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MAJOR THEMES

Defining precise problem and data abstractions,

Designing and programming
I correct and efficient algorithms and data structures
I for given problems and data abstractions

Abstraction Implementation

Functions Problem Algorithm
Data Abstract Data Type Data Structure
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PROBLEM VS. ALGORITHM

Sorting, string matching, finding shortest paths
in graphs,. . . , are problems

I Input: A sequence [a1,a2, · · · ,an]

I Output: A permutation of the sequence
[ai1 ,ai2 , · · · ,ain ] such that ∀j ,1 ≤ j < n,aij ≤ aij+1

Quicksort, Mergesort, Insertion Sort , . . . , are
algorithms for sorting.
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ABSTRACT DATA TYPES VS.
DATA STRUCTURES

A set is an abstract data type (ADT)

I Test membership, intersect, union, difference, . . .

Sequences, trees, hash-tables are examples of
data structures.

ADT’s determine functionality, data structures
determine costs.
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TECHNOLOGY – MOORE’S LAW

Source: Wikipedia
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PROCESSOR TECHNOLOGY

OVERVIEW – THE GENOME SEQUENCING PROBLEM 6/43

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



MULTI-CORE CHIPS
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MULTI-CORE CHIPS
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PARALLEL ALGORITHMS

Serial Parallel
1-core 8-core 32h-core

Sorting 10M strings 2.90 2.90 0.40 .095 (30.5)
Remove dupl. 10M strings 0.66 1.00 0.14 .038 (17.4)
Min. span. tree 10M edges 1.60 2.50 0.42 .140 (11.4)
BFS 10M edges 0.82 1.20 0.20 .046 (17.8)

Running times in seconds
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15-210 VS. A TRADITIONAL COURSE

Emphasis on parallel thinking at a high level
I Parallel algorithms and parallel data structures

Purely functional model of computation
I Safe for parallelism
I Higher level of abstraction

Ideas still relevant for imperative computation
I Lot of overlap, but covered differently!
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SYNOPSIS

A real world problem: Gene sequencing.
The computational problem.
Algorithms
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SEQUENCING THE GENOME

The human DNA molecule encodes the
complete set of genetic information using 4
bases

I Adenine (A), Cytosine (C), Guanine (G) and
Thymine (T)

A sequence of about
I 3 billion base pairs
I arranged into 46 chromosomes

makes up the human genome.
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SEQUENCING THE GENOME

A chromosome is a sequence of genes

A gene is a sequence of the base pairs
I But there seem to be a lot of base-pairs with no

apparent functions.
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SEQUENCING THE GENOME

Source: Wikipedia
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SEQUENCING THE GENOME

Source: Wikipedia
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SEQUENCING THE GENOME

Source: Wikipedia
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SEQUENCING THE GENOME

Determining the complete DNA sequence is a
grand challenge.

Very hard to do in one go with wet lab
techniques.

The Shotgun Technique has been found work
quite well.
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SHOTGUN SEQUENCING

Break up multiple DNA strands into short
segments

I Chemistry!

Short segments are sequenced.
I Chemistry!

Stitch short sequences computationally.
I This is where CS comes in.
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SHOTGUN SEQUENCING

Source: Wikipedia
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SHOTGUN SEQUENCING

Suppose you have three strands sequenced
catt ag gagtat
cat tagg ag tat
ca tta gga gtat

But they really come in a messy way, e.g.,
catt ag tta cat tagg ag gagtat
tat ca gga gtat

So how do we stitch them?
I Given a set of overlapping genome subsequences,

construct the “best” sequence that includes them all.
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SYNOPSIS

A real world problem: Gene sequencing.
The computational problem.
Algorithms
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THE ABSTRACT PROBLEM

THE SHORTEST SUPERSTRING PROBLEM
Given

an alphabet of symbols Σ, and
a set of finite strings S ⊆ Σ+,

return
a shortest string r that contains every s ∈ S as a
substring of r .

Σ, Σ+

Σ = {A,C,G,T}
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SOME OBSERVATIONS

Ignore strings that are already in other strings.
Why?

{catt, ag,gagtat, cat, tagg, ag, tat, ca, tta,gga,gtat}

⇓
{catt,gagtat, tagg, tta,gga,}

Each string must start at a distinct position in
the result. Why?
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SYNOPSIS

A real world problem: Gene sequencing.
The computational problem.
Algorithms:

I The Brute Force Algorithm
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THE BRUTE FORCE ALGORITHM

THE BRUTE FORCE TECHNIQUE
Enumerate all possible candidate solutions for a
problem

score each solution, and/or
check each satisfies the problem constraints

Return the best solution.

How does this apply to the SS Problem?
I Generate permutations
I Remove overlaps
I Stitch strings
I Select the shortest resulting string
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THE BRUTE FORCE ALGORITHM

catt tta tagg gga gagtat

catt tta tagg gga gagtat

cattaggagtat

LEMMA
Given a finite set of strings S ⊆ Σ+, the brute force
technique finds the shortest superstring.

See handout.

So what is the problem with this technique?
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THE BRUTE FORCE ALGORITHM

There are just too many permutations!
So, n = 100→ 100! ≈ 10158 permutations.
Testing at 1010 permutations/sec, you need

I ≈ 10148 seconds
I ≈ 10143 days (≈ 105 seconds/day)
I ≈ 2.7× 10140 years
I ≈ 2.7× 10138 centuries

Not bloody likely you will test each permutation
before hell freezes over!

I Even if every subatomic particle in the universe was
a processor
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PROSPECTS FOR A FASTER
ALGORITHM?

SS belongs to very important class of problems
called NP (for Nondeterministic Polynomial).
For such problems, no algorithm with polynomial
work is known.
But solutions can be verified in polynomial work!
Wait for 15-451 and 15-453 for the gory details!
But usually there are approximation algorithms

I with bounds on the quality of results, and
I perform better in practice.
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SYNOPSIS

A real world problem: Gene sequencing.
The computational problem.
Algorithms:

I The Brute Force Algorithm
I Reducing SS to TSP
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PROBLEM REDUCTION

A reduction is a mapping from one problem (A)
to another problem (B), so that the solution B
problem can be used to solve A.

I Solving a set of linear equations, reduces to
inverting a matrix.

Map the instance of problem A to an instance of
B,
Solve using algorithms for B
Map the resulting solution back.

OVERVIEW – THE GENOME SEQUENCING PROBLEM 30/43

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



REDUCING SS TO TSP

THE (ASYMMETRIC) TRAVELING

SALESPERSON PROBLEM (TSP)
Given a weighted directed graph

find the shortest path that starts at vertex s, and
visits each vertex once, and
returns to s.

≡ Hamiltonian path with the lowest total sum of
weights
So, how is this related to SS?
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REDUCING SS TO TSP

If si is followed by sj in how much will the SS
length increase?

I si = tagg followed by sj = gga → tagga

General case?
I wi,j = |sj | − overlap(si , sj)
I overlap(”tagg”, ”gga”) = 2
I |”gga”| − 2 = 1
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REDUCING SS TO TSP

Build a graph D = (V ,A)

One vertex for each si and one for special “null”
node, Λ

A directed edge from si to sj has weight
wi ,j = |sj | − overlap(si , sj)

wΛ,i = |si | → no overlap, maximal increase
wi ,Λ = 0→, no overlap, no increase
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REDUCING SS TO TSP

S = {catt, tta, acat}

⋀ catt

ttaacat
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REDUCING SS TO TSP
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This tour ≡ cattacatta

Length 10
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This tour ≡ cattacat

Length 8
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REDUCING SS TO TSP

TSP considers all Hamiltonian paths (hence is
brute force)

TSP finds the minimum cost Hamiltonian path.
I Total cost is the length of the SS

TSP is also NP-hard.
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SYNOPSIS

A real world problem: Gene sequencing.
The computational problem.
Algorithms:

I The Brute Force Algorithm
I Reducing SS to TSP
I The Greedy Algorithm
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THE GREEDY TECHNIQUE

THE GREEDY TECHNIQUE
Given a sequence of steps to be made, at each
decision point

make a locally optimal decision
without ever backtracking on previous decisions.

Greedy is a quite general algorithmic paradigm.
In general, it does not get the best solution.

I But it does work for some other problems (e.g.,
Huffman Encoding, MST)
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THE GREEDY APPROXIMATION TO SS

Start with a pair of strings with maximal overlap
(Why?)
Continue with strings that adds the least
extension every time.

I This is the locally optimal decision!

I We already defined overlap(si , sj)
I join(si , sj) ≡ concatenate sj to si and remove

overlap.
F join(”tagg”, ”gga”) = ”tagga”
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THE GREEDY APPROXIMATION TO SS
GREEDYAPPROXSS

1 fun greedyApproxSS(S) =
2 if |S| = 1 then s0
3 else let
4 val O = {(overlap(si , sj), si , sj) : si ∈ S, sj ∈ S, si 6= sj}
5 val (o, si , sj) = maxval <#1 O
6 val sk = join(si , sj)
7 val S′ = ({sk} ∪ S)\{si , sj}
8 in
9 greedyApproxSS(S′)

10 end

S’ gets smaller by one string after each
recursion.
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THE GREEDY APPROXIMATION TO SS

GreedyApproxSS returns a string with length
within 3.5 times the shortest string.

Conjectured to return within a factor of 2.

Does much better in practice.
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THE GREEDY APPROXIMATION TO SS

Let’s do an example.
S = {catt,gagtat, tagg, tta,gga,}
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SUMMARY

Interfaces vs Implementations
I Precise interfaces are key.

The Shortest Superstring Problem
I The brute-force approach
I Reduction to TSP
I Approximate solution using greedy paradigm
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15-210
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LECTURE 2

ALGORITHMIC COST MODELS



SYNOPSIS

Cost Models
Parallelism
Scheduling
Cost Analysis for the Shortest Super String
Problem

I The Brute Force Algorithm
I The Greedy Algorithm
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COST MODELS

Sequential: the Random Access Machine
(RAM) model

Parallel: the Parallel RAM model

Parallel: the 15-210 model
I Tied to high-level programming constructs –

operational semantics
I Think parallel!
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15-210 COST MODEL

W (e): Work needed to evaluate e
S(e): Span of the evaluation of e

Parameterized with relevant problem size
measures.

Asymptotic Models
I How do algorithms scale to large problems!
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PARAMETERIZATION

We measure the size of representation of the
input.

Sorting: Number of items to sort
Map, Reduce: Number of items in the sequence
Graph Problems: Number of Nodes, Edges
Searching: Number of items in the database
Matrix operations: Number of rows and columns
Prime number testing: Size – number of bits to represent
the number (not the value!)
Computing nth Fibonacci number: Size – number of bits
to represent the number (not the value!)
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RULES OF COMPOSITION

(e1,e2): Sequential Composition
I Add work and span

e1||e2: Parallel Composition
I Add work but take the maximum span

e1

e2

Work Span e1 e2

Work

Span
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RULES OF COMPOSITION

e W(e) S(e)

c 1 1

op e 1 1

(e1,e2) 1 + W (e1) + W (e2) 1 + S(e1) + S(e2)

(e1||e2) 1 + W (e1) + W (e2) 1 + max(S(e1),S(e2))

let val x = e1 1 + W (e1)+ 1 + S(e1)+
in e2 end W (e2[Eval(e1)/x ]) S(e2[Eval(e1)/x ])

{f (x) | x ∈ A} 1 +
∑

x∈A W (f (x)) 1 + maxx∈A S(f (x))
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RULES OF COMPOSITION

{f (x) | x ∈ A} ≡ map f A

•W (map f 〈 s0, . . . , sn−1 〉) = 1 +
n−1∑

i=0

W (f (si))

•S(map f 〈 s0, . . . , sn−1 〉) = 1 +
n−1

max
i=0

S(f (si))
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UPPER AND LOWER BOUNDS

Upper bound: The maximum asymptotic work
(and span) that a given algorithm needs for all
inputs of size n.

Lower bound: The minimum asymptotic work
(and span) that any algorithm for a problem
needs for all inputs of size n.
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SYNOPSIS

Cost Models
Parallelism
Scheduling
Cost Analysis for the Shortest Super String
Problem

I The Brute Force Algorithm
I The Greedy Algorithm
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PARALLELISM

For a given W and S, what is the maximum
number of processors you can utilize?

• P =
W
S

Why?

Mergesort has W = θ(n log n) and S = θ(log2 n)
P = θ( n

log n)
I The larger the problem is, the higher the parallelism
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DESIGNING PARALLEL ALGORITHMS

Keep work as low as possible
I No unnecessary computation

Keep span as low as possible
I Hence get high-parallelism
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SYNOPSIS

Cost Models
Parallelism
Scheduling
Cost Analysis for the Shortest Super String
Problem

I The Brute Force Algorithm
I The Greedy Algorithm
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UNDER THE HOOD:
TASK SCHEDULING

Mapping from a computation graph to
processors
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GREEDY SCHEDULING

A greedy scheduler will schedule a ready task
on an available processor.
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A LOWER BOUND

Let Tp be the “time” needed when using p
processors,

max(
W
p
,S) ≤ Tp

Why?
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AN UPPER BOUND

With p processors

Tp <
W
p

+ S

Why?
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TYING THINGS TOGETHER

Speed-up is W
Tp

I Maximum possible speed-up is p.

Tp <
W
p

+ S

=
W
p

+
W
P

=
W
p

(
1 +

p
P

)

P� p → near perfect parallelism
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SYNOPSIS

Cost Models
Parallelism
Scheduling
Cost Analysis for the Shortest Super String
Problem

I The Brute Force Algorithm
I The Greedy Algorithm
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COSTS FOR THE BRUTE FORCE SS
ALGORITHM

The brute-force algorithm
I For each permutation

F Remove overlaps
F Stitch strings

I Output (one of) the shortest string(s)

overlap(si , sj) will be needed many times.
I Preprocess S once and store overlaps as a table

F What prefix to remove
F Increase in length
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PREPROCESSING – INPUTS

A set S is n strings, s1, s2, · · · , sn

Define

m =
n∑

i=1

|si |

and observe n ≤ m.
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PREPROCESSING A PAIR

sj

sisi ….

Overlap?
si          

sj

Overlap?

sj
….

si          
sj

Overlap?

Work and span for preprocessing one pair, si
and sj?

I W = O(|si | · |sj |) Why?
I S = O(log(|si |+ |sj |)) Why?
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PREPROCESSING – WORK

Wov ≤
n∑

i=1

n∑

j=1

W (overlap(si , sj))

=
n∑

i=1

n∑

j=1

O(|si ||sj |)

≤
n∑

i=1

n∑

j=1

(k1 + k2|si ||sj |)

=
n∑

i=1

n∑

j=1

k1 +
n∑

i=1

n∑

j=1

(k2|si ||sj |)

= k1n2 + k2

n∑

j=1

|sj |(
n∑

i=1

|si |) = k1n2 + k2m2 ∈ O(m2)
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PREPROCESSING – SPAN

All si , sj pairs can be processed in parallel.

Sov ≤
n

max
i=1

n
max
j=1

S(overlap(si , sj)))

∈ O(log m)
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BRUTE FORCE SS ALGORITHM

Work:
I O(n) lookups each with O(1) work. Why?
I n! permutations
I O(n · n!) = O((n + 1)!)
I Wov can be ignored!

Span:
I All permutations can be done in parallel, but!
func permutations S =

if |S| = 1 then {S}
else
{append([s], p) :

s in S, p in permutations(S\s)}
I This has span O(n). Why?
I Sov can be ignored.
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SYNOPSIS

Cost Models
Parallelism
Scheduling
Cost Analysis for the Shortest Super String
Problem

I The Brute Force Algorithm
I The Greedy Algorithm
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THE GREEDY SS ALGORITHM

1 fun greedyApproxSS(S) =
2 if |S| = 1 then s0
3 else let
4 val O = {(overlap(si , sj), si , sj) : si ∈ S, sj ∈ S, si 6= sj}
5 val (o, si , sj) = maxval <#1 O
6 val sk = join(si , sj)
7 val S′ = ({sk} ∪ S)\{si , sj}
8 in
9 greedyApproxSS(S′)

10 end
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THE GREEDY SS ALGORITHM

1 fun greedyApproxSS(S) =
2 if |S| = 1 then s0
3 else let
4 val O = {(overlap(si , sj), si , sj) : si ∈ S, sj ∈ S, si 6= sj}
5 val (o, si , sj) = maxval <#1 O
6 val sk = join(si , sj)
7 val S′ = ({sk} ∪ S)\{si , sj}
8 in
9 greedyApproxSS(S′)

10 end

Wov = O(m2), Sov = O(log m)
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THE GREEDY SS ALGORITHM

1 fun greedyApproxSS(S) =
2 if |S| = 1 then s0
3 else let
4 val O = {(overlap(si , sj), si , sj) : si ∈ S, sj ∈ S, si 6= sj}
5 val (o, si , sj) = maxval <#1 O
6 val sk = join(si , sj)
7 val S′ = ({sk} ∪ S)\{si , sj}
8 in
9 greedyApproxSS(S′)

10 end

Wmaxval = O(m2), Smaxval = O(log m)

Why?
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THE GREEDY SS ALGORITHM

1 fun greedyApproxSS(S) =
2 if |S| = 1 then s0
3 else let
4 val O = {(overlap(si , sj), si , sj) : si ∈ S, sj ∈ S, si 6= sj}
5 val (o, si , sj) = maxval <#1 O
6 val sk = join(si , sj)
7 val S′ = ({sk} ∪ S)\{si , sj}
8 in
9 greedyApproxSS(S′)

10 end

No more than W = O(m2), S = O(log m)

Why?
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THE GREEDY SS ALGORITHM
1 fun greedyApproxSS(S) =
2 if |S| = 1 then s0
3 else let
4 val O = {(overlap(si , sj), si , sj) : si ∈ S, sj ∈ S, si 6= sj}
5 val (o, si , sj) = maxval <#1 O
6 val sk = join(si , sj)
7 val S′ = ({sk} ∪ S)\{si , sj}
8 in
9 greedyApproxSS(S′)

10 end

At most n (sequential) calls to greedyApproxSS
I Each with W = O(m2), S = O(log m)

Wgreedy = O(nm2) and Sgreedy = O(n log m)
Why?
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SUMMARY

Cost Models: Rules of Composition
Parallelism and Scheduling
Cost Analysis for the Shortest Super String
Problem

I Preprocessing for overlaps
I The Brute Force Algorithm
I The Greedy Algorithm
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15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 3

ALGORITHMIC TECHNIQUES AND DIVIDE-AND-CONQUER



SYNOPSIS

Algorithmic Techniques
Divide-and-Conquer

I Analysis of Costs

The Maximum Contiguous Subsequence Sum
Problem
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ALGORITHMIC TECHNIQUES

Brute Force
I Try all possibilities
I Almost always intractable
I Useful for testing small cases
I Code usually easy to write

Reducing one problem to another
I Transform the structure or the instance of a problem.
I Shortest Superstring→ Traveling Salesperson

Problem
I Apply algorithms for the new problem
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INDUCTIVE TECHNIQUES

Solve one or more smaller problems to solve the
large problem.
Techniques differ on

I The number of subproblems
I How subproblem solutions are used

Divide-and-Conquer
Greedy
Contraction
Dynamic Programming
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DIVIDE-AND-CONQUER

Divide a problem of size n into k > 1 problems
I Sizes n1,n2, . . . ,nk

Solve each problem recursively.

Combine the subproblem solutions.
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GREEDY

Given a problem of size n

Remove one (or more) elements using a greedy
approach

I Smallest, two smallest, nearest, lowest, etc.

Solve the remaining smaller problem
I Usually smaller by 1 or 2 items.
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CONTRACTION

Given a problem of size n

Generate a significantly smaller (contracted)
instance

I e.g., of size n/2

Solve the smaller instance

Use the result to solve the original problem.

One recursive call instead of multiple!
ALGORITHMIC TECHNIQUES AND DIVIDE-AND-CONQUER 7/45

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



DYNAMIC PROGRAMMING

Like Divide-and-Conquer

Solutions to subproblems used multiple times!

Compute once and store, and then reuse.
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ADTS AND DATA STRUCTURES

Techniques rely on Abstract Data Types (for
functionality)

I and on data structures that implement them (for
costs)

Sequences, Sets, Tables, Priority Queues,
Graphs, Trees, . . .
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RANDOMIZATION

Introduce randomness at a choice point
I Quicksort: choose a pivot randomly

Testing for primality
I Miller-Rabin primality test
I 3/4 of numbers < n are “witnesses” to n’s

compositeness.
I Randomly choose 100 numbers < n
I P(Failing to find a witness) = 1− (1

4)
100

I P(n is prime) = 1− (1
4)

100 = 0.9999 . . . 9327 . . .
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SYNOPSIS

Algorithmic Techniques
Divide-and-Conquer

I Analysis of Costs

The Maximum Contiguous Subsequence Sum
Problem
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DIVIDE-AND-CONQUER

Very versatile.

Easy to implement.

Parallelizable

Code follows the structure of a proof.

Cost reasoning follows code structure.
I Recurrences
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STRENGTENING THE PROBLEM

Compute more than “superficially” needed.

No increase to work or span.

More efficient combine step.

