = R1 ∪ {S → S1S | ε}

SLIDES FOR 15-453 LECTURE 11 FALL 2015 12 / 16

CLOSURE PROPERTIES OF CFLS –
INTERSECTION WITH A REGULAR LANGUAGE

Let P be the PDA for the CFL Lcfl and M be the
DFA for the regular language Lregular

We have a procedure for building the
cross-product PDA from P and M.

Very similar to the cross-product construction for DFAs.
Details are not terribly interesting. (Perhaps later.)

SLIDES FOR 15-453 LECTURE 11 FALL 2015 13 / 16

CLOSURE PROPERTIES OF CFLS

CFLs are NOT closed under intersection.
L1 = {anbncm | n,m ≥ 0} is a CFL.
L2 = {ambncn | n,m ≥ 0} is a CFL.
L = L1 ∩ L2 = {anbncn | n ≥ 0} is NOT a CFL.

CFLs are not closed under complementation.
L = {ww | w ∈ Σ∗} is NOT a CFL (Prove it using pumping
lemma!)
L is actually a CFL and L = L1 ∪ L2

L has all strings of odd length (L1)
L has all strings where at least one pair of symbols n/2 apart
are different (n length of the string!) (L2)

S → aA | bA | a | b
A→ aS | bS
generates L1

S → AB | BA
A→ ZAZ | a
B → ZBZ | b
Z → a | b
generates L2

SLIDES FOR 15-453 LECTURE 11 FALL 2015 14 / 16

CFL CLOSURE PROPERTIES IN ACTION

Is L = {anbn | n ≥ 0,n 6= 100} a CFL?
L = {anbn | n ≥ 0}︸ ︷︷ ︸

CFL

∩ (L(a∗b∗)− {a100b100})︸ ︷︷ ︸
RL

The intersection of a CFL and a RL is a CFL!

Is L = {w | w ∈ {a,b, c}∗ and na(w) = nb(w) =
nc(w)} a CFL?

L︸︷︷︸
CFL?

∩L(a∗b∗c∗)︸ ︷︷ ︸
RL

= {anbncn | n ≥ 0}︸ ︷︷ ︸
Not CFL

Thus L is NOT a CFL.

SLIDES FOR 15-453 LECTURE 11 FALL 2015 15 / 16

MOVING BEYOND THE MILKY WAY
WHAT OTHER KINDS OF LANGUAGES ARE OUT THERE?

SLIDES FOR 15-453 LECTURE 11 FALL 2015 16 / 16

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

TURING MACHINES

SLIDES FOR 15-453 LECTURE 12 FALL 2015 1 / 13

TURING MACHINES-SYNOPSIS

We now turn to a much more powerful model of
computation called Turing Machines (TM).
TMs are similar to a finite automaton, but a TM has an
unlimited and unrestricted memory.
A TM is a much more accurate model of a general purpose
computer.
Bad News: Even a TM can not solve certain problems.
Such problems are beyond theoretical limits of computation.

SLIDES FOR 15-453 LECTURE 12 FALL 2015 2 / 13

TURING MACHINES

SLIDES FOR 15-453 LECTURE 12 FALL 2015 3 / 13

TURING MACHINES VS FINITE AUTOMATA

A TM can both read from the tape and write on the tape.
The read-write head can move both to the left (L) and to the
right (R).
The tape is infinite (to the right).
The states for rejecting and accepting take effect
immediately (not at the end of input.)

SLIDES FOR 15-453 LECTURE 12 FALL 2015 4 / 13

HOW DOES A TM COMPUTE?

Consider B = {w#w | w ∈ {0,1}∗}.
The TM starts with the input on the tape.
0 1 1 0 0 0 # 0 1 1 0 0 0 t t tt
X 1 1 0 0 0 # 0 1 1 0 0 0 t t tt
→→ · · ·

X 1 1 0 0 0 # X 1 1 0 0 0 t t tt
←← · · ·

X 1 1 0 0 0 # X 1 1 0 0 0 t t tt
X X 1 0 0 0 # X 1 1 0 0 0 t t tt
→→ · · ·

X X X X X X # X X X X X X t t tt ACCEPT

SLIDES FOR 15-453 LECTURE 12 FALL 2015 5 / 13

FORMAL DEFINITION OF A TURING MACHINE

A TM is 7-tuple M = (Q,Σ, Γ, δ,q0,qaccept ,qreject) where Q,Σ, Γ
are all finite sets.

1 Q is the set of states,
2 Σ is the input alphabet (blank symbol t 6∈ Σ),
3 Γ is the tape alphabet (t ∈ Γ and Σ ⊂ Γ),
4 δ : Q × Γ→ Q × Γ× {L,R} is the state transition function,
5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state,
7 qreject ∈ Q is the reject state and qreject 6= qaccept

SLIDES FOR 15-453 LECTURE 12 FALL 2015 6 / 13

HOW DOES A TM COMPUTE?

M receives its input w = w1w2 · · ·wn on the leftmost n squares on
the tape. The rest of the tape is blank.

The head starts on the leftmost square on the tape.

The first blank symbol on the tape marks the end of the input.

The computation proceeds according to δ.

The head of M never moves left of the beginning of the tape
(stays there!)

The computation proceeds until M enters either qaccept or qreject ,
when it halts.

M may go on forever, never halting!

SLIDES FOR 15-453 LECTURE 12 FALL 2015 7 / 13

CONFIGURATION OF A TM

As a TM proceeds with its computation, the state changes, the
tape changes, the head moves.

We capture each step of a TM computation, by the notion of a
configuration.

1 0 1 1 0 1 1 1 1 t · · ·1 0 1 1 0 1 1 1 1 t · · ·1 0 1 1 0 1 1 1 1 t · · ·1 0 1 1 0 1 1 1 1 t · · ·1 0 1 1 0 1 1 1 1 t · · ·1 0 1 1 0 1 1 1 1 t · · ·1 0 1 1 0 1 1 1 1 t · · ·1 0 1 1 0 1 1 1 1 t · · ·1 0 1 1 0 1 1 1 1 t · · ·1 0 1 1 0 1 1 1 1 t · · ·1 0 1 1 0 1 1 1 1 t · · ·

q7

The machine is in state q7, u = 1011 is to the left of the head,
v = 01111 is under and to the right of the head. Tape has
uv = 101101111 on it.

We represent the configuration by 1011q701111.
SLIDES FOR 15-453 LECTURE 12 FALL 2015 8 / 13

CONFIGURATIONS

Configuration C1 yields (⇒)configuration C2 if TM can
legally go from C1 to C2.
ua qi bv ⇒ u qj acv if δ(qi ,b) = (qj , c,L)

ua qi bv ⇒ uac qj v if δ(qi ,b) = (qj , c,R)

If the head is at the left end, qibv ⇒ qjcv if the transition is
left-moving.
If the head is at the left end, qibv ⇒ cqjv if the transition is
right-moving.
Think of a configuration as the contents of memory and a
transition as an instruction.

SLIDES FOR 15-453 LECTURE 12 FALL 2015 9 / 13

CONFIGURATIONS

The start configuration is q0w .
uqacceptv is an accepting configuration,
uqrejectv is a rejecting configuration.
Accepting and rejecting configurations are halting
configurations.

SLIDES FOR 15-453 LECTURE 12 FALL 2015 10 / 13

ACCEPTING COMPUTATION

A TM M accepts input w if a sequence of configurations
C1,C2, · · · ,Ck exists, where

1 C1 is the start configuration of M in input w ,
2 Ci ⇒ Ci+1, and
3 Ck is an accepting configuration.

L(M) is the set of strings w recognized by M.
A language L is Turing-recognizable if some TM recognizes
it (also called Recursively enumerable)
A TM is called a decider if it halts on all inputs.
A language is Turing-decidable if some TM decides it (also
called Recursive)
Every decidable language is Turing recognizable!

SLIDES FOR 15-453 LECTURE 12 FALL 2015 11 / 13

EXAMPLE TM-1

q1 start

q2 q8 q3

q4 qa q5

q6

q7

0, 1→ R 0, 1→ R

X → R X → R

0, 1,X → L

0, 1→ L

X → R

0→ X ,R 1→ X ,R

#→ R #→ R

#→ R

t → R

0→ X , L 1→ X , L

#→ L

X → R

SLIDES FOR 15-453 LECTURE 12 FALL 2015 12 / 13

EXAMPLE TM-1

Let us see how this TM operates on input 001101#001101

SLIDES FOR 15-453 LECTURE 12 FALL 2015 13 / 13

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

TURING MACHINES

SLIDES FOR 15-453 LECTURE 13 FALL 2015 1 / 32

TURING MACHINES-SYNOPSIS

The most general model of computation
Computations of a TM are described by a sequence of
configurations.

Accepting Configuration
Rejecting Configuration

Turing-recognizable languages
TM halts in an accepting configuration if w is in the
language.
TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.

Turing-decidable languages
TM halts in an accepting configuration if w is in the
language.
TM halts in a rejecting configuration if w is not in the
language.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 2 / 32

EXAMPLE TM-2

A Turing machine that decides A = {02n | n ≥ 0}
M = “On Input string w

1 Sweep left-to-right across the tape, crossing off every other
0.

2 If in 1) that tape has one 0 left, accept (Why?)
3 If in 1) tape has more than one 0, and the number of 0’s is

odd, reject. (Why?)
4 Return the head to the left end of the tape.
5 Go to 1)”

Basically every sweep cuts the number of 0’s by two.
At the end only 1 should remain and if so the original
number of zeroes was a power of 2.’

SLIDES FOR 15-453 LECTURE 13 FALL 2015 3 / 32

EXAMPLE TM-2

Configurations for input 0000.
1 q10000t
2 tq2000t
3 txq300t
4 tx0q40t
5 tx0xq3t

6 tx0q5xt
7 txq50xt
8 tq5x0xt
9 q5 t x0xt

10 tq2x0xt

11 txq20xt
12 txxq3xt
13 txxxq3t
14 txxq5xt
15 txq5xxt

16 tq5xxxt
17 q5 t xxxt
18 tq2xxxt
19 txq2xxt
20 txxq2xt
21 txxxq2t
22 txxx t qaccept

SLIDES FOR 15-453 LECTURE 13 FALL 2015 4 / 32

EXAMPLE TM-3

A TM to add 1 to a binary number (with a 0 in front)
M = “On input w

1 Go to the right end of the input string
2 Move left as long as a 1 is seen, changing it to a 0.
3 Change the 0 to a 1, and halt.”

For example, to add 1 to w = 0110011
Change all the ending 1’s to 0’s⇒ 0110000
Change the next 0 to a 1⇒ 0110100

Now let’s design a TM for this problem.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 5 / 32

VARIANTS OF TMS

We defined the basic Turing Machine
Single tape (infinite in one direction)
Deterministic state transitions

We could have defined many other variants:
Ordinary TMs which need not move after every move.
Multiple tapes – each with its own independent head
Nondeterministic state transitions
Single tape infinite in both directions
Multiple tapes but with a single head
Multidimensional tape (move up/down/left/right)

SLIDES FOR 15-453 LECTURE 13 FALL 2015 6 / 32

EQUIVALENCE OF POWER

A computational model is robust if the class of languages it
accepts does not change under variants.

We have seen that DFA’s are robust for nondeterminism.
But not PDAs!

The robustness of Turing Machines is by far greater than
the robustness of DFAs and PDAs.
We introduce several variants on Turing machines and show
that all these variants have equal computational power.
When we prove that a TM exists with some properties, we
do not deal with questions like

How large is the TM? or
How complex is it to “program” that TM?

At this point we only seek existential proofs.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 7 / 32

TURING MACHINES WITH THE STAY OPTION

Suppose in addition moving Left or Right, we give the
option to the TM to stay (S) on the current cell, that is:

δ : Q × Γ = Q × Γ× {L,R,S}

Such a TM can easily simulate an ordinary TM: just do not
use the S option in any move.
An ordinary TM can easily simulate a TM with the stay
option.

For each transition with the S option, introduce a new state,
and two transitions

One transition moves the head right, and transits to the new
state.
The next transition moves the head back to left, and transits
to the previous state.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 8 / 32

MULTITAPE TURING MACHINES

SLIDES FOR 15-453 LECTURE 13 FALL 2015 9 / 32

MULTITAPE TURING MACHINES

A multitape Turing Machine is like an ordinary TM
There are k tapes
Each tape has its own independent read/write head.

The only fundamental difference from the ordinary TM is δ –
the state transition function.

δ : Q × Γk → Q × Γk × {L,R}k

The δ entry δ(qi ,a1, . . . ,ak) = (qj ,b1, . . . ,bk ,L,R,L, ...L)
reads as :

If the TM is in state qi and
the heads are reading symbols a1 through ak ,
Then the machine goes to state qj , and
the heads write symbols b1 through bk , and
Move in the specified directions.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 10 / 32

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

SLIDES FOR 15-453 LECTURE 13 FALL 2015 11 / 32

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

We use # as a delimiter to separate out the different tape
contents.
To keep track of the location of heads, we use additional
symbols

Each symbol in Γ has a “dotted” version.
A dotted symbol indicates that the head is on that symbol.
Between any two #’s there is only one symbol that is dotted.

Thus we have 1 real tape with k “virtual’ tapes, and
1 real read/write head with k “virtual” heads.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 12 / 32

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

Given input w = w1 · · ·wn, S puts its tape into the format
that represents all k tapes of M

#
•

w1 w2 · · ·wn#
•
t #

•
t # · · ·#

To simulate a single move of M, S starts at the leftmost #
and scans the tape to the rightmost #.

It determines the symbols under the “virtual” heads.
This is remembered in the finite state control of S. (How
many states are needed?)

S makes a second pass to update the tapes according to M.
If one of the virtual heads, moves right to a #, the rest of
tape to the right is shifted to “open up” space for that “virtual
tape”. If it moves left to a #, it just moves right again.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 13 / 32

SIMULATING A MULTITAPE TM WITH AN

ORDINARY TM

Thus from now on, whenever needed or convenient we will
use multiple tapes in our constructions.
You can assume that these can always be converted to a
single tape standard TM.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 14 / 32

NONDETERMINISTIC TURING MACHINES

We defined the state transition of the ordinary TM as

δ : Q × Γ→ Q × Γ× {L,R}

A nondeterministic TM would proceed computation with
multiple next cnfigurations. δ for a nondeterministic TM
would be

δ : Q × Γ→ P(Q × Γ× {L,R})

(P(S) is the power set of S.)

This definition is analogous to NFAs and PDAs.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 15 / 32

NONDETERMINISTIC TURING MACHINES

A computation of a Nondeterministic TM is a tree, where
each branch of the tree is looks like a computation of an
ordinary TM.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 16 / 32

NONDETERMINISTIC TURING MACHINES

If a single branch reaches the accepting state, the
Nondeterministic TM accepts, even if other branches reach
the rejecting state.
What is the power of Nondeterministic TMs?

Is there a language that a Nondeterministic TM can accept
but no deterministic TM can accept?

SLIDES FOR 15-453 LECTURE 13 FALL 2015 17 / 32

NONDETERMINISTIC TURING MACHINES

THEOREM
Every nondeterministic Turing machine has an equivalent
deterministic Turing Machine.

PROOF IDEA
Timeshare a deterministic TM to different branches of the
nondeterministic computation!
Try out all branches of the nondeterministic computation
until an accepting configuration is reached on one branch.
Otherwise the TM goes on forever.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 18 / 32

NONDETERMINISTIC TURING MACHINES

Deterministic TM D simulates the Nondeterministic TM N.
Some of branches of the N ’s computations may be infinite,
hence its computation tree has some infinite branches.
If D starts its simulation by following an infinite branch, D
may loop forever even though N ’s computation may have a
different branch on which it accepts.
This is a very similar problem to processor scheduling in
operating systems.

If you give the CPU to a (buggy) process in an infinite loop,
other processes “starve”.

In order to avoid this unwanted situation, we want D to
execute all of N ’s computations concurrently.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 19 / 32

NONDETERMINISTIC COMPUTATION

SLIDES FOR 15-453 LECTURE 13 FALL 2015 20 / 32

NONDETERMINISTIC COMPUTATION

SLIDES FOR 15-453 LECTURE 13 FALL 2015 21 / 32

NONDETERMINISTIC COMPUTATION

SLIDES FOR 15-453 LECTURE 13 FALL 2015 22 / 32

NONDETERMINISTIC COMPUTATION

SLIDES FOR 15-453 LECTURE 13 FALL 2015 23 / 32

SIMULATING NONDETERMINISTIC

COMPUTATION

SLIDES FOR 15-453 LECTURE 13 FALL 2015 24 / 32

SIMULATING NONDETERMINISTIC

COMPUTATION

During simulation, D processes the
configurations of N in a breadth-first
fashion.

Thus D needs to maintain a queue
of N ’s configurations (Remember
queues?)

D gets the next
configuration from the
head of the queue.

D creates copies of this
configuration (as many
as needed)

On each copy, D
simulates one of the
nondeterministic moves
of N.

D places the resulting
configurations to the
back of the queue.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 25 / 32

STRUCTURE OF THE SIMULATING DTM

N is simulated with 2-tape DTM, D
Note that this is different from the construction in the book!

SLIDES FOR 15-453 LECTURE 13 FALL 2015 26 / 32

HOW D SIMULATES N

Built into the finite control of D is the knowledge of what
choices of moves N has for each state and input.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 27 / 32

HOW D SIMULATES N

1 D examines the state and the input symbol of the current
configuration (right after the dotted separator)

2 If the state of the current configuration is the accept state of
N, then D accepts the input and stops simulating N.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 28 / 32

HOW D SIMULATES N

1 D copies k copies of the current configuration to the scratch
tape.

2 D then applies one nondeterministic move of N to each
copy.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 29 / 32

HOW D SIMULATES N

3 D then copies the new configurations from the scratch tape,
back to the end of tape 1 (so they go to the back of the
queue), and then clears the scratch tape.

4 D then returns to the marked current configuration, and
“erases” the mark, and “marks” the next configuration.

5 D returns to step 1), if there is a next configuration.
Otherwise rejects.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 30 / 32

HOW D SIMULATES N

Let m be the maximum number of choices N has for any of
its states.
Then, after n steps, N can reach at most
1 + m + m2 + · · ·+ mn configurations (which is at most nmn)
Thus D has to process at most this many configurations to
simulate n steps of N.
Thus the simulation can take exponentially more time than
the nondeterministic TM.
It is not known whether or not this exponential slowdown is
necessary.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 31 / 32

IMPLICATIONS

COROLLARY
A language is Turing-recognizable if and only if some
nondeterministic TM recognizes it.