At the end, this extra information can be
discarded.
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GENERAL STRUCTURE

Base case(s)
I When problem small enough, use a different

technique.
I For example, in quicksort, switch to insertion sort to

sort < 30 elements.
Inductive Step

I Divide into parts
F Sometimes quite simple: e.g., mergesort
F Sometimes a bit tricky: e.g., quicksort

I Solve subproblems (in parallel)
I Combine results

F Sometimes quite simple: e.g., quicksort
F Sometimes a bit tricky: e.g., mergesort

Costs can be in the divide or combine steps or
in both.
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GENERAL STRUCTURE

foo(n1)

foo(n2)

foo(nk)

DIVIDE COMBINE

foo(n)

W (n) = Wdivide(n) +
k∑

i=1

W (ni) + Wcombine(n)

S(n) = Sdivide(n) +
k

max
i=1

S(ni) + Scombine(n)
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SOLVING RECURRENCES

Tree method (Brick method)

Substitution method
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THE TREE METHOD

Expand recurrence into a tree structure.

Cost of level 0

Cost of level 1

Cost of level 2

Add/Max costs at levels.
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THE TREE METHOD

Solve W (n) = 2W (n/2) + O(n)

In general, solve

W (n) = 2W (n/2) + g(n)

where g(n) ∈ O(f (n))
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THE TREE METHOD

g(n) ∈ O(f (n))⇒ g(n) ≤ c · f (n)
I For some c > 0,N0 > 0 and n ≥ N0

g(n) ≤ k1 · f (n) + k2 for some k1, k2 and n ≥ 1
I e.g., k1 = c and k2 =

∑N0
i=1 |g(i)| (Why?)

Solve W (n) ≤ 2W (n/2) + k1 · n + k2
I f (n) = n in our case.
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THE TREE METHOD

Solving W (n) ≤ 2W (n/2) + k1 · n + k2

k1 n + k2

k1 (n/2) + k2 k1 (n/2) + k2

k1 (n/4) + k2 k1 (n/4) + k2 k1 (n/4) + k2 k1 (n/4) + k2

k1 n + k2

k1 n + 2 k2

k1 n + 4 k2

Questions:
I Number of levels in the tree?
I Problem size at level i?
I Cost for each node at level i?
I Number of nodes at level i?
I Total cost at level i?
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THE TREE METHOD

Total cost at level i is at most

2i ·
(

k1
n
2i + k2

)
= k1 · n + 2i · k2

Total cost over all levels is

W (n) ≤
log2 n∑

i=0

(
k1 · n + 2i · k2

)

= k1n(1 + log2 n) + k2(20 + 21 + · · ·+ 2log2n)

≤ k1n(1 + log2 n) + 2k2n (Why?)
∈ O(n log n)

ALGORITHMIC TECHNIQUES AND DIVIDE-AND-CONQUER 21/45

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



THE BRICK METHOD

Look at the cost structure at the levels of the
cost tree

I Leaves dominated

I Balanced

I Root dominated
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LEAVES-DOMINATED COST TREES

For some ρ > 1, for all levels i

costi+1 ≥ ρ · costi

++
++++
++++++

++++++++

Overall cost is O(costd) where d is the depth.
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BALANCED COST TREES

All levels have about the same cost

++++++++
++++++++
++++++++
++++++++

Overall cost is O(d ·maxi costi) where d is the
depth.
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ROOT-DOMINATED COST TREES

For some ρ < 1, for all levels i

costi+1 ≤ ρ · costi

++++++++
++++++
++++
++

Overall cost is O(cost0) where d is the depth.
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THE BRICK METHOD

What type of a cost tree is this?

k1 n + k2

k1 (n/2) + k2 k1 (n/2) + k2

k1 (n/4) + k2 k1 (n/4) + k2 k1 (n/4) + k2 k1 (n/4) + k2

k1 n + k2

k1 n + 2 k2

k1 n + 4 k2
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SYNOPSIS

Algorithmic Techniques
Divide-and-Conquer

I Analysis of Costs

The Maximum Contiguous Subsequence Sum
Problem
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THE MCSS PROBLEM

THE MAXIMUM CONTIGUOUS SUBSEQUENCE SUM PROBLEM

Given a sequence of numbers S = 〈s1, . . . , sn〉,
Find

mcss(S) = max
1≤i≤j≤n

{ j∑

k=i

sk

}

S = 〈0,−1,2,−1,4,−1,0〉, mcss(S) = 5
How many possible subsequences are there?
All positive numbers?
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BRUTE FORCE ALGORITHM

Compute the sum of all O(n2) possible
subsequences (in parallel)

I Use plus reduce
Subsequence (i , j) needs

I O(j − i) work (Why?)
I O(log(j − i)) span (Why?)

W (n) = 1 +
∑

1≤i≤j≤n

Wreduce(j − i) ≤ 1 + n2 ·Wreduce(n)

= 1 + n2 ·O(n) ∈ O(n3)

S(n) = 1 + max
1≤i≤j≤n

Sreduce(j − i) ≤ 1 + Sreduce(n) ∈ O(log n)
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BRUTE FORCE ALGORITHM

Compute maximum over all O(n2) sums
I Use max reduce
I Needs O(n2) work and O(log n) span
I Can be ignored (Why?)

Total costs for brute force are:
I O(n3) work
I O(log n) span
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DIVIDE-AND-CONQUER – I

〈—— L —— ‖ —— R —— 〉
⇓

L = 〈 · · · 〉︸ ︷︷ ︸
mcss=56

R = 〈 . . . 〉︸ ︷︷ ︸
mcss=17

Let’s solve S = 〈−2,−1,2,3,2,−2〉
Is this right?
How do we combine subproblem results?
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DIVIDE-AND-CONQUER – I

Recursion handles
I When mcss(S) subsequence is in the left.
I When mcss(S) subsequence is in the right.

What happens when mcss(S) spans across the
divide point?

L R

Largest Sum Suffix Largest Sum Prefix

Maximum sum across the divide
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DIVIDE-AND-CONQUER – I

1 fun mcss(s) =
2 case (showt s)
3 of EMPTY = −∞
4 | ELT(x) = x
5 | NODE(L,R) =
6 let val (mL,mR) = (mcss(L) ‖ mcss(R) )
7 val mA = bestAcross(L,R)
8 in max{mL,mR,mA}
9 end

W (n) = 2W (n/2) + O(n) (Why?) →W (n) ∈ O(n log n)

S(n) = S(n/2) + O(log n) (Why?) → S(n) ∈ O(log2 n)
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DIVIDE-AND-CONQUER – II
IMPORTANT QUESTIONS

Can we do better than O(n log n) work?

What part of the divide-and-conquer is the
bottleneck?

I Combine takes linear work? (Why?)

How can we improve?
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DIVIDE-AND-CONQUER – II

The answers lie here

L R

Largest Sum Suffix Largest Sum Prefix

Maximum sum across the divide

Strengthen the subproblems
I Compute additional information
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DIVIDE-AND-CONQUER – II

TotalL
mpsL mssL

mcssL

Left Subproblem

mps = maximum prefix sum mss = maximum suffix sum
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DIVIDE-AND-CONQUER – II

TotalL
mpsL mssL

mcssL

Left Subproblem

TotalR
mpsR mssR

mcssR

Right Subproblem
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DIVIDE-AND-CONQUER – II

TotalL
mpsL mssL

mcssL

Left Subproblem

TotalR
mpsR mssR

mcssR

Right Subproblem

Total
mcss

mps mss
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DIVIDE-AND-CONQUER – II

TotalL
mpsL mssL

mcssL

Left Subproblem

TotalR
mpsR mssR

mcssR

Right Subproblem

Total
mcss

mps mss

Total TotalL TotalR= + 

mcss = max ( mcssL mcssR, , mssL mpsR+ ) 

mps = max ( mpsL , TotalL + mpsR ) 

mss = max ( mssL + TotalR , mssR ) 
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DIVIDE-AND-CONQUER – II

1 fun mcss(a) =
2 let
3 fun mcss’(a)
4 case (showt a)
5 of EMPTY = (−∞,−∞,−∞,0)
6 | ELT(x) = (x , x , x , x)
7 | NODE(L,R) =
8 let
9 val ((m1,p1, s1, t1), (m2,p2, s2, t2)) = (mcss(L) ‖ mcss(R) )

10 in
11 (max(s1 + p2,m1,m2), max(p1, t1 + p2), max(s1 + t2, s2), t1 + t2)
12 end
13 val (m,p, s, t) = mcss′(a)
14 in m end
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COST ANALYSIS
1 fun mcss(a) =
2 let
3 fun mcss’(a)
4 case (showt a)
5 of EMPTY = (−∞,−∞,−∞,0)
6 | ELT(x) = (x , x , x , x)
7 | NODE(L,R) =
8 let
9 val ((m1,p1, s1, t1), (m2,p2, s2, t2)) = (mcss(L) ‖ mcss(R) )

10 in
11 (max(s1 + p2,m1,m2), max(p1, t1 + p2), max(s1 + t2, s2), t1 + t2)
12 end
13 val (m,p, s, t) = mcss′(a)
14 in m end

Assuming showt has O(log n) work and span.
I W (n) = 2W (n/2) + O(log n)
I S(n) = S(n/2) + O(log n)
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COST ANALYSIS

W (n) = 2W (n/2) + O(log n)

k1 log n

k1 log (n/2) k1 log (n/2)

k1 log (n/4) k1 log (n/4) k1 log (n/4) k1 log (n/4)

k1 log n

k1 2 log (n/2)

k1 4 log (n/4)

W (n) ≤∑log n
i=0 k12i log(n/2i)
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SUBSTITUTION METHOD

Solve W (n) ≤ 2W (n/2) + k · log n
I k > 0

I W (n) ≤ k for n ≤ 1

Guess W (n) ≤ κ1n − κ2 log n − κ3

I Need to find κ1, κ2, and κ3.

Base case: W (1) ≤ k ⇒ κ1 − κ3 ≤ k
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SUBSTITUTION METHOD

Inductive Step

W (n) ≤ 2W (
n
2
) + k · log n

≤ 2(κ1
n
2
− κ2 log(

n
2
)− κ3) + k · log n

= κ1n − 2κ2(log n − 1)− 2κ3 + k · log n
= (κ1n − κ2 log n − κ3) + (k log n − κ2 log n + 2κ2 − κ3)

≤ κ1n − κ2 log n − κ3

Choose κ2 = k and 2κ2 − κ3 ≤ 0 (Why?)

For example, κ2 = k , κ1 = 3k , κ3 = 2k satisfies the
constraints.
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SUMMARY

Algorithmic Paradigms
Divide-and-Conquer

I General Form
I Cost Analysis
I Tree and Brick Methods
I Substitution Method

Maximum Contiguous Subsequence Problem
I Brute Force
I Divide-and-Conquer
I Divide-and-Conquer with Subproblem Strengthening
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15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 4

DIVIDE-AND-CONQUER CONTINUED



SYNOPSIS

The Euclidian Travelling Salesperson Problem
Divide-and-Conquer Heuristic Algorithm
Analysis of Costs
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THE EUCLIDIAN TSP

Given a set of points in a n-dimensional
Euclidian space.

I What is a Euclidian space?

Find the shortest Hamiltonian cycle.
I What is a Hamiltonian cycle?

We get a planar Euclidian Traveling Salesperson
Problem when the points are in 2-dimensional
space.
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THE PLANAR TSP
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SYNOPSIS

The Euclidian Travelling Salesperson Problem
Divide-and-Conquer Heuristic Algorithm
Analysis of Costs
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A DIVIDE-AND-CONQUER HEURISTIC

What is a heuristic?

Approximation algorithm
I Resulting tour length is guaranteed to be close to the

actual minimum tour length
I If you spend enough work (but polynomial).

The Divide-and-Conquer does work both before
and after the recursive calls.
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A DIVIDE-AND-CONQUER HEURISTIC

+
Pl Pr

?
Assume P` and Pr have tour lengths T` and Tr .
Tour length for the combination?
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A DIVIDE-AND-CONQUER HEURISTIC

+
Pl Pr

el er
ul

ur

vl vr

T`+Tr +‖u` − ur‖+ ‖v` − vr‖︸ ︷︷ ︸
Add these

−‖u` − v`‖ − ‖ur − vr‖︸ ︷︷ ︸
Subtract these
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A DIVIDE-AND-CONQUER HEURISTIC

+
Pl Pr

el er

ul

ur

vl vr

T`+Tr +‖u` − vr‖+ ‖v` − ur‖︸ ︷︷ ︸
Add these

−‖u` − v`‖ − ‖ur − vr‖︸ ︷︷ ︸
Subtract these
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A DIVIDE-AND-CONQUER HEURISTIC

Try all pairs of edges e` from P` and er from Pr

I How many pairs are there?

For each pair of edges, find the smallest
increase.

Then combine the small tours into a large tour.
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A DIVIDE-AND-CONQUER HEURISTIC

1 fun eTSP(P) =
2 case (|P|)
3 of 0,1 ⇒ raise TooSmall
4 | 2 ⇒ {(P[0],P[1]), (P[1],P[0])}
5 | n ⇒ let
6 val (P`,Pr ) = splitLongestDim(P)
7 val (L,R) = (eTSP(P`) ‖ eTSP(Pr ) )
8 val (c, (e′`,e

′
r )) =

9 minval <#1 {(swapCost(e`,er ), (e`,er )) :
10 e` ∈ L,er ∈ R}
11 in
12 swapEdges(append(L,R),e′`,e

′
r )

13 end
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A DIVIDE-AND-CONQUER HEURISTIC

1 fun eTSP(P) =
2 case (|P|)
3 of 0,1 ⇒ raise TooSmall
4 | 2 ⇒ {(P[0],P[1]), (P[1],P[0])}
5 | n ⇒ let
6 val (P`,Pr ) = splitLongestDim(P)
7 val (L,R) = (eTSP(P`) ‖ eTSP(Pr ) )
8 val (c, (e′`,e

′
r )) =

9 minval <#1 {(swapCost(e`,er ), (e`,er )) :
10 e` ∈ L,er ∈ R}
11 in
12 swapEdges(append(L,R),e′`,e

′
r )

13 end
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SPLITTING THE POINTS

x-spread

y-spread

Split at the median along the longer spread
dimension.
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SWAP COST

Given e` = (u`, v`) ∈ L and er = (ur , vr) ∈ R

swapCost((u`, v`), (ur , vr )) = Cost Added−Cost Removed

Cost Added = min(‖u` − ur‖+ ‖v` − vr‖ ,
‖u` − vr‖+ ‖v` − ur‖)

Cost Removed = ‖u` − v`‖+ ‖ur − vr‖

+
Pl Pr

el er
ul

ur

vl vr
+

Pl Pr
el er

ul

ur

vl vr
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SWAPPING EDGES

swapEdges(append(L,R),e’`,e’r)

Appends the Tour edge lists from subproblems
Then removes and adds appropriate edges.
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SYNOPSIS

The Euclidian Travelling Salesperson Problem
Divide-and-Conquer Heuristic Algorithm
Analysis of Costs
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COST ANALYSIS

1 fun eTSP(P) =

2 case (|P|)
3 of 0, 1 ⇒ raise TooSmall
4 | 2 ⇒ {(P[0],P[1]), (P[1],P[0])}
5 | n ⇒ let
6 val (P`,Pr ) = splitLongestDim(P) O(n) work O(log n) span (Why?)
7 val (L,R) = (eTSP(P`) ‖ eTSP(Pr ) ) 2W (n/2) work S(n/2) span
8 val (c, (e′`, e

′
r )) =

9 minval <#1 {(swapCost(e`, er ), (e`, er )) :

10 e` ∈ L, er ∈ R} O(n2) work O(log n) span (Why?)
11 in
12 swapEdges(append(L,R), e′`, e

′
r ) O(log n) span (Why?)

13 end

DIVIDE-AND-CONQUER CONTINUED 17/20

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



COST ANALYSIS

W (n) = 2W (n/2) + O(n2)

S(n) = S(n/2) + O(log n)

S(n) ∈ O(log2 n)
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COST ANALYSIS

Solve (directly)

W (n) = 2W (n/2) + k · n1+ε

for constant ε > 0.
I Depth is log2 n (Is this technically right?)
I At level i , we have 2i nodes each costing k · (n/2i)1+ε

W (n) =

log n∑

i=0

k · 2i ·
( n

2i

)1+ε

= k · n1+ε ·
log n∑

i=0

2−i·ε

≤ k · n1+ε ·
∞∑

i=0

2−i·ε

W (n) ∈ O(n1+ε)( Why?)
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SUMMARY

Euclidian Traveling Salesperson Problem
I Divide-and-Conquer Heuristic
I Processing before and after the subproblem

solutions.

Cost Analysis

DIVIDE-AND-CONQUER CONTINUED 20/20

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 5

DATA ABSTRACTION AND SEQUENCES



SYNOPSIS

Abstractions and Implementations
I Meldable Priority Queues

The Sequence ADT
The scan operation
Introduction to contraction

DATA ABSTRACTION AND SEQUENCES 2/35

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



ABSTRACTIONS AND
IMPLEMENTATIONS

Abstraction Implementation

Functions Problem Algorithm
Data Abstract Data Type Data Structure
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MELDABLE PRIORITY QUEUES

Priority Queues
I Insert an item – insert
I Return and delete the item with the minimum priority

– deleteMin

Meldable Priority Queue
I Join two priority queues into one – meld
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MELDABLE PRIORITY QUEUES

S is a totally ordered set (integers, strings, reals,
. . . ).
T is a type representing subsets of S.

empty : T = {}

insert(S,e) : T× S→ T = S ∪ {e}

deleteMin(S) :
T→ T×

(S ∪ {⊥}) =

{
(S,⊥) S = {}
(S \ {min S},min S) otherwise

meld(S1,S2) : T× T→ T = S1 ∪ S2
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MPQ DEFINITION IN SML

signature MPQ
sig

struct S : ORD
type t
val empty : t
val insert : t * S.t -> t
val deleteMin : t -> t * S.t option
val meld : t * t -> t

end

No semantics, only the types.
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MPQ: COST SPECIFICATIONS

Implementation 1:

Operation Work
insert(S,e) O(|S|)

deleteMin(S) O(1)

meld(S1,S2) O(|S1|+ |S2|)
What is the underlying data structure? Sorted
Array
meld is actually an array merge.
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MPQ: COST SPECIFICATIONS

Implementation 2:

Operation Work
insert(S,e) O(log |S|)

deleteMin(S) O(log |S|)

meld(S1,S2) O(|S1|+ |S2|)
What is the underlying data structure? Heaps
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MPQ: COST SPECIFICATIONS

Implementation 3:

Operation Work
insert(S,e) O(log |S|)

deleteMin(S) O(log |S|)

meld(S1,S2) O(log(|S1|+ |S2|))
Later!
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ABSTRACTIONS AND
IMPLEMENTATIONS

The Abstract Data Type
I Functionality
I Correctness

The Cost Specification
I Multiple Cost Specifications
I We only need these to do cost analysis.

Underlying Data Structure
I Multiple Data Structures
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THE SEQUENCE ADT - SOME BASICS

A relation is a set of ordered pairs.
I First from set A, second from set B

A relation ρ ⊆ A× B.
A function is a relation ρ, where for every a ∈ A
there is only one b such that (a,b) ∈ ρ.
A sequence is a function where
A = {0, . . . ,n − 1} for some n ∈ N.
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THE SEQUENCE ADT –
FUNCTIONALITY

A sequence is a type Sα representing functions
from {0, . . . ,n − 1} to α.

empty : Sα = {}
length(A) : Sα → N = |A|
singleton(v) : α→ Sα = {(0, v)}
nth(A, i) : Sα → α = A(i)
map(f ,A) : (α→ β)× Sα → Sβ = {(i , f (v)) : (i , v) ∈ A}
tabulate(f ,n) : (N→ α)× N→ Sα = {(i , f (i)) : i ∈ {0, . . . ,n − 1}}
take(A,n) : Sα × N→ Sα = {(i , v) ∈ A | i < n}
drop(A,n) : Sα × N→ Sα = {(i − n, v) : (i , v) ∈ A | i ≥ n}
append(A,B) : Sα × Sα → Sα = A ∪ {(i + |A|, v) : (i , v) ∈ B}
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THE SEQUENCE ADT – COST SPECS

ArraySequence
Work Span

length(T ) O (1) O (1)

nth(T ) O (1) O (1)

append(S1,S2) O (|S1|+ |S2|) O (1)
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THE SEQUENCE ADT – COST SPECS

ArraySequence
Work Span

tabulate f n O

(
n∑

i=0

W (f (i))

)
O
(

n
max

i=0
S(f (i))

)

map f S O

(∑

s∈S

W (f (s))

)
O
(

max
s∈S

S(f (s))
)
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THE SEQUENCE ADT – COST
SPECIFICATIONS

TreeSequence
Work Span

length(T ) O (1) O (1)

nth(T ) O (log n) O (log n)

append(S1,S2) O (log(|S1|+ |S2|)) O (log(|S1|+ |S2|))
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THE SEQUENCE ADT – COST
SPECIFICATIONS

TreeSequence
Work Span

tabulate f n O

(
n∑

i=0

W (f (i))

)
O
(

log n +
n

max
i=0

S(f (i))
)

map f S O

(∑

s∈S

W (f (s))

)
O
(

log |S|+ max
s∈S

S(f (s))
)
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SOME NOTATIONAL CONVENTIONS

Si The i th element of sequence S
|S| The length of sequence S
〈 〉 The empty sequence
〈 v 〉 A sequence with a single element v
〈 i , . . . , j 〉 A sequence of integers starting at i and

ending at j ≥ i .
〈e : p ∈ S 〉 Map the expression e to each element p of

sequence S.
The same as “map (fn p ⇒ e) S” in ML.