COROLLARY
A language is decidable if and only of some nondeterministic
TM decides it.

SLIDES FOR 15-453 LECTURE 13 FALL 2015 32 / 32

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

TURING MACHINES

SLIDES FOR 15-453 LECTURE 14 FALL 2015 1 / 30

TURING MACHINES-SYNOPSIS

The most general model of computation
Computations of a TM are described by a sequence of
configurations.

Accepting Configuration
Rejecting Configuration

Turing-recognizable languages
TM halts in an accepting configuration if w is in the
language.
TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.

Turing-decidable languages
TM halts in an accepting configuration if w is in the
language.
TM halts in a rejecting configuration if w is not in the
language.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 2 / 30

NONDETERMINISTIC TURING MACHINES

We defined the state transition of the ordinary TM as

δ : Q × Γ→ Q × Γ× {L,R}

A nondeterministic TM would proceed computation with
multiple next cnfigurations. δ for a nondeterministic TM
would be

δ : Q × Γ→ P(Q × Γ× {L,R})

(P(S) is the power set of S.)

This definition is analogous to NFAs and PDAs.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 3 / 30

NONDETERMINISTIC TURING MACHINES

A computation of a Nondeterministic TM is a tree, where
each branch of the tree is looks like a computation of an
ordinary TM.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 4 / 30

NONDETERMINISTIC TURING MACHINES

If a single branch reaches the accepting state, the
Nondeterministic TM accepts, even if other branches reach
the rejecting state.
What is the power of Nondeterministic TMs?

Is there a language that a Nondeterministic TM can accept
but no deterministic TM can accept?

SLIDES FOR 15-453 LECTURE 14 FALL 2015 5 / 30

NONDETERMINISTIC TURING MACHINES

THEOREM
Every nondeterministic Turing machine has an equivalent
deterministic Turing Machine.

PROOF IDEA
Timeshare a deterministic TM to different branches of the
nondeterministic computation!
Try out all branches of the nondeterministic computation
until an accepting configuration is reached on one branch.
Otherwise the TM goes on forever.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 6 / 30

NONDETERMINISTIC TURING MACHINES

Deterministic TM D simulates the Nondeterministic TM N.
Some of branches of the N ’s computations may be infinite,
hence its computation tree has some infinite branches.
If D starts its simulation by following an infinite branch, D
may loop forever even though N ’s computation may have a
different branch on which it accepts.
This is a very similar problem to processor scheduling in
operating systems.

If you give the CPU to a (buggy) process in an infinite loop,
other processes “starve”.

In order to avoid this unwanted situation, we want D to
execute all of N ’s computations concurrently.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 7 / 30

NONDETERMINISTIC COMPUTATION

SLIDES FOR 15-453 LECTURE 14 FALL 2015 8 / 30

NONDETERMINISTIC COMPUTATION

SLIDES FOR 15-453 LECTURE 14 FALL 2015 9 / 30

NONDETERMINISTIC COMPUTATION

SLIDES FOR 15-453 LECTURE 14 FALL 2015 10 / 30

NONDETERMINISTIC COMPUTATION

SLIDES FOR 15-453 LECTURE 14 FALL 2015 11 / 30

SIMULATING NONDETERMINISTIC

COMPUTATION

SLIDES FOR 15-453 LECTURE 14 FALL 2015 12 / 30

SIMULATING NONDETERMINISTIC

COMPUTATION

During simulation, D processes the
configurations of N in a breadth-first
fashion.

Thus D needs to maintain a queue
of N ’s configurations (Remember
queues?)

D gets the next
configuration from the
head of the queue.

D creates copies of this
configuration (as many
as needed)

On each copy, D
simulates one of the
nondeterministic moves
of N.

D places the resulting
configurations to the
back of the queue.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 13 / 30

STRUCTURE OF THE SIMULATING DTM

N is simulated with 2-tape DTM, D
Note that this is different from the construction in the book!

SLIDES FOR 15-453 LECTURE 14 FALL 2015 14 / 30

HOW D SIMULATES N

Built into the finite control of D is the knowledge of what
choices of moves N has for each state and input.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 15 / 30

HOW D SIMULATES N

1 D examines the state and the input symbol of the current
configuration (right after the dotted separator)

2 If the state of the current configuration is the accept state of
N, then D accepts the input and stops simulating N.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 16 / 30

HOW D SIMULATES N

1 D copies k copies of the current configuration to the scratch
tape.

2 D then applies one nondeterministic move of N to each
copy.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 17 / 30

HOW D SIMULATES N

3 D then copies the new configurations from the scratch tape,
back to the end of tape 1 (so they go to the back of the
queue), and then clears the scratch tape.

4 D then returns to the marked current configuration, and
“erases” the mark, and “marks” the next configuration.

5 D returns to step 1), if there is a next configuration.
Otherwise rejects.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 18 / 30

HOW D SIMULATES N

Let m be the maximum number of choices N has for any of
its states.
Then, after n steps, N can reach at most
1 + m + m2 + · · ·+ mn configurations (which is at most nmn)
Thus D has to process at most this many configurations to
simulate n steps of N.
Thus the simulation can take exponentially more time than
the nondeterministic TM.
It is not known whether or not this exponential slowdown is
necessary.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 19 / 30

IMPLICATIONS

COROLLARY
A language is Turing-recognizable if and only if some
nondeterministic TM recognizes it.

COROLLARY
A language is decidable if and only of some nondeterministic
TM decides it.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 20 / 30

ENUMERATORS

Remember we noted that some books used the term
recursively enumerable for Turing-recognizable.
This term arises from a variant of a TM called an
enumerator.

TM generates strings one by one.
Everytime the TM wants to add a string to the list, it sends it
to the printer.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 21 / 30

ENUMERATORS

The enumerator E starts with a blank input tape.
If it does not halt, it may print an infinite list of strings.
The strings can be enumerated in any order; repetitions are
possible.
The language of the enumerator is the collection of strings it
eventually prints out.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 22 / 30

ENUMERATORS

THEOREM
A language is Turing recognizable if and only if some
enumerator enumerates it.

PROOF.
The If-part: If an enumerator E enumerates the language A then
a TM M recognizes A.
M = “On input w

1 Run E . Everytime E outputs a string, compare it with w .
2 If w ever appears in the output of E , accept.”

Clearly M accepts only those strings that appear on E ’s list.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 23 / 30

ENUMERATORS

THEOREM
A language is Turing recognizable if and only if some
enumerator enumerates it.

PROOF.
The Only-If-part: If a TM M recognizes a language A, we can
construct the following enumerator for A. Assume s1, s2, s3, . . . is
a list of possible strings in Σ∗.
E = “Ignore the input

1 Repeat the following for i = 1,2,3, . . .
2 Run M for i steps on each input s1, s2, s3, . . . si .
3 If any computations accept, print out corresponding sj .”

If M accepts a particular string, it will appear on the list
generated by E (in fact infinitely many times)

SLIDES FOR 15-453 LECTURE 14 FALL 2015 24 / 30

THE DEFINITION OF ALGORITHM - HISTORY

in 1900, Hilbert posed the following problem:
“Given a polynomial of several variables with
integer coefficients, does it have an integer root –
an assignment of integers to variables, that make
the polynomial evaluate to 0”

For example, 6x3yz2 + 3xy2 − x3 − 10 has a root at
x = 5, y = 3, z = 0.
Hilbert explicitly asked that an algorithm/procedure to be
“devised”. He assumed it existed; somebody needed to find
it!
70 years later it was shown that no algorithm exists.
The intuitive notion of an algorithm may be adequate for
giving algorithms for certain tasks, but was useless for
showing no algorithm exists for a particular task.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 25 / 30

THE DEFINITION OF ALGORITHM - HISTORY

In early 20th century, there was no formal definition of an
algorithm.
In 1936, Alonzo Church and Alan Turing came up with
formalisms to define algorithms. These were shown to be
equivalent, leading to the

CHURCH-TURING THESIS
Intutitive notion of algorithms ≡ Turing Machine Algorithms

SLIDES FOR 15-453 LECTURE 14 FALL 2015 26 / 30

THE DEFINITION OF AN ALGORITHM

Let D = {p | p is a polynomial with integral roots}
Hilbert’s 10th problem in TM terminology is “Is D
decidable?” (No!)
However D is Turing-recognizable!
Consider a simpler version
D1 = {p | p is a polynomial over x with integral roots}
M1 = “The input is polynomial p over x .

1 Evaluate p with x successively set to 0, 1, -1, 2, -2, 3, -3,
2 If at any point, p evaluates to 0, accept.”

D1 is actually decidable since only a finite number of x
values need to be tested (math!)
D is also recognizable: just try systematically all integer
combinations for all variables.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 27 / 30

DESCRIBING TURING MACHINES AND THEIR

INPUTS

For the rest of the course we will have a rather standard
way of describing TMs and their inputs.
The input to TMs have to be strings.
Every object O that enters a computation will be
represented with an string 〈O〉, encoding the object.
For example if G is a 4 node undirected graph with 4 edges
〈O〉 = (1,2,3,4)((1,2),(2,3),(3,1),(1,4))

Then we can define problems over graphs,e.g., as:

A = {〈G〉 | G is a connected undirected graph}

SLIDES FOR 15-453 LECTURE 14 FALL 2015 28 / 30

DESCRIBING TURING MACHINES AND THEIR

INPUTS

A TM for this problem can be given as:
M = “On input 〈G〉, the encoding of a graph G:

1 Select the first node of G and mark it.
2 Repeat 3) until no new nodes are marked
3 For each node in G, mark it, if there is edge attaching it to

an already marked node.
4 Scan all the nodes in G. If all are marked, the accept, else

reject”

SLIDES FOR 15-453 LECTURE 14 FALL 2015 29 / 30

OTHER OBJECT ENCODINGS

DFAs: Represent as a graph with 4 components, q0, F , δ as
a list of labeled edges.
TMs: Represent as a string encoding δ with blocks of 5
components, e.g., qi ,a,qj ,b,L. Assume that q0 is always
the start state and q1 is the final state.

Individual symbols can even be encoded using only two
symbols e.g. just {0,1}.

SLIDES FOR 15-453 LECTURE 14 FALL 2015 30 / 30

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

DECIDABILITY

SLIDES FOR 15-453 LECTURE 15 FALL 2014 1 / 34

TURING MACHINES-SYNOPSIS

The most general model of computation
Computations of a TM are described by a sequence of
configurations. (Accepting Configuration, Rejecting
Configuration)
Turing-recognizable languages

TM halts in an accepting configuration if w is in the
language.
TM may halt in a rejecting configuration or go on indefinitely
if w is not in the language.

Turing-decidable languages
TM halts in an accepting configuration if w is in the
language.
TM halts in a rejecting configuration if w is not in the
language.

Nondeterministic TMs are equivalent to Deterministic TMs.
SLIDES FOR 15-453 LECTURE 15 FALL 2014 2 / 34

DESCRIBING TURING MACHINES AND THEIR

INPUTS

For the rest of the course we will have a rather standard
way of describing TMs and their inputs.
The inputs to TMs have to be strings.
Every object O that enters a computation will be
represented with a string 〈O〉, encoding the object.
For example if G is a 4 node undirected graph with 4 edges
〈G〉 = (1,2,3,4)((1,2),(2,3),(3,1),(1,4))

Then we can define problems over graphs,e.g., as:

A = {〈G〉 | G is a connected undirected graph}

SLIDES FOR 15-453 LECTURE 15 FALL 2014 3 / 34

DECIDABILITY

We investigate the power of algorithms to solve problems.
We discuss certain problems that can be solved
algorithmically and others that can not be.
Why discuss unsolvability?
Knowing a problem is unsolvable is useful because

you realize it must be simplified or altered before you find an
algorithmic solution.
you gain a better perspective on computation and its
limitations.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 4 / 34

OVERVIEW

Decidable Languages
Diagonalization
Halting Problem as a undecidable problem
Turing-unrecognizable languages.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 5 / 34

DECIDABLE LANGUAGES
SOME NOTATIONAL DETAILS

〈B〉 represents the encoding of the description of an
automaton (DFA/NFA).
We need to encode Q,Σ, δ and F .

SLIDES FOR 15-453 LECTURE 15 FALL 2014 6 / 34

ENCODING FINITE AUTOMATA AS STRINGS

Here is one possible encoding scheme:
Encode Q using unary encoding:

For Q = {q0,q1, . . .qn−1}, encode qi using i + 1 0’s, i.e.,
using the string 0i+1.
We assume that q0 is always the start state.

Encode Σ using unary encoding:
For Σ = {a1,a2, . . .am}, encode ai using i 0’s, i.e., using the
string 0i .

With these conventions, all we need to encode is δ and F !
Each entry of δ, e.g., δ(qi ,aj) = qk is encoded as

0i+1︸︷︷︸
qi

1 0j︸︷︷︸
aj

1 0k+1︸︷︷︸
qk

SLIDES FOR 15-453 LECTURE 15 FALL 2014 7 / 34

ENCODING FINITE AUTOMATA AS STRINGS

The whole δ can now be encoded as

00100001000︸ ︷︷ ︸
transition1

1 000001001000000︸ ︷︷ ︸
transition2

· · · 1 000000100000010︸ ︷︷ ︸
transitiont

F can be encoded just as a list of the encodings of all the
final states. For example, if states 2 and 4 are the final
states, F could be encoded as

000︸︷︷︸
q2

1 00000︸ ︷︷ ︸
q4

The whole DFA would be encoded by

11 00100010000100000 · · · 0︸ ︷︷ ︸
encoding of the transitions

11 0000000010000000︸ ︷︷ ︸
encoding of the final states

11

SLIDES FOR 15-453 LECTURE 15 FALL 2014 8 / 34

ENCODING FINITE AUTOMATA AS STRINGS

〈B〉 representing the encoding of the description of an
automaton (DFA/NFA) would be something like

〈B〉 = 11 00100010000100000 · · · 0︸ ︷︷ ︸
encoding of the transitions

11 0000000010000000︸ ︷︷ ︸
encoding of the final states

11

In fact, the description of all DFAs could be described by a
regular expression like

11(0+10+10+1)∗1(0+1)+1

Similarly strings over Σ can be encoded with (the same
convention)

〈w〉 = 0000︸ ︷︷ ︸
a4

1 000000︸ ︷︷ ︸
a6

1 · · · 0︸︷︷︸
a1

SLIDES FOR 15-453 LECTURE 15 FALL 2014 9 / 34

ENCODING FINITE AUTOMATA AS STRINGS

〈B,w〉 represents the encoding of a machine followed by an
input string, in the manner above (with a suitable separator
between 〈B〉 and 〈w〉.
Now we can describe our problems over languages and
automata as problems over strings (representing automata
and languages).

SLIDES FOR 15-453 LECTURE 15 FALL 2014 10 / 34

DECIDABLE PROBLEMS
REGULAR LANGUAGES

Does B accept w?
Is L(B) empty?
Is L(A) = L(B)?

SLIDES FOR 15-453 LECTURE 15 FALL 2014 11 / 34

THE ACCEPTANCE PROBLEM FOR DFAS

THEOREM 4.1
ADFA = {〈B,w〉 | B is a DFA that accepts input string w} is a
decidable language.

PROOF
Simulate with a two-tape TM.

One tape has 〈B,w〉
The other tape is a work tape that keeps track of which state
of B the simulation is in.

M = “On input 〈B,w〉
1 Simulate B on input w
2 If the simulation ends in an accept state of B, accept; if it

ends in a nonaccepting state, reject.”

SLIDES FOR 15-453 LECTURE 15 FALL 2014 12 / 34

THE ACCEPTANCE PROBLEM FOR NFAS

THEOREM 4.2
ANFA = {〈B,w〉 | B is a NFA that accepts input string w} is a
decidable language.

PROOF
Convert NFA to DFA and use Theorem 4.1
N = “On input 〈B,w〉 where B is an NFA

1 Convert NFA B to an equivalent DFA C, using the
determinization procedure.

2 Run TM M in Thm 4.1 on input 〈C,w〉
3 If M accepts accept; otherwise reject.”

SLIDES FOR 15-453 LECTURE 15 FALL 2014 13 / 34

THE GENERATION PROBLEM FOR REGULAR

EXPRESSIONS

THEOREM 4.3
AREX = {〈R,w〉 | R is a regular exp. that generates string w} is
a decidable language.

PROOF
Note R is already a string!!
Convert R to an NFA and use Theorem 4.2
P = “On input 〈R,w〉 where R is a regular expression

1 Convert R to an equivalent NFA A, using the Regular
Expression-to-NFA procedure

2 Run TM N in Thm 4.2 on input 〈A,w〉
3 If N accepts accept; otherwise reject.”

SLIDES FOR 15-453 LECTURE 15 FALL 2014 14 / 34

THE EMPTINESS PROBLEM FOR DFAS

THEOREM 4.4
EDFA = {〈A〉 | A is a DFA and L(A) = Φ} is a decidable
language.

PROOF
Use the DFS algorithm to mark the states of DFA
T = “On input 〈A〉 where A is a DFA.

1 Mark the start state of A
2 Repeat until no new states get marked.

Mark any state that has a transition coming into it from any
state already marked.

3 If no final state is marked, accept; otherwise reject.”

SLIDES FOR 15-453 LECTURE 15 FALL 2014 15 / 34

THE EQUIVALENCE PROBLEM FOR DFAS

THEOREM 4.5
EQDFA = {〈A,B〉 | A and B are DFAs and L(A) = L(B)} is a
decidable language.

PROOF
Construct the machine for
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)) and check if L(C) = Φ.
T = “On input 〈A,B〉 where A and B are DFAs.

1 Construct the DFA for L(C) as described above.
2 Run TM T of Theorem 4.4 on input 〈C〉.
3 If T accepts, accept; otherwise reject.”

SLIDES FOR 15-453 LECTURE 15 FALL 2014 16 / 34

DECIDABLE PROBLEMS
CONTEXT-FREE LANGUAGES

Does grammar G generate w?
Is L(G) empty?

SLIDES FOR 15-453 LECTURE 15 FALL 2014 17 / 34

THE GENERATION PROBLEM FOR CFGS

THEOREM 4.7
ACFG = {〈G,w〉 | G is a CFG that generates string w} is a
decidable language.

PROOF
Convert G to Chomsky Normal Form and use the CYK
algorithm.
C = “On input 〈G,w〉 where G is a CFG

1 Convert G to an equivalent grammar in CNF
2 Run CYK algorithm on w of length n
3 If S ∈ Vi,n accept; otherwise reject.”