〈p ∈ S | e 〉 Filter out the elements p in S that satisfy the
predicate e.
The same as “filter (fn p ⇒ e) S” in ML.

More examples are given in the “Syntax and
Costs” document.
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THE SCAN OPERATION

Related to reduce.

scan f I S : (α× α→ α)→ α→ α seq

→ (α seq× α)
I is the identity value
f is an (associative) function
S is a sequence
Produces 〈 I, f (I,S0), f (f (I,S0),S1), . . . 〉 and
reduce f I S

I scan+ 0 〈2,1,4,6 〉 = (〈0,2,3,7 〉 ,13)
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THE SCAN OPERATION

scan computes prefix sums.
1 fun scan f I S =
2 (〈reduce f I (take(S, i)) : i ∈ 〈0, . . .n − 1 〉 〉 ,
3 reduce f I S)

S has n elements
Apply reduce to each prefix of S of i elements,
0 ≤ i ≤ n − 1

I Gives you the α seq part
Apply reduce to S

I Gives you the α part

So you get (α seq→ α)
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THE SCAN OPERATION

scan + 0 〈2,1,3 〉 = (〈 reduce + 0 〈 〉 ,
reduce + 0 〈2 〉 ,
reduce + 0 〈2,1 〉 〉
reduce + 0 〈2,1,3 〉)

= (〈0,2,3 〉 ,6)

This is obviously not efficient!
We will see how to do this with

W (scan f I S) = O(|S|)
S(scan f I S) = O(log |S|)
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THE INCLUSIVE SCAN OPERATION

reduce all prefixes ending at position i ,
0 ≤ i ≤ n − 1

scanI + 0 〈2,1,3 〉 = 〈2,3,6 〉
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USING SCAN IN THE MCSS PROB.

THE MAXIMUM CONTIGUOUS SUBSEQUENCE SUM PROBLEM

Given a sequence of numbers S = 〈s1, . . . , sn〉,
Find

mcss(S) = max
1≤i≤j≤n

{ j∑

k=i

sk

}

S = 〈0,−1,2,−1,4,−1,0〉, mcss(S) = 5
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USING SCAN IN THE MCSS PROB.

Consider S = 〈1,−2,3,−1,2,−3 〉

Let X = scanI + 0 S = 〈1,−1,2,1,3,0 〉

What is Xj − Xi for j > i?
I
∑j

k=i+1 Sk
I X4 − X0 = 3− 1 = 2
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USING SCAN IN THE MCSS PROB.

Define Rj as the maximum sum that starts at
some i and ends at j > i .

Rj =
j

max
i=0

j∑

k=i

Sk

=
j

max
i=0

(Xj − Xi−1)

= Xj +
j

max
i=0

(−Xi−1)

= Xj +
j−1

max
i=0

(−Xi) = Xj −
j−1
min
i=0

Xi (Why?)
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USING SCAN IN THE MCSS PROB.

Rj = Xj −
j−1
min
i=0

Xi

You need Xj and the minimum previous Xi , i < j
I can be done by a minimum scan

(M, ) = scan min 0 X = (〈0,0,−1,−1,−1,−1 〉 ,−1)

R = 〈Xj −Mj : 0 ≤ j < |S| 〉 = 〈1,−1,3,2,4,1 〉
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LET’S RECAP

Given S = 〈1,−2,3,−1,2,−3 〉
We computed X with a + scanI.

I X = 〈1,−1,2,1,3,0 〉
We computed M with a min scan

I M = 〈0,0,−1,−1,−1,−1 〉
We computed R = 〈Xj −Mj : 0 ≤ j < |S| 〉

I R = 〈1,−1,3,2,4,1 〉
A final max reduce on R gives us the MCSS, 4.
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USING SCAN IN THE MCSS PROB.

1 fun MCSS(S) =
2 let
3 val X = scanI + 0 S
4 val (M, ) = scan min 0 X
5 in
6 max 〈Xj −Mj : 0 ≤ j < |S| 〉
7 end

Work? O(n)
Span? O(log n)
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COPY SCAN

Scan can also be used to pass information
along a sequence.

〈NONE, SOME(7), NONE, NONE, SOME(3), NONE 〉
↓

〈NONE, NONE, SOME(7), SOME(7), SOME(7), SOME(3) 〉

Each element receives the nearest previous
SOME() value.
Easy to do sequentially with iter.
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COPY SCAN

Can we do this with scan?
f : α option × α option→ α option

1 fun copy(a,b) =
2 case b of
3 SOME( )⇒ b
4 | NONE⇒ a

Passes its right argument if it is SOME, else
passes its left argument.
How do you show copy is associative.
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IMPLEMENTING SCAN –
CONTRACTION

scan looks inherently sequential.
I Naive implementation needs O(n2) work.
I Slightly clever sequential implementation needs

O(n) work.
I Divide an Conquer approaches do not break the

sequentiality. (Why?)
Contraction

1 Construct a much smaller instance of the problem
2 Solve the smaller instance recursively
3 Construct solution to the original instance.
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IMPLEMENTING REDUCE WITH
CONTRACTION

Given 〈2,1,3,2,2,5,4,1 〉
Apply + pairwise and (in parallel) to get
〈3,5,7,5 〉

I This is the contracted instance!

Apply + pairwise to get 〈8,12 〉
Finally apply + pairwise to get 〈20 〉
The 3rd step of the contraction does nothing in
this case.
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IMPLEMENTING SCAN WITH
CONTRACTION

Given S = 〈2,1,3,2,2,5,4,1 〉
I scan + 0 S = (〈0,2,3,6,8,10,15,19 〉 ,20)

First do pairwise + on S to get 〈3,5,7,5 〉
Now (recursively) do scan on this to get
(〈0,3,8,15 〉 ,20)

I What is the relation to the final scan?

We have every other element of the final scan!
How do we fill in the rest?

DATA ABSTRACTION AND SEQUENCES 32/35

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



IMPLEMENTING SCAN WITH
CONTRACTION

Input = h2, 1, 3, 2, 2, 5, 4, 1i

Partial Output = (h0, 3, 8, 15i, 20)

Desired Output = (h0, 2, 3, 6, 8, 10, 15, 19i, 20)

+ + + +
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IMPLEMENTING SCAN WITH
CONTRACTION

1 % implements: the Scan problem on sequences that have a power of 2 length
2 fun scanPow2 f i s =

3 case |s| of
4 0⇒ (〈〉, i)
5 | 1⇒ (〈i〉, s[0])
6 | n⇒
7 let
8 val s′ = 〈f (s[2i], s[2i + 1]) : 0 ≤ i < n/2〉
9 val (r , t) = scanPow2 f i s′

10 in

11 (〈pi : 0 ≤ i < n〉, t), where pi =

{
r [i/2] if even(i)
f (r [i/2], s[i − 1]) otherwise.

12 end

General case is in the course notes.
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SUMMARY

Abstractions and Implementations
I Meldable Priority Queues

The Sequence ADT
The scan operation
Introduction to contraction
Implementing scan with contraction.
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15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 6

SEQUENCES - II



SYNOPSIS

The reduce operation
Implementing divide and conquer with reduce

I Implementing MCSS with reduce

Analyzing cost of higher order functions
I Cost analysis for reduce
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THE REDUCE OPERATION

reduce f I S : (α× α→ α)→ α

→ α seq→ α

When f is associative, reduce returns sum with
respect to f .
Same result as iter f I S

I iter is sequential and allows more general f (e.g.,
β × α→ β

If f is not associative, reduce and iter results
may differ.
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THE REDUCE OPERATION

Specific combination based on a perfect binary
tree.

x0 x1 x2 x3 x4 x5         

= combine     = "dummy" elements

x0 x1 x2 x3 x4 x5
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DIVIDE AND CONQUER WITH
REDUCE

Many divide and conquer have the following
structure

1 fun myDandC(S) =
2 case showt(S) of
3 EMPTY⇒ emptyVal

4 | ELT(v)⇒ base (v)
5 | NODE(L, R)⇒ let
6 val (L′,R′) = (myDandC(L) ‖ myDandC(R) )
7 in
8 someMessyCombine (L′,R′)
9 end

This corresponds to a binary tree combination
scheme.
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DIVIDE AND CONQUER WITH
REDUCE

someMessyCombine

base base base base

someMessyCombine

someMessyCombine
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DIVIDE AND CONQUER WITH
REDUCE

1 fun myDandC(S) =
2 case showt(S) of
3 EMPTY⇒ emptyVal

4 | ELT(v)⇒ base (v)
5 | NODE(L, R)⇒ let
6 val (L′,R′) = (myDandC(L) ‖ myDandC(R) )
7 in
8 someMessyCombine (L′,R′)
9 end

↓

reduce someMessyCombine emptyVal (map base S)
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MCSS USING REDUCE

mcss(s) = max
1≤i≤j≤n

{ j∑

k=i

sk

}

TotalL
mpsL mssL

mcssL

Left Subproblem

TotalR
mpsR mssR

mcssR

Right Subproblem

Total
mcss

mps mss

Total TotalL TotalR= + 

mcss = max ( mcssL mcssR, , mssL mpsR+ ) 

mps = max ( mpsL , TotalL + mpsR ) 

mss = max ( mssL + TotalR , mssR ) 
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MCSS USING REDUCE

mcss(s) = max
1≤i≤j≤n

{ j∑

k=i

sk

}

fun combine((ML,PL,SL,TL), (MR,PR,SR,TR)) =
(max(SL + PR,ML,MR), max(PL,TL + PR),

max(SR,SL + TR), TL + TR)

fun base(v) = (v , v , v , v)

val emptyVal = (−∞,−∞,−∞,0)

fun mcss(S) =
reduce combine emptyVal (map base S)
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SOME OBSERVATIONS

Which code to use is a matter of taste
I reduce version is shorter
I Divide and Conquer version exposes the inductive

structure.
reduce version not applicable when split is
complicated

I e.g., in Quicksort
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SCAN VIA REDUCE

How do we implement the divide and conquer
scan with this template?

I scan f I S ≡
reduce combine emptyVal (map base S)

emptyVal=? (〈 〉 , I)
fun base(v) =? (〈 I 〉 , f (I, v))
fun combine =?

fun combine((S1,T1), (S2,T2)) =
append(S1, (map (fn x ⇒ f (x ,T1)) S2), f (T1,T2))

I Is this right?

fun combine((S1,T1), (S2,T2)) =
(append(S1, (map (fn x ⇒ f (T1, x)) S2), f (T1,T2))
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COST OF HIGHER ORDER
FUNCTIONS

We assume that f runs in O(1) work and span.
I ⇒ reduce has O(n) work and O(log n) span

Easy for map and tabulate

W (map f S) = 1 +
∑

s∈S

W (f (s))

S(map f S) = 1 + max
s∈S

S(f (s))

How about reduce?
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MERGESORT VIA REDUCE

Remember the reduce template for divide and
conquer?

reduce combine emptyVal (map base S)

val combine = merge<

val base = singleton

val emptyVal = empty()

fun reduceSort(S) =

reduce combine emptyVal (map base S)
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COST OF REDUCESORT

merge< is an associative function with costs:

W (merge<(S1,S2)) = O(n1 + n2)

S(merge<(S1,S2)) = O(log(n1 + n2))

f has no longer O(1) work and span.
What is the cost of reduceSort.
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COST OF REDUCESORT

For costs, reduction sequence matters!
Sequential order
On input x = 〈 x0, x1, . . . , xn−1 〉, we get

merge<(. . . merge<(merge<(merge<(I, 〈 x0 〉), 〈 x1 〉), 〈 x2 〉), . . . )

Left arg. has length 0 through n − 1
Right arg. always has length 1.
Work:

W (reduceSort S) ≤
n−1∑

i=0

c · (1 + i) ∈ O(n2) Why?
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MERGESORT WITH REDUCE

Equivalent to iter version
fun reduceSort’(S) =
iter merge< (emptyVal (map base S)

Works really as an Insertion Sort.
I Inserts each element into a sorted prefix!

No parallelism except in merge

S(reduceSort S) ≤
n−1∑

i=0

c · log(1 + i) ∈ O(n log n)
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MERGESORT WITH REDUCE

The reduction tree is very unbalanced!
Suppose n = 2k and merge tree is as follows

x0 x1 x2 x3 x4 x5 x6 x7

= merge
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MERGESORT WITH REDUCE

x0 x1 x2 x3 x4 x5 x6 x7

= merge

n nodes at constant cost at each leaf (i = log2 n)
n/2 nodes one level up, each costing c(1 + 1)
(i = log2

n
2) (Why?)

In general, for level i , we have 2i nodes merging
two sequences each length n

2i+1
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MERGESORT WITH REDUCE

x0 x1 x2 x3 x4 x5 x6 x7

= merge

For level i , we have 2i nodes merging two
sequences each length n

2i+1

W (reduceSort x) ≤
log n∑

i=0

2i · c
( n

2i+1 +
n

2i+1

)

=

log n∑

i=0

2i · c
( n

2i

)
∈ O(n log n)
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MERGESORT WITH REDUCE

x0 x1 x2 x3 x4 x5 x6 x7

= merge

W (reduceSortS) ∈ O(n log n)⇒
mergeSort.
mergeSort and insertionSort are special
cases of reduceSort using different reduction
orders.
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REDUCE ORDER

Result of reduce depends on the order when f
is not associative
When f is associative, different orders result in
different costs.
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15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 7

COLLECT, SETS AND TABLES



SYNOPSIS

The collect operation
The map-collect-reduce paradigm
Sets
Tables
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THE COLLECT OPERATION

Group items that share a common key.

val Data = 〈(“jack sprat”, “15-210”),
(“jack sprat”, “15-213”),
(“mary contrary”, “15-210”),
(“mary contrary”, “15-251”),
(“mary contrary”, “15-213”),
(“peter piper”, “15-150”),
(“peter piper”, “15-251”),
. . .〉

↓

val rosters = 〈(“15-150”, 〈 “peter piper”, . . . 〉)
(“15-210”, 〈 “jack sprat”, “mary contrary”, . . . 〉)
(“15-213”, 〈 “jack sprat”, . . . 〉)
(“15-251”, 〈 “mary contrary”, “peter piper” 〉)
. . .〉
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THE COLLECT OPERATION

Very common operation in Relational Databases
Usually called the Group by operation.

val rosters = 〈(“15-150”, 〈 “peter piper”, . . . 〉)
(“15-210”, 〈 “jack sprat”, “mary contrary”, . . . 〉)
(“15-213”, 〈 “jack sprat”, . . . 〉)
(“15-251”, 〈 “mary contrary”, “peter piper” 〉)
. . .〉

Students are grouped by Course Numbers.
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THE COLLECT OPERATION

collect : (α× α→ order)→ (α× β) seq

→ (α× β seq) seq

1 α× α→ order is a function for comparing keys
of type α

2 (α× β) seq is a sequence of key-value pairs
3 (α× β seq) seq is the resulting sequence:

I each unique α value is paired with a sequence of all
β values it appears with
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THE COLLECT OPERATION

val collectStrings = collect String.compare

val rosters = collectStrings(〈 (n, c) : (c,n) ∈ Data 〉)

val rosters = 〈(“15-150”, 〈 “peter piper”, . . . 〉)
(“15-210”, 〈 “jack sprat”, “mary contrary”, . . . 〉)
(“15-213”, 〈 “jack sprat”, . . . 〉)
(“15-251”, 〈 “mary contrary”, “peter piper” 〉)
. . .〉

〈 (n, c) : (c,n) ∈ Data 〉 arranges the data
appropriately.
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THE COLLECT OPERATION

How would you implement collect?
I Sort the items on their keys
I Partition the resulting sequence
I Pull out pairs between each key change
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THE COLLECT OPERATION

The dominant cost of collect is in sorting.
Work is O(Wcn log n), Span is O(Sc log2 n)

I Wc work bound for the comparison function
I Sc span bound for the comparison function

A O(n) work can be implemented with hashing.
I Need a separate hash function
I Output not in sorted order
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USING COLLECT IN MAP-REDUCE

The map-reduce paradigm is used to process
very large collection of documents.

I A document is a collection of words/strings.

I Not the mapReduce of 15-150!

map-reduce paradigm ≡ map-collect-reduce(s).

COLLECT, SETS AND TABLES 9/33

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



USING COLLECT IN MAP-REDUCE

fm maps each document to a sequence of
key-value pairs.

I fm : (document → (key × α) seq)

All key-value pairs in a document are collected.

fr is applied to the keys to get a single value for
a key.

I fr : key × α seq → β
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AN EXAMPLE

docs = 〈“this is a document”,
“this is is another document”,
“a last document”〉

↓
〈(“this”,1), (“is”,1), (“a”,1), (“document”,1),
(“this”,1), (“is”,1), (“is”,1)(“a”,1), (“another”,1),
(“document”,1), (“a”,1), (“last”,1), (“document”,1)〉

↓
〈(“a”,2), (“another”,1), (“document”,3), (“is”,3), (“last”,1),
(“this”,2)〉
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MAPREDUCE IN SML

1 fun mapCollectReduce fm fr docs =
2 let
3 val pairs = flatten 〈 fm(s) : s ∈ docs 〉
4 val groups = collect String.compare pairs
5 in
6 〈 fr(g) : g ∈ groups 〉
7 end

flatten 〈 〈a,b, c 〉 , 〈d ,e 〉 〉 ⇒ 〈 a,b, c,d ,e 〉
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MAPREDUCE IN SML

1 fun mapCollectReduce fm fr docs =
2 let
3 val pairs = flatten 〈 fm(s) : s ∈ docs 〉
4 val groups = collect String.compare pairs
5 in
6 〈 fr(g) : g ∈ groups 〉
7 end

fun fm(doc) = 〈 (w ,1) : tokens doc 〉
fun fr(w , s) = (w ,reduce + 0 s)
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MAPREDUCE EXAMPLE IN SML

fun fm(doc) = 〈 (w ,1) : tokens doc 〉
fun fr(w , s) = (w ,reduce + 0 s)

val countWords = mapCollectReduce fm fr

countWords 〈“this is a document”,
“this is is another document”,
“a last document”〉

⇒ 〈(“a”, 2), (“another”, 1), (“document”, 3), (“is”, 3),
(“last”, 1), (“this”, 2)〉
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SETS

Sets play a very important role in math.
Often needed in many algorithms.
Many languages either support sets directly or
have libraries for sets.
In 15-210 we use a purely functional definition
for sets:

I When updates are done, a new set is returned.
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SETS AS AN ADT

U is a universe of elements.
The SET ADT is a type S that represents the
power set of U.

empty : S = ∅
size(S) : S→ Z≥0 = |S|
singleton(e) : U→ S = {e}
filter(f ,S) : ((U→ {T,F}) = {s ∈ S | f (s)}

×S)→ S
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SETS AS AN ADT

find(S,e) : S× U = |{s ∈ S | s = e}| = 1
→ {T,F}

insert(S,e) : S× U→ S = S ∪ {e}
delete(S,e) : S× U→ S = S \ {e}

intersection(S1,S2) : S× S→ S = S1 ∩ S2
union(S1,S2) : S× S→ S = S1 ∪ S2
difference(S1,S2) : S× S→ S = S1 \ S2

What is the relationship between these two
groups?
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SETS AS AN ADT

We do not really need find, insert, delete!

find(S,e) = size(intersection(S,singleton(e))) = 1
insert(S,e) = union(S,singleton(e))
delete(S,e) = difference(S,singleton(e))

intersection, union, and difference
I can operate on multiple elements, and
I are suitable for parallelism
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COST MODEL FOR SETS

Underlying data structure can be
I hash-tables
I balanced trees

We will assume a balanced-tree implementation.
We will assume comparison of two set elements
take

I Wc work and Sc span.

COLLECT, SETS AND TABLES 19/33

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



COST MODEL FOR SETS

Work Span

size(S) O(1) O(1)
singleton(e)

filter(f ,S) O

(∑

e∈S

W (f (e))

)
O
(

log |S|+ max
e∈S

S(f (e))
)

find(S,e)
O(Wc · log |S|) O(Sc · log |S|)insert(S,e)

delete(S,e)

COLLECT, SETS AND TABLES 20/33

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



COST MODELS FOR SETS

intersection(S1,S2) Work = O
(
Wc ·m · log(1 + n

m)
)

union(S1,S2) ⇒
difference(S1,S2) Span = O (Sc · log(n + m))

n = max(|S1|, |S2|) m = min(|S1|, |S2|)

Sets are equal size (n = m)

I Work = O(Wc ·m · log(1 + 1)) = O(Wc · n)
I Span = O(Sc · log n)

One of the sets is a singleton (m = 1)
I Work = O(Wc · log(1 + n)) = O(Wc · log n)
I Span = O(Sc · log(n + 1)) = O(Sc · log n)
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TABLES

Table is an ADT for sets of key-value pairs.

{(k1 7→ v1), (k2 7→ v2), . . . , (kn 7→ vn)}
{(k1, v1), (k2, v2), . . . , (kn, vn)}

Each key appears only once
Many languages provide either built-in support
or libraries.
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TABLES

K is the universe of keys.
V is the universe of values.
T is a type that represents the power set of
K× V

I restricted so that each key appears at most once.
I S is the power set of K.
I Z≥0 denotes the positive integers.
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TABLE FUNCTIONS

empty : T = ∅
size(T ) : T→ Z≥0 = |T |
singleton(k , v) : K× V→ T = {(k , v)}
filter(f ,T ) : ((V→ {T,F})× T)

→ T = {(k , v) ∈ T | f (v)}
map(f ,T ) : ((K× V→ V)× T)

→ T = {(k , f (k , v)) | ((k , v) ∈ T )}
insert(f ,T , (k , v)) : (V× V→ V)× T

×(K× V)→ T =

(T \ {(k , v)})∪
{(k , f (v , v ′))}
if (k , v ′) ∈ T

T ∪ {(k , v)}
otherwise

delete(T , k)) : T×K→ T = {(k ′, v) ∈ T |k 6= k ′}
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TABLE FUNCTIONS

find(T , k) : T×K→ (V ∪ ⊥) =

{
v (k , v) ∈ T
⊥ otherwise

merge(f ,T1,T2) : (V× V→ V)× T× T→ T =

⋃

k∈K




{(k , f (v1, v2))} (k , v1) ∈ T1 ∧ (k , v2) ∈ T2
{(k , v1)} (k , v1) ∈ T1 ∧ (k , v2) /∈ T2
{(k , v2)} (k , v2) ∈ T2 ∧ (k , v1) /∈ T1

extract(T ,S) : T× S→ T = {(k , v) ∈ T |k ∈ S}
erase(T ,S) : T× S→ T = {(k , v) ∈ T |k /∈ S}
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TABLE EXAMPLES

Suppose we have the two tables:
I Summer= {tree 7→ green, sky 7→ blue, cmuq 7→

tan}
I Fall = {grass 7→ gray , tree 7→ brown}

merge (fn (a,b)⇒ b) Summer Fall
I {grass 7→ gray , tree 7→ brown, sky 7→

blue, cmuq 7→ tan}
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TABLE EXAMPLES

Suppose we have the two tables:
I Summer= {tree 7→ green, sky 7→ blue, cmuq 7→

tan}
I Fall = {grass 7→ gray , tree 7→ brown}

extract(Summer , {sky , grass})
I {sky 7→ blue}
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TABLE EXAMPLES

Suppose we have the two tables:
I Summer= {tree 7→ green, sky 7→ blue, cmuq 7→

tan}
I Fall = {grass 7→ gray , tree 7→ brown}

erase(Summer , {sky , grass})
I {tree 7→ green, cmuq 7→ tan}
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TABLE EXAMPLES

Other useful functions from the library

collect:(key × α) seq → (α seq) table

fromSeq: (key × α) seq → α table
I fromSeq(A) = {k 7→ s0 : (k 7→ S) ∈ collect(A)}
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TABLE FUNCTIONS

Major differences from sets:
I find returns the value if key is in the table else

returns ⊥ (NONE).
I insert/merge need a function to combine if the

key is already in the/both table(s).
Just as with sets, there is symmetry between

I extract and find
I merge and insert
I erase and delete
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COST MODELS FOR TABLES

Work Span
size(T ) O(1) O(1)
singleton(k , v)

filter(f ,T ) O


 ∑

(k,v)∈T

W (f (v))


 O

(
log |T |+ max

(k,v)∈T
S(f (v))

)

map(f ,T ) O


 ∑

(k,v)∈T

W (f (k , v))


 O

(
max

(k,v)∈T
S(f (k , v))

)

COLLECT, SETS AND TABLES 31/33

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



COST MODELS FOR TABLES

Work Span
find(S, k)

O(Wc log |T |) O(Sc log |T |)insert(T , (k , v))
delete(T , k)

extract(T1,T2)
O
(
Wcm log(1 + n

m )
)

O (Sc log(n + m))merge(T1,T2)
erase(T1,T2)

n = max(|T1|, |T2|) m = min(|T1|, |T2|)
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SUMMARY

Collect
Map-Collect-Reduce
Sets
Tables
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SYNOPSIS

How search engines work
Single-threaded sequences
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BUILDING A SEARCH ENGINE

How do search engines work?

What are the inputs?
I (Billions and billions of) documents consisting of

“words”.
How do we interact with the search engine

I (Boolean) Keyword queries
I List of matching documents (URLS)
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HOW DOES THE SEARCH REALLY
WORK?

User inputs a query (say a couple of words)
SE starts searching for the words in each
document one-by-one
Returns documents when they match.

Not really!
I Not scalable (even for one user)

Preprocessing
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PREPROCESSING

Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1

Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc1Doc75

Preprocessing

Index

Query 
ProcessingQuery Result

Crawlers
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PLAN

What kinds of queries we want to have.

What is the interface we want to have.

How do we implement all these
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QUERIES

Bingle (:-) supports logical queries on words
involving

I And: “15210” And “course” And “slides”

I Or: “15210” Or “15150”

I AndNot: “15210” AndNot “Pittsburgh”

“CMU” And “fun” And (“courses Or “clubs”)

Result would be a list of webpages/documents
that match.
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THE INTERFACE

signature INDEX = sig
type word = string
type docId = string
type ’a seq
type index
type docList

val makeIndex : (docId * string) seq -> index

val find : index -> word -> docList
val And : docList * docList -> docList
val AndNot : docList * docList -> docList
val Or : docList * docList -> docList
val size : docList -> int
val toSeq : docList -> docId seq
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DOCUMENTS

Indexing a tweet database.

T = 〈 (“jack”, “chess club was fun”),
(“mary”, “I had a fun time in 210 class today”),
(“nick”, “food at the cafeteria sucks”),
(“sue”, “In 217 class today I had fun reading my email”),
(“peter”, “I had fun at nick’s party”),
(“john”, “tiddlywinks club was no fun, but more fun than 218”),
〉

“jack” is a document id
“chess club was fun” is a document
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USING THE INTERFACE

T = 〈 (“jack”, “chess club was fun”),
(“mary”, “I had a fun time in 210 class today”),
(“nick”, “food at the cafeteria sucks”),
(“sue”, “In 217 class today I had fun reading my email”),
(“peter”, “I had fun at nick’s party”),
(“john”, “tiddlywinks club was no fun, but more fun than 218”),
〉
val f = (find (makeIndex(T ))) : word→ doclist

toSeq(And(f "fun", Or(f "class", f "club")))

⇒ 〈"jack", "mary", "sue", "john" 〉
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USING THE INTERFACE

T = 〈 (“jack”, “chess club was fun”),
(“mary”, “I had a fun time in 210 class today”),
(“nick”, “food at the cafeteria sucks”),
(“sue”, “In 217 class today I had fun reading my email”),
(“peter”, “I had fun at nick’s party”),
(“john”, “tiddlywinks club was no fun, but more fun than 218”),
〉
size(AndNot(f "fun", f "tiddlywinks"))

⇒ 4
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THE MAKEINDEX FUNCTION

1 fun makeIndex(docs) =
2 let
3 fun tagWords(id,str) = 〈 (w ,id) : w ∈ tokens(str) 〉
4 val Pairs = flatten 〈tagWords(d) : d ∈ docs 〉
5 val Words = Table.collect(Pairs)
6 in
7 {w 7→ Set.fromSeq(d) : (w 7→ d) ∈ Words}
8 end

What does tagWords do?

tagWords(“jack”, “chess club was fun”)
⇒ 〈 (“chess”,“jack”),(“club”, “jack”), (“was”, “jack”), (“fun”, “jack”) 〉
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THE PAIRS FUNCTION

1 fun makeIndex(docs) =
2 let
3 fun tagWords(id,str) = 〈 (w ,id) : w ∈ tokens(str) 〉
4 val Pairs = flatten 〈tagWords(d) : d ∈ docs 〉
5 val Words = Table.collect(Pairs)
6 in
7 {w 7→ Set.fromSeq(d) : (w 7→ d) ∈ Words}
8 end

What does Pairs do?

Pairs = 〈(“chess”,“jack”),(“club”, “jack”), (“was”, “jack”) ,
(“fun”, “jack”), (“I”, “mary”), (“had”, “mary”),
(“fun”, “mary”), . . .〉
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THE COLLECT FUNCTION

1 fun makeIndex(docs) =
2 let
3 fun tagWords(id,str) = 〈 (w ,id) : w ∈ tokens(str) 〉
4 val Pairs = flatten 〈tagWords(d) : d ∈ docs 〉
5 val Words = Table.collect(Pairs)
6 in
7 {w 7→ Set.fromSeq(d) : (w 7→ d) ∈ Words}
8 end

What does collect do?

Words = {(“a” 7→ 〈 “mary” 〉),
(“at” 7→ 〈 “mary”, “peter” 〉),
. . .
(“fun” 7→ 〈 “jack”, “mary”, “sue”, “peter”, “john” 〉),
. . .
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FINAL TOUCHES

1 fun makeIndex(docs) =
2 let
3 fun tagWords(id,str) = 〈 (w ,id) : w ∈ tokens(str) 〉
4 val Pairs = flatten 〈tagWords(d) : d ∈ docs 〉
5 val Words = Table.collect(Pairs)
6 in
7 {w 7→ Set.fromSeq(d) : (w 7→ d) ∈ Words}
8 end

What is happening here?
Sequences are converted to tables.
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MAKEINDEX COSTS

1 fun makeIndex(docs) =
2 let
3 fun tagWords(id,str) = 〈 (w ,id) : w ∈ tokens(str) 〉
4 val Pairs = flatten 〈tagWords(d) : d ∈ docs 〉
5 val Words = Table.collect(Pairs)
6 in
7 {w 7→ Set.fromSeq(d) : (w 7→ d) ∈ Words}
8 end

Assuming tokens have a upper bound on length
I WmakeIndex(n) ∈ O(n log n), SmakeIndex ∈ O(log2 n)
I What does n represent?
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REST OF THE INTERFACE

fun find T v = Table.find T v

fun And(s1, s2) = s1 ∩ s2

fun Or(s1, s2) = s1 ∪ s2

fun AndNot(s1, s2) = s1 \ s2

fun size(s) = |s|
fun toSeq(s) = Set.toSeq(s)
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SINGLE-THREADED ARRAY
SEQUENCES

Updating an array sequence in an imperative
language takes O(1) work.
In a functional setting, everything is persistent.
An update to a sequence of n elements needs

I O(n) work for arraySequence implementation to
copy and update.

I O(log n) work for treeSequence implementation
(because of substructure sharing)

Interfaces do not provide functions for updating
a single position.

I to discourage sequential (and expensive)
computation.
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SINGLE-THREADED ARRAY
SEQUENCES

A map can be implemented as follows
fun map f S =

iter (fn ((i ,S′), v)⇒ (i + 1,update (i , f (v)) S′))
(0,S)
S

Iterates n times (i = 0, . . .n − 1)
and updates the value Si with f (Si).
arraySequence: Each update will do O(n)
work for a total O(n2) work
treeSequence: Each update will do O(log n)
work for a total O(n log n) work.
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SINGLE-THREADED SEQUENCES

A new ADT: Single Threaded Sequence: stseq
Useful when a bunch of items need to be
updated.
Straigthforward interface
Cost specification imply non-functional stuff
under the hood!
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STSEQ INTERFACE AND COSTS
Work Span

fromSeq(S) : α seq → α stseq O(|S|) O(1)
Converts from a regular sequence to a stseq.

toSeq(ST) : α stseq → α seq O(|S|) O(1)
Converts from a stseq to a regular sequence.

nth ST i : α stseq → int → α O(1) O(1)
Returns the i th element of ST. Same as for seq.

update (i,v) S : (int × α) → O(1) O(1)
α stseq → α stseq

Replaces the i th element of S with v .

inject I S: (int × α) seq O(|I|) O(1)
→ α stseq → α stseq

For each (i, v) ∈ I replaces the i th element of S with v .

Cost bounds for nth and update only valid for
the “current” version of the sequence.

SETS AND TABLES–II 21/28

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



MAP WITH STSEQ

1 fun map f S = let
2 val S′ = StSeq.fromSeq(S)
3 val R = iter
4 (fn ((i ,S′′), v)⇒ (i + 1, StSeq.update (i , f (v)) S′′))
5 (0,S′)
6 S′

7 in
8 StSeq.toSeq(R)
9 end

Overall work and span is O(n) (Why?)
Multiple updates can be done in O(n) time.
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IMPLEMENTING STSEQ

Keep two full copies of the sequence
I Original and Current
I We keep a change log: updates to the original to get

Current.
When Current is updated

I We create a “new” Current with the update, and
update change log.

I Mark the previous version as old, remove its Current
and but keep the old change log.

Any item from the current version is accessible
in constant work.
Any item from the any previous version is
accessible but needs more work.
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IMPLEMENTING STSEQ

Original Current( )

Change Log
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IMPLEMENTING STSEQ

Original Current( )

update(3, 5)

Original ( )

Original ((3,5) ) Current5

Change Log

Old Version1

There really is only one copy of the Original.
All point to that copy.
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IMPLEMENTING STSEQ

Original ( )

Original ((3,5) ) Current5

update(6, 7)

Old Version1

Original ( )

Original ((3,5) )

Original ((6, 7)(3,5) ) Current5 7

Old Version1

Old Version2
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IMPLEMENTING STSEQ

Original ( )

Original ((3,5) )

Original ((6, 7)(3,5) ) Current5 7

Old Version1

Old Version2

updateOldversion2(4, 5)

Original ( )

Original ((4, 5)(3,5) )

Original ((6, 7)(3,5) ) Current5 7

Old Version1

Old Version3

Original ((3,5) ) Old Version2
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SUMMARY

How search engines work
Single-threaded sequences

SETS AND TABLES–II 28/28

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 9

GRAPHS



SYNOPSIS

Graphs
Graph terminology/definitions
Graph representations/costs.
Graph search
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GRAPHS

Most versatile ADT in the study of algorithms
Captures relationships between pairs of items
A graph consists of

I a set of V vertices/nodes
I a set edges E ⊆ V × V

Edges represent relationships between nodes.
I directed edges (asymmetric relationships)
I undirected edges (symmetric relationships)

Nodes or edges can have additional weights or
values associated.
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SOCIAL NETWORKS
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SOCIAL NETWORKS - QUESTIONS

Who is popular?
What is the largest “clique”?
Do I know somebody who knows X?
What is the “diameter”?
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TRANSPORTATION NETWORKS
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TRANSPORTATION NETWORKS -
QUESTIONS

What is the shortest route from NYC to Los
Angeles?

I without Toll Roads?
I without any state roads?

What is the expected driving time from Boston
to Atlanta?

I considering traffic congestion?
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FLOW NETWORKS
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FLOW NETWORKS - QUESTIONS

Is it possible to send 1M cubic meters of gas to
Paris daily?
What is the maximum gas that can be pumped
from Azerbaijan to Italy?
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OTHER EXAMPLES OF GRAPHS

Course prerequisite relation graphs
(directed-acyclic)
Web-page linkage graph
Protein-protein interaction graph
Neural networks
Semantic networks
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DIRECTED GRAPHS

A directed graph (digraph) is G = (V ,E)
I V is a set of vertices (or nodes), and
I E ⊆ V × V is a set of directed edges (or arcs).

Each arc is an ordered pair e = (u, v)
I Arcs represent asymmetric relationships
I A graph can have self loops (u,u)

B

A

DC
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UNDIRECTED GRAPHS

An undirected graph is G = (V ,E)
I V is a set of vertices (or nodes), and
I E ⊆ V × V is a set of edges

Each edge is an unordered pair e = {u, v}
I Edges represent symmetric relationships
I A undirected graphs do not have self-loops.

1

2

3

4

GRAPHS 12/35

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



NEIGHBORS

In an undirected graph, G = (V ,E), a vertex v is
a neighbor of u if {u, v} ∈ E .
In an undirected graph,
NG(v) = {u | {u, v} ∈ E} is the neighborhood of
v
If U is a set of nodes,

I NG(U) = ∪v∈UNG(v) is the neighborhood of U
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NEIGHBORS

In a directed graph, G = (V ,E),
I u is an in-neighbor of v if (u, v) ∈ E
I u is an out-neighbor of v if (v ,u) ∈ E

In a directed graph
I N−G (u) is the set of in-neighbors of u.
I N+

G (u) is the set of out-neighbors of u.
I When we use NG(v), we mean out-neighbors.

If U is a set of nodes,
I N+

G (U) = ∪u∈UN+
G (u) is the out-neighborhood of U.
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NODE DEGREES

Undirected graphs: degree dG(v) of a vertex v
is |NG(v)|
Directed graphs:

I in-degree of a vertex v is d−G (v) = |N−G (v)|
I out-degree of a vertex v is d+

G (v) = |N+
G (v)|

We will remove subscript G if it is clear from
context.
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PATHS

A path is a sequence of adjacent vertices.
For a graph G = (V ,E)

Paths(G) =
{

P ∈ V+ | 1 ≤ i < |P|, (Pi ,Pi+1) ∈ E
}

I V+ is denotes of sequence of length 1 or more.
I Repeats are allowed.

The length of a path is the number of edges.
A path may have an infinite length.
A simple path has no repeated vertices.

I Often “simple” will be dropped.
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REACHABILITY

A vertex v is reachable from a vertex u in G if
there is a path starting at u and ending at v in G.
RG(u) is the set of vertices reachable from u.
An undirected graph is connected if all vertices
are reachable from all other vertices.
A directed graph is strongly connected if all
vertices are reachable from all other vertices.
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CYCLES

A cycle is a path that starts and ends at the
same vertex.
In a directed graph a cycle can have length 1
(i.e. a self loop).
In an undirected graph we require that a cycle
must have length at least three.

I Going from u to v and back to u does not count.

A simple cycle is a cycle that has no repeated
vertices other than the start vertex being the
same as the end.
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TREES, FORESTS AND DAGS

An undirected graph with no cyles is a forest.
If it is connected then it is a tree.
A directed graph is a forest or tree if it becomes
a forest or tree when all arcs are made
undirected.
In a rooted tree one node is the root.
For a directed graph, all edges are either
towards the root or away from the root.
A directed graph with no cycles is a directed
acyclic graph (DAG)
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DISTANCE AND DIAMETER

The distance δG(u, v) from a vertex u to a vertex
v in a graph G is the shortest path (minimum
number of edges) from u to v .
The diameter of a graph is the maximum
shortest path length over all pairs of vertices:
diam(G) = max {δG(u, v) : u, v ∈ V}.
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MULTI-GRAPHS

Multi-graphs allow multiple edges between
same pair of vertices.
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SPARSE AND DENSE GRAPHS

Let n = |V | and m = |E |.
A directed graph can have at most n2 edges.

An undirected graph can have at most
n(n − 1)

2
edges.
A graph is sparse if m� n2. Otherwise it is
called dense.
In most applications, that graphs are sparse.

I Nobody on Twitter has 109 followers
I Though some have very large number– but still small

when compared to n.
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OPERATIONS ON GRAPHS

1 Map over the vertices v ∈ V .

2 Map over the edges (u, v) ∈ E .

3 Map over the neighbors of a vertex v ∈ V , or in a directed
graph the in-neighbors or out-neighbors.

4 Return the degree of a vertex v ∈ V .

5 Determine if an edge (u, v) is in E .

6 Insert or delete vertices.

7 Insert or delete edges.
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ADJACENCY MATRIX
REPRESENTATION

Assume vertices are numbered 1,2, . . . ,n (or
0,1, . . . ,n − 1).
Graph is represented by an n × n matrix of
binary values in which location (i , j) is 1 if
(i , j) ∈ E and 0 otherwise.

I For undirected graphs, matrix is symmetric and has
0’s along the diagonal.

1

2

3

4




0 0 1 1
0 0 0 1
1 0 0 1
1 1 1 0
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ADJACENCY LIST REPRESENTATION

Graph is represented by an array A of length n
where each entry A[i ] contains a pointer to a
linked list of all the out-neighbors of vertex i .

I In an undirected graph edge {u, v} will appear in the
adjacency list for both u and v (not always
necessary!)

1

2

3

4

1

2

3

4

3 4

4

1 4

1 2 3
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OTHER REPRESENTATIONS

Adjacency Array

1

2

3

4

3 4 4 1 4 1 2 3

0 2 3 5

Edge List

((1,3), (1,4), (2,4), (3,1), (3,4), (4,1), (4,2), (4,3))
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MORE ABSTRACT REPRESENTATIONS

Edge Sets
I Directed graphs: Set items are pairs (u, v)

representing arcs.
I Undirected graphs: Set items are sets {u, v}

representing edges.

Edge Tables
I Directed graphs: Table items are pairs

((u, v) 7→ wu,v) representing arcs and associated
values.

I Undirected graphs: Set items are pairs
({u, v} 7→ wu,v) representing edges and associated
values.
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EDGE SETS AND TABLES

Similar to edge lists but abstracts from
underlying representation.
Search for an edge needs O(log m) work.
Searching for neighbors is not efficient: O(m)
work but O(log m) span. (Why?)
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ADJACENCY TABLES

Table items are (key , value) pairs.
Keys are vertex/node labels.
Values are either sets or tables

I Sets: All neighbors node labels or out-neighbor node
labels.

I Tables: All pairs of neighbors node labels and
associated edge values.

Accessing neighbors needs O(log n) work and
span.
(Constant work) Map over neighbors needs
O(dG(u)) work and O(log dG(u)) span.
Looking up an edge needs O(log n) work and
span.
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COST SUMMARY

edge set adj table
work span work span

isEdge(G, (u, v)) O(log m) O(log m) O(log n) O(log n)

map over O(m) O(log m) O(m) O(log n)
all edges

map over O(m) O(log m) O(log n O(log n)
neighbors of v +dG(v))

dG(v) O(m) O(log m) O(log n) O(log n)

GRAPHS 30/35
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GRAPH SEARCH

Fundamental operation of graphs
I Start at some (set of) node(s)
I Systematically visit all reachable nodes (only once)

Used for determining properties of
graphs/nodes

I Connected?
I Bipartite?
I Node v reachable from node u?
I Shortest path from u to v?