SLIDES FOR 15-453 LECTURE 15 FALL 2014 18 / 34

THE GENERATION PROBLEM FOR CFGS

ALTERNATIVE PROOF
Convert G to Chomsky Normal Form and check all
derivations up to a certain length (Why!)
S = “On input 〈G,w〉 where G is a CFG

1 Convert G to an equivalent grammar in CNF
2 List all derivations with 2n − 1 steps where n is the length of

w . If n = 0 list all derivations of length 1.
3 If any of these strings generated is equal to w , accept;

otherwise reject.”

This works because every derivation using a CFG in CNF either
increase the length of the sentential form by 1 (using a rule like
A→ BC or leaves it the same (using a rule like A→ a)

Obviously this is not very efficient as there may be exponentially
many strings of length up to 2n − 1.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 19 / 34

THE EMPTINESS PROBLEM FOR CFGS

THEOREM 4.8
ECFG = {〈G〉 | G is a CFG and L(G) = Φ} is a decidable
language.

PROOF
Mark variables of G systematically if they can generate
terminal strings, and check if S is unmarked.
R = “On input 〈G〉 where G is a CFG.

1 Mark all terminal symbols G
2 Repeat until no new variable get marked.

Mark any variable A such that G has a rule A→ U1U2 · · ·Uk
and U1,U2, . . .Uk are already marked.

3 If start symbol is NOT marked, accept; otherwise reject.”

SLIDES FOR 15-453 LECTURE 15 FALL 2014 20 / 34

THE EQUIVALENCE PROBLEM FOR CFGS

EQCFG = {〈G,H〉 | G and H are CFGs and L(G) = L(H)}

It turns out that EQDFA is not a decidable language.
The construction for DFAs does not work because CFLs are
NOT closed under intersection and complementation.
Proof comes later.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 21 / 34

DECIDABILITY OF CFLS

THEOREM 4.9
Every context free language is decidable.

PROOF
Design a TM MG that has G built into it and use the result of
ACFG.
MG = “On input w

1 Run TM S (from Theorem 4.7) on input 〈G,w〉
2 If S accepts, accept, otherwise reject.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 22 / 34

ACCEPTANCE PROBLEM FOR TMS

THEOREM 4.11
ATM = {〈M,w〉 | M is a TM and M accepts w} is undecidable.

Note that ATM is Turing-recognizable. Thus this theorem
when proved, shows that recognizers are more powerful
than deciders.
We can encode TMs with strings just like we did for DFA’s
(How?)

SLIDES FOR 15-453 LECTURE 15 FALL 2014 23 / 34

ACCEPTANCE PROBLEM FOR TMS

The TM U recognizes ATM

U = “On input 〈M,w〉 where M is a TM and w is a string:
1 Simulate M on w
2 If M ever enters its accepts state, accept; if M ever enters its

reject state, reject.

Note that if M loops on w , then U loops on 〈M,w〉, which is
why it is NOT a decider!
U can not detect that M halts on w .
ATM is also known as the Halting Problem
U is known as the Universal Turing Machine because it can
simulate every TM (including itself!)

SLIDES FOR 15-453 LECTURE 15 FALL 2014 24 / 34

THE DIAGONALIZATION METHOD
SOME BASIC DEFINITIONS

Let A and B be any two sets (not necessarily finite) and f be
a function from A to B.
f is one-to-one if f (a) 6= f (b) whenever a 6= b.
f is onto if for every b ∈ B there is an a ∈ A such that
f (a) = b.
We say A and B are the same size if there is a one-to-one
and onto function f : A −→ B.
Such a function is called a correspondence for pairing A
and B.

Every element of A maps to a unique element of B
Each element of B has a unique element of A mapping to it.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 25 / 34

THE DIAGONALIZATION METHOD

Let N be the set of natural numbers {1,2, . . .} and let E be
the set of even numbers {2,4, . . .}.
f (n) = 2n is a correspondence between N and E .
Hence, N and E have the same size (though E ⊂ N).
A set A is countable if it is either finite or has the same size
as N .
Q = {m

n | m,n ∈ N} is countable!
Z the set of integers is countable:

f (n) =

n
2 n even

−n+1
2 n odd

SLIDES FOR 15-453 LECTURE 15 FALL 2014 26 / 34

THE DIAGONALIZATION METHOD

THEOREM
R is uncountable

PROOF.
Assume f exists and every number in R is
listed.

Assume x ∈ R is a real number such that
x differs from the j th number in the j th

decimal digit.

If x is listed at some position k , then it
differs from itself at k th position; otherwise
the premise does not hold

f does not exist

n f (n)
1 3.14159. . .
2 55.77777. . .
3 0.12345. . .
4 0.50000. . .
...

...
x = .4527 . . .
defined as
such, can not
be on this list.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 27 / 34

DIAGONALIZATION OVER LANGUAGES

COROLLARY
Some languages are not Turing-recognizable.

PROOF

For any alphabet Σ, Σ∗ is countable. Order strings in Σ∗ by length
and then alphanumerically, so Σ∗ = {s1, s2, . . . , si , . . .}

The set of all TMs is a countable language.

Each TM M corresponds to a string 〈M〉.
Generate a list of strings and remove any strings that do not
represent a TM to get a list of TMs.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 28 / 34

DIAGONALIZATION OVER LANGUAGES

PROOF (CONTINUED)
The set of infinite binary sequences, B, is uncountable. (Exactly
the same proof we gave for uncountability of R)

Let L be the set of all languages over Σ.

For each language A ∈ L there is unique infinite binary sequence
XA

The i th bit in XA is 1 if si ∈ A, 0 otherwise.

Σ∗= { ε, 0, 1, 00, 01, 10, 11, 000, 001, · · · }
A={ 0, 00, 01, 000, 001, · · · }
XA={ 0 1 0 1 1 0 0 1 1 · · · }

SLIDES FOR 15-453 LECTURE 15 FALL 2014 29 / 34

DIAGONALIZATION OVER LANGUAGES

PROOF (CONTINUED)
The function f : L −→ B is a correspondence. Thus L is
uncountable.

So, there are languages that can not be recognized by some TM.
There are not enough TMs to go around.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 30 / 34

THE HALTING PROBLEM IS UNDECIDABLE

THEOREM
ATM = {〈M,w〉 | M is a TM and M accepts w}, is undecidable.

PROOF
We assume ATM is decidable and obtain a contradiction.
Suppose H decides ATM

H(〈M,w〉) =

{
accept if M accepts w
reject if M does not accept w

SLIDES FOR 15-453 LECTURE 15 FALL 2014 31 / 34

THE HALTING PROBLEM IS UNDECIDABLE

PROOF (CONTINUED)
We now construct a new TM D
D = “On input 〈M〉, where M is a TM

1 Run H on input 〈M, 〈M〉〉.
2 If H accepts, reject, if H rejects, accept”

So
D(〈M〉) =

{
accept if M does not accept 〈M〉
reject if M accepts 〈M〉

When D runs on itself we get

D(〈D〉) =

{
accept if D does not accept 〈D〉
reject if D accepts 〈D〉

Neither D nor H can exist.
SLIDES FOR 15-453 LECTURE 15 FALL 2014 32 / 34

WHAT HAPPENED TO DIAGONALIZATION?

Consider the behaviour of all possible deciders:
〈D〉

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · · 〈Mj〉 · · ·
M1 accept reject accept reject · · · accept · · ·
M2 accept accept accept accept · · · accept · · ·
M3 reject reject reject reject · · · reject · · ·
M4 accept accept reject reject · · · accept · · ·

...
... . . .

D = Mj reject reject accept accept · · · ? · · ·
...

... . . .

D computes the opposite of the diagonal entries!

SLIDES FOR 15-453 LECTURE 15 FALL 2014 33 / 34

A TURING UNRECOGNIZABLE LANGUAGE

A language is co-Turing-recognizable if it is the complement
of a Turing-recognizable language.
A language is decidable if it is Turing-recognizable and
co-Turing-recognizable.
ATM is not Turing recognizable.

We know ATM is Turing-recognizable.
If ATM were also Turing-recognizable, ATM would have to be
decidable.
We know ATM is not decidable.
ATM must not be Turing-recognizable.

SLIDES FOR 15-453 LECTURE 15 FALL 2014 34 / 34

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

REDUCIBILITY

SLIDES FOR 15-453 LECTURE 16 FALL 2015 1 / 20

THE LANDSCAPE OF THE CHOMSKY HIERARCHY

SLIDES FOR 15-453 LECTURE 16 FALL 2015 2 / 20

REDUCIBILITY-THE FUNDAMENTAL IDEAS

A reduction is a way of converting one problem to another problem, so
that the solution to the second problem can be used to solve the first
problem.

Finding the area of a rectangle, reduces to measuring its width and height
Solving a set of linear equations, reduces to inverting a matrix.

Reducibility involves two problems A and B.
If A reduces to B, you can use a solution to B to solve A

When A is reducible to B, solving A can not be “harder” than solving B.
Two very important observations:

If A is reducible to B and B is decidable, then A is also decidable.
If you want to show a problem (A) is decidable, find a decidable problem (B), and
see if you can reduce A to B.

If A is undecidable and reducible to B, then B is undecidable.
If you want to show a problem (B) is undecidable, find an undecidable problem
(A), and see if you can reduce A to B.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 3 / 20

PROVING UNDECIDABILITY VIA REDUCTIONS

THEOREM 5.1
HALTTM = {〈M,w〉 | M is a TM and M halts on input w} is undecidable.

PROOF

Use the idea that “ If A is undecidable and reducible to B, then B is
undecidable.”
Suppose R decides HALTTM . We construct S to decide ATM .
S = “On input 〈M,w〉

1 Run R on input 〈M,w〉.
2 If R rejects reject.
3 If R accepts, simulate M on w until it halts.
4 If M has accepted, accept; If M has rejected, reject.”

So if R exists, then I can build S which can decide ATM (which we already
know is undecidable.)
Since ATM is reduced to HALTTM , HALTTM is undecidable.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 4 / 20

PROVING UNDECIDABILITY VIA REDUCTIONS

THEOREM 5.2
ETM = {〈M〉 | M is a TM and L(M) = Φ} is undecidable.

Suppose R decides ETM . We try to construct S to decide ATM using R.
Note that S takes 〈M,w〉 as input.

One idea is to run R on 〈M〉 to check if M accepts some string or not –
but that that does not tell us if M accepts w .
Instead we modify M to M1. M1 rejects all strings other than w but on w ,
it does what M does.
Now we can check if L(M1) = Φ.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 5 / 20

PROVING UNDECIDABILITY VIA REDUCTIONS

THEOREM 5.2
ETM = {〈M〉 | M is a TM and L(M) = Φ} is undecidable.

PROOF

For any w define M1 as
M1 = “On input x :

1 If x 6= w , reject.
2 If x = w , run M on input w and accept if M does.”

Note that M1 either accepts w only or nothing!

SLIDES FOR 15-453 LECTURE 16 FALL 2015 6 / 20

PROVING UNDECIDABILITY VIA REDUCTIONS

PROOF CONTINUED

Assume R decides ETM

S defines below uses R to decide on ATM
S = “On input 〈M,w〉

1 Use 〈M,w〉 to construct M1 above.
2 Run R on input 〈M1〉
3 If R accepts, reject, if R rejects, accept.”

So, if R decides M1 is empty,
then M does NOT accept w ,
else M accepts w .

If R decides ETM then S decides ATM – Contradiction.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 7 / 20

TESTING FOR REGULARITY (OR OTHER PROPERTIES)

Can we find out if a language accepted by a Turing machine M is
accepted by a simpler computational model?

Is the language of a TM actually a regular language? (REGULARTM)
Is the language of a TM actually a CFL? (CFLTM)
Does the language of a TM have an “interesting” property?

Rice’s Theorem.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 8 / 20

TESTING FOR REGULARITY

REGULARTM = {〈M〉 | M is a TM and L(M) is a regular language } is
undecidable.

PROOF IDEA

We assume REGULARTM is decidable by a TM R and use this
assumption to construct a TM S that decides ATM .
The basic idea is for S to take as input 〈M〉 and modify M into M2 so that
the resulting TM recognizes a regular language if and only if M accepts
w .
M2

accepts {0n1n | n ≥ 0} if M does not accept w ,
but recognizes Σ∗ if M accepts w .

SLIDES FOR 15-453 LECTURE 16 FALL 2015 9 / 20

TESTING FOR REGULARITY

PROOF IDEA –CONTINUED

M2 accepts {0n1n | n ≥ 0} if M does not accept w , but recognizes Σ∗ if M
accepts w .
What does M2 look like?
M2 = “On input x

1 If x has the form 0n1n, accept.
2 If x does not have this form, run M on input w and accept if M accepts w .”

(w is set in an outer scope!)

All strings x (that is Σ∗) are accepted if M accepts w .

SLIDES FOR 15-453 LECTURE 16 FALL 2015 10 / 20

TESTING FOR REGULARITY

SLIDES FOR 15-453 LECTURE 16 FALL 2015 11 / 20

TESTING FOR REGULARITY

PROOF

S = “On input 〈M,w〉, where M is a TM and w is a string:
1 Construct the following TM M2.
2 M2 = “On input x

1. If x has the form 0n1n, accept.
2. If x does not have this form, run M on input w and accept if M accepts w .”

3 Run R on 〈M2〉
4 If R accepts, accept, if R rejects, reject.”

So, R will say M2 is a regular language, if M accepts w .
S says “M accepts w” if R decides M2 is regular – Contradiction!

SLIDES FOR 15-453 LECTURE 16 FALL 2015 12 / 20

TESTING FOR LANGUAGE EQUALITY

THEOREM 5.4
EQTM = {〈M1,M2〉 | M1 and M2 are TMs and L(M1) = L(M2)} is undecidable.

PROOF IDEA

We reduce ETM (the emptiness problem) to this problem.
If one of the languages is empty, determining equality is the same as
determining if the second language is empty!
In fact, the ETM is a special case of the EQTM problem!!

SLIDES FOR 15-453 LECTURE 16 FALL 2015 13 / 20

TESTING FOR LANGUAGE EQUALITY

THEOREM 5.4
EQTM = {〈M1,M2〉 | M1 and M2 are TMs and L(M1) = L(M2)} is undecidable.

PROOF

Assume R decides EQTM

S = “On input 〈M〉 where M is a TM:
1 Run R on input 〈M,M1〉 where M1 is a TM that rejects all inputs.
2 If R accepts, accept; if R rejects reject”

Thus, if R decides EQTM , then S decides ETM

But ETM is undecidable, so EQTM , must be undecidable.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 14 / 20

REDUCTIONS VIA COMPUTATION HISTORIES

An accepting computation history for a TM is a sequence of
configurations

C1,C2, . . . ,Cl

such that
C1 is the start configuration for input w
Cl is an accepting configuration, and
each Ci follows legally from the preceding configuration.

A rejecting computation history is defined similarly.
Computation histories are finite sequences – if M does not halt on w ,
there is no computation history.
Deterministic v.s nondeterministic computation histories.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 15 / 20

LINEAR BOUNDED AUTOMATON

Suppose we cripple a TM so that the head never moves outside the
boundaries of the input string.
Such a TM is called a linear bounded automaton (LBA)
Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with q states, g symbols in the tape alphabet. There are
exactly qngn distinct configurations for a tape of length n.

PROOF.
The machine can be in one of q states.
The head can be on one of the n cells.
At most gn distinct strings can occur on the tape.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 16 / 20

DECIDABILITY OF LBA PROBLEMS

THEOREM 5.9
ALBA = {〈M,w〉 | M is an LBA that accepts string w} is decidable.

PROOF IDEA

We simulate LBA M on w with a TM L (which is NOT an LBA!)
If during simulation M accepts or rejects, we accept or reject accordingly.
What happens if the LBA M loops?

Can we detect if it loops?

M has a finite number of configurations.
If it repeats any configuration during simulation, it is in a loop.
If M is in a loop, we will know this after a finite number of steps.
So if the LBA M has not halted by then, it is looping.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 17 / 20

DECIDABILITY OF LBA PROBLEMS

THEOREM 5.9
ALBA = {〈M,w〉 | M is an LBA that accepts string w} is decidable.

PROOF

The following TM decides ALBA.
L = “On input 〈M,w〉

1 Simulate M on for qngn steps or until it halts.
2 If M has halted, accept if it has accepted, and reject if it has rejected. If it

has NOT halted, reject.”

LBAs and TMs differ in one important way. ALBA is decidable.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 18 / 20

COMPUTATION OVER “COMPUTATION HISTORIES”

Now for a really wild and crazy idea!
Consider an accepting computation history of a TM M, C1,C2, . . . ,Cl

Note that each Ci is a string.
Consider the string

︸ ︷︷ ︸
C1

︸ ︷︷ ︸
C2

︸ ︷︷ ︸
C3

· · ·# ︸ ︷︷ ︸
Cl

#

The set of all valid accepting histories is also a language!!
This string has length m and an LBA B can check if this is a valid
computation history for a TM M accepting w .

Check if C1 = q0w1w2 · · ·wn

Check if Cl = · · · qaccept · · ·
Check if each Ci+1 follows from Ci legally.

Note that B is not constructed for the purpose of running it on any input!
If L(B) 6= Φ then M accepts w

SLIDES FOR 15-453 LECTURE 16 FALL 2015 19 / 20

DECIDABILITY OF LBA PROBLEMS

THEOREM 5.10
ELBA = {〈M〉 | M is an LBA and L(M) = Φ} is undecidable.

PROOF.
Suppose TM R decides ELBA, we can construct a TM S which decides
ATM

S = “On input 〈M,w〉, where M is a TM and w is a string
1 Construct LBA B from M and w as described earlier.
2 Run R on 〈B〉.
3 If R rejects, accept; if R accepts, reject.”

So if R says L(B) = Φ, the M does NOT accept w .
If R says L(B) 6= Φ, the M accepts w .
But, ATM is undecidable – contradiction.

SLIDES FOR 15-453 LECTURE 16 FALL 2015 20 / 20

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

POST CORRESPONDENCE PROBLEM

Slides for 15-453 Lecture 17 Fall 2015 1 / 28

REVIEW OF DECIDABILITY AND REDUCTIONS

Slides for 15-453 Lecture 17 Fall 2015 2 / 28

REDUCIBILITY

A reduction is a way of converting one problem to another problem, so
that the solution to the second problem can be used to solve the first
problem.

Finding the area of a rectangle, reduces to measuring its width and height
Solving a set of linear equations, reduces to inverting a matrix.

Reducibility involves two problems A and B.
If A reduces to B, you can use a solution to B to solve A

When A is reducible to B, solving A can not be “harder” than solving B.
If A is reducible to B and B is decidable, then A is also decidable.
If A is undecidable and reducible to B, then B is undecidable.

Slides for 15-453 Lecture 17 Fall 2015 3 / 28

PROVING UNDECIDABILITY VIA REDUCTIONS

THEOREM 5.2
ETM = {〈M〉 | M is a TM and L(M) = Φ} is undecidable.

Suppose R decides ETM . We try to construct S to decide ATM using R.
Note that S takes 〈M,w〉 as input.

One idea is to run R on 〈M〉 to check if M accepts some string or not –
but that that does not tell us if M accepts w .
Instead we modify M to M1. M1 rejects all strings other than w but on w ,
it does what M does.
Now we can check if L(M1) = Φ.

Slides for 15-453 Lecture 17 Fall 2015 4 / 28

PROVING UNDECIDABILITY VIA REDUCTIONS

THEOREM 5.2
ETM = {〈M〉 | M is a TM and L(M) = Φ} is undecidable.

PROOF

For any w define M1 as
M1 = “On input x :

1 If x 6= w , reject.
2 If x = w , run M on input w and accept if M does.”

Note that M1 either accepts w only or nothing!

Slides for 15-453 Lecture 17 Fall 2015 5 / 28

PROVING UNDECIDABILITY VIA REDUCTIONS

PROOF CONTINUED

Assume R decides ETM

S defines below uses R to decide on ATM
S = “On input 〈M,w〉

1 Use 〈M,w〉 to construct M1 above.
2 Run R on input 〈M1〉
3 If R accepts, reject, if R rejects, accept.

So, if R decides L(M1) is empty,
then M does NOT accept w ,
else M accepts w .

If R decides ETM then S decides ATM – Contradiction.

Slides for 15-453 Lecture 17 Fall 2015 6 / 28

REDUCTIONS VIA COMPUTATION HISTORIES

An accepting computation history for a TM is a sequence of
configurations

C1,C2, . . . ,Cl

such that
C1 is the start configuration for input w
Cl is an accepting configuration, and
each Ci follows legally from the preceding configuration.

A rejecting computation history is defined similarly.
Computation histories are finite sequences – if M does not halt on M,
there is no computation history.
Deterministic v.s nondeterministic computation histories.

Slides for 15-453 Lecture 17 Fall 2015 7 / 28

LINEAR BOUNDED AUTOMATON

Suppose we cripple a TM so that the head never moves outside the
boundaries of the input string.
Such a TM is called a linear bounded automaton (LBA)
Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with q states, g symbols in the tape alphabet. There are
exactly qngn distinct configurations for a tape of length n.

PROOF.
The machine can be in one of q states.
The head can be on one of the n cells.
At most gn distinct strings can occur on the tape.

THEOREM 5.9
ALBA = {〈M,w〉 | M is an LBA that accepts string w} is decidable.

Slides for 15-453 Lecture 17 Fall 2015 8 / 28

COMPUTATION OVER “COMPUTATION HISTORIES”

Now for a really wild and crazy idea!
Consider an accepting computation history of a TM M, C1,C2, . . . ,Cl

Note that each Ci is a string.
Consider the string

︸ ︷︷ ︸
C1

︸ ︷︷ ︸
C2

︸ ︷︷ ︸
C3

· · ·# ︸ ︷︷ ︸
Cl

#

The set of all valid accepting histories is also a language!!
This string has length m and an LBA B can check if this is a valid
computation history for a TM M accepting w .

Check if C1 = q0w1w2 · · ·wn

Check if Cl = · · · qaccept · · ·
Check if each Ci+1 follows from Ci legally.

Note that B is not constructed for the purpose of running it on any input!
If L(B) 6= Φ then M accepts w

Slides for 15-453 Lecture 17 Fall 2015 9 / 28

POST CORRESPONDENCE PROBLEM

Undecidability is not just confined to problems concerning automata and
languages.
There are other “natural” problems which can be proved undecidable.
The Post correspondence problem (PCP) is a tiling problem over strings.
A tile or a domino contains two strings, t and b; e.g.,

[ca
a

]
.

Suppose we have dominos{[
b
ca

]
,

[
a

ab

]
,

[
ca
a

]
,

[
abc

c

]}
A match is a list of these dominos so that when concatenated the top and
the bottom strings are identical. For example,[

a
ab

][
b
ca

][
ca
a

][
a

ab

][
abc
c

]
=

abcaaabc
abcaaabc

The set of dominos
{[

abc
ab

]
,

[
ca
a

]
,

[
acc
ba

]
,

}
does not have a solution.

Slides for 15-453 Lecture 17 Fall 2015 10 / 28

POST CORRESPONDENCE PROBLEM

AN INSTANCE OF THE PCP
A PCP instance over Σ is a finite collection P of dominos

P =

{[
t1
b1

]
,

[
t2
b2

]
, · · · ,

[
tk
bk

]}
where for all i ,1 ≤ i ≤ k , ti ,bi ∈ Σ∗.

MATCH

Given a PCP instance P, a match is a nonempty sequence

i1, i2, . . . , i`

of numbers from {1,2, . . . , k} (with repetition) such that
ti1 ti2 · · · ti` = bi1bi2 · · · bi`

Slides for 15-453 Lecture 17 Fall 2015 11 / 28

POST CORRESPONDENCE PROBLEM

QUESTION:
Does a given PCP instance P have a match?

LANGUAGE FORMULATION:
PCP = {〈P〉 | P is a PCP instance and it has a match}

THEOREM 5.15
PCP is undecidable.

Proof: By reduction using computation histories. If PCP is decidable then so
is ATM . That is, if PCP has a match, then M accepts w .

Slides for 15-453 Lecture 17 Fall 2015 12 / 28

PCP – THE STRUCTURE OF THE UNDECIDABILITY

PROOF

The reduction works in two steps:
1 We reduce ATM to Modified PCP (MPCP).
2 We reduce MPCP to PCP.

MPCP AS A LANGUAGE PROBLEM

MPCP = {〈P〉 | P is a PCP instance and it has a match which starts with
index 1}

So the solution to MPCP starts with the domino
[

t1
b1

]
. We later remove

this restriction in the second part of the proof.
We also assume that the decider for M never moves its head to the left of
the input w .

Slides for 15-453 Lecture 17 Fall 2015 13 / 28

PCP – THE PROOF

For input 〈M,w〉 of ATM , construct an MPCP instance such that M accepts w
iff P ′ has a match starting with domino 1

The first part of the proof proceeds in 7 stages where we add different
types of dominos to P ′ depending on the TM
M = (Q,Σ, Γ, δ,q0,qaccept ,qreject).
Using the dominos, we try to construct an accepting computation history
for M accepting w .

Slides for 15-453 Lecture 17 Fall 2015 14 / 28

PCP – ADDING THE RIGHT KIND OF DOMINOS

1 The first domino kicks of the computation history[
t1
b1

]
=

[
#

#q0w1w2 · · ·wn#

]
,

2 Handle right moving transitions. For every a,b ∈ Γ and every q, r ∈ Q
where q 6= qreject

if δ(q,a) = (r ,b,R), put
[

qa
br

]
into P ′

3 Handle left moving transitions. For every a,b, c ∈ Γ and every q, r ∈ Q
where q 6= qreject

if δ(q,a) = (r ,b,L), put
[

cqa
rcb

]
into P ′

4 For every a ∈ Γ put
[

a
a

]
into P ′

5 Put
[
#
#

]
and

[
#
t#

]
into P ′.

Slides for 15-453 Lecture 17 Fall 2015 15 / 28

PCP - HOW THE DOMINOS WORK

Let us assume Γ = {0,1,2,t},w = 0100 and that δ(q0,0) = (q7,2,R)
Part 1 places the first domino and the match begins

q0 0 1 0 0
q0 0 1 0 0 # 2 q7 1 0 0

Part 2 places the domino
[

q00
2q7

]
Part 4 places the dominos

[
0
0

] [
1
1

] [
2
2

]
and

[
t
t

]
into P ′ so we can

extend the match.

Part 5 puts in the domino
[
#
#

]
What exactly is going on ?
We force the bottom string to create a copy on the top which is forced to
generate the next configuration on the bottom – We are simulating M on
w !
The process continues until M reaches a halting state and we then pad
the upper string.

Slides for 15-453 Lecture 17 Fall 2015 16 / 28

PCP – MORE DOMINO TYPES

6 For every a ∈ Γ,

put
[

aqaccept

qaccept

]
and

[
qaccepta
qaccept

]
into P ′

These dominos “clean-up” by adding any symbols to the top string while
adding just the state symbol to the lower string.

Just before these apply the upper and lower strings are like
. . . #
. . . # 2 1 qaccept 0 2 #

After using these dominos, we end up with
. . . #
. . . # qaccept #

7 Finally we add the domino [
qaccept##

#

]
to complete the match.

Slides for 15-453 Lecture 17 Fall 2015 17 / 28

PCP PROOF – SUMMARY OF PART 1

This concludes the construction of P ′.
Thus if M accepts w , the set of MPCP dominos constructed have a
solution to the MPCP problem.
But not yet to the PCP problem.

Slides for 15-453 Lecture 17 Fall 2015 18 / 28

PCP PROOF – PART 2

Suppose we have the MPCP instance

P ′ =

{[
t1
b1

]
,

[
t2
b2

]
, · · · ,

[
tk
bk

]}
We let P be the collection

P =

{[
?t1
?b1?

]
,

[
?t2
b2?

]
, · · · ,

[
?tk
bk?

][
?�
�

]}
The only domino that could possibly start a match is the first one!
The last domino just adds the missing ? at the end of the match.

CONCLUSION

PCP is undecidable!

Slides for 15-453 Lecture 17 Fall 2015 19 / 28

SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want to show
that the language B is also undecidable.

1 Assume that we have a decider MB for B.
2 Using MB we construct a decider MA for the language A:

MA = “On input 〈IA〉
1. Algorithmically construct an input 〈IB〉 for MB , such that

a) Either

If 〈IA〉 ∈ A then 〈IB〉 ∈ B
If 〈IA〉 6∈ A then 〈IB〉 6∈ B

b) or

If 〈IA〉 ∈ A then 〈IB〉 6∈ B
If 〈IA〉 6∈ A then 〈IB〉 ∈ B

2. Run the decider MB on 〈IB〉 for MB

Case a): MA accepts if MB accepts, and rejects if MB rejects
Case b): MA rejects if MB accepts, and accepts if MB reject.

3 We know MA can not exist so MB can not exist.
4 B is undecidable.

Slides for 15-453 Lecture 17 Fall 2015 20 / 28

COMPUTABLE FUNCTIONS

IDEA

Turing Machines can also compute function f : Σ∗ −→ Σ∗.

COMPUTABLE FUNCTION

A function f : Σ∗ −→ Σ∗ is a computable function if and only if there exists a
TM Mf , which on any given input w ∈ Σ∗

always halts, and
leaves just f (w) on its tape.

Examples:

Let f (w)
def
= ww be a function. Then f is computable.

Let f (〈n1,n2〉)
def
= 〈n〉 where n1 and n2 are integers and n = n1 ∗ n2. Then

f is computable.

Slides for 15-453 Lecture 17 Fall 2015 21 / 28

MAPPING REDUCIBILITY

DEFINITION

Let A,B ⊆ Σ∗. We say that language A is mapping reducible to language B,
written A <m B, if and only if

1 There is a computable function f : Σ∗ −→ Σ∗ such that
2 For every w ∈ Σ∗,w ∈ A if and only if f (w) ∈ B.

The function f is called a reduction of A to B.

THEOREM 5.22
If A <m B and B is decidable, then A is decidable.

PROOF

Let M be a decider for B and f be a mapping from A to B. Then N decides A.
N = “On input w

1 Compute f (w)

2 Run M on input f (w) and output whatever M outputs.”

If A <m B and A is undecidable, then B is undecidable.
Slides for 15-453 Lecture 17 Fall 2015 22 / 28

MAPPING REDUCIBILITY

THEOREM

ATM <m HALTTM

PROOF.
Construct a computable function f which maps 〈M,w〉 to 〈M ′,w ′〉 such that

〈M,w〉 ∈ ATM if and only if 〈M ′,w ′〉 ∈ HALTTM

Mf = “On input 〈M,w〉
1. Construct the following machine M ′:

M ′ = “On input x
1. Run M on x .
2. If M accepts accept
3. If M rejects enter a loop.”

2. Output 〈M ′,w〉.”

Slides for 15-453 Lecture 17 Fall 2015 23 / 28

MORE EXAMPLES OF MAPPING REDUCIBILITY

Earlier we showed
ATM <m MPCP
MPCP <m PCP

In Theorem 5.4 we showed ETM <m EQTM . The reduction f maps from
〈M〉 to the output 〈M,M1〉 where M1 is the machine that rejects all inputs.

THEOREM 5.24
If A <m B and B is Turing-recognizable, then A is Turing-recognizable.

PROOF

Essentially the same as the previous proof.

Slides for 15-453 Lecture 17 Fall 2015 24 / 28

SUMMARY OF MAPPING REDUCIBILITY RESULTS

SUMMARY OF THEOREMS

Assume that A <m B. Then
1 If B is decidable then A is decidable.
2 If A is undecidable then B is undecidable.
3 If B is Turing-recognizable then A is Turing-recognizable.
4 If A is not Turing-recognizable then B is not Turing-recognizable.
5 A <m B

Useful observation:
Suppose you can show ATM <m B
This means ATM <m B
Since ATM is Turing-unrecognizable then B is Turing-unrecognizable.

Slides for 15-453 Lecture 17 Fall 2015 25 / 28

EXAMPLE OF USE

THEOREM 5.30
EQTM = {〈M1,M2〉 | M1 and M2 are TMs and L(M1) = L(M2)} is neither Turing
recognizable nor co-Turing-recognizable.

PROOF IDEA

We show
ATM <m EQTM

ATM <m EQTM

These then imply the theorem.

Slides for 15-453 Lecture 17 Fall 2015 26 / 28

EXAMPLE OF USE

PROOF FOR ATM <m EQTM

We show ATM <m EQTM (and hence ATM <m EQTM) with the following f :

F = “On input 〈M,w〉 where M is a TM and w is a string:
1. Construct the following two machines M1 and M2

M1 = “On any input:
1. Reject”

M2 = “On any input:
1. Run M on w . If it accepts, accept.”

2. Output 〈M1,M2〉.”

M1 accepts nothing.
If M accepts w then M2 accepts everything. So M1 and M2 are not
equivalent.
If M does not accept w then M2 accepts nothing. So M1 and M2 are
equivalent.

So ATM <m EQTM (and hence ATM <m EQTM)

Slides for 15-453 Lecture 17 Fall 2015 27 / 28

EXAMPLE OF USE

PROOF FOR ATM <m EQTM

We show ATM <m EQTM (and hence ATM <m EQTM) with the following g:

G = “On input 〈M,w〉 where M is a TM and w is a string:
1. Construct the following two machines M1 and M2

M1 = “On any input:
1. Accept”

M2 = “On any input:
1. Run M on w . If it accepts, accept.”

2. Output 〈M1,M2〉.”

M1 accepts everything.
If M accepts w then M2 accepts everything. So M1 and M2 are equivalent.
If M does not accept w then M2 accepts nothing. So M1 and M2 are not
equivalent.

So ATM <m EQTM (and hence ATM <m EQTM)

Slides for 15-453 Lecture 17 Fall 2015 28 / 28

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

RICE’S THEOREM – SELF-REPRODUCING TMS

Slides for 15-453 Lecture 18 Fall 2015 1 / 1

RICE’S THEOREM – MOTIVATION

Consider the following undecidable languages:
ETM = {〈M〉 | M is a TM and L(M) = Φ}
TOTALTM = {〈M〉 | M is a TM and L(M) = Σ∗}
REGULARTM = {〈M〉 | M is a TM and L(M) is regular}
L0101010 = {〈M〉 | M is a TM and 0101010 ∈ L(M)}

QUESTION

What do these questions about languages have in common, so that
they are all undecidable?

They ask whether the language defined by a TM has a certain
property.
The properties are “nontrivial”.

What is a “nontrivial” property?
IDEA

We can generalize the undecidability proofs into a meta-theorem that
works for all languages that talk about nontrivial properties of Turing
machine languages.

Slides for 15-453 Lecture 18 Fall 2015 2 / 1

WHAT IS A NONTRIVIAL PROPERTY?

DEFINITION (PROPERTY)
A language P is called a property of Turing machine languages iff
P ⊆ {〈M〉 | M is a TM}
For any two TMs M1, M2, if L(M1) = L(M2) then
〈M1〉 ∈ P iff 〈M2〉 ∈ P.

DEFINITION (NONTRIVIAL PROPERTY)
A language P which is a property of Turing machine languages is
nontrivial iff:

There is a TM M1 such that 〈M1〉 ∈ P, and
There is a TM M2 such that 〈M2〉 6∈ P.

All these languages are nontrivial
ETM = {〈M〉 | M is a TM and L(M) = Φ}
TOTALTM = {〈M〉 | M is a TM and L(M) = Σ∗}
L0101010 = {〈M〉 | M is a TM and 0101010 ∈ L(M)}

Slides for 15-453 Lecture 18 Fall 2015 3 / 1

RICE’S THEOREM

THEOREM

Every language P which is a nontrivial property of Turing machine
languages is undecidable!

PROOF – PRELIMINARIES

Assume a nontrivial property language P ⊆ {〈M〉 | M is a TM}. We
want to show P is undecidable.
Consider the following two Turing machines:

Let Mφ = “On input x: reject”.
We can assume 〈Mφ〉 6∈ P.
If 〈Mφ〉 ∈ P, then we show P is undecidable.

Let MP be a TM such that 〈MP〉 ∈ P.
MP exists because P is nontrivial.

Slides for 15-453 Lecture 18 Fall 2015 4 / 1

PROOF BY REDUCTION FROM ATM TO P

1 Assume we have a decider RP for P.
2 We show that using RP we can construct a decider S for ATM .

S = “On input 〈M,w〉

1. Construct a TM Mw as
follows:
Mw = “On input x :

1. Run M on w .
If M rejects then reject

2. Else run MP on x .
If MP accepts then
accept.”

2. Run RP (the decider for P)
on 〈Mw 〉

3. If RP accepts then accept
If RP rejects then reject”

If M accepts w , then
L(Mw) = L(MP). So 〈Mw 〉 ∈ P.
If M does not accept w , then
L(Mw) = Φ.
So 〈Mw 〉 6∈ P.
So if RP decides P, then S
decides ATM .
But we know the S does not
exist, so RP can not exist
either.
Conclusion: P is an
undecidable language.