GRAPHS 31/35
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GRAPH SEARCH

For all graph search methods vertices can be
partitioned into three sets at any time during the
search:

1 vertices already visited (X ),
2 the unvisited neighbors of the visited vertices,

called the frontier (F ),
3 and the rest.

GRAPHS 32/35
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GRAPH SEARCH METHODS

Breadth-first Search (BFS)
I Parallelizable but for shallow graphs!

Depth-first Search (DFS)
I Inherently sequential!

Priority-first Search (PFS)
All reachable nodes from a source are visited,
but in different orders.

GRAPHS 33/35
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GRAPH SEARCH TREES

Each search starting from a source node
creates a search tree.
We refer to the source node as the root.

s  s  s 
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1 
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2 
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2  3 

Which search schemes do these correspond to?
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SUMMARY

Graphs
Graph terminology/definitions
Graph representations/costs.
Graph search

GRAPHS 35/35
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15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 10

BREADTH-FIRST SEARCH



SYNOPSIS

Breadth-first search
BFS Extensions
BFS Costs
BFS with Single-threaded Sequences

BREADTH-FIRST SEARCH 2/34
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GRAPH SEARCH

Fundamental operation of graphs
I Start at some (set of) vertex(s)
I Systematically visit all reachable vertices (only once)

Used for determining properties of
graphs/vertices

I Connected?
I Bipartite?
I Vertex v reachable from vertex u?
I Shortest path from u to v?

BREADTH-FIRST SEARCH 3/34
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GRAPH SEARCH METHODS

Breadth-first Search (BFS)
I Parallelizable but for shallow graphs!

Depth-first Search (DFS)
I Inherently sequential!

Priority-first Search (PFS)
All reachable vertices from a source are visited,
but in different orders.

BREADTH-FIRST SEARCH 4/34
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BREADTH-FIRST SEARCH

Applicable to a variety of problems
I Connectedness
I Reachability
I Shortest path
I Diameter
I Bipartiteness

Applicable to both directed and undirected
graphs

I For digraphs, we only consider outgoing arcs.

BREADTH-FIRST SEARCH 5/34
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GRAPH SEARCH

For all graph search methods vertices can be
partitioned into three sets at any time during the
search:

1 vertices already visited (X ⊆ V ),
2 the unvisited neighbors of the visited vertices, called

the frontier (F ),
3 the rest; unseen vertices.

The search essential goes as follows:
while vertices remain

-visit some unvisited neighbors
of the visited set

Web navigation analogy.
BREADTH-FIRST SEARCH 6/34
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BREADTH-FIRST SEARCH

Starting from a source vertex s
I Visit all vertices that are (out-)neighbors of s (at

distance 1)
I Visit all vertices at distance 2 from s
I Visit all vertices at distance 3 from s, etc.

A vertex at distance i + 1 must have a
(in-)neighbor at distance i .

BREADTH-FIRST SEARCH 7/34
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BREADTH-FIRST SEARCH

BFS needs to keep track of vertices already
visited
Xi : all vertices visited at start of level i

I Vertices in Xi have distance less than i .
Fi : all unvisited neighbors of vertices in Xi

I Vertices in Fi have distance exactly i .

“Visit”⇒ Do something with the vertices (e.g.,
print it)
Xi+1 = Xi ∪ Fi

Fi+1 = NG(Fi) \ Xi+1 (NG(Fi) =
⋃

v∈Fi
N(v))

BREADTH-FIRST SEARCH 8/34
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BREADTH-FIRST SEARCH

1 fun BFS(G = (V ,E), s) =
2 let
3 fun BFS′(X , F , i) =
4 if |F | = 0 then (X , i)
5 else let
6 val X ′ = X ∪ F % Visit the Frontier
7 val N = NG(F ) % Determine the neighbors
8 % of the frontier
9 val F ′ = N \ X ′ % Remove vertices that have

10 % been visited
11 in BFS′(X ′, F ′, i + 1)% Next level
12 end

13 in BFS′({}, {s}, 0)
14 end

BREADTH-FIRST SEARCH 9/34
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SOME DETAILS

Adjacency table representation
I Entries of the sort (Vertex , {Neighbors}).

Remember NG(F ) =
⋃

v∈F N(v)

fun NG(F ) = Table.reduce Set.Union {}
Table.extract(G,F )

X2 

F1 

F2 

NG(F1) 

X1 

BREADTH-FIRST SEARCH 10/34
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PROVING BFS CORRECT

State and prove an invariant.
All reachable vertices are returned.
Algorithm terminates.

BREADTH-FIRST SEARCH 11/34
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PROVING BFS CORRECT

LEMMA
In algorithm BFS when calling BFS′(X ,F , i), we have

X = {v ∈ VG | δG(s, v) < i}, and
F = {v ∈ VG | δG(s, v) = i}

By induction on levels i
For base case (i = 0) X0 = {}, F0 = {s}

I Only s has distance 0 from s
I No vertex has distance < 0 from s.

So base case is true!

BREADTH-FIRST SEARCH 12/34

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



PROVING BFS CORRECT

Assume claims are true for i , show for i + 1.
Xi+1 is the union of

I Xi : all vertices at distance < i
I Fi : all vertices at distance = i

Hence Xi+1 must have all vertices at distance
< i + 1
Fi+1 = NG(Fi) \ Xi+1

I Vertices in Fi have distance exactly i
I Vertices in NG(Fi) have distance no more than i + 1
I Vertices in NG(Fi) are reachable from a vertex at

distance i
I When we remove Xi+1 from NG(Fi) only unvisited

vertices at distance exactly i + 1 remain.
BREADTH-FIRST SEARCH 13/34
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ADDITIONAL OBSERVATIONS

If v is reachable from s and has distance d ,
there must be a vertex u at distance d − 1.

I BSF will not terminate without finding v .

For any vertex δ(s, v) < |V |, so algorithm will
terminate in at most |V | rounds/levels.

BREADTH-FIRST SEARCH 14/34
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EXTENSIONS TO BFS

Finding shortest distances
What do we need to keep?

1 fun BFS(G, s) = let
2 fun BFS′(X , F , i) =
3 if |F | = 0 then X
4 else let
5 val X ′ = X ∪ {v 7→ i : v ∈ F}
6 val F ′ = NG(F ) \ domain(X ′)
7 in BFS′(X ′, F ′, i + 1) end
8 in BFS′({} , {s} , 0) end

BREADTH-FIRST SEARCH 15/34
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EXTENSIONS TO BFS

Finding BFS trees.
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There could be multiple BFS trees.

BREADTH-FIRST SEARCH 16/34
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FINDING BFS TREES

What do we need to keep for each vertex?
Record a parent

I If v is in a frontier, then there should be one or more
visited vertices u such that (u, v) ∈ E .

I Any of those could be the parent of v .
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IDENTIFYING PARENTS

Post-process the BFS distance table
Identify one (in-)neighbor vertex in N−(v) whose
distance is one less.
Another way is to keep a table of vertices
mapping to parents.

I For each v ∈ F , generate a table {u 7→ v : u ∈ N(v)}
I Maps each neighbor of v back to v .

Merge these tables to X
I Choose one if you have multiple parents.

BREADTH-FIRST SEARCH 18/34
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COST ANALYSIS FOR BFS

Most graph algorithms do NOT use divide and
conquer.

I So no natural way to develop recurrences and solve
them.

Instead, we just count steps

BREADTH-FIRST SEARCH 19/34
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COST ANALYSIS FOR BFS

BFS works in a sequence rounds (one per level)
We can add up work and span in each round.

I But work at a level depends on number of outgoing
edges from the frontier!

Take a more global view
I Each vertex appears exactly once in some frontier.
I All their (out-)edges are processed once.

WBFS(n,m) = Wvn + Wem
I n = |V | and m = |E |

BREADTH-FIRST SEARCH 20/34
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COSTS ANALYSIS FOR BFS

Span is a bit more tricky!
SBFS(n,m,d) = Sld where d is the maximum
distance (d = maxv∈V δ(s, v))
Assuming Wv = O(log n) and We = O(log n)
and span/level Sl = O(log2 n)

WBFS(n,m) = O(n log n + m log n)
= O(m log n) (Why?)

SBFS(n,m,d) = O(d log2 n)

BREADTH-FIRST SEARCH 21/34
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COSTS PER VERTEX AND EDGE

Nontrivial operations are
1 X ′ = X ∪ F
2 N = NG(F )
3 F ′ = N \ X ′.

These all depend on size of F and number of
outgoing edges from F .
Let ||F || =∑v∈F (1 + d+

G (v))
I Vertices and outgoing edges in f .

BREADTH-FIRST SEARCH 22/34
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COSTS PER VERTEX AND EDGE

Work Span
X ∪ F O(|F | log n) O(log n)

N \ X ′ O(|F | log n) O(log n)

These come from set cost specs.

Work = O(Wc · |F | log(1 +
n
|F |)) = O(|F | log n)

Span = O(Sc · log(n + |F |)) = O(log n)

BREADTH-FIRST SEARCH 23/34
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COSTS PER VERTEX AND EDGE

Work Span
NG(F ) O(||F || log n) O(log2 n)

Graph is represented as a table mapping
vertices to a set of their outneigbors.

fun NG(F ) = Table.reduce Set.Union {}
(Table.extract(G,F ))

Extract vertices from table: Work is O(|F | log n)
BREADTH-FIRST SEARCH 24/34
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DIGRESSION – BACK TO REDUCE!

fun NG(F ) = Table.reduce Set.Union {}
(Table.extract(G,F ))

R(reduce f I S) =
{

all function applications f (a,b) in the reduction tree
}
.

W (reduce f I S) = O


n +

∑

f (a,b)∈R(f I S)

W (f (a,b))




S(reduce f I S) = O
(

log n max
f (a,b)∈R(f I S)

S(f (a,b))
)

BREADTH-FIRST SEARCH 25/34
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DIGRESSION – BACK TO REDUCE!

LEMMA
For any combine function f : α× α→ α and a
monotone size measure s : α→ R+, if for any x , y ,

1 s(f (x , y)) ≤ s(x) + s(y) and
2 W (f (x , y)) ≤ cf (s(x) + s(y)) for some universal

constant cf depending on the function f ,
then

W (reduce f I S) = O

(
log |S|

∑

x∈S

(1 + s(x))

)

BREADTH-FIRST SEARCH 26/34
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BACK TO COSTS

In our case α is the set type, f is Set.union , s
the size of a set.

1 Size of the union ≤ sum of the sizes.
2 Work of a union ≤ is at most proportional to size of

the sets!
So Set.union satisfies the conditions of the
lemma.
Fngh = Table.extract(G,F )

I Fngh is a set of neighbor sets.

W (reduce union {} Fngh) = O


log |Fngh|

∑

ngh∈Fngh

(1 + |ngh|)




= O (log n · ||F ||)
BREADTH-FIRST SEARCH 27/34
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BACK TO COSTS

S(reduce union {} Fngh) = O(log2 n)

Each union has span O(log n)
The reduction tree is bounded by log n depth.
So at level i , W = O(||Fi || · log n) and each edge
is processed once,⇒

I work per edge is O(log n).
Span depends on d
(SBFS(n,m,d) = O(d log2 n))

I In worst d ∈ O(n)⇒ BFS is sequential.

BREADTH-FIRST SEARCH 28/34
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BFS WITH ST SEQUENCES

BFS Costs revisited

WBFS(n,m) = O(m log n)
SBFS(n,m,d) = O(d log2 n)

Using single-threaded sequences reduces costs
to

WBFS(n,m) = O(m)

SBFS(n,m,d) = O(d log n)

BREADTH-FIRST SEARCH 29/34
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BFS WITH ST SEQUENCES

Vertices are labeled with integers:
I V = {0,1, . . . ,n − 1}
I Integer labeled (IL) graphs.

We use (array) sequences to represent graphs.
I Constant work access to vertices.
I Neighbors also stored as integer indices

IL graphs are implemented with type
(int seq) seq

BREADTH-FIRST SEARCH 30/34
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BFS WITH ST SEQUENCES

BFS returns a mapping from each vertex to its
parent in the BFS tree.
Visited vertices are maintained as
(int option) stseq

I NONE: Vertex has not been visited.
I SOME(v): Vertex visited from parent v .

BREADTH-FIRST SEARCH 31/34
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BFS WITH ST SEQUENCES

1 fun BFS(G : (int seq) seq, s : int) =

2 let
3 fun BFS′(XF : int option stseq, F : int seq) =

4 if |F | = 0 then stSeq.toSeq XF

5 else let
6 % compute neighbors of the frontier
7 val N = flatten 〈 〈 (u,SOME(v)) : u ∈ G[v ]&XF [u] = NONE 〉 : v ∈ F 〉
8 % add new parents
9 val XF′ = stSeq.inject(N, XF)

10 % remove duplicates
11 val F ′ = 〈 u : (u, v) ∈ N | XF′[u] = v 〉
12 in BFS′(XF′, F ′) end
13 val X0 = stSeq.toSTSeq(〈NONE : v ∈ 〈 0, . . . , |G| − 1 〉 〉)
14 in
15 BFS′(stSeq.update(s,SOME(s),X0), 〈 s 〉)
16 end

BREADTH-FIRST SEARCH 32/34
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COSTS

XF : stseq
line work span

flatten O(||Fi ||) O(log n)

inject O(||Fi ||) O(1)

remove dup. O(||Fi ||) O(log n)

total across
all d rounds

O(m) O(d log n)

BREADTH-FIRST SEARCH 33/34
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SUMMARY

Breadth-first search
BFS Extensions
BFS Costs
BFS with Single-threaded Sequences

BREADTH-FIRST SEARCH 34/34
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DEPTH-FIRST SEARCH



SYNOPSIS

Depth-first search
Cycle-detection in directed and undirected
graphs
Topological Sorting
Generalizing DFS
DFS with Single-threaded Sequences

DEPTH-FIRST SEARCH 2/33
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GRAPH SEARCH

Fundamental operation of graphs
I Start at some (set of) node(s)
I Systematically visit all reachable nodes (only once)

Used for determining properties of
graphs/nodes

I Connected?
I Bipartite?
I Node v reachable from node u?
I Shortest path from u to v?

DEPTH-FIRST SEARCH 3/33
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GRAPH SEARCH METHODS

Breadth-first Search (BFS)
I Parallelizable but for shallow graphs!

Depth-first Search (DFS)
I Inherently sequential!

Priority-first Search (PFS)
All reachable nodes from a source are visited,
but in different orders.

DEPTH-FIRST SEARCH 4/33
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BREADTH-FIRST SEARCH

Applicable to a variety of problems
I Connectedness
I Reachability
I Shortest path
I Diameter
I Bipartedness

Applicable to both directed and undirected
graphs

I For digraphs, we only consider outgoing arcs.

DEPTH-FIRST SEARCH 5/33
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GRAPH SEARCH

For all graph search methods vertices can be
partitioned into three sets at any time during the
search:

1 vertices already visited (X ⊆ V ),
2 the unvisited neighbors of the visited vertices, called

the frontier (F ),
3 the rest; unseen vertices.

The search essentially goes as follows:
while vertices remain

-visit some invisited neighbors
of the visited set

Web navigation analogy.
DEPTH-FIRST SEARCH 6/33
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TAKING CS COURSES

Take the following courses – but one per
semester

122 150

210213 251

451410 359

412 859 712 750

What are some possible orders?
DEPTH-FIRST SEARCH 7/33
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TOPOLOGICAL SORTING

This problem is known as topological sorting.
I Put vertices in a linear order that respects the graph

precedence relationships.
How can we know if a schedule is even
possible?

I There should be no cycles!
Both these problems can be solved by
depth-first search (DFS)

I DFS looks at any edge at most twice.

DEPTH-FIRST SEARCH 8/33
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DFS VS BFS
BFS

Explores vertices one
level at a time.

I Increases breadth
I No backtracking

Can solve/generate
I reachability
I connectedness
I spanning tree

Not suitable for
topological sort

DFS

Explores vertices one
vertex at a time.

I Increases depth
I Backtracking when it

can’t go deeper
Can solve/generate

I reachability
I connectedness
I spanning tree

Not suitable for
shortest unweighted
path

DEPTH-FIRST SEARCH 9/33
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DFS VS. BFS
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DFS VS. BFS
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THE DFS ALGORITHM

: fun DFS(G, s) = let

: fun DFS′(X , v) =
: if (v ∈ X )

TOUCH v : then X
: else let

ENTER v : val X ′ = X ∪ {v}
: val X ′′ = iter DFS′ X ′ (NG(v))

EXIT v : in X ′′ end

: in DFS′({}, s) end

Each iter does a mapping of the sort f : α× β → α

S = s0
foreach a ∈ A :

S = f (S,a)
return SDEPTH-FIRST SEARCH 12/33
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SOME OBSERVATIONS

iter goes sequentially
I Sets are unordered, ordering depends on

implementation!
When a vertex v is entered (ENTER v ) in code

I it picks the “first” outgoing edge (v ,w1)
I through iter calls DFS′(X ∪ {v},w1)

When DFS′(X ∪ {v},w1) returns
I All vertices reachable from w1 are explored
I Vertex set returned is

X1 = X ∪ {v} ∪ {All vertices reachable from w1}
iter picks next edge (v ,w2) and continues
When iter is done

X ′′ = X ∪ {v} ∪ {All vertices reachable from v}
DEPTH-FIRST SEARCH 13/33
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TOUCHING, ENTERING AND EXITING

: fun DFS(G, s) = let

: fun DFS′(X , v) =
: if (v ∈ X )

TOUCH v : then X
: else let

ENTER v : val X ′ = X ∪ {v}
: val X ′′ = iter DFS′ X ′ (NG(v))

EXIT v : in X ′′ end

: in DFS′({}, s) end

We try to visit a vertex v
We process v and its outgoing edges.
We are done with v .

DEPTH-FIRST SEARCH 14/33
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DFS WITH PARALLELISM

Can we do all outgoing edges in parallel?
I Yes - if parallel searches never meet up (then we

really have a tree!)
I No - otherwise.

a b

c

de

s

a b

c

de

s
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COST OF DFS

LEMMA
For a graph G = (V ,E) with m out edges and n
vertices:

DFS’ will be called at most m times
There will be at most min(n,m) “enters”.

v ∈ X can fail at most m times.
we make call to DFS’, when we have an edge
(total m times)

I But we can enter a vertex a most once per DFS’

So number of enters ≤ min(n,m)

DEPTH-FIRST SEARCH 16/33
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COST OF DFS

COROLLARY
The DFS algorithm on a graph with m out edges, and
n vertices, and using the tree-based cost
specification for sets, runs in O(m log n) work and
span.

Using ST sequences reduces work and span to
O(m)

DEPTH-FIRST SEARCH 17/33
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CYCLE DETECTION IN UNDIRECTED
GRAPHS

DFS’ arrives at v a second time and this time
from u. What can we conclude?

I There must be two paths between u and v ! (Why?)
Not really! In undirected graphs cycles should
have length at least 3.

U

VDFS

x

y
U

VDFS

DEPTH-FIRST SEARCH 18/33

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



CYCLE DETECTION IN UNDIRECTED
GRAPHS

: fun undirectedCycle(G, s) = let

: fun DFS′ p ((X , C), v) =
: if (v ∈ X )

TOUCH v : then (X ,true)
: else let

ENTER v : val X ′ = X ∪ {v}
: val (X ′′,C′) = iter (DFS′ v) (X ′,C) (NG(v) \ {p})

EXIT v : in (X ′′,C′) end

: in DFS′ s ({}, false), s) end

C keeps tracks of cycles.

p is the parent – removed from neighbors and curried!
DEPTH-FIRST SEARCH 19/33
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TOPOLOGICAL SORTING

Order the vertices so that the ordering respects
reachability.

I If u is reachable from v , v must come earlier in the
ordering.

122 150

210213 251

451410 359

412 859 712 750
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PARTIAL ORDERS

A DAG defines a partial order on the vertices.
For vertices a,b ∈ V , a ≤p b if and only if there
is a directed path from a to b
Partial order is a relation ≤p that obeys

1 reflexivity — a ≤p a,
2 antisymmetry — if a ≤p b and b ≤p a, then b = a,

and
3 transitivity — if a ≤p b and b ≤p c then a ≤p c.
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TOPOLOGICAL SORT

If ≤t is the total ordering then

a ≤p b ⇒ a ≤t b

but not reverse is not necessarily true!

a

b c

d e

f g

h

a ≤t b ≤t c ≤t d ≤t e ≤t f ≤t g ≤t h
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TOPOLOGICAL SORT WITH DFS
Augment with a new source vertex s

G = (V ,E)→ G′ = (V∪{s} ,E∪{(s, v) : v ∈ V})
Why do we need to do this?

: fun topSort(G = (V ,E)) = let
: val s = a new vertex
: val G′ = (V ∪ {s} ,E ∪ {(s, v) : v ∈ V})
: fun DFS′((X , L), v) =
: if (v ∈ X )

TOUCH v : then (X ,L)
: else let

ENTER v : val X ′ = X ∪ {v}
: val (X ′′,L′) = iter DFS′ (X ′,L) (NG′(v))

EXIT v : in (X ′′, v :: L′) end

: in DFS′(({}, []), s) end
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TOPOLOGICAL SORT WITH DFS

THEOREM
On a DAG when exiting a vertex v in DFS all vertices
reachable from v have already exited.