Slides for 15-453 Lecture 18 Fall 2015 5 / 1

APPLYING RICE’S THEOREM

The following languages are all undecidable:
EPSILONTM = {〈M〉 | M is a TM and ε ∈ L(M)}
CFLTM = {〈M〉 | M is a TM and L(M) is a CFL}
DECIDABLETM = {〈M〉 | M is a TM and L(M) is decidable}
PALTM = {〈M〉 | M is a TM and L(M) contains all palindromes}

Rice’s Theorem is a very powerful tool
Very Important: we need to be checking a property of the language
of the TM, not a property of the TM and the behaviour of the TM.

Slides for 15-453 Lecture 18 Fall 2015 6 / 1

COMMON PITFALLS

Rice’s Theorem can not be applied to the following languages:
ALL = {〈M〉 | M is a TM }

Note that ALL is decidable!
There is no language property involved here.We need to check a
property of the representation!

TWICE = {〈M〉 | M is a TM that visits the initial state
more than twice}

Again, this is not a question about the language defined by M but
rather on the behaviour of M (Undecidable)

EQTM = {〈M1,M2〉 | M1 and M2 are TMs and L(M1) = L(M2)}
Again, this is not a question about the property of a language.
(Undecidable)

Slides for 15-453 Lecture 18 Fall 2015 7 / 1

SELF-REFERENCE

Can automata self-reproduce?
What do you mean?

Living things are “machines” and they reproduce!

LEMMA

There is a computable function q : Σ∗ −→ Σ∗ where
if w is any string,
q(w) is the description of a Turing machine Pw that prints out w
and halt.

Slides for 15-453 Lecture 18 Fall 2015 8 / 1

SELF-REFERENCE

LEMMA

There is a computable function q : Σ∗ −→ Σ∗ where if w is any string,
q(w) is the description of a Turing machine Pw that prints out w and
halt.

PROOF:
The following TM Q computes q(w).
Q = “On input string w :
1. Construct the following Turing machine Pw

Pw = “On any input:
1. Erase input.
2. Write w on tape.
3. Halt.”

2. Output 〈Pw 〉.”

Slides for 15-453 Lecture 18 Fall 2015 9 / 1

THE TM SELF

Next we build a TM, SELF , that ignores its own input and prints
out a copy of its description.
Print out this sentence.

Not clear what “this” refers to.

Print out two copies of the following, the second one in quotes:
“Print out two copies of the following, the second one in quotes:”
λx .x(x)(λx .x(x))⇒ λx .x(x)(λx .x(x))

Slides for 15-453 Lecture 18 Fall 2015 10 / 1

A TM THAT PRINTS ITSELF

Part A runs first and upon completion passes control to part B.
The job of A is to print a description of B on the tape (hence
A = P〈B〉).
The job of B is (essentially) to print out a description of A.
The tasks are similar, but are carried out differently.

Slides for 15-453 Lecture 18 Fall 2015 11 / 1

A TM THAT PRINTS ITSELF

If B can obtain 〈B〉, it can apply q to that and obtain 〈A〉.
What how can B obtain 〈B〉?
Well, it was printed on the tape, just before A passed control to B.
So, B computes q(〈B〉) = 〈A〉 and combines these and writes a
complete description 〈AB〉 = 〈SELF 〉.

Slides for 15-453 Lecture 18 Fall 2015 12 / 1

A TM THAT PRINTS ITSELF

A = P〈B〉: A is the TM that prints out the description of B (But we
do not have B yet!)
B = “On input 〈M〉 where M is a portion of a TM:

1. Compute q(〈M〉), (find the description of the machine which prints
〈M〉)

2. Combine the result with 〈M〉 to make a complete TM.
3. Print the description of this TM and halt.”

Slides for 15-453 Lecture 18 Fall 2015 13 / 1

HOW SELF BEHAVES

1 First A runs. It prints 〈B〉.
2 B starts. It looks at the tape and finds its input 〈B〉.
3 B computes q(〈B〉) = 〈A〉 and combines that with 〈B〉 into a TM

description 〈SELF 〉.
4 B prints this description and halts.

Slides for 15-453 Lecture 18 Fall 2015 14 / 1

THE RECURSION THEOREM

THEOREM 6.3 – THE RECURSION THEOREM

Let T be a TM that computes a function t : Σ∗ × Σ∗ −→ Σ∗. There is a
TM R that computes r : Σ∗ −→ Σ∗, where for every w ,

r(w) = t(〈R〉,w)

What is this Theorem saying?
Informally, a TM can obtain its own
description and compute with it.
To make a TM, that can obtain its own
description and then compute with it

1 Make a TM T that receives the description
of the machine as an extra input.

2 Then the recursion theorem produces a
new machine, R which operates as T does,
with R′s, description filled in automatically.

Slides for 15-453 Lecture 18 Fall 2015 15 / 1

PROOF OF THE RECURSION THEOREM

We construct a machine with 3 parts: A,B and T .

A is the TM P〈BT 〉, described by q(〈BT 〉)
Technical point: We redesign q so that P〈BT 〉 writes its output
following any preexisting string on the tape.

So, after A runs, the tape contains w〈BT 〉
B examines the tape and applies q to 〈BT 〉 getting 〈A〉.
B then combines A, B and T into a single machine and obtains its
description 〈ABT 〉 = 〈R〉
It encodes these as 〈R,w〉 and places it on the tape and passes
the control to T .

Slides for 15-453 Lecture 18 Fall 2015 16 / 1

SIGNIFICANCE OF THE RECURSION THEOREM

It is yet another handy tool for solving certain problems in the
theory of algorithms.
When you are designing a TM M, you can “make a call” to “obtain
own description 〈M〉” and use this description in the computation.

Just print out the description
Count the number of states in M.
Simulate M.

Consider the TM
T = “On input 〈M,w〉:

1. Print 〈M〉 and halt.”
The recursion theorem tells us how to construct R which on input
w , behaves just like T on input 〈R,w〉.
Thus R prints the description of R, exactly what is required of the
machine SELF .
Technology for Computer Viruses (:-)

Slides for 15-453 Lecture 18 Fall 2015 17 / 1

SIGNIFICANCE OF THE RECURSION THEOREM

THEOREM 6.5
ATM is undecidable.

PROOF

Suppose H decides ATM , we construct B:
B = “On input w :

1 Obtain, via the recursion theorem, own description 〈B〉.
2 Run H on input 〈B,w〉.
3 Do the opposite of what H says.

accept if H rejects.
reject if H accepts.

B conflicts with itself – hence can not exist
H can not exist.

Slides for 15-453 Lecture 18 Fall 2015 18 / 1

THE FIXED-POINT VERSION OF THE RECURSION

THEOREM

A fixed-point of a function is a value, that is not changed by the
application of a function, e.g.,

f (x) =
√

x has a fixed-point 1.
f (y(x)) = y ′(x) has a fixed-point y(x) = ex .

We consider functions that are computable transformations of TM
descriptions.
The Fixed-point version of the Recursion Theorem shows that

whatever the transformation is
there is some TM whose behaviour is unchanged by the
transformation!

Informally, no computable function maps TMs into non-equivalent
TMs

Slides for 15-453 Lecture 18 Fall 2015 19 / 1

THE FIXED-POINT VERSION OF THE RECURSION

THEOREM

THEOREM 6.8
Let t : Σ∗ −→ Σ∗. Then, there is a TM F such that t(〈F 〉) describes a
TM equivalent to F . (t is the transformation and F is the fixed point.)

PROOF

Let F be the following TM:
F = “On input w

1 Obtain via the recursion theorem, own description 〈F 〉.
2 Compute t(〈F 〉) to obtain the description of a TM G.
3 Simulate G on w .”

It is clear that 〈F 〉 and 〈G〉 describe equivalent TMs: they both
compute what G computes with w .

Slides for 15-453 Lecture 18 Fall 2015 20 / 1

SUMMARY OF REDUCIBILITY

We know that language A is undecidable. By reducing A to B we want
to show that the language B is also undecidable.

1 Assume that we have a decider MB for B.
2 Using MB we construct a decider MA for the language A:

MA = “On input 〈IA〉
1. Algorithmically construct an input 〈IB〉 for MB, such that

a) Either

If 〈IA〉 ∈ A then 〈IB〉 ∈ B
If 〈IA〉 6∈ A then 〈IB〉 6∈ B

b) or

If 〈IA〉 ∈ A then 〈IB〉 6∈ B
If 〈IA〉 6∈ A then 〈IB〉 ∈ B

2. Run the decider MB on 〈IB〉 for MB
Case a): MA accepts if MB accepts, and rejects if MB rejects
Case b): MA rejects if MB accepts, and accepts if MB reject.

3 We know MA can not exist so MB can not exist.
4 B is undecidable. Slides for 15-453 Lecture 18 Fall 2015 21 / 1

COMPUTABLE FUNCTIONS

IDEA

Turing Machines can also compute function f : Σ∗ −→ Σ∗.

COMPUTABLE FUNCTION

A function f : Σ∗ −→ Σ∗ is a computable function if and only if there
exists a TM Mf , which on any given input w ∈ Σ∗

always halts, and
leaves just f (w) on its tape.

Examples:

Let f (w)
def
= ww be a function. Then f is computable.

Let f (〈n1,n2〉)
def
= 〈n〉 where n1 and n2 are integers and

n = n1 ∗ n2. Then f is computable.

Slides for 15-453 Lecture 18 Fall 2015 22 / 1

MAPPING REDUCIBILITY

DEFINITION

Let A,B ⊆ Σ∗. We say that language A is mapping reducible to
language B, written A <m B, if and only if

1 There is a computable function f : Σ∗ −→ Σ∗ such that
2 For every w ∈ Σ∗,w ∈ A if and only if f (w) ∈ B.

The function f is called a reduction of A to B.

THEOREM 5.22
If A <m B and B is decidable, then A is decidable.

PROOF

Let M be a decider for B and f be a mapping from A to B. Then N
decides A. N = “On input w

1 Compute f (w)

2 Run M on input f (w) and output whatever M outputs.”

If A <m B and A is undecidable, then B is undecidable.Slides for 15-453 Lecture 18 Fall 2015 23 / 1

MAPPING REDUCIBILITY

THEOREM

ATM <m HALTTM

PROOF.
Construct a computable function f which maps 〈M,w〉 to 〈M ′,w ′〉 such
that

〈M,w〉 ∈ ATM if and only if 〈M ′,w ′〉 ∈ HALTTM

Mf = “On input 〈M,w〉
1. Construct the following machine M ′:

M ′ = “On input x
1. Run M on x .
2. If M accepts accept
3. If M rejects enter a loop.”

2. Output 〈M ′,w〉.”

Slides for 15-453 Lecture 18 Fall 2015 24 / 1

MORE EXAMPLES OF MAPPING REDUCIBILITY

Earlier we showed
ATM <m MPCP
MPCP <m PCP

We showed ETM <m EQTM . The reduction f maps from 〈M〉 to the
output 〈M,M1〉 where M1 is the machine that rejects all inputs.

THEOREM 5.24
If A <m B and B is Turing-recognizable, then A is Turing-recognizable.

PROOF

Essentially the same as the previous proof.

Slides for 15-453 Lecture 18 Fall 2015 25 / 1

SUMMARY OF MAPPING REDUCIBILITY RESULTS

SUMMARY OF THEOREMS

Assume that A <m B. Then
1 If B is decidable then A is decidable.
2 If A is undecidable then B is undecidable.
3 If B is Turing-recognizable then A is Turing-recognizable.
4 If A is not Turing-recognizable then B is not Turing-recognizable.
5 A <m B

Useful observation:
Suppose you can show ATM <m B
This means ATM <m B
Since ATM is Turing-unrecognizable then B is
Turing-unrecognizable.

Slides for 15-453 Lecture 18 Fall 2015 26 / 1

EXAMPLE OF USE

THEOREM 5.30
EQTM = {〈M1,M2〉 | M1 and M2 are TMs and L(M1) = L(M2)} is
neither Turing recognizable nor co-Turing-recognizable.

PROOF IDEA

We show
ATM <m EQTM

ATM <m EQTM

These then imply the theorem.

Slides for 15-453 Lecture 18 Fall 2015 27 / 1

EXAMPLE OF USE

PROOF FOR ATM <m EQTM

We show ATM <m EQTM (hence ATM <m EQTM) with the following f :
F = “On input 〈M,w〉 where M is a TM and w is a string:
1. Construct the following two machines M1 and M2

M1 = “On any input:
1. Reject”

M2 = “On any input:
1. Run M on w . If it accepts, accept.”

2. Output 〈M1,M2〉.”M1 accepts nothing.
If M accepts w then M2 accepts everything. So M1 and M2 are not
equivalent.
If M does not accept w then M2 accepts nothing. So M1 and M2 are
equivalent.

So ATM <m EQTM (and hence ATM <m EQTM)

Slides for 15-453 Lecture 18 Fall 2015 28 / 1

EXAMPLE OF USE

PROOF FOR ATM <m EQTM

We show ATM <m EQTM (hence ATM <m EQTM) with the following g:
G = “On input 〈M,w〉 where M is a TM and w is a string:
1. Construct the following two machines M1 and M2

M1 = “On any input:
1. Accept”

M2 = “On any input:
1. Run M on w . If it accepts, accept.”

2. Output 〈M1,M2〉.”
M1 accepts everything.

If M accepts w then M2 accepts everything. So M1 and M2 are
equivalent.
If M does not accept w then M2 accepts nothing. So M1 and M2 are
not equivalent.

So ATM <m EQTM (hence ATM <m EQTM)
Slides for 15-453 Lecture 18 Fall 2015 29 / 1

TURING REDUCIBILITY

Reducibility: If A is reducible to B then we can solve A by solving
B.
Mapping Reducibility (A ≤m B) : Use a computable mapping f to
transform an instance of A to an instance of B.
It turns out that Mapping Reducibility is not general enough!

Consider ATM and ATM
Clearly the solution to one can be used as a solution to the other,
by simply reversing the answer.
But ATM is not mapping reducible to ATM because ATM is
Turing-recognizable while ATM is not.

We need a more general notion of reducibility.

Slides for 15-453 Lecture 18 Fall 2015 30 / 1

ORACLES

DEFINITION – ORACLE

An oracle for a language B is an external device that is capable of
answering the question “Is w ∈ B?”

DEFINITION – ORACLE TURING MACHINE

An oracle TM is a modified TM, MB, that has the capability of querying
an oracle for language B.

Slides for 15-453 Lecture 18 Fall 2015 31 / 1

TURING REDUCIBILITY

DEFINITION

Language A is Turing reducible to language B, written as A ≤T B, if A
is decidable relative to B (that is, using an oracle for B)

THEOREM

If A ≤T B and B is decidable, then A is decidable.

PROOF

If B is decidable, then replace the oracle with the TM for B.

Turing reducibility is a generalization of mapping reducibility
A ≤M B

Slides for 15-453 Lecture 18 Fall 2015 32 / 1

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

COMPLEXITY

SLIDES FOR 15-453 LECTURE 19 FALL 2015 1 / 41

COMPLEXITY THEORY

QUESTION

Assume that a problem (language) is decidable. Does that mean we
can realistically solve it?

ANSWER

NO, not always. It can require too much of time or memory resources.

Complexity Theory aims to make general conclusions of the resource
requirements of decidable problems (languages).

Henceforth, we only consider decidable languages and deciders.
Our computational model is a Turing Machine.

Time: the number of computation steps a TM machine makes to
decide on an input of size n.
Space: the maximum number of tape cells a TM machine takes to
decide on a input of size n.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 2 / 41

TIME COMPLEXITY – MOTIVATION

How much time (or how many steps) does a single tape TM take
to decide A = {0k1k | k ≥ 0}?

M = “On input w :
1 Scan the tape and reject if w is not of the form 0∗1∗ .
2 Repeat if both 0s and 1s remain on the tape.
3 Scan across the tape crossing off one 0 and one 1.
4 If all 0’s are crossed and some 1’s left, or all 1’s crossed and some

0’s left, then reject; else accept.

QUESTION

How many steps does M take on an input w of length n?

ANSWER (WORST-CASE)

The number of steps M takes ∝ n2.
SLIDES FOR 15-453 LECTURE 19 FALL 2015 3 / 41

TIME COMPLEXITY – SOME NOTIONS

The number of steps in measured as a function of n - the size of
the string representing the input.
In worst-case analysis, we consider the longest running time of all
inputs of length n.
In average-case analysis, we consider the average of the running
times of all inputs of length n.

TIME COMPLEXITY

Let M be a deterministic TM that halts on all inputs. The time
complexity of M if the function f : N −→ N , where f (n) is the
maximum number of steps that M uses on any input of length n.
If f (n) is the running time of M we say

M runs in time f (n)

M is an f (n)-time TM.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 4 / 41

ASYMPTOTIC ANALYSIS

We seek to understand the running time when the input is “large”.
Hence we use an asymptotic notation or big-O notation to
characterize the behaviour of f (n) when n is large.
The exact value running time function is not terribly important.
What is important is how f (n) grows as a function of n, for large n.
Differences of a constant factor are not important.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 5 / 41

ASYMPTOTIC UPPER BOUND

DEFINITION – ASYMPTOTIC UPPER BOUND

Let R+ be the set of nonnegative real numbers. Let f and g be
functions f ,g : N −→ R+. We say f (n) = O(g(n)), if there are positive
integers c and n0, such that for every n ≥ n0

f (n) ≤ c g(n).

g(n) is an asymptotic upper bound.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 6 / 41

ASYMPTOTIC UPPER BOUND

5n3 + 2n2 + 5 = O(n3) (what are c and n0?)
5n3 + 2n2 + 5 = O(n4) (what are c and n0?)
log2(n8) = O(log n) (why?)
5n3 + 2n2 + 5 is not O(n2) (why?)

2O(n) means an upper bound O(2cn) for some constant c.
nO(1) is a polynomial upper bound O(nc) for some constant c.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 7 / 41

REALITY CHECK

Assume that your computer/TM can perform 109 steps per second.

n/f (n) n n log(n) n2 n3 2n

10 0.01 µsec 0.03 µsec 0.1 µsec 1 µsec 1 µsec
20 0.02 µsec 0.09 µsec 0.4 µsec 8 µsec 1 msec
50 0.05 µsec 0.28 µsec 2.5 µsec 125 µsec 13 days
100 0.10 µsec 0.66 µsec 10 µsec 1 msec u 4× 1013 years
1000 1 µsec 3 µsec 1 msec 1 sec u 3.4x10281 centuries

Clearly, if the running time of your TM is an exponential function of n, it
does not matter how fast the TM is!

SLIDES FOR 15-453 LECTURE 19 FALL 2015 8 / 41

SMALL-O NOTATION

DEFINITION – STRICT ASYMPTOTIC UPPER BOUND

Let f and g be functions f ,g : N −→ R+. We say f (n) = o(g(n)), if

lim
n→∞

f (n)

g(n)
= 0.

n2 = o(n3)√
n = o(n)

n log n = o(n2)

n100 = o(2n)

f (n) is never o(f (n)).

INTUITION

f (n) = O(g(n)) means “asymptotically f (n) ≤ g(n)”
f (n) = o(g(n)) means “asymptotically f (n) < g(n)”

SLIDES FOR 15-453 LECTURE 19 FALL 2015 9 / 41

COMPLEXITY CLASSES

DEFINITION – TIME COMPLEXITY CLASS TIME(t(n))
Let t : N −→ R+ be a function.
TIME(t(n)) = {L(M) | M is a decider running in time O(t(n))}

TIME(t(n)) is the class (collection) of languages that are
decidable by TMs, running in time O(t(n)).
TIME(n) ⊂ TIME(n2) ⊂ TIME(n3) ⊂ . . . ⊂ TIME(2n) ⊂ . . .
Examples:

{0k 1k | k ≥ 0} ∈ TIME(n2)
{0k 1k | k ≥ 0} ∈ TIME(n log n) (next slide)
{w#w | w ∈ {0,1}∗} ∈ TIME(n2)

SLIDES FOR 15-453 LECTURE 19 FALL 2015 10 / 41

{0k1k | k ≥ 0} ∈ TIME(n log n)

M = “On input w :
1 Scan the tape and reject if w is not of the form 0∗1∗ .
2 Repeat as long as some 0s and some 1s remain on the tape.

Scan across the tape, checking whether the total number of 0s and
1s is even or odd. Reject if it is odd.
Scan across the tape, crossing off every other 0 starting with the
first 0, and every other 1, starting with the first 1.

3 If no 0’s and no 1’s remain on the tape, accept. Otherwise, reject.

Steps 2 take O(n) time.
Step 2 is repeated at most 1 + log2 n times. (why?)
Total time is O(n log n).
Hence, {0k1k | k ≥ 0} ∈ TIME(n log n).
However, {0k1k | k ≥ 0} is decidable on a 2-tape TM in time O(n)
(How ?)

SLIDES FOR 15-453 LECTURE 19 FALL 2015 11 / 41

RELATIONSHIP BETWEEN k -TAPE AND SINGLE-TAPE

TMS

THEOREM 7.8
Let t(n) be a function and t(n) ≥ n. Then every multitape TM has an
equivalent O(t2(n)) single tape TM.

Let’s remind ourselves on how the simulation operates.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 12 / 41

MULTITAPE TURING MACHINES

SLIDES FOR 15-453 LECTURE 19 FALL 2015 13 / 41

MULTITAPE TURING MACHINES

A multitape Turing Machine is like an ordinary TM
There are k tapes
Each tape has its own independent read/write head.

The only fundamental difference from the ordinary TM is δ – the
state transition function.

δ : Q × Γk → Q × Γk × {L,R}k

The δ entry δ(qi ,a1, . . . ,ak) = (qj ,b1, . . . ,bk ,L,R,L, ...L) reads as
:

If the TM is in state qi and
the heads are reading symbols a1 through ak ,
Then the machine goes to state qj , and
the heads write symbols b1 through bk , and
Move in the specified directions.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 14 / 41

SIMULATING A MULTITAPE TM WITH AN ORDINARY

TM

SLIDES FOR 15-453 LECTURE 19 FALL 2015 15 / 41

SIMULATING A MULTITAPE TM WITH AN ORDINARY

TM

We use # as a delimiter to separate out the different tape
contents.
To keep track of the location of heads, we use additional symbols

Each symbol in Γ (except t) has a “dotted” version.
A dotted symbol indicates that the head is on that symbol.
Between any two #’s there is only one symbol that is dotted.

Thus we have 1 real tape with k “virtual’ tapes, and
1 real read/write head with k “virtual” heads.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 16 / 41

SIMULATING A MULTITAPE TM WITH AN ORDINARY

TM

Given input w = w1 · · ·wn, S puts its tape into the format that
represents all k tapes of M

#
•

w1 w2 · · ·wn#
•
t #

•
t # · · ·#

To simulate a single move of M, S starts at the leftmost # and
scans the tape to the rightmost #.

It determines the symbols under the “virtual” heads.
This is remembered in the finite state control of S. (How many
states are needed?)

S makes a second pass to update the tapes according to M.
If one of the virtual heads, moves right to a #, the rest of tape to
the right is shifted to “open up” space for that “virtual tape”. If it
moves left to a #, it just moves right again.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 17 / 41

ANALYSIS OF THE MULTI-TAPE TM SIMULATION

Preparing the single simulation tape takes O(n) time.
Each step of the simulation makes two passes over the tape:

One pass to see where the heads are.
One pass to update the heads (possibly with some shifting)

Each pass takes at most k × t(n) = O(t(n)) steps (why?)
So each simulation step takes 2 scans + at most k rightward
shifts. So the total time per step is O(t(n)).
Simulation takes O(n) + t(n)×O(t(n)) steps = O(t2(n)).
So, a single-tape TM is only polynomially slower than the
multi-tape TM.
If the multi-tape TM runs in polynomial time, the single-tape TM
will also run in polynomial time (where polynomial time is defined
as O(nm) for some m.)

SLIDES FOR 15-453 LECTURE 19 FALL 2015 18 / 41

NONDETERMINISTIC TMS

DEFINITION – NONDETERMINISTIC RUNNING TIME

Let N be a nondeterministic TM that is a decider. The running time of
N is the function f : N −→ N , where f (n) is the maximum number of
steps that N uses, on any branch of its computation on any input of
length n.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 19 / 41

NONDETERMINISTIC TMS

THEOREM 7.11
Let t(n) be a function and t(n) ≥ n. Then every t(n) time
nondeterministic TM has an equivalent 2O(t(n)) time deterministic
single tape TM.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 20 / 41

NONDETERMINISTIC TMS

THEOREM 7.11
Let t(n) be a function and t(n) ≥ n. Then every t(n) time
nondeterministic TM has an equivalent 2O(t(n)) time deterministic
single tape TM.

PROOF

On an input of n, every branch of N ’s nondeterministic computation has
length at most t(n) (why?)

Every node in the tree can have at most b children where b is the
maximum number of nondeterministic choices a state can have.

So, the computation tree has at most 1 + b2 + · · ·+ bt(n) = O(bt(n))
nodes.

The deterministic machine D takes at most O(bt(n)) = 2O(t(n)) steps.

D has 3 tapes. Converting it to a single tape TM at most squares its
running time (previous Theorem):(2O(t(n)))2 = 22O(t(n)) = 2O(t(n))

SLIDES FOR 15-453 LECTURE 19 FALL 2015 21 / 41

THE CLASS P

DEFINITION

P is the class of languages that are decidable in polynomial time on a
deterministic single-tape TM.

P =
⋃
k

TIME(nk).

The class P is important for two main reasons:
1 P is robust: The class remains invariant for all models of

computation that are polynomially equivalent to deterministic
single-tape TMs.

2 P (roughly) corresponds to the class of problems that are
realistically solvable on a computer.

Even though the exponents can be large (though most useful
algorithms have “low” exponents), the class P provides a
reasonable definition of practical solvability.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 22 / 41

EXAMPLES OF PROBLEMS IN P

We will give high-level algorithms with numbered stages just as
we gave for decidability arguments.
We analyze such algorithms to show that they run in polynomial
time.

1 We give a polynomial upper bound on the number of stages the
algorithm uses when it runs on an input of length n.

2 We examine each stage, to make sure that each can be
implemented in polynomial time on a reasonable deterministic time.

We assume a “reasonable” encoding of the input.
For example, when we represent a graph G, we assume that 〈G〉
has a size that is poynomial the number of nodes.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 23 / 41

EXAMPLES OF PROBLEMS IN P

THEOREM

PATH = {〈G, s, t〉 | G is a directed graph with n nodes that has a path
from s to t} ∈ P.

PROOF

M = “On input 〈G, s, t〉
1 Place a mark on s.
2 Repeat 3 until no new nodes

are marked
3 Scan edges of G. If (a,b) is

an edge and a is marked and
b is unmarked, mark b.

4 If t is marked, accept else
reject.”

Steps 1 and 4 are
executed once

Each takes at most
O(n) time on a TM.

Step 3 is executed at
most n times

Each execution takes
at most O(n2) steps
(∝ number of edges)

Total execution time is
thus a polynomial in n.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 24 / 41

EXAMPLES OF PROBLEMS IN P

THEOREM

ACFG ∈ P

PROOF.
The CYK algorithm decides ACFG in polynomial time.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 25 / 41

EXAMPLES OF PROBLEMS IN P

DEFINITION

Natural numbers x and y are relatively prime iff gcd(x , y) = 1.

gcd(x , y) is the greatest natural number that evenly divides both x
and y .
RELPRIME = {〈x , y〉 | x and y are relatively prime numbers}
Remember that the length of 〈x , y〉 is log2 x + log2 y = n, that is
the size of the input is logarithmic in the values of the numbers.

So if the number of steps is proportional to the values of x and y , it
is exponential in n.

BRUTE FORCE ALGORITHM IS EXPONENTIAL

Given an input 〈x , y〉 of length n = log2 x + log2 y , going through all
numbers between 2 and min{x , y}, and checking if they divide both x
and y takes time exponential in n.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 26 / 41

EXAMPLES OF PROBLEMS IN P

THEOREM 7.15
RELPRIME ∈ P

PROOF

E implements the Euclidian
algorithm.
E =’ “On input 〈x , y〉

1 Repeat until y = 0
2 Assign x ← x mod y .
3 Exchange x and y .
4 Output x .”

PROOF

R solves RELPRIME , using
E as a subroutine.
R = “On input 〈x , y〉

1 Run E on 〈x , y〉.
2 If the result is 1, accept.

Otherwise, reject.”

If E ∈ P then R ∈ P.

Each of x and y is reduced by a factor of 2 every other time through the
loop.

Loop is executed at most min{2 log2 x ,2 log2 y} times which is O(n).
SLIDES FOR 15-453 LECTURE 19 FALL 2015 27 / 41

THE CLASS NP

For some problems, even though there is a exponentially large
search space of solutions (e.g., for the path problem), we can
avoid a brute force solution and get a polynomial-time algorithm.
For some problems, it is not possible to avoid a brute force
solution and such problems have so far resisted a polynomial time
solution.
We may not yet know the principles that would lead to a
polynomial time algorithm, or they may be “intrinsically difficult.”
How can we characterize such problems?

SLIDES FOR 15-453 LECTURE 19 FALL 2015 28 / 41

THE HAMILTONIAN PATH PROBLEM

DEFINITION – HAMILTONIAN PATH

A Hamiltonian path in a directed graph G is a directed path that goes
through each node exactly once.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 29 / 41

THE HAMILTONIAN PATH PROBLEM

HAMILTONIAN PATH PROBLEM

HAMPATH = {〈G, s, t〉 | G is a directed graph with a Hamiltonian path
from s to t}.

We can easily obtain an exponential time algorithm with a brute
force approach.

Generate all possible paths between s and t and check if all nodes
appear on a path!

The HAMPATH problem has a property called polynomial
verifiability.

If we can (magically) get a Hamiltonian path, we can verify that it is
a Hamiltonian path, in polynomial time.

Verifying the existence of a Hamiltonian path is “easier” than
determining its existence.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 30 / 41

POLYNOMIAL VERIFIABILITY

COMPOSITES PROBLEM

COMPOSITES = {x | x = pq, for integers p,q > 1}

We can easily verify if a number is composite, given a divisor of
that number.
A recent (but very complicated) algorithm for testing whether a
number is prime or composite has been discovered.

HAMPATH PROBLEM

The HAMPATH problem has a solution if there is NO Hamiltonian path
between s and t .

Even if we knew, the graph did not have a Hamiltonian path, there
is no easy way to verify this fact. We may need to take exponential
time to verify it.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 31 / 41

VERIFIERS

VERIFIER

A verifier for a language A is an algorithm V where

A = {w | V accepts 〈w , c〉 for some string c}

We measure the time of a verifier only in terms of the length of w .
A language A is polynomially verifiable if it has a polynomial time
verifier.
c is called certificate or proof of membership in A.

For the HAMPATH problem, the certificate is simply the Hamiltonian
path from s to t .
For the COMPOSITES problem, the certificate is one of the
divisors.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 32 / 41

THE CLASS NP

THE CLASS NP
NP is the class of languages that have polynomial time verifiers.

NP stands for nondeterministic polynomial time.
Problems in NP are called NP-Problems.
P ⊂ (⊆?) NP.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 33 / 41

A NONDETERMINISTIC DECIDER FOR HAMPATH

N1 = “On input 〈G, s, t〉
1 Nondeterministically select list of m numbers p1,p2, . . .pm with

1 ≤ pi ≤ m .
2 Check for repetitions in the list; if found, reject.
3 Check whether p1 = s and pm = t , otherwise reject.
4 For 1 ≤ i < m, check if (pi ,pi+1) is an edge of G. If any are not,

reject. Otherwise accept.”

Stage 1 runs in polynomial time.
Stages 2 and 3 take polynomial time.
Stage 4 takes poynomial time.
Thus the algorithm runs in nondeterministic polynomial time.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 34 / 41

THE CLASS NP

THEOREM 7.20
A language is in NP, iff it is decided by some nondeterministic
polynomial time Turing machine.

PROOF IDEA

We show polynomial time verifier⇔ polynomial time decider TM.
NTM simulates the verifier by guessing a certificate.
The verifier simulates the NTM

PROOF: NTM GIVEN THE VERIFIER.
Let A ∈ NP. Let V be a verifier that runs in time O(nk). N decides A in
nondeterministic polynomial time.
N = “On input w of length n

1 Nondeterministically select string c of length at most nk .
2 Run V on input 〈w , c〉.
3 If V accepts, accept; otherwise reject.”

SLIDES FOR 15-453 LECTURE 19 FALL 2015 35 / 41

THE CLASS NP

THEOREM 7.20
A language is in NP, iff it is decided by some nondeterministic
polynomial time Turing machine.

PROOF IDEA

We show polynomial time verifier⇔ polynomial time decider TM.
NTM simulates the verifier by guessing a certificate.
The verifier simulates the NTM

PROOF: VERIFIER GIVEN THE NTM.
Assume A is decided by a polynomial time NTM N. We construct the
following verifier V
V = “On input 〈w , c〉

1 Simulate N on input w , treating each symbol of c as a description of the
nondeterministic choice at each step.

2 If this branch of N ’s computation accepts, accept; otherwise, reject.”
SLIDES FOR 15-453 LECTURE 19 FALL 2015 36 / 41

THE CLASS NP

DEFINITION

NTIME(t(n)) = {L | L is a language decided by a O(t(n)) time
nondeterministic TM.}

COROLLARY

NP =
⋃

k NTIME(nk).

SLIDES FOR 15-453 LECTURE 19 FALL 2015 37 / 41

THE CLIQUE PROBLEM

DEFINITION - CLIQUE

A clique in an undirected graph is a subgraph, wherein every two
nodes are connected by an edge.
A k -clique is a clique that contains k nodes.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 38 / 41

THE CLIQUE PROBLEM

THEOREM 7.24
CLIQUE = {〈G, k〉 | G is an undirected graph with a k -clique } ∈ NP.

PROOF

The clique is the certificate.
V = “On input 〈〈G, k〉, c〉:

1 Test whether c is a set of k
nodes in G.

2 Test whether G has all
edges connecting nodes in
c.

3 If both pass, accept;
otherwise reject.”

ALTERNATIVE PROOF

Use a NTM as a decider.
N = “On input 〈G, k〉:

1 Nondeterministically select
a subset c of k nodes of G.

2 Test whether G has all
edges connecting nodes in
c.

3 If yes accept; otherwise
reject.”

All steps take polynomial time.
SLIDES FOR 15-453 LECTURE 19 FALL 2015 39 / 41

THE SUBSET-SUM PROBLEM

THEOREM 7.25
SUBSET-SUM = {〈S, t〉 | S = {x1, . . . , xk} and for some

{y1, . . . , yl} ⊆ S,
∑

yi = t} ∈ NP.

PROOF

The clique is the certificate.
V = “On input 〈〈S, t〉, c〉:

1 Test whether c is a set of
numbers summing to t .

2 Test whether S contains all
numbers in c.

3 If both pass, accept;
otherwise reject.”

ALTERNATIVE PROOF

Use a NTM as a decider.
N = “On input 〈S, k〉:

1 Nondeterministically select
a subset c of numbers in S.

2 Test whether S contains all
numbers in c.

3 If yes accept; otherwise
reject.”

All steps take polynomial time.
SLIDES FOR 15-453 LECTURE 19 FALL 2015 40 / 41

THE CLASS CONP

It turns out CLIQUE or SUBSET-SUM are NOT in NP.
Verifying something is NOT present seems to be more difficult
than verifying it IS present.
The class coNP contains all problems that are complements of
languages in NP.
We do not know if coNP 6= NP.

SLIDES FOR 15-453 LECTURE 19 FALL 2015 41 / 41

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

NP-COMPLETENESS

SLIDES FOR 15-453 LECTURE 20 FALL 2015 1 / 30

SUMMARY

Time complexity: Big-O notation, asympotic complexity
Simulation of multi-tape TMs with a single tape deterministic TM
can be done with a polynomial slow-down.
Simulation of nondeterministic TMs with a deterministic TM is
exponentially slower.
The Class P: The class of languages for which membership can
be decided quickly.
The Class NP: The class of languages for which membership can
be verified quickly.

We do not yet know if P = NP, or not.
SLIDES FOR 15-453 LECTURE 20 FALL 2015 2 / 30

NP PROBLEMS

The best method known for solving languages in NP
deterministically uses exponential time, that is

NP ⊆ EXPTIME =
⋃
k

TIME(2nk
)

It is not known whether NP is contained in a smaller deterministic
time complexity class.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 3 / 30

NP-COMPLETE PROBLEMS

Cook and Levin in early 1970’s showed that certain problems in
NP were such that

If any of these problems had a deterministic polynomial-time
algorithm, then
All problems in NP had deterministic polynomial-time algorithms.