Assume u is reachable from v .
I u is entered before v . u must exit before v is entered

(otherwise there is a cycle!)
I v is entered before u. u will exit first.

v

u

x

v
u

x
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CYCLE DETECTION IN DIRECTED
GRAPHS

Important preprocessing step in Topological
Sort

I Topological sort will return garbage when graph has
cycles.

We augment the graph with a node s with an
edge to every other vertex the graph.

I This can not add cycles. Nothing comes into s.
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CYCLE DETECTION IN DIRECTED
GRAPHS

: fun directedCycle(G = (V ,E)) = let
: val s = a new vertex
: val G′ = (V ∪ {s} ,E ∪ {(s, v) : v ∈ V})
: fun DFS′((X , Y , C), v) =
: if (v ∈ X )

TOUCH v : then (X , Y , v ∈? Y )
: else let

ENTER v : val X ′ = X ∪ {v}
: val Y ′ = Y ∪ {v}
: val (X ′′,Y ′′,C′) = iter DFS′ (X ′,Y ′,C) (NG′(v))

EXIT v : in (X ′′, Y ′′ \ {v}, C′) end

: val ( , ,C) = DFS′(({} , {}, false), s)

: in C end
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BACK EDGES IN A DFS SEARCH

A back edge goes from a vertex v to an
ancestor u in the DFS tree.

THEOREM
A directed graph G = (V ,E) has a cycle if and only if
for G′ = (V ∪ {s} ,E ∪ {(s, v) : v ∈ V}) a DFS from s
has a back edge.

DEPTH-FIRST SEARCH 27/33

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



GENERALIZING DFS

All DFS code seem very much alike.
They do work on

I Touching,
I Entering, and
I Exiting

We need to keep some state σ around
I and update it appropriately!

Σ0 : α
touch : α× vertex× vertex→ α
enter : α× vertex× vertex→ α
exit : α× vertex× vertex→ α

Each function takes a state, the current vertex v
and the parent vertex p.
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GENERIC DFS ALGORITHM

1 fun DFS(G,Σ0, s) = let
2 fun DFS′ p ((X ,Σ), v) =
3 if (v ∈ X ) then (X ,touch(Σ, v ,p))
4 else let
5 val Σ′ = enter(Σ, v ,p)
6 val (X ′,Σ′′) = iter (DFS′ p) (X ∪ {v},Σ′) N+

G (v)
7 val Σ′′′ = exit(Σ,Σ′′, v ,p)
8 in (X ′,Σ′′′) end
9 in DFS′ s (({},Σ0), s) end
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UNDIRECTED CYCLE DETECTION

1 fun DFS(G,Σ0, s) = let
2 fun DFS′ p ((X ,Σ), v) =
3 if (v ∈ X ) then (X ,touch(Σ, v ,p))
4 else let
5 val Σ′ = enter(Σ, v ,p)
6 val (X ′,Σ′′) = iter (DFS′ p) (X ∪ {v},Σ′) N+

G (v)
7 val Σ′′′ = exit(Σ,Σ′′, v ,p)
8 in (X ′,Σ′′′) end
9 in DFS′ s (({},Σ0), s) end

Σ0 = ([s], false) : vertex list× bool
fun touch((L as h :: T , fl), v , p) = (L, h 6= p)
fun enter((L, fl), v , p) = (v :: L, fl)
fun exit((L as h :: T , fl), v , p) = (T , fl)
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TOPOLOGICAL SORT

1 fun DFS(G,Σ0, s) = let
2 fun DFS′ p ((X ,Σ), v) =
3 if (v ∈ X ) then (X ,touch(Σ, v ,p))
4 else let
5 val Σ′ = enter(Σ, v ,p)
6 val (X ′,Σ′′) = iter (DFS′ p) (X ∪ {v},Σ′) N+

G (v)
7 val Σ′′′ = exit(Σ,Σ′′, v ,p)
8 in (X ′,Σ′′′) end
9 in DFS′ s (({},Σ0), s) end

Σ0 = [] : vertex list
fun touch(L, v , p) = L
fun enter(L, v , p) = L
fun exit(L, v , p) = v :: L
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DIRECTED CYCLE DETECTION

1 fun DFS(G,Σ0, s) = let
2 fun DFS′ p ((X ,Σ), v) =
3 if (v ∈ X ) then (X ,touch(Σ, v ,p))
4 else let
5 val Σ′ = enter(Σ, v ,p)
6 val (X ′,Σ′′) = iter (DFS′ p) (X ∪ {v},Σ′) N+

G (v)
7 val Σ′′′ = exit(Σ,Σ′′, v ,p)
8 in (X ′,Σ′′′) end
9 in DFS′ s (({},Σ0), s) end

Σ0 = ({} , false) : Set× bool
fun touch((S, fl), v , p) = (S, v ∈? S)
fun enter((S, fl), v , p) = (S ∪ {v} , fl)
fun exit((S, fl), v , p) = (S \ {v} , fl)
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DFS WITH ST SEQUENCES

1 fun DFS(G : (int seq) seq, s : int) =
2 let
3 fun DFS′ p ((X : bool stseq,Σ), v : int) =
4 if (X [v ]) then (X ,touch(Σ, v ,p)
5 else let
6 val X ′ = update(v ,true,X )
7 val Σ′ = enter(Σ, v ,p)
8 val (X ′′,Σ′′) = iter (DFS′v) (X ′,Σ′) (G[v ])
9 in (X ′′,exit(Σ′′, v ,p))

10 val Xinit = stSeq.fromSeq(〈false : v ∈ 〈0, . . . , |G| − 1 〉 〉)
11 in
12 stSeq.toSeq(DFS′((Xinit ,Σ0), s))
13 end

O(m) work and span.
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SYNOPSIS

Representing weighted graphs.
Priority-first Search
Shortest weighted paths
Dijkstra’s Algorithm
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WEIGHTED GRAPH
REPRESENTATION

G = (V ,E ,w) where w : E → eVal
eVal is a set (type) of possible values

I Typically real numbers, but could be anything!

Table of (edge 7→ weight).

W = {(0,1) 7→ 0.7, (1,2) 7→ −2.0, (0,2) 7→ 1.5}

We could use find W e to find w(e).

SHORTEST WEIGHTED PATHS 3/32

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



WEIGHTED GRAPH
REPRESENTATION

Table of (vertex 7→ table of (vertex 7→ weight))

G = {0 7→ {1 7→ 0.7, 2 7→ 1.5} , 1 7→ {2 7→ −2.0} , 2 7→ {}} .

With one lookup, we can get to the neighbors
and weights.
We will mostly use this representation.
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PRIORITY-FIRST SEARCH

Generalization of BFS and DFS – also called
best-first search
Visits vertices in some priority order

I Static - decided ahead of time
I Dynamic – decided on the fly– while things change

during the search
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PRIORITY-FIRST SEARCH

1 fun pfs(G, s) = let
2 fun pfs’(X , F ) =
3 if (F = {}) then X
4 else let
5 val M = highest priority vertices in F
6 val X ′ = X ∪M
7 val F ′ = (F ∪ N(M)) \ X ′
8 in pfs’(X ′, F ′) end
9 in pfs’({}, {s}) end
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PRIORITY-FIRST SEARCH

Several famous graph algorithms are instances
of priority-first search.

I Dijkstra’s Algorithm for single-source shortest paths
(SSSP).

I Prim’s Algorithm for minimum spanning trees (MST).
PFS is a greedy algorithm.

I It greedily adds vertices from the frontier based on a
cost function.

I It never backs up!
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SHORTEST WEIGHTED PATHS

G = (V ,E ,w) with w : E → R
I w(u, v) =∞ if (u, v) 6∈ E

The weight of a path is the sum of the weights of
the edges on it.

THE SSSP PROBLEM
Given a graph G and a source vertex s, find the
shortest weighted path to every other vertex.

I δG(u, v) is the weight of the shortest path from u to v
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DIJKSTRA’S ALGORITHM

Dijkstra’s Algorithm solves SSSP when the
weights are non-negative (w : E → R+ ∪ {0}).

I Greedy
I Finds optimal solutions to a nontrivial task.

Why do we need a new algorithm? Why not use
BFS?

1 1

3

s
a b

s

a b

c

d

1
1

1

22
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OBSERVATIONS

Which vertices can we definitely claim we know
the shortest path from s?

I s itself (Why?)
I The vertex v nearest to s (Why?)

In general
I if we know the shortest path distances to a set of

vertices
I how can we determine the shortest path to another

vertex?
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DIJKSTRA’S ALGORITHM

At any point in time we know the exact shortest
path weight from s

I to vertices in X ⊂ V (s ∈ X ), and
I to some vertex v ∈ T (= V \ X ) that is closest to

some vertex in X

based on paths going through only vertices in X .
Thus, expand X by considering only the nearest
neighbors of the vertices visited!
Define δG,X (s, v) to be the shortest path length
from s to v in G that only goes through
vertices in X (except for v )
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DIJKSTRA’S PROPERTY

Consider a graph
I G = (V ,E), w : E → R+ ∪ {0},
I a source vertex s ∈ V

For any partitioning of the vertices V into X and
T = V \ X with s ∈ X ,

min
t∈T

δG,X (s, t) = min
t∈T

δG(s, t) .

What is this assertion saying?
I The actual shortest distance to the vertex in T that is

closest to s, has to go through vertices in X !
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DIJKSTRA’S PROPERTY

16 

X

vX vT ! vm 

T 

Consider
I a vertex vm ∈ T such that δG(s, vm) = mint∈T δG(s, t),

and
I a shortest path from s to vm in G.

The path must cross from X to T at some point
using some edge (vX , vT ).

I (Prefix) Subpaths of shortest paths are also shortest
paths! (Why?)
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DIJKSTRA’S PROPERTY

16 

X

vX vT ! vm 

T 

The subpath from s to vT is the shortest path to
vT
Since edges weights are ≥ 0
δG(s, vT ) ≤ δG(s, vm)

I It could be that vT = vm.

Also, δG,X (s, vT ) = δG(s, vT ) (Why?)
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DIJKSTRA’S PROPERTY

16 

X

vX vT ! vm 

T 

min
t∈T

δG,X (s, t) ≤ δG,X (s, vT ) = δG(s, vT ) ≤ δG(s, vm) = min
t∈T

δG(s, t) .

But
min
t∈T

δG,X (s, t) ≥ min
t∈T

δG(s, t) Why?

⇒ min
t∈T

δG,X (s, t) = min
t∈T

δG(s, t) .
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DIJKSTRA’S PROPERTY

We can find the shortest path to a node in
T = V \ X , by just considering neighbors of X .
Pick a vertex t ∈ T that minimizes priority
δG,X (s, t).
At that point

I δG,X (s, t) becomes δG(s, t) - we now know the exact
shortest path length to t .

I X = X ∪ {t}, that is, t is now visited.
I T = T \ {t}
I δG,X (s,u) where u ∈ T and (t ,u) ∈ E must be

updated. (Why?/How?)
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DIJKSTRA’S PROPERTY – UPDATES

X
s

tv

T
u

x

w(t, u)

∂G,X(s, u)

Before

X
s

t

v

T

u
x

w(t, u)

new ∂G,X(s, u)= minx∈X(∂G(s, x)+w(x,u)) 

After

∂G,X(s, t)

∂G(s, t)
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DIJKSTRA’S ALGORITHM

Given a weighted graph G = (V ,E ,w) and a
source s, Dijkstra’s algorithm is priority first
search on G

I starting at s, with d(s) = 0 (and d(v) =∞, v 6= s)
I using priority P(v) = mint∈V (d(t) + w(t , v)) (to be

minimized)
I setting d(v) = P(v) when v is visited.
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DIJKSTRA’S ALGORITHM

LEMMA
When Dijkstra’s Algorithm returns d(v) = δG(s, v)
for all reachable v ,

Base case is true: d(s) = 0.
Assume true for |X | = i , then add vertex that
minimizes P(v) = δG,X (s, v).
By Dijkstra’s Property we know
minv∈T δG,X (s, v) = minv∈T δG(s, v)
So d(v) = δG(s, v) for |X | = i + 1.
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DIJKSTRA’S ALGORITHM

1 fun dijkstra(G, s) =
2 let
3 fun dijkstra′(X , Q) =

4 case PQ.deleteMin (Q) of
5 (NONE, )⇒ X
6 | (SOME(d , v),Q′)⇒
7 if ( (v , ) ∈ X ) then dijkstra′(X , Q′)

8 else let
9 val X ′ = X ∪ {(v ,d)}

10 fun relax (Q, (u,w)) = PQ.insert (d + w ,u) Q

11 val Q′′ = iter relax Q′ NG(v)
12 in dijkstra′(X ′, Q′′) end
13 in
14 dijkstra′({}, PQ.insert (0, s) {})
15 end
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DIJKSTRA VARIANTS

Update the neighbors in the priority queue
instead of adding duplicates.

I PQ needs to support decreaseKey function.
Visit all equally closest vertices in parallel (like
BFS)

I Potentially not much parallelism!
I PQ needs to return all such vertices.
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DIJKSTRA IN ACTION

Dijkstra�s algorithm 
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DIJKSTRA IN ACTION

Dijkstra�s algorithm 
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DIJKSTRA IN ACTION

Dijkstra�s algorithm 
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DIJKSTRA IN ACTION

Dijkstra�s algorithm 
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DIJKSTRA IN ACTION

Dijkstra�s algorithm 
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DIJKSTRA IN ACTION

Dijkstra�s algorithm 
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DIJKSTRA IN ACTION

Dijkstra�s algorithm 

13 

s 

f 

a 

b 

d 

e 

c 

g 

4 

2 

5 

1 

1 
1 

5 

2 

0 

   X         
s↦0 
b↦2 
d↦3 
c↦4 
a↦4 
f↦6 

   Q         
6↦e 
7↦e 

SHORTEST WEIGHTED PATHS 28/32

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



DIJKSTRA IN ACTION

Dijkstra�s algorithm 
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DIJKSTRA’S ALGORITHM

1 fun dijkstra(G, s) =
2 let
3 fun dijkstra′(X , Q) =

4 case PQ.deleteMin (Q) of
5 (NONE, )⇒ X
6 | (SOME(d , v),Q′)⇒
7 if ( (v , ) ∈ X ) then dijkstra′(X , Q′)

8 else let
9 val X ′ = X ∪ {(v ,d)}

10 fun relax (Q, (u,w)) = PQ.insert (d + w ,u) Q

11 val Q′′ = iter relax Q′ NG(v)
12 in dijkstra′(X ′, Q′′) end
13 in
14 dijkstra′({}, PQ.insert (0, s) {})
15 end
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COST ANALYSIS

Priority Queue with O(log n) work and span.
Graphs: tree-based table or arrays
Table of distances: tree-based table, array
sequence, or ST sequence.

Operation Line # of calls PQ Tree Table Array ST Array
deleteMin 4 O(m) O(log m) - - -
insert 10 O(m) O(log m) - - -

Priority Q total O(m log m) - - -
find 7 O(m) - O(log n) O(1) O(1)
insert 9 O(n) - O(log n) O(n) O(1)

Distances total - O(m log n) O(n2) O(m)

NG(v) 11 O(n) - O(log n) O(1) -
iter 11 O(m) - O(1) O(1) -

Graph access total - O(m + n log n) O(m) -

Using a tree table work is O(m log n).
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SUMMARY

Representing weighted graphs.
Priority-first Search
Shortest weighted paths
Dijkstra’s Algorithm
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15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 14

SHORTEST WEIGHTED PATHS–II



SYNOPSIS

Graphs with negative edge weights.
Bellman Ford Algorithm
Cost Analysis
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GRAPHS WITH NEGATIVE WEIGHTS

s

a

b

3

2

-2

What is a problem with this graph?
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GRAPHS WITH NEGATIVE WEIGHTS

0 s 

b 

a 
3 

2 

- 2 

∞ 

0 s 

b 

a 
3 

2 

- 2 

3 

2 

0 s 

b 

a 
3 

2 

- 2 

0 

2 ∞ 

Dijkstra fails! (Why?)
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GRAPHS WITH NEGATIVE WEIGHTS

V3

V1

V6

V4

V2

V7

V5

4

2

5

2

1 3 -10

6

1

1

6 2

What is a problem with this graph?
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GRAPHS WITH NEGATIVE WEIGHTS

V3

V1

V6

V4

V2

V7

V5

4

2

5

2

1 3 -10

6

1

1

6 2

Negative cost cycle!
There is no shortest path from v3 to v5
We need to detect such cycles!SHORTEST WEIGHTED PATHS–II 6/27
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GRAPHS WITH NEGATIVE WEIGHTS

Currency Exchange Arbitrage

USD

QAR TL

EUR BP

YEN

3.65

0.5

0.01

…….

0.87

142

0.45

1.3

100 USD→ 365 QAR→ 177.5 TL→ 80.68 EUR
→ 104.9 USD

I You just made 5 USD out of thin air!
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GRAPHS WITH NEGATIVE WEIGHTS

I have USDs but I want to buy BPs.
I I can buy directly, or
I I can buy through some intermediate currencies!

USD BP

1.51

Which way will get me more BPs?
I need to do this fast!
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SHORTEST PATHS

How does this problem relate to the shortest
problem?

I Where are the negative weights?

USD

QAR TL

EUR BP

YEN

-1.29

0.69

4.60

…….

0.14

-4.95

0.80

-0.26

Weights are − log of the exchange rates!

SHORTEST WEIGHTED PATHS–II 9/27

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



SHORTEST PATHS WITH NEGATIVE
WEIGHTS

Define δl
G(s, t) the shortest weighted path from s

to t using at most l edges.
I so the unweighted path length is l !

Base cases:
I δ0

G(s, s) = 0
I δ0

G(s, v) =∞ for all v 6= s.
Induction

δk+1(v) = min
x∈N−(v)

(δk(x) + w(x , v)) .

Minimum of δk(x) + w(x , v) over the
in-neighbors.
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THE BELLMAN FORD ALGORITHM

1 fun BellmanFord(G = (V ,E), s) =
2 let
3 fun BF (D, k) =
4 let
5 val D′ = {v 7→ minu∈N−

G (v)(Du + w(u, v)) : v ∈ V}
6 in
7 if (k = |V |) then ⊥
8 else if (all{Dv = D′

v : v ∈ V}) then D
9 else BF (D′, k + 1)

10 end

11 val D = {v 7→ if v = s then 0 else ∞ : v ∈ V}
12 in BF (D,0) end
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HOW BELLMAN FORD ALGORITHM
WORKS

s 

c 

b d 

a 
3 

2 

- 2 

1 

1 

1 0 

∞ ∞ 

∞ ∞ 

path lengths = 0!
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HOW BELLMAN FORD ALGORITHM
WORKS

0 s 

c 

b d 

a 
3 

2 

- 2 

1 

1 

1 

∞ 

∞ 

3 

2 

path lengths ≤ 1"
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HOW BELLMAN FORD ALGORITHM
WORKS

0 s 

c 

b d 

a 
3 

2 

- 2 

1 

1 

1 

0 

2 

path lengths ≤ 2"

4 

3 
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HOW BELLMAN FORD ALGORITHM
WORKS

0 s 

c 

b d 

a 
3 

2 

- 2 

1 

1 

1 

0 

2 

path lengths ≤ 3"

1 

3 
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HOW BELLMAN FORD ALGORITHM
WORKS

0 s 

c 

b d 

a 
3 

2 

- 2 

1 

1 

1 

0 

2 

path lengths ≤ 4"

1 

2 

SHORTEST WEIGHTED PATHS–II 16/27

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



BELLMAN FORD CORRECTNESS

THEOREM
Given a directed weighted graph G = (V ,E ,w),
w : E → R, and a source s, the BellmanFord
algorithm returns the shortest path length from s
to every vertex or indicates that there is a
negative weight cycle in G reachable from s.
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BELLMAN FORD CORRECTNESS

Use induction on the the number of edges k in
the path.
Base case is correct, Ds = 0.
On each step, for all v ∈ V \ {s}, a shortest path
with at most k + 1 edges

I must consist of a path of at most k edges for vertex u
I followed by a single edge (u, v).

Taking the minimum combination, gives us the
shortest path with at most k + 1 edges.
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NEGATIVE COST CYCLES

This can go at most for n = |V | − 1 rounds
If we reach round n, there must be reachable
negative cost cycle.
Otherwise, Bellman Ford will stop earlier with all
simple shortest paths.
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COST ANALYSIS

Graph represented as a table.
I (R vtxTable) vtxTable, where first vtxTable

maps vertices to their in-neighbors

G = {0 7→ {1 7→ 0.7, 2 7→ 1.5} , 1 7→ {2 7→ −2.0} , 2 7→ {}} .

Graph represented as a sequence of sequences.

I ((int × eVal) seq) seq
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BELLMAN - FORD ALGORITHM
(AGAIN)

1 fun BellmanFord(G = (V ,E), s) =
2 let
3 fun BF (D, k) =
4 let
5 val D′ = {v 7→ minu∈N−

G (v)(Du + w(u, v)) : v ∈ V}
6 in
7 if (k = |V |) then ⊥
8 else if (all{Dv = D′v : v ∈ V}) then D
9 else BF (D′, k + 1)

10 end
11 val D = {v 7→ if v = s then 0 else ∞ : v ∈ V}
12 in BF (D,0) end

Line 5 is tabulate over the vertices

Line 8 is tabulate with a reduction over the vertices
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COST ANALYSIS

val D′ = {v 7→ minu∈N−G (v)(Du + w(u, v)) : v ∈ V}

Sum work and max span over vertices.
n = |V | and m = |E |
For each vertex we have the following costs:

I Find the neighbors find G v: O(log n) work and
span.

I Map over neighbors – find distance Du and add:
O(log n) work and span for each u in the
in-neigborhood.

I Min reduce: O(1 + NG(v)|) work and O(log |NG(v)|)
span.
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WORK PER STAGE-1

val D′ = {v 7→ minu∈N−G (v)(Du + w(u, v)) : v ∈ V}

Operation Over one vertex v Over graph G
Find O(log n) O(n log n)

Map O(1 + |N−G(v)| log n) O(n + m log n)

Min Reduce O(1 + |N−G(v)|) O(n + m)

Total work is O((n + m) log n) and assuming
m > n,O(m log n)
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SPAN PER STAGE-1

val D′ = {v 7→ minu∈N−G (v)(Du + w(u, v)) : v ∈ V}

Operation Over one vertex v Over graph G
Find O(log n) O(log n)

Map O(1 + log n) O(1 + log n)

Min Reduce O(log |N−G(v)|) O(log n)

Total span is O(log n)
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WORK / SPAN PER STAGE - 2 –
TOTAL COST

else if (all {Dv = D′v : v ∈ V}) then D
This involves a tabulate and an and-reduction.
Work = O(n log n), Span = O(log n)

n sequential calls to BF , so total costs are:

W (n,m) = O(n ·m log n)
S(n,m) = O(n log n)
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COSTS WITH ST SEQUENCES

We use IL (integer labeled) graphs.
find→ nth: O(1) work.
Similar improvements for looking up neighbors
and distance table.

W (n,m) = O(nm)

S(n,m) = O(n)
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SUMMARY

Graphs with negative edge weights.
Bellman Ford Algorithm
Analysis
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15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 15

PROBABILITY AND RANDOMIZED ALGORITHMS



SYNOPSIS

Overview of Discrete Probability
Finding the two largest elements
Find the k th smallest element.
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RANDOMIZED ALGORITHMS

Exploit randomness during computation
I Pivot selection in Quicksort
I Average case analysis
I Primality testing

Question: How many comparisons are needed to
find the second largest number on a sequence of
n numbers?

I Naive algorithm: 2n − 3 comparisons
I Divide and Conquer algorithm: 3n/2 comparisons
I Simple randomized algorithm: n − 1 + 2 log n

comparisons on the average.
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OVERVIEW OF DISCRETE
PROBABILITY

Probabilistic Experiment: outcome is
probabilistic.
Sample Space (Ω): arbitrary and possibly
countably infinite set of possible outcomes.

I Tossing a coin
I Throwing a die/pair of dice.

Primitive Event: Any one of the elements of Ω.
Event: Any subset of Ω

I First die is a 5
I Dice sum to 7
I Any die is even.
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PROBABILITY FUNCTION

Probability Function: Ω→ [0,1]

∑

e∈Ω

Pr[e] = 1

Probability of an event A:
∑

e∈A

Pr[e]

I Probability of “first die is 4”?
I Probability of “dice sum to to 4”?

PROBABILITY AND RANDOMIZED ALGORITHMS 5/28

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



RANDOM VARIABLES

Random Variable: X : Ω→ <
I X is the sum of the two die rolls

Indicator Random Variable: Y : Ω→ {0,1}
I Y is 1 if the dice are the same, 0 otherwise
I Y is 1 if the total is larger than 7, 0 otherwise

For a ∈ <, the event “X = a” is the set

{ω ∈ Ω | X (ω) = a}
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EXPECTATION

The expectation of a random variable

E
Ω,Pr[]

[X ] =
∑

e∈Ω

X (e) · Pr[e] .

The expectation of an indicator random variable:

E [Y ] =
∑

e∈Ω,p(e)=true

Pr[e] =
∑

e∈Ω

Pr[{e ∈ Ω | p(e)}] .

I p : Ω→ bool
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INDEPENDENCE

Events A and B are independent if the occurence
of one does not affect the probability of the other

Pr[A ∩ B] = Pr[A] · Pr[B]

I A = {(d1,d2) ∈ Ω | d1 = 1} and
B = {(d1,d2) ∈ Ω | d2 = 1} are independent.

I C = {(d1,d2) ∈ Ω | d1 + d2 = 4} is NOT independent
of A (Why?)
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INDEPENDENCE

Events A1, . . . ,Ak are mutually independent if
and only if for any non-empty subset
I ⊆ {1, . . . , k},

Pr[
⋂

i∈I

Ai ] =
∏

i∈I

Pr[Ai ].

Random variable X and Y are independent if
fixing one does NOT affect the probability
distribution of the other.

I X = “value of the first die” is independent of Y =
“value of the second die”.

I X is NOT independent of Z = “sum of the dice”
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LINEARITY OF EXPECTATIONS

Important Theorem: given two random variables
X and Y

E [X ] + E [Y ] = E [X + Y ]

Easy to show!
∑

e∈Ω

Pr[e]X (e) +
∑

e∈Ω

Pr[e]Y (e) =
∑

e∈Ω

Pr[e](X (e) + Y (e))

Expected sum of two dice
I Consider 36 outcomes and take average
I Sum expectations for each dice (3.5 + 3.5 = 7)
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LINEARITY OF EXPECTATIONS

In general, for a binary function f the equality

f (E [X ] ,E [Y ]) = E [f (X ,Y )]

is not true in general.
I max(E [X ] ,E [Y ]) 6= E [max(X ,Y )]
I What is E [max(X ,Y )]?

E [X ]× E [Y ] = E [X × Y ] is true if X and Y are
independent.
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EXAMPLES

Toss n coins with probability of heads, p. What is
the expected value of X , the number of heads?

E [X ] =
n∑

k=0

k · Pr[X = k ]

=
n∑

k=1

k · pk (1− p)n−k
(

n
k

)
(Why?)

=
n∑

k=1

k · n
k

(
n − 1
k − 1

)
pk (1− p)n−k [because

(
n
k

)
=

n
k

(
n − 1
k − 1

)
]

= n
n∑

k=1

(
n − 1
k − 1

)
pk (1− p)n−k
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EXAMPLES

Toss n coins with probability of heads, p. What is
the expected value of X , the number of heads?

E [X ] =
n∑

k=0

k · Pr[X = k ]

. . .

= n
n−1∑

j=0

(
n − 1

j

)
pj+1(1− p)n−(j+1) [ because k = j + 1 ]

= n · p
n−1∑

j=0

(
n − 1

j

)
pj (1− p)(n−1)−j)

= n · p · (p + (1− p))n−1 [ Binomial Theorem ]
= n · p
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EXAMPLES

Toss n coins with probability of heads, p. What is
the expected value of X , the number of heads?
Using linearity of expectations.

I Xi = I{i-th coin turns up heads}
I X =

∑n
i=1 Xi

E [X ] = E

[
n∑

i=1

Xi

]
=

n∑

i=1

E [Xi ] =
n∑

i=1

p = n · p

I because E [Xi ] = p.
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EXAMPLES

A coin has a probability p of coming up heads.
What is the expected value of Y representing the
number of flips until we see a head?
Write a recurrence!

I With probability p, we’ll get a head and we are done,
I With probability 1− p, we’ll get a tail and we’ll go

back to square one

E [Y ] = p · 1 + (1− p)
(

1 + E [Y ]
)

= 1 + (1− p) E [Y ] =⇒ E [Y ] = 1/p.
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FINDING THE TOP TWO ELEMENTS

1 fun max2(S) = let
2 fun replace((m1,m2), v) =
3 if v ≤ m2 then (m1,m2)
4 else if v ≤ m1 then (m1, v)
5 else (v ,m1)

6 val start = if S1 ≥ S2 then (S1,S2) else (S2,S1)

7 in iter replace start S 〈3, . . . ,n 〉
8 end

We will do exact analysis.

1 + 2(n − 2) = 2n − 3 comparisons in the worst case.
(Why?)

A Divide and Conquer algorithm gives 3n/2− 2
comparison. (How?)PROBABILITY AND RANDOMIZED ALGORITHMS 16/28
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WORST CASE ANALYSIS

1 fun max2(S) = let
2 fun replace((m1,m2), v) =
3 if v ≤ m2 then (m1,m2)
4 else if v ≤ m1 then (m1, v)
5 else (v ,m1)

6 val start = if S1 ≥ S2 then (S1,S2) else (S2,S1)

7 in iter replace start S 〈3, . . . ,n 〉
8 end

An already sorted sequence (e.g., 〈1, 2, 3, . . . , n〉)
will need exactly 2n − 3 comparisons.
But this happens with 1/n! chance!
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A RANDOMIZED ALGORITHM

The worst-case analysis is overly pessimistic.
Consider the following variant:
On input of a sequence S of n elements:

1 Let T = permute(S, π), where π is a random
permutation (i.e., we choose one of the n!
permutations).

2 Run the naı̈ve algorithm on T .
No need to really generate the permutation!

I Just pick an unprocessed element randomly until all
elements are processed.

I It is convenient to model this by one initial
permutation!
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ANALYSIS
1 fun max2(S) = let
2 fun replace((m1,m2), v) =

3 if v ≤ m2 then (m1,m2)

4 else if v ≤ m1 then (m1, v)

5 else (v ,m1)

6 val start = if S1 ≥ S2 then (S1,S2) else (S2,S1)

7 in iter replace start S 〈 3, . . . , n 〉
8 end

Xi = 1 if Ti is compared in Line 4, 0 otherwise.
Y is the number of comparisons

Y = 1︸︷︷︸
Line 6

+ n − 2︸ ︷︷ ︸
Line 3

+
n∑

i=3

Xi ;

︸ ︷︷ ︸
Line 4
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ANALYSIS

This expression in true regardless of the random
choice we’re making.
We’re interested in computing the expected value
of Y .
By linearity of expectation,

E [Y ] = E

[
1 + (n − 2) +

n∑

i=3

Xi

]

= 1 + (n − 2) +
n∑

i=3

E [Xi ] .
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ANALYSIS

Problem boils down to computing E [Xi ], for
i = 3, . . . ,n!
What is the probability that Ti > m2?

I Ti > m2 holds when Ti is either the largest or the
second largest in {T1, . . . ,Ti}

So, what is the probability that Ti is one of the
two largest elements in a randomly permuted
sequence of length i?

I 1
i + 1

i = 2
i

E [Xi ] = 1 · 2
i = 2/i
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ANALYSIS

E [Y ] = 1 + (n − 2) +
n∑

i=3

E [Xi ]

= 1 + (n − 2) +
n∑

i=3

2
i

= 1 + (n − 2) + 2
(

1
3 + 1

4 + . . . 1
n

)

= n − 4 + 2
(

1 + 1
2 + 1

3 + 1
4 + . . . 1

n

)

= n − 4 + 2Hn

Hn is the nth Harmonic number
Hn ≤ 1 + log2 n
E [Y ] ≤ n − 2 + 2 log2 n
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FINDING THE k th SMALLEST
ELEMENT

Input: a sequence of n numbers (not necessarily
sorted)
Output: the k th smallest value in S (i.e., (nth
(sort S) k)).
Requirement: O(n) expected work and O(log2 n)
span.

We can’t really sort the sequence!
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FINDING THE k th SMALLEST
ELEMENT

1 fun kthSmallest(k ,S) = let
2 val p = a value from S picked uniformly at random
3 val L = 〈 x ∈ S | x < p 〉
4 val R = 〈 x ∈ S | x > p 〉
5 in if (k < |L|) then kthSmallest(k ,L)
6 else if (k < |S| − |R|) then p
7 else kthSmallest(k − (|S| − |R|),R)

Let Xn = max{|L|, |R|}
W (n) = W (Xn) + O(n)

S(n) = S(Xn) + O(log n)
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FINDING THE k th SMALLEST
ELEMENT

We want to find E [Xn]?

RL

max(L, R)

E [Xn] =
n−1∑

i=1

max{i ,n − i} · 1
n ≤

n−1∑

j=n/2

2
n
· j ≤ 3n

4
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FINDING THE k th SMALLEST
ELEMENT

E [Xn] ≤ 3n
4 ⇒ geometrically decreasing sum

⇒ O(n) work.
What is Pr[Xn ≤ 3

4n]?
Since |R| < n − |L|,

Xn ≤
3
4

n⇔ n/4 < |L| ≤ 3n/4

and the probability is
3n/4− n/4

n
=

n/2
n

=
1
2
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FINDING THE k th SMALLEST
ELEMENT

W (n) =
∑

i

Pr[Xn = i ] ·W (i) + c · n

Using stepwise approximation

≤ Pr[Xn ≤ 3n
4 ]W (3n/4) + Pr[Xn >

3n
4 ]W (n) + c · n

= 1
2W (3n/4) + 1

2W (n) + c · n
=⇒ (1− 1

2)W (n) = 1
2W (3n/4) + c · n

=⇒ W (n) ≤W (3n/4) + 2c · n

Root Dominated hence solves to O(n).
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FINDING THE k th SMALLEST
ELEMENT

S(n) = S(Xn) + O(log n)

S(n) =≤
∑

i

Pr[Xn = i ] · S(i) + c log n

≤ Pr[Xn ≤ 3n
4 ]S(3n/4) + Pr[Xn >

3n
4 ]S(n) + c · log n

≤ 1
2S(3n/4) + 1

2S(n) + c · log n

=⇒ (1− 1
2)S(n) ≤ 1

2S(3n/4) + c log n

=⇒ S(n) ≤ S(3n/4) + 2c log n

This solves to O(log2 n).
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15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 16

GRAPH CONTRACTION



SYNOPSIS

Graph Contraction
Finding Connected Components
Edge Contraction
Star Contraction
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MOTIVATION

Most graph search algorithms were either
I sequential, or
I had span dependent on the diameter.

Can we make these algorithms more parallel?
I Polylogarithmic span: span is bounded by a

polynomial in log n
We will look at contraction as a way to build
parallel algorithms for some graph problems:

I Graph Connectivity
I Spanning Trees
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GRAPH CONNECTIVITY

Two vertices in an undirected graph are
connected if there is a path between them.
A graph is connected if all pairs of vertices are
connected.
The graph connectivity problems partitions a
graph into its maximal connected subgraphs.

a

b

c

d

e

f

has two connected subgraphs:{a,b, c,d} and {e, f}
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GRAPH CONNECTIVITY

BFS or DFS
I Identify vertices of a connected component
I Identify all connected components!

BFS could be parallel but has span ∝ diameter d
Each connected component needs to be done
sequentially!
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GRAPH CONTRACTION

Problem→ Smaller Problem
Shrink the size of the graph and solve the
connectivity problem on the small graph.

I Different components can be handled in parallel!
Applicable to other problems

I Spanning Trees
I Minimum Spanning Trees
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GRAPH CONTRACTION

contract : graph→ partition

Takes a graph G(V ,E) and returns a partitioning
of V into connected subgraphs.

I Not necessarily maximally connected subgraphs (yet)
I But vertices in a partition are connected.

a

b

c

d

e

f
a

b

c

d

e

f

{{a,b, c} , {d} , {e, f}}
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GRAPH CONTRACTION

a

b

c

d

e

f a,b,c d e,fa,b,c d e,f

components 
identified

contracted parallel edges 
removed

If the graph contracts on each round, eventually
each maximal connected component will shrink
down to a single vertex!

a,b,c,d e,fa,b,c d e,f a,b,c,d,e,f
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REPRESENTING PARTITIONS

a

b

c

d

e

f

↓
{{a,b, c} , {d} , {e, f}}

↓
({a,d ,e} , {a 7→ a,b 7→ a, c 7→ a,d 7→ d ,e 7→ e, f 7→ e}).
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COUNTING COMPONENTS

1 fun numComponents((V ,E), i) =
2 if |E | = 0 then |V |
3 else let
4 val (V ′,P) = contract((V ,E), i)
5 val E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 in
7 numComponents((V ′,E ′), i + 1)
8 end

Ignore i for the time being!
V ′ is the set of representative vertices
P maps every v ∈ V to a v ′ ∈ V ′.
E ′ is the set of edges in the contracted graph.

I Self-loops are removed!
GRAPH CONTRACTION 10/32

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



COMPUTING COMPONENTS

1 fun components((V ,E), i) =
2 if |E | = 0 then {v 7→ v : v ∈ V}
3 else let
4 val (V ′,P) = contract((V ,E), i)
5 val E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 val P ′ = components((V ′,E ′), i + 1)
7 in
8 {v 7→ P ′[P[v ]] : v ∈ V}
9 end
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COMPUTING COMPONENTS

1 fun components((V ,E), i) =
2 if |E | = 0 then {v 7→ v : v ∈ V}
3 else let
4 val (V ′,P) = contract((V ,E), i)
5 val E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 val P ′ = components((V ′,E ′), i + 1)
7 in
8 {v 7→ P ′[P[v ]] : v ∈ V}
9 end

Base case: Every vertex maps to itself!
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COMPUTING COMPONENTS

1 fun components((V ,E), i) =
2 if |E | = 0 then {v 7→ v : v ∈ V}
3 else let
4 val (V ′,P) = contract((V ,E), i)
5 val E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 val P ′ = components((V ′,E ′), i + 1)
7 in
8 {v 7→ P ′[P[v ]] : v ∈ V}
9 end

(Recursively) find components of the contracted
graph
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COMPUTING COMPONENTS

1 fun components((V ,E), i) =
2 if |E | = 0 then {v 7→ v : v ∈ V}
3 else let
4 val (V ′,P) = contract((V ,E), i)
5 val E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 val P ′ = components((V ′,E ′), i + 1)
7 in
8 {v 7→ P ′[P[v ]] : v ∈ V}
9 end

Map each vertex to the representative vertex of
its partition!
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COMPUTING COMPONENTS

1 fun components((V ,E), i) =
2 if |E | = 0 then {v 7→ v : v ∈ V}
3 else let
4 val (V ′,P) = contract((V ,E), i)
5 val E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 val P ′ = components((V ′,E ′), i + 1)
7 in
8 {v 7→ P ′[P[v ]] : v ∈ V}
9 end

a

b

c

d

e

f

After 4: V ′ = {a,d ,e}
P = {a 7→ a,b 7→ a, c 7→ a,d 7→ d , e 7→ e, f 7→ e}

After 6: P ′ = {a 7→ a,d 7→ a,e 7→ a}

8 returns: {a 7→ a,b 7→ a, c 7→ a,d 7→ a,e 7→ a, f 7→ a}
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IMPLEMENTING CONTRACT

Edge Contraction:Only pairs of vertices
connected by an edge are contracted.
Star Contraction: Vertices around a “center star”
collapse to the “star”
Tree Contraction: disjoint trees within the graph
are identified and vetices in a tree are collapsed
to the root.
Parallel
Reduce graph size (vertices/edges?) by a
constant factor every round.

I Will lead to O(log n) rounds!.
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EDGE CONTRACTION

Find disjoint edges – edges can not share
vertices.

a

b

c

d

e

f

Vertex matching problem
Can be done in parallel

I Each edge picks a random priority in [0,1]
I Any edge which has highest priority for both vertices

gets selected.
It turns out this has some problems!
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EDGE CONTRACTION

Consider a graph like

v

How many edges can be contracted each round?
How many rounds are needed to contract to 1
node?
Not very parallel!
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STAR CONTRACTION

Star subgraphs can be contracted in parallel!

How do we find disjoint stars?
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FINDING DISJOINT STARS

Each vertex throws a coin
I Heads→ vertex is a star-center
I Tails→ vertex is a potential satellite (Why potential?)

Each satellite then selects a center.
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RANDOM COIN TOSSES

Pretend each vertex has a potentially infinite
sequence of random coin flips
heads(v , i) : vertex× int→ bool provides
access to these coin tosses.
This can be implemented with a pseudorandom
number generator.

GRAPH CONTRACTION 21/32

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



STAR CONTRACTION
1 fun starContract(G = (V ,E), i) =
2 let
3 % select edges that go from a tail to a head
4 val TH = {(u, v) ∈ E | ¬heads(u, i) ∧ heads(v , i)}
5 % make mapping from tails to heads, removing duplicates
6 val P = ∪(u,v)∈TH {u 7→ v}
7 % remove vertices that have been remapped
8 val V ′ = V \ domain(P)
9 % Map remaining vertices to themselves

10 val P ′ = {u 7→ u : u ∈ V ′} ∪ P
11 in (V ′,P ′) end

a

b

c d

e

H

H T

TT

a

b

c d

e

H

H T

TT

a

b

c d

e

H

H T

TT

coin flips (heads(v,i)) find potential centers (TH) compute "hook" edges (P)
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STAR CONTRACTION

a

b

c d

e

H

H T

TT

a

b

c d

e

H

H T

TT

a

b

c d

e

H

H T

TT

coin flips (heads(v,i)) find potential centers (TH) compute "hook" edges (P)

val TH = {(u, v) ∈ E | ¬heads(u, i) ∧ heads(v , i)}

TH = {(c,a), (c,b), (e,b)}.
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STAR CONTRACTION

a

b

c d

e

H

H T

TT

a

b

c d

e

H

H T

TT

a

b

c d

e

H

H T

TT

coin flips (heads(v,i)) find potential centers (TH) compute "hook" edges (P)

val P = ∪(u,v)∈TH {u 7→ v}

TH = {(c,a), (c,b), (e,b)}
P = {c 7→ b,e 7→ b}
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STAR CONTRACTION

a

b

c d

e

H

H T

TT

a

b

c d

e

H

H T

TT

a

b

c d

e

H

H T

TT

coin flips (heads(v,i)) find potential centers (TH) compute "hook" edges (P)

val V ′ = V \ domain(P)

P = {c 7→ b,e 7→ b}
domain(P) = {c,e}
V ′ = {a,b,d}

GRAPH CONTRACTION 25/32

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



STAR CONTRACTION

a

b

c d

e

H

H T

TT

a

b

c d

e

H

H T

TT

a

b

c d

e

H

H T

TT

coin flips (heads(v,i)) find potential centers (TH) compute "hook" edges (P)

val P ′ = {u 7→ u : u ∈ V ′} ∪ P

P = {c 7→ b,e 7→ b}, V ′ = {a,b,d}
P ′ = {a 7→ a,b 7→ b, c 7→ b,d 7→ d ,e 7→ b}
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ANALYSIS OF STAR CONTRACTION

LEMMA
For a graph G with n non-isolated vertices, let Xn be the random
variable indicating the number of vertices removed by
starContract(G, ). Then, E [Xn] ≥ n/4.