Such problems are called NP-complete problems.
This is important for a number of reasons:

1 If one is attempting to show that P6=NP, s/he may focus on an
NP-complete problem and try to show that it needs more than a
polynomial amount of time.

2 If one is attempting to show that P=NP, s/he may focus on an
NP-complete problem and try to come up with a polynomial time
algorithm for it.

3 One may avoid wasting searching for a nonexistent polynomial time
algorithm to solve a particular problem, if one can show it reduces
to an NP-complete problem (as it is generally believed that P6= NP.)

SLIDES FOR 15-453 LECTURE 20 FALL 2015 4 / 30

THE SATISFIABILITY PROBLEM

DEFINITION – BOOLEAN VARIABLES

A boolean variable is a variable that can taken on values TRUE (1) and
FALSE (0).

We have Boolean operations of AND (x ∧ y), OR (x ∨ y) and NOT
(¬x or x) on boolean variables.

AND OR NOT
0 ∧ 0 = 0 0 ∨ 0 = 0 0 = 1
0 ∧ 1 = 0 0 ∨ 1 = 1 1 = 0
1 ∧ 0 = 0 1 ∨ 0 = 1
1 ∧ 1 = 1 1 ∨ 1 = 1

SLIDES FOR 15-453 LECTURE 20 FALL 2015 5 / 30

THE SATISFIABILITY PROBLEM

DEFINITION – BOOLEAN FORMULA

A Boolean formula is an expression involving Boolean variables and
operations.
For example: φ = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) is a Boolean formula.

DEFINITION – SATISFIABILITY

A Boolean formula is satisfiable if some assignment of 0s and 1s to the
variables makes the formula evaluate to 1.
We say the assignment satisfies φ.

What possible assignments satisfy the formula above?

DEFINITION – THE SATISFIABILITY PROBLEM

The satisfiability problem checks if a Boolean formula is satisfiable.

SAT = {〈φ〉 | φ is a satisfiable Boolean formula}
SLIDES FOR 15-453 LECTURE 20 FALL 2015 6 / 30

THE SATISFIABILITY PROBLEM

THEOREM 7.27 – THE COOK-LEVIN THEOREM

SAT ∈ P iff P = NP.

PROOF

Coming slowly!

SLIDES FOR 15-453 LECTURE 20 FALL 2015 7 / 30

POLYNOMIAL TIME REDUCIBILITY

DEFINITION – POLYNOMIAL TIME COMPUTABLE FUNCTION

A function f : Σ∗ −→ Σ∗ is a polynomial time computable function if
some polynomial time TM M exists that halts with f (w) on its tape,
when started on any input w .

DEFINITION – POLYNOMIAL TIME REDUCIBILITY

Language A is polynomial time mapping reducible or polynomial time
reducible, to language B, notated A ≤P B, if a polynomial time
computable function f : Σ∗ −→ Σ∗ exists, where for every w ,

w ∈ A⇔ f (w) ∈ B

The function f is called the polynomial time reduction of A to B.

To test whether w ∈ A we use the reduction f to map w to f (w)
and test whether f (w) ∈ B.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 8 / 30

POLYNOMIAL TIME REDUCIBILITY

THEOREM 7.31
If A ≤P B and B ∈ P, then A ∈ P.

PROOF

It takes polynomial time to reduce A to B.
It takes polynomial time to decide B.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 9 / 30

VARIATIONS ON THE SATISFIABILITY PROBLEM

A literal is a Boolean variable or its negated version (x or x).
A clause is several literals connected with ∨ (OR), e.g.,
(x1 ∨ x2 ∨ x4).
A Boolean formula is in conjuctive normal form (or is a
cnf-formula) if it consists of several clauses connected with
∧(AND), e.g.

(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5)

A cnf-formula is a 3cnf-formula if all clauses have 3 literals, e.g.

(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5)

3SAT = {〈φ〉 | φ is a satisfiable 3cnf-formula }.
In a satisfiable cnf-formula, each clause must contain at least one
literal that is assigned 1.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 10 / 30

AN EXAMPLE REDUCTION: REDUCING 3SAT TO

CLIQUE

THEOREM 7.32
3SAT is polynomial time reducible to CLIQUE .

PROOF IDEA

Take any 3SAT formula and polynomial-time reduce it to a graph such
that if the graph has a clique then the 3cnf-formula is satisfiable.

Some details:
φ is a formula with k clauses each with 3 literals.
The k clauses in φ map to k groups of 3 nodes each called a triple.
Each node in the triple corresponds to one of the literals in the
corresponding clause.
No edges between the nodes in a triple.
No edges between “conflicting” nodes (e.g., x and x)

SLIDES FOR 15-453 LECTURE 20 FALL 2015 11 / 30

AN EXAMPLE REDUCTION: REDUCING 3SAT TO

CLIQUE

φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

SLIDES FOR 15-453 LECTURE 20 FALL 2015 12 / 30

AN EXAMPLE REDUCTION: REDUCING 3SAT TO

CLIQUE

φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

If φ has a satisfying assignment,
then at least one literal in each
clause needs to be 1.
We select the corresponding nodes
in the corresponding triples.
These nodes should form a k -clique.
If G has a k -clique, then selected
nodes give a satisfying assignment
to variables.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 13 / 30

NP-COMPLETENESS

DEFINITION – NP-COMPLETENESS

A language B is NP-complete if it satisfies two conditions:
1 B is in NP, and
2 Every A in NP is polynomial time reducible to B.

THEOREM

If B is NP-complete and B ∈ P, then P = NP. (Obvious)

THEOREM

If B is NP-complete and B ≤P C for C in NP, then C is NP-complete.

PROOF

All A ≤P B and B ≤P C thus all A ≤P C.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 14 / 30

THE COOK-LEVIN THEOREM (AGAIN)

THEOREM

SAT is NP-Complete.

PROOF IDEA

Showing SAT is in NP is easy.
Nondeterministically guess the assignments to variables and
accept if the assignments satisfy φ

We can encode the accepting computation history of a polynomial
time NTM for every problem in NP as a SAT formula φ.
Thus every language A ∈ NP is polynomial-time reducible to SAT .

N is a NTM that can decide A in time O(nk)
N accepts w if and only if φ is satisfiable.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 15 / 30

BIRD’S EYE VIEW OF A POLYNOMIAL TIME

COMPUTATION BRANCH

SLIDES FOR 15-453 LECTURE 20 FALL 2015 16 / 30

BIRD’S EYE VIEW OF A POLYNOMIAL TIME

COMPUTATION BRANCH

We represent the computation of a
NTM N on w with a nk × nk table,
called a tableau.
Rows represent configurations
First row is the start configuration (w
+ lots of blanks to fill the remaining
of the nk cells.)
Each row follows from the previous
one using N ’s transition function.

A tableau is accepting if any row of the tableau is an accepting
configuration.
Every accepting tableau for N on w corresponds to an accepting
computation branch of N on w .
If N accepts w , then an accepting tableau exists!

SLIDES FOR 15-453 LECTURE 20 FALL 2015 17 / 30

SETTING UP FORMULA φ

THE VARIABLES

Let C = Q ∪ Γ ∪ {#}.
For 1 ≤ i , j ≤ nk and for each s ∈ C, we have a variable xi,j,s.
xi,j,s = 1 if the cell[i , j] contains the symbol s.
Note that the number of variables is polynomial function of n.

THE FORMULA φ

φ = φcell ∧ φstart ∧ φmove ∧ φaccept

φcell makes sure that there is only one symbol in every cell!
φstart makes sure the start configuration is correct.
φaccept makes sure the accept state occurs somewhere.
φmove makes sure configurations follow each other legally.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 18 / 30

φcell

For all i and j , if cell[i , j] contains symbol s, (that is xi,j,s = 1), it
can not contain another symbol (that is, no other variable with the
same i and j , but a different symbol, is 1).

φcell =
∧

1≤i,j≤nk

(∨

s∈C

xi,j,s

)
∧

∧
s,t∈C
s 6=t

(xi,j,s ∨ xi,j,t)

SLIDES FOR 15-453 LECTURE 20 FALL 2015 19 / 30

φcell

For all i and j , if cell[i , j] contains symbol s, (that is xi,j,s = 1), it
can not contain another symbol (that is, no other variable with the
same i and j , but a different symbol, is 1).

φcell =
∧

1≤i,j≤nk︸ ︷︷ ︸
for all iand j

(∨

s∈C

xi,j,s

)
∧

∧
s,t∈C
s 6=t

(xi,j,s ∨ xi,j,t)

SLIDES FOR 15-453 LECTURE 20 FALL 2015 20 / 30

φcell

For all i and j , if cell[i , j] contains symbol s, (that is xi,j,s = 1), it
can not contain another symbol (that is, no other variable with the
same i and j , but a different symbol, is 1).

φcell =
∧

1≤i,j≤nk︸ ︷︷ ︸
for all i and j

(∨

s∈C

xi,j,s

)
︸ ︷︷ ︸
at least one symbol

is in a cell

∧

∧
s,t∈C
s 6=t

(xi,j,s ∨ xi,j,t)

SLIDES FOR 15-453 LECTURE 20 FALL 2015 21 / 30

φcell

For all i and j , if cell[i , j] contains symbol s, (that is xi,j,s = 1), it
can not contain another symbol (that is, no other variable with the
same i and j , but a different symbol, is 1).

φcell =
∧

1≤i,j≤nk︸ ︷︷ ︸
for all i and j

(∨

s∈C

xi,j,s

)
︸ ︷︷ ︸
at least one symbol

is in a cell

∧

∧
s,t∈C
s 6=t

only one symbol in a cell︷ ︸︸ ︷
(xi,j,s ∨ xi,j,t)

Note that φcell is in a conjuctive normal form.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 22 / 30

φstart

φstart sets up the first configuration.

φstart = x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ x1,4,w2 ∧ · · · x1,n+2,wn ∧
x1,n+3,t ∧ · · · x1,nk−1,t ∧ x1,nk ,#

SLIDES FOR 15-453 LECTURE 20 FALL 2015 23 / 30

φstart

φstart sets up the first configuration.

φstart =

q0 and input symbols︷ ︸︸ ︷
x1,1,# ∧ x1,2,q0 ∧ x1,3,w1 ∧ x1,4,w2 ∧ · · · x1,n+2,wn∧
x1,n+3,t ∧ · · · x1,nk−1,t ∧ x1,nk ,#︸ ︷︷ ︸

all the blanks to the right

SLIDES FOR 15-453 LECTURE 20 FALL 2015 24 / 30

φaccept

φaccept says qaccept occurs somewhere.

φaccept =
∨

1≤i,j≤nk

xi,j,qaccept

SLIDES FOR 15-453 LECTURE 20 FALL 2015 25 / 30

φmove

φmove is the most interesting of the subformulas

How many possible such windows are there?
There are |C|6 possible such windows.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 26 / 30

φmove

DEFINITION – LEGAL WINDOW

A 2× 3 window is legal if that window does not violate the actions
specified by N ’s transition function.

Suppose δ of N has the entries
δ(q1,a) = {(q1,b,R)}
δ(q1,b) = {(q2, c,L), (q2,a,R)}

The following windows are legal:

a q1 b
q2 a c

b a
b a

a q1 b
a a q2

a b a
a b q2

a a q1
a a b

b b b
c b b

SLIDES FOR 15-453 LECTURE 20 FALL 2015 27 / 30

φmove

DEFINITION – LEGAL WINDOW

A 2× 3 window is legal if that window does not violate the actions
specified by N ’s transition function.

Suppose δ of N has the entries
δ(q1,a) = {(q1,b,R)}
δ(q1,b) = {(q2, c,L), (q2,a,R)}

The following windows are NOT legal:

a b a
a a a

a q1 b
q1 a a

b q1 b
q2 b q2

CLAIM

If the top row of the table is the start configuration and every window in
the tableau is legal, then every row of the table (after the first) is a
configuration that follows the preceding one!

SLIDES FOR 15-453 LECTURE 20 FALL 2015 28 / 30

φmove

Thus
φmove =

∧
1≤i<nk ,1<j<nk

(the (i , j) window is legal)

Where “ (the (i , j) window is legal) “ is actually the following formula∨
a1,a2,a3,a4,a5,a6

is a legal window

(xi,j−1,a1 ∧xi,j,a2 ∧xi,j+1,a3 ∧xi+1,j−1,a4 ∧xi+1,j,a5 ∧xi+1,j+1,a6)

i , j refers to the top middle cell of a window.
We have O(n2k) variables (= |C| × nk × nk)
The total formula size is O(n2k), so it is polynomial time reduction.

SLIDES FOR 15-453 LECTURE 20 FALL 2015 29 / 30

3SAT IS NP-COMPLETE

COROLLARY

3SAT is NP-complete.

Every formula in the construction of the NP-completeness proof of
SAT can actually be written as a conjuctive normal form formula
with 3 literals per clause.

If a clause has less that 3 literals, repeat one.
Disjunctive normal form clauses can be transformed into
conjunctive normal form clauses, e.g.,

(a ∧ b) ∨ (c ∧ d) = (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d)

Clauses longer than 3 clauses can be rewritten as clauses with 3
variable, e.g.,

(a ∨ b ∨ c ∨ d) = (a ∨ b ∨ z) ∧ (z ∨ c ∨ d)

SLIDES FOR 15-453 LECTURE 20 FALL 2015 30 / 30

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

PROVING PROBLEMS NP-COMPLETE

SLIDES FOR 15-453 LECTURE 21 FALL 2015 1 / 27

SUMMARY

Complexity Classes: P and NP
Polynomial time reducibility
Satisfiability Problem (SAT)

CNF, 3CNF Forms
3SAT Problem

NP-Completeness
NP-Completeness of the SAT problem

Reduction from accepting computation histories of
nondeterministic TMs to a SAT formula such that

A polynomial time NTM accepts w iff the corresponding SAT
formula has a satisfying assignment.

3SAT is NP-Complete.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 2 / 27

SHOWING PROBLEMS NP-COMPLETE

Remember that in order to show a language X to be
NP-complete we need to show

1 X is in NP, and
2 Every Y in NP is polynomial time reducible to X ,

Part 1 is (usually) easy. You argue that there is polynomial
time verifier for X , which, given a solution (certificate), will
verify in polynomial time, that, it is a solution.
For part 2, pick a known NP-complete problem Z

1 We already know that all problems Y in NP reduce to Z in
polynomial time.

2 We produce a polynomial time algorithm that reduces all
instances of Z to some instance of X .

3 So Y ≤P Z and Z ≤P X then Y ≤P X .

SLIDES FOR 15-453 LECTURE 21 FALL 2015 3 / 27

SHOWING PROBLEMS NP-COMPLETE

THEOREM
CLIQUE is NP-complete.

PROOF
1 We know 3SAT is

NP-complete.
2 We know that

3SAT ≤P CLIQUE .
3 Hence CLIQUE is

NP-complete.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 4 / 27

THE VERTEX COVER PROBLEM

DEFINITION – VERTEX COVER
Given an undirected graph G, a vertex cover of G is a subset of
the nodes where every edge of G touches one of those nodes.

VERTEX-COVER = {〈G, k〉 | G is an undirected graph that
has a k -node vertex cover}.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 5 / 27

THE VERTEX COVER PROBLEM

THEOREM
VERTEX-COVER is NP-complete.

PROOF IDEA
Show VERTEX-COVER is in NP.

Easy, the certificate is the vertex cover of size k .

We reduce an instance of 3SAT , φ, to a graph G and an
integer k so that φ is satisfiable whenever G has a vertex
cover of size k .
We employ a concept called gadgets, groups of nodes with
specific functions, in the graph.

Variable gadgets – representing literals
Clause gadgets – representing clauses

SLIDES FOR 15-453 LECTURE 21 FALL 2015 6 / 27

THE VERTEX COVER PROBLEM

Let φ be a 3-cnf formula with m variables and l clauses.
We construct in polynomial-time, an instance of 〈G, k〉
where k = m + 2l .

For each variable x in φ, we add two nodes to G labeled x
and x , connected by an edge (variable gadget).
For every clause (`1 ∨ `2 ∨ `3) in φ, we add 3 nodes labeled
`1, `2 and `3, with edges between every pair so that they
form a triangle (clause gadget)
We add an edge between any two identically labelled nodes,
one from a variable gadget and one from a clause gadget.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 7 / 27

THE VERTEX COVER PROBLEM

SLIDES FOR 15-453 LECTURE 21 FALL 2015 8 / 27

THE VERTEX COVER PROBLEM

SLIDES FOR 15-453 LECTURE 21 FALL 2015 9 / 27

THE VERTEX COVER PROBLEM

SLIDES FOR 15-453 LECTURE 21 FALL 2015 10 / 27

THE HAMILTONIAN PATH PROBLEM

DEFINITION - HAMILTONIAN PATH
(Recall that) A Hamiltonian path in a directed graph G is a
directed path that goes through each node exactly once.

DEFINITION HAMILTONIAN PATH PROBLEM
HAMPATH = {〈G, s, t〉 | G is a directed graph with a Hamiltonian

path from s to t}.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 11 / 27

THE HAMILTONIAN PATH PROBLEM

THEOREM
HAMPATH is NP-complete.

PROOF IDEA
We show 3SAT ≤P HAMPATH.
We again use gadgets to represent the variables and
clauses.
For a given 3-cnf formula with k clauses

φ = (a1 ∨ b1 ∨ c1)︸ ︷︷ ︸
c1

∧ (a2 ∨ b2 ∨ c2)︸ ︷︷ ︸
c2

∧ · · · ∧ (ak ∨ bk ∨ ck)︸ ︷︷ ︸
ck

where each ai ,bi or ci is a literal x or x . We have l variables
x1, x2, . . . xl .

SLIDES FOR 15-453 LECTURE 21 FALL 2015 12 / 27

THE HAMILTONIAN PATH PROBLEM

1-node
gadgets for
clauses
Diamond-
shaped
gadgets for
variables

SLIDES FOR 15-453 LECTURE 21 FALL 2015 13 / 27

THE HAMILTONIAN PATH PROBLEM

The middle spine in each diamond has 3k + 3 nodes.
3 nodes per clause + 1 to isolate them from the two literal
nodes and 2 nodes on each side for the literals xi , xi .

SLIDES FOR 15-453 LECTURE 21 FALL 2015 14 / 27

THE HAMILTONIAN PATH PROBLEM

If xi appears in clause cj , we add two edges from j th group
in the spine to the j th clause node in the i th diamond.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 15 / 27

THE HAMILTONIAN PATH PROBLEM

If xi appears in clause cj , we add two edges from j th group
in the spine to the j th clause node in the i th diamond, but in
the reverse direction.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 16 / 27

THE HAMILTONIAN PATH PROBLEM

Suppose φ is satisfiable.
Ignoring the clause nodes, we note that the Hamiltonian
path

starts at s
goes through each diamond
ends up at t .

In diamond i , it either goes left-to-right or right-to-left
depending on the truth value of variable xi .

SLIDES FOR 15-453 LECTURE 21 FALL 2015 17 / 27

THE HAMILTONIAN PATH PROBLEM

The clause nodes can be incorporated into the path using
the detours we provided.
So if xi is true and is in clause cj , we can take a detour to
node for cj and back to the spine in the right direction.

Note that each detour is optional but we have to incorporate
cj only once.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 18 / 27

THE HAMILTONIAN PATH PROBLEM

The clause nodes can be incorporated into the path using
the detours we provided.
So if xi is true and is in clause cj , we can take a detour to
node for cj and back to the spine in the reverse direction.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 19 / 27

THE HAMILTONIAN PATH PROBLEM

How about the reverse direction? If G has a Hamiltonian
path then φ has a satisfying assignment?
If the path is normal, that is, it goes through from s
zigzagging through the diamonds, then clearly there is a
satisfying assignment.
The following case can not happen!

SLIDES FOR 15-453 LECTURE 21 FALL 2015 20 / 27

THE UNDIRECTED HAMILTONIAN PATH

DEFINITION HAMILTONIAN PATH PROBLEM
UHAMPATH = {〈G, s, t〉 | G is an undirected graph with a

Hamiltonian path from s to t}.

THEOREM
UHAMPATH is NP-complete.

PROOF IDEA
We reduce HAMPATH to UHAMPATH.
All nodes except s and t in the directed graph G, map to 3
nodes in the undirected graph G′.
G has a Hamiltonian path⇔ G′ has an undirected
Hamiltonian path.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 21 / 27

THE UNDIRECTED HAMILTONIAN PATH

THEOREM
UHAMPATH is NP-complete.

PROOF

s in G maps to sout in G′.
t in G maps to t in in G′.
Any other node ui maps to u in

i ,u
mid
i ,uout

i in G′.
All arcs coming to ui in G become edges incident on uin

i in
G′.
All arcs going out from ui in G become edges incident on
uout

i in G′.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 22 / 27

THE UNDIRECTED HAMILTONIAN PATH

Note that if
s,u1,u2, . . . ,uk , t

is a Hamiltonian path in G then

sout ,u in
1 ,u

mid
1 ,uout

1 ,u in
2 ,u

mid
2 ,uout

2 . . . ,uout
k , t tin

is a Hamiltonian path in G′.
Any Hamiltonian path between sout and t in, must go through
the triple of nodes except for the start and end nodes.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 23 / 27

THE SUBSET SUM PROBLEM

SUBSET-SUM = {〈S, t〉 | S = {x1, . . . , xm} and for some
{y1, . . . , yn} ⊆ S,

∑
yi = t}

THEOREM
SUBSET-SUM is NP-complete.

PROOF IDEA
We reduce 3SAT to an instance of the SUBSET-SUM
problem with a set S and a bound t ,

so that if a formula φ has a satisfying assignment,
then S has a subset T that adds to t

We already know that SUBSET-SUM is in NP.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 24 / 27

THE SUBSET SUM PROBLEM

Let φ be a formula with variables x1, x2, . . . , xl and clauses
c1, . . . , ck .
We compute m = 2× l + 2× k (large) numbers from φ and
a bound t
Such that when we choose the numbers corresponding to
the literals in the satisfying assignment, they add to t .

SLIDES FOR 15-453 LECTURE 21 FALL 2015 25 / 27

THE SUBSET SUM PROBLEM

S for φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ · · ·) ∧ · · · ∧ (x3 ∨ · · · ∨ · · ·)
1 2 3 4 · · · l c1 c2 · · · ck

y1 1 0 0 0 · · · 0 1 0 · · · 0
z1 1 0 0 0 · · · 0 0 0 · · · 0
y2 1 0 0 · · · 0 0 1 · · · 0
z2 1 0 0 · · · 0 1 0 · · · 0
y3 1 0 · · · 0 1 1 · · · 0
z3 1 0 · · · 0 0 0 · · · 1
...

. . .
...

...
...

...
yl 1 0 0 · · · 0
zl 1 0 0 · · · 0
g1 1 0 · · · 0
h1 1 0 · · · 0
g2 1 · · · 0
h2 1 · · · 0
...

. . .
...

gk 1
hk 1
t 1 1 1 1 · · · 1 3 3 · · · 3

SLIDES FOR 15-453 LECTURE 21 FALL 2015 26 / 27

THE SUBSET SUM PROBLEM

1 2 3 4 · · · l c1 c2 · · · ck
y1 1 0 0 0 · · · 0 1 0 · · · 0
z1 1 0 0 0 · · · 0 0 0 · · · 0
y2 1 0 0 · · · 0 0 1 · · · 0
z2 1 0 0 · · · 0 1 0 · · · 0
y3 1 0 · · · 0 1 1 · · · 0
z3 1 0 · · · 0 0 0 · · · 1
...

. . .
...

...
...

...
yl 1 0 0 · · · 0
zl 1 0 0 · · · 0
g1 1 0 · · · 0
h1 1 0 · · · 0
g2 1 · · · 0
h2 1 · · · 0
...

. . .
...

gk 1
hk 1
t 1 1 1 1 · · · 1 3 3 · · · 3

We choose one of the
numbers yi if xi = 1,
or zi if xi = 0.
The left part of t will
add up the right
number.
The right side
columns will at least
be 1 each
We take enough of
the g and h’s to make
them add up to 3.

SLIDES FOR 15-453 LECTURE 21 FALL 2015 27 / 27

FORMAL LANGUAGES, AUTOMATA AND

COMPUTATION

SPACE COMPLEXITY

SLIDES FOR 15-453 LECTURE 22 FALL 2015 1 / 24

SPACE COMPLEXITY

(Disk) Space – the final frontier!
How much memory do computational problems require?
We characterize problems based on their memory
requirements.
Space is reusable, time is not!
We again use the Turing machine as our model of
computation.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 2 / 24

SPACE COMPLEXITY

DEFINITION – SPACE COMPLEXITY
Let M be a deterministic Turing machine that halts on all inputs.
The space complexity of M is the function f : N −→ N , where
f (n) is the maximum number of tape cells that M scans on
any input of length n.

For nondeterministic TMs where all branches halt on all inputs,
we take the maximum over all the branches of computation.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 3 / 24

SPACE COMPLEXITY

DEFINITION – SPACE COMPLEXITY CLASSES
Let f : N −→ R+. The space complexity classes are defined as
follows:

SPACE(f (n)) = {L | L is a language decided by an O(f (n))

space deterministic TM}
NSPACE(f (n)) = {L | L is a language decided by an O(f (n))

space nondeterministic TM}

SPACE(f (n)) formalizes the class of problems that can be
solved by computers with bounded memory. (Real world!)
SPACE(f (n)) problems could potentially take a long time to
solve.
Intuitively space and time seem to be interchangeable.
Just because a problem needs only linear space does not
mean it can be solved in linear time.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 4 / 24

DETERMINISTIC SPACE COMPLEXITY OF SAT

SAT is NP-complete.
But SAT can be solved in linear space.
M1 = “On input 〈φ〉, where φ is a Boolean formula:

1 For each truth assignment to the variables x1, x2, . . . , xm of φ:
2 Evaluate φ on that truth assignment.
3 If φ ever evaluates to 1, accept; if not, reject.”

Note that M1 takes exponential time.
SLIDES FOR 15-453 LECTURE 22 FALL 2015 5 / 24

NONDETERMINISTIC SPACE COMPLEXITY OF

ALLNFA

Consider ALLNFA = {〈A〉 | A is a NFA and L(A) = Σ∗}
The following nondeterministic linear space algorithm
decides ALLNFA.
Nondeterministically guess an input string rejected by the
NFA and use linear space to guess which states the NFA
could be at a given time.
N = “On input 〈M〉 where M is an NFA.

1 Place a marker on the start state of NFA.
2 Repeat 2q times, where q is the number of states of M.

2.1 Nondeterministically select an input symbol and change the
position of the markers on M ’s states, to simulate reading
that symbol.

3 Accept if stage 2 reveals some string that M rejects, i.e., if at
some point none of the markers lie on accept states of M.
Otherwise, reject.”

SLIDES FOR 15-453 LECTURE 22 FALL 2015 6 / 24

NONDETERMINISTIC SPACE COMPLEXITY OF

ALLNFA

Since there are at most 2q subsets of the states of M, it
must reject one of length at most 2q, if M rejects any
strings.

Remember that determinization could end up with at most 2q

states.
N needs space for

storing the locations of the markers (O(q) = O(n))
the repeat loop counter (O(q) = O(n))

Hence N runs in nondeterministic O(n) space.
Note that N runs in nondeterministic 2O(n) time.

ALLNFA is not known to be in NP or coNP.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 7 / 24

SAVITCH’S THEOREM

Remember that simulation of a nondeterministic TM with a
deterministic TM requires an exponentional increase in
time.
Savitch’s Theorem shows that any nondeterministic TM that
uses f (n) space can be converted to a deterministic TM
that uses only f 2(n) space, that is,

NSPACE(f (n)) ⊆ SPACE(f 2(n))

Obviously, there will be a slowdown.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 8 / 24

SAVITCH’S THEOREM

THEOREM
For any function f : N −→ R+, where f (n) ≥ n

NSPACE(f (n)) ⊆ SPACE(f 2(n))

PROOF IDEA
Let N be a nondeterministic TM with space complexity f (n).
Construct a deterministic machine M that tries every
possible branch of N.
Since each branch of N uses at most f (n) space, then M
uses space at most f (n) space + space for book-keeping.
We need to simulate the nondeterministic computation and
save as much space as possible.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 9 / 24

SAVITCH’S THEOREM

Given two configurations c1 and c2 of a f (n) space TM N,
and a number t , determine if we can get from c1 to c2 within
t steps.
CANYIELD = “ On input c1, c2 and t :

1 If t = 0 accept iff c1 = c2
2 If t = 1 accept iff c1 = c2 or c1 yields c2 in one step.
3 If t > 1 then for every possible configuration cm of N for w ,

using space f (n)
4 Run CANYIELD(c1, cm,

t
2).

5 Run CANYIELD(cm, c2,
t
2).

6 If steps 4 and 5 both accept, then accept.
7 If haven’t yet accepted, reject.”

Space is reused during the recursive calls.
The depth of the recursion is at most log t .
Each recursive step uses O(f (n)) space and t = 2O(f (n)) so
log t = O(f (n)) . Hence total space used is O(f 2(n)).

SLIDES FOR 15-453 LECTURE 22 FALL 2015 10 / 24

SAVITCH’S THEOREM

M simulates N using CANYIELD.
If n is the length of w , we choose d so that N has no more
than 2df (n) configurations each using f (n) tape.
2df (n) provides an upper bound on the running time on any
branch of N.
M = “On input w :

1 Output the result of CANYIELD(cstart , caccept ,2df (n)).”

At each stage, CANYIELD stores c1, c2, and t for a total of
O(f (n)) space.
Minor technical points with the accepting configuration and
the initial value of t (e.g., how does the TM know f (n)?) –
See the book.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 11 / 24

THE CLASS PSPACE

DEFINITION – PSPACE
PSPACE is the class of languages that are decidable in
polynomial space on a deterministic TM.

PSPACE =
⋃
k

SPACE(nk).

NSPACE is defined analogously.
But PSPACE = NSPACE, due to Savitch’s theorem,
because the square of a polynomial is also a polynomial.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 12 / 24

THE CLASS PSPACE – SOME OBSERVATIONS

We know SAT ∈ SPACE(n).
⇒ SAT ∈ PSPACE.

We know ALLNFA ∈ NSPACE(n) and hence
ALLNFA ∈ SPACE(n2), by Savitch’s theorem.

⇒ ALLNFA ∈ PSPACE.
Deterministic space complexity classes are closed under
complementation, so ALLNFA ∈ SPACE(n2).

⇒ ALLNFA ∈ PSPACE.
A TM that operates in f (n) ≥ n time, can use at most f (n)
space.

⇒ P ⊆ PSPACE

NP ⊆ NPSPACE⇒ NP ⊆ PSPACE.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 13 / 24

THE CLASS PSPACE – SOME OBSERVATIONS

We can also bound the time complexity in terms of the
space complexity.
For f (n) ≥ n, a TM that uses f (n) space, can have at most
f (n)2O(f (n)) configurations.

f (n) symbols on tape, so |Γ|f (n) possible strings and f (n)
possible state positions and |Q| possible states = 2O(f (n))

PSPACE ⊆ EXPTIME =
⋃

k TIME(2nk
).

SLIDES FOR 15-453 LECTURE 22 FALL 2015 14 / 24

PSPACE-COMPLETENESS

DEFINITION – PSPACE-COMPLETE
A language B is PSPACE-complete if it satisfies two conditions:

1 B is in PSPACE, and
2 every A in PSPACE is polynomial time reducible to B.

Note that we use polynomial-time reducibility!
The reduction should be easy relative to the complexity of
typical problems in the class.
In general, whenever we define complete-problems for a
complexity class, the reduction model must be more limited
that the model use for defining the class itself.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 15 / 24

THE TQBF PROBLEM

Quantified Boolean Formulas are exactly like the Boolean
formulas we define for the SAT problem, but additionally
have existential (∃) and universal (∀) quantifiers.

∀x [x ∨ y]
∃x∃y [x ∨ y]
∀x [x ∨ x]
∀x [x]
∀x∃y [(x ∨ y) ∧ (x ∨ y)]

A fully quantified Boolean formula is a quantified formula
where every variable is quantified.

All except the first above are fully quantified.
A fully quantified Boolean formula is also called a sentence,
and is either true or false.

DEFINITION – TQBF
TQBF = {〈φ〉 | φ is a true fully quantified Boolean formula}

SLIDES FOR 15-453 LECTURE 22 FALL 2015 16 / 24

THE TQBF PROBLEM

THEOREM
TQBF = {〈φ〉 | φ is a true fully quantified Boolean formula} is
PSPACE-complete.

Assume T decides TQBF .
If φ has no quantifiers, it is an expression with only
constants! Evaluate φ and accept if result is 1.
If φ = ∃xψ, recursively call T on ψ, first with x = 0 and then
with x = 1. Accept if either returns 1.
If φ = ∀xψ, recursively call T on ψ, first with x = 0 and then
with x = 1. Accept if both return 1.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 17 / 24

THE TQBF PROBLEM

CLAIM
Every language A in PSPACE is polynomial-time reducible to
TQBF .

We build a polynomial time reduction from A to TQBF
The reduction turns a string w into a TQBF φ that simulates
a PSPACE TM M for A on w .
Essentially the same as in the proof of the
NP-completeness of SAT – build a formula from the
accepting computation history.
But uses the approach in Savitch’s Theorem.
Details in section 8.3 in the book.
PSPACE is often called the class of games.

Formalizations of many popular games are
PSPACE-complete.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 18 / 24

THE CLASSES L AND NL

We have so far considered time and space complexity
bounds that are at least linear.
We now examine smaller, sublinear space bounds.

For time complexity, sublinear bounds are insufficient to read
the entire input!

For sublinear space complexity, the TM is able to read the
whole input but not store it.
We must modify the computational model!

SLIDES FOR 15-453 LECTURE 22 FALL 2015 19 / 24

THE CLASSES L AND NL

We introduce a TM with two-tapes:
1 A read-only input tape.
2 A read/write work tape.

On the input tape, the head always stays in the region
where the input is.
The work tape can be read and written in the usual way.
Only the cells scanned on the work tape contribute to the
space complexity.

DEFINITIONS– LOG SPACE COMPLEXITY CLASSES

L = SPACE(log n)

NL = NSPACE(log n)

SLIDES FOR 15-453 LECTURE 22 FALL 2015 20 / 24

AN ALGORITHM IN L

Consider the (good old) language A = {0k1k | k ≥ 0}
Previous algorithm (zig-zag and cross out symbols) used
linear space.
We can not do this now since the input tape is read-only.
Once the machine is certain the string is of the desired
pattern, it can count the number of 0’s and 1’s.
The only additional space needed are for the two counters
(in binary).
A binary counter uses only logarithmic space, O(log k).

SLIDES FOR 15-453 LECTURE 22 FALL 2015 21 / 24

AN ALGORITHM IN NL

Consider the PATH problem
PATH = {〈G, s, t〉 | G is a directed graph that has a directed

path from s to t}
PATH is in P, but that algorithm uses linear space.
It is not known if PATH can be solved in deterministic log
space.
It can be solved in nondeterministic log space:

1 Starting with s, the nondeterministic log space TM guesses
the next node to go to on the way to t .

2 The TM only records the id or the position of the node (so
needs log space).

3 The TM nondeterministically guesses the next node, until
either it reaches t or until it has gone for m steps where m is
the number of nodes.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 22 / 24

THE CLASSES L AND NL

Log-space reducibility
NL-completeness
PATH is NL-complete.

For a given log space nondeterministic TM and input w , map
the accepting computation history to a graph, with nodes
representing configurations.

NL ⊆ P (remember PATH ∈ P)
NL = coNL.
L ⊆ NL = coNL ⊆P ⊆ PSPACE.

SLIDES FOR 15-453 LECTURE 22 FALL 2015 23 / 24

AND WE ARE DONE FOR THE SEMESTER

(− THE FINAL)

Thanks for your patience and for taking the occasional
mental pain.
But then, no pain no gain!
We do review in the remaining lecture slots, please come
prepared and let me know what major concepts your still
have problems with.
Final on Sunday, December 6, 2015, at 13:00-16:00
Good luck!

SLIDES FOR 15-453 LECTURE 22 FALL 2015 24 / 24

	lecture-1
	lecture-2
	lecture-3
	lecture-4
	lecture-5
	lecture-6
	lecture-7
	lecture-8
	lecture-9
	lecture-10
	lecture-11
	lecture-12
	lecture-13
	lecture-14
	lecture-15
	lecture-16
	lecture-17
	lecture-18
	lecture-19
	lecture-20
	lecture-21
	lecture-22