Hv : vertex v comes up heads, Tv : vertex v comes up tails

Rv : vertex v is removed in contraction

v has at least one neighbor u.

Tv ∧ Hu implies Rv

I If v is a tail, join u′s star or some other star.
Pr[Rv ] ≥ Pr[Tv ]Pr[Hu] = 1/4

Expected total ≥ n/4
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ANALYSIS OF STAR CONTRACTION

1 fun starContract(G = (V ,E), i) =
2 let
3 % select edges that go from a tail to a head – O(m) work, O(1) span
4 val TH = {(u, v) ∈ E | ¬heads(u, i) ∧ heads(v , i)}
5 % make mapping from tails to heads, removing duplicates
6 % O(n) work, O(log n) span
7 val P = ∪(u,v)∈TH {u 7→ v}
8 % remove vertices that have been remapped
9 % O(n) work, O(log n) span

10 val V ′ = V \ domain(P)
11 % Map remaining vertices to themselves -O(n) work, O(log n span
12 val P ′ = {u 7→ u : u ∈ V ′} ∪ P
13 in (V ′,P ′) end

n nodes, m edges
O(n + m) work, O(log n) span.
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ANALYSIS OF CONNECTIVITY

1 fun numComponents((V ,E), i) =
2 if |E | = 0 then |V |
3 else let
4 val (V ′,P) = starContract((V ,E), i)
5 val E ′ = {(P[u],P[v ]) : (u, v) ∈ E | P[u] 6= P[v ]}
6 in
7 numComponents((V ′,E ′), i + 1)
8 end

S(n) = S(n′) + O(log n)
n′ = n − Xn and E [Xn] = n/4, so E [n′] = 3n/4
S(n) ∈ O(log2 n)

GRAPH CONTRACTION 29/32

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



ANALYSIS OF CONNECTIVITY

We can remove a constant fraction of vertices
every round.
For each vertex removed, we remove at least
one edge.
Consider a hypothetical contraction

round vertices edges

1 n m
2 n/2 m − n/2
3 n/4 m − 3n/4
4 n/8 m − 7n/8

Number of edges does not go below m − n.
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ANALYSIS OF CONNECTIVITY

W (n,m) ≤W (n′,m) + O(n + m),

As before, E [n′] = 3n/4, so
E [W (n,m)] ∈ O(n + m log n)

GRAPH CONTRACTION 31/32

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



TREE CONTRACTION

Identify disjoint trees and contract them.
For every tree of t vertices contracted, t − 1
edges are removed.
Number of edges also go down geometrically at
every round.
Leads to O(m) work and O(log2 n) span.
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15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 17

NO LECTURE



SYNOPSIS

There is no lecture 17
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15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 18

MINIMUM SPANNING TREES



SYNOPSIS

Minimum Spanning Trees
Kruskal’s and Prim’s Algorithms
Using Star Contraction for MST
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MINIMUM SPANNING TREES
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MINIMUM SPANNING TREES
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MINIMUM SPANNING TREES

Given a connected undirected graph G = (V ,E)
I Each edge e has we ≥ 0

Find a spanning tree, T that minimizes

w(T ) =
∑

e∈E(T )

we.

Sequential algorithms:
I Kruskal’s Algorithm
I Prim’s Algorithm

MINIMUM SPANNING TREES 5/22
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MINIMUM SPANNING TREES
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LIGHT EDGE RULE

Given G = (V ,E), U ( V partitions the graph
into two parts with vertices U and V \ U.
The edges between U and V \ U are called the
cut edges E(U,U).

MINIMUM SPANNING TREES 7/22
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LIGHT EDGE RULE
THEOREM
Let G = (V ,E ,w) be a connected undirected weighted graph
with distinct edge weights.

For any nonempty U ( V

the minimum weight edge e between U and V \ U is in the
minimum spanning tree MST(G) of G.
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LIGHT EDGE RULE

u
v

U V\U

Assume e = (u, v) is the minimum edge in the cut but not
in the MST.

MST should have at least another edge in the cut.

Adding e to the path between u and v creates a cycle.

Removing the max edge from path (blue line) and adding e
should give a ST with less weight.

Original (claimed) MST (through blue line) can not be a
MST!
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KRUSKAL’S ALGORITHM

Greedy
Each vertex is a subtree by itself initially
Combine the two sub-trees on both sides of the
next smallest edge (if they are different)
Uses the union-find data structure.
O(m log n) work and span!
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KRUSKAL’S ALGORITHM
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PRIM’S ALGORITHM

Greedy
Based on Priority-based Search – Variant of
Dijsktra’s Algorithm
Maintain visited X and frontier F vertices.
Visit the nearest unvisited vertex in the frontier.
O(m log n) work and span!
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PRIM’S ALGORITHM
1 fun prim(G) =
2 let
3 fun enqueue v (Q, (u,w)) = PQ.insert (w , (v ,u)) Q
4 fun proper(X , Q, T ) =
5 case PQ.deleteMin(Q) of
6 (NONE, )⇒ T
7 | (SOME(d , (u, v)),Q′)⇒
8 if (v ∈? X ) then proper(X , Q′, T )
9 else let

10 val X ′ = X ∪ {v}
11 val T ′ = T ∪ {(u, v)}
12 val Q′′ = iter (enqueue v) Q′ NG(v)
13 in proper(X ′, Q′′, T ′) end

14 val s = an arbitrary vertex from G
15 val Q = iter (enqueue s) {} NG(s)
16 in
17 proper({s} , Q, {})
18 end
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PRIM’S ALGORITHM
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PARALLEL MST ALGORITHMS

OBSERVATION
The minimum weight edge out of every vertex of
a weighted graph G belongs to its MST.

Why should this be the case?

1

2

3

5 4

6

7 1

2

3

5 4

6

7

MST can contain other edges!
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PARALLEL MST - IDEA #1

Throw all minimum weight edges into MST
Tree contract the vertices for all these edges
Repeat until no edges remain!

1

2

3

5 4

6

7 1

2

3

5 4

6

7

Each rounds removes at least 1/2 of the vertices
(Why?)
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PARALLEL MST - IDEA #2

Let minE be the set of minimum weight edges.
Let H = (V ,minE) be a subgraph of G
We apply (modified) star contraction to H

I The tails hook up through the minimum weight edge!

1 fun minStarContract(G = (V ,E), i) =
2 let
3 val minE = minEdges(G)
4 val P = {u 7→ (v ,w) ∈ minE | ¬heads(u, i) ∧ heads(v,i)}
5 val V ′ = V \ domain(P)

6 in (V ′,P) end
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PARALLEL MST - IDEA #2

Even though we are working with a subgraph, the
star contract lemma still applies.

LEMMA
For a graph G with n non-isolated vertices, let Xn be
the random variable indicating the number of vertices
removed by minStarContract(G, r). Then,
E(Xn) ≥ n/4.

MST will take expected O(log n) rounds.
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BOOKKEEPING

As the graph contracts, the end point of each
edge changes!
At the end, the edges may not have the original
end points.
Associate a unique label to each edge initially:

I (vertex× vertex× weight× label)
I The end points change but the label does not!
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MODIFIED STAR CONTRACT

1 fun minStarContract(G = (V ,E), i) =
2 let
3 val minE = minEdges(G)
4 val P = {(u 7→ (v ,w , `)) ∈ minE | ¬heads(u, i) ∧ heads(v , i)}
5 val V ′ = V \ domain(P)

6 in (V ′,P) end

Line 3: Finds min edge for each vertex.
I All these belong to the MST

Line 4: Picks tails and heads, and the creates
mapping from tails to heads.
Line 5: Removes all tail vertices from the vertex
set.
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THE MST ALGORITHM

1 fun MST((V ,E), T , i) =
2 if |E | = 0 then T
3 else let
4 val (V ′,PT ) = minStarContract((V ,E), i)
5 val P = {u 7→ v : u 7→ (v ,w , `) ∈ PT} ∪ {v 7→ v : v ∈ V ′}
6 val T ′ = {` : u 7→ (v ,w , `) ∈ PT}
7 val E ′ = {(P[u],P[v ],w , l) : (u, v ,w , l) ∈ E | P[u] 6= P[v ]}
8 in
9 MST((V ′,E ′), T ∪ T ′, i + 1)

10 end

Invoked by MST(G, {},1).
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IMPLEMENTING MINEDGES(G)

fun joinEdges((v1,w1, l1), (v2,w2, l2)) =
if (w1 ≤ w2) then (v1,w1, l1) else (v2,w2, l2)

fun minEdges(E) =
let

val ET = {u 7→ (v ,w , l) : (u, v ,w , l) ∈ E}
in

(merge joinEdges) {} ET
end
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QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS



SYNOPSIS

Quicksort
Work and Span Analysis of Randomized
Quicksort
Lower Bound for Comparison-based Sorting
Lower Bound for Merging
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QUICKSORT

Originally invented and analyzed by Hoare in
1960’s.
I strongly urge to watch Jon Bentley on “Three
beautiful Quicksorts” at

I www.youtube.com/watch?v=QvgYAQzg1z8.
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SEQUENTIAL QUICKSORT

int i, j;
for( i = low, j = high - 1; ; )
{

while( a[ ++i ] < pivot );
while( pivot < a[ --j ] );
if( i >= j )
break;
swap( a, i, j );

}
// Restore pivot
swap( a, i, high - 1 );
quicksort( a, low, i - 1 ); // Sort small elements
quicksort( a, i + 1, high ); // Sort large elements
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QUICKSORT

1 fun quicksort(S) =
2 if |S| = 0 then S
3 else let
4 val p = pick a pivot from S
5 val S1 = 〈 s ∈ S | s < p 〉
6 val S2 = 〈 s ∈ S | s = p 〉
7 val S3 = 〈 s ∈ S | s > p 〉
8 val (R1,R3) = (quicksort(S1) ‖ quicksort(S3) )
9 in

10 append(R1,append(S2,R3))
11 end
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QUICKSORT

Each call to Quicksort either makes
I No recursive calls (base case), or
I Two recursive calls

Call tree is a binary
Depth the call tree determines the span of the
algorithm.
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PICKING THE PIVOT

Always pick the first element
I Worst case O(n2) work.
I In practice, almost sorted inputs are not uncommon.

Pick the median of 3 elements (e.g., first, middle
and last elements)

I could possible divide evenly
I worst case is still bad

Pick an element at random
I we hope this divides evenly in expectation
I leading to expected O(n log n) work and O(log2 n)

span.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS 7/27

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



PICKING THE PIVOT

Pick first element
I Worst case O(n2) work.
I Expected O(n log n) work

F Averaged over all possible orderings.
I Work well on the average
I Slow on some, possibly common, cases.

Pick a random element
I Expected worst-case O(n log n) work.

F For input in any order, the expected work is O(n log n)
I No input has expected O(n2) work.
I With a small probability, we could be unlucky and

have O(n2) work.
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RANDOMIZED QUICKSORT

Assign a uniformly random priority to each
number in [0,1].

1 fun quicksort(S) =

2 if |S| = 0 then S
3 else let
4 val p = pick as pivot the highest priority element from S
5 val S1 = 〈 s ∈ S | s < p 〉
6 val S2 = 〈 s ∈ S | s = p 〉
7 val S3 = 〈 s ∈ S | s > p 〉
8 val (R1,R3) = (quicksort(S1) ‖ quicksort(S3) )

9 in
10 append(R1,append(S2,R3))

11 end

Once the priorities are assigned, the algorithm is
deterministic.
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RANDOMIZED QUICKSORT

Count comparisons made!
I Almost all the work is comparisons.

Xn = # of comparisons quicksort

makes on input of size n

Find E [Xn] for any input sequence S
Notation:

I Let T = sort(S)
I Ti and Tj refer to elements in the final sorted order

and i < j and Ti ≤ Tj .
I pi refers to priority chosen for Ti .
I Ai,j = 1 if Ti and Tj were ever compared during the

sort.
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ANALYZING QUICKSORT

Crucial point is how to model Ai ,j .
In any one call to quicksort, there are three
cases:

I Pivot p is either Ti or Tj ⇒ Ai,j = 1
I Ti < p < Tj ⇒ Ti ∈ S1,Tj ∈ S3,Ai,j = 0
I Either p < Ti or p > Tj ⇒ Ti ,Tj ∈ S1 or Ti ,Tj ∈ S3

If two elements are compared in a quicksort
call, they will never be compared again in any
other call!
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ANALYZING QUICKSORT

Xn ≤ 3
n∑

i=1

n∑

j=i+1

Aij

The non-optimized code compares each element
to pivot 3 times.

1 . . .
2 val S1 = 〈 s ∈ S | s < p 〉
3 val S2 = 〈 s ∈ S | s = p 〉
4 val S3 = 〈 s ∈ S | s > p 〉
5 . . .

By linearity of expectation

E [Xn] ≤ 3
n∑

i=1

n∑

j=i+1

E [Aij ] = 3
n∑

i=1

n∑

j=i+1

Pr[Aij = 1]
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ANALYZING QUICKSORT

Consider first when the pivot is one of
Ti ,Ti+1, ...,Tj

Ti and Tj are compared⇔ pi or pj is the highest
priority among {pi ,pi+1, . . . ,pj}.

I Assume Tk , i < k < j has higher priority.
I For any subdivision · · · ,Ti , · · · ,Tk , · · · , Tj will

become a pivot and separate Ti and Tj
I Ti and Tj will never be compared!
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ANALYZING QUICKSORT

E [Aij ] = Pr[Aij = 1]

= Pr[pi or pj is the maximum in {pi , . . . ,pj}]

=
2

j − i + 1
(Why ?)

j − i + 1 elements between pi and pj and each is
equally likely to be the maximum.
We want either pi or pj , hence 2

j−i+1

Ti is compared to Ti+1 with probability 1.
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ANALYZING QUICKSORT

E [Xn] ≤ 3
n∑

i=1

n∑

j=i+1

E [Aij ]

= 3
n∑

i=1

n∑

j=i+1

2
j − i + 1

= 3
n∑

i=1

n−i+1∑

k=2

2
k

(change variables)

≤ 6
n∑

i=1

Hn

≤ 6 · n · Hn ∈ O(n log n)
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ANALYZING QUICKSORT

Indirectly, average work for basic deterministic
quicksort is O(n log n).

I Just shuffle data randomly and apply the basic
algorithm

I ≡ to picking random priorities
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ALTERNATIVE ANALYSIS

Write a recurrence for the number of
comparisons:

X (n) = X (Yn) + X (n − Yn − 1) + n − 1

Random variable Yn is the size of S1.

E [X (n)] = E [X (Yn) + X (n − Yn − 1) + n − 1]

= E [X (Yn)] + E [X (n − Yn − 1)] + n − 1

=
1
n

n−1∑

i=0

(E [X (i)] + E [X (n − i − 1)]) + n − 1
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ALTERNATIVE ANALYSIS

E [X (n)] =
1
n

n−1∑

i=0

(E [X (i)] + E [X (n − i − 1)]) + n − 1

=
2
n

n−1∑

i=0

E [X (i)] + n − 1

With telescoping, this also solves as O(n log n)
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EXPECTED SPAN

S is split into L(ess), E(qual) and (g)R(eater).
Let Xn = max{|L|, |R|},
We use filter to partition.

S(n) = S(Xn) + O(log n)
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EXPECTED SPAN

Let S(n) denote E [S(n)]

We bound S(n) by considering Pr[Xn ≤ 3n/4]
and Pr[Xn > 3n/4].
Pr[Xn ≤ 3n/4] = 1/2

I As with SmallestK, 1/2 of the randomly chosen
pivots results in larger partition of at most size 3n/4
elements.
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EXPECTED SPAN

S(n) =
∑

i

Pr[Xn = i ] · S(i) + c log n

≤ Pr[Xn ≤ 3n
4 ]S(3n

4 ) + Pr[Xn > 3n
4 ]S(n) + c · log n

≤ 1
2S(3n

4 ) + 1
2S(n) + c · log n

=⇒ (1− 1
2)S(n) ≤ 1

2S(3n
4 ) + c log n

=⇒ S(n) ≤ S(3n
4 ) + 2c log n

=⇒ S(n) ∈ O(log2 n)
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LOWER BOUND FOR SORTING

What is asymptotically the minimum number
comparisons any sorting algorithm has to make?
Lower-bounds apply to problems not to
algorithms.

I Algorithms provide upper bounds!

We say sorting is Ω(n log n)

No (comparison-based) sorting algorithm has
work asymptotically lower than n log n.
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DECISION TREES

Does it live in the 
water?

Does it have fins? More than 4 legs?

Can it fly? Can it fly?fish frog

fly spider parrot bison

Y

Y Y

Y Y

N

N N

N N

If there are N outcomes, the number of questions
is at least log2 N.
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SORTING AS A DECISION PROBLEM

For n items, how many possible outcomes can there be?
I n!⇒ we need at least log2(n!) “questions”.
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SORTING AS A DECISION PROBLEM

log(n!) = log n + log(n − 1) + · · ·+ log(n/2) + · · ·+ log 1
≥ log n + log(n − 1) + · · ·+ log(n/2)

≥ n
2 · log(n/2) ∈ Ω(n log n)
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LOWER BOUND FOR MERGING

We have sorted sequences A, |A| = n and
B, |B| = m and m ≤ n.

I Assume all elements are unique.

All interleavings are possible
We need to choose m positions out of n + m to
place the elements of B amongst elements of A.
This can be done in log2

(n+m
m

)
ways.
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LOWER BOUND FOR MERGING
(n

r

)
≥
(n

r

)r

I See Lemma in the notes.

log2

(
n + m

m

)
≥ log2(

n + m
m

)m = m log2(1 +
n
m

)
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SYNOPSIS

Binary Search Trees
Basic Structural Operations on BSTs
Basic Operations on BSTs
Concrete Implementations
Cost Analysis
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BINARY TREES

Trees where each node has at most 2 children
each of which is a binary tree.

I Left child / Left subtree
I Right child / Right subtree

k

kL kR
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BINARY SEARCH TREES

Binary trees with the “search” property
For each node v with key k

I The key of the left child kL < k
I The key of the right child kR > k
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BALANCED TREES

We try to keep binary search trees balanced.
I Both children are about the same height
I Both subtrees are about the same size

AVL Trees
I Left and right subtree heights differ by at most 1.
I O(log n) root height maintained after each insertion

and deletion.
Splay Trees

I Balanced in the amortized sense
I A sequence of n find, insert, or delete

operations take O(n log n) work.
I So average is O(log n) work.

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION 5/21

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



BASIC BST OPERATIONS

Data type is defined by structural induction
I Leaf
I Node with a left child, a right child, a key, optional

additional data.

datatype BST = Leaf |
Node of (BST * BST * key * data)
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BASIC BST OPERATIONS

split(T , k) : BST× key→
BST× (data option)× BST

split divides T into two BSTs,
I one consisting of all the keys from T less than k
I the other all the keys greater than k

If k appears in the tree with associated data d
then split returns SOME(d)
Otherwise it returns NONE.
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BASIC BST OPERATIONS

join(L,m,R) : BST× (key× data) option×
BST→ BST

Takes a left subtree (L) an optional key-data pair
m and a right subtree (R)

I Assumes all keys in L are less than all keys in R.
I If present, the optional key is also larger than all keys

in L and smaller than all keys in R.
Creates a new BST that is the union of L and R
and m.
We also assume both split and join maintain
balance.
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BASIC BST OPERATIONS

expose(T ) : BST→
(BST× BST× key× data) option

Returns the components if BST T is not empty.
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BASIC BST OPERATIONS - SEARCH

1 fun search T k =
2 let val ( , v , ) = split(T , k)
3 in v
4 end
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BASIC BST OPERATIONS - INSERT

1 fun insert T (k , v) =
2 let val (L, v ′,R) = split(T , k)
3 in join(L,SOME(k , v),R)
4 end
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BASIC BST OPERATIONS - DELETE

1 fun delete T k =
2 let val (L, ,R) = split(T , k)
3 in join(L,NONE,R)
4 end
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CONCRETE IMPLEMENTATIONS:
SPLIT

datatype BST = Leaf |
Node of (BST * BST * key * data)

1 fun split(T , k) =
2 case T of
3 Leaf ⇒ (Leaf,NONE,Leaf)
4 | Node(L,R, k ′, v)⇒
5 case compare(k , k ′) of
6 LESS⇒
7 let val (L′, r ,R′) = split(L, k)
8 in (L′, r ,Node(R′,R, k ′, v)) end
9 EQUAL⇒ (L,SOME(v),R)

10 GREATER⇒
11 let val (L′, r ,R′) = split(R, k)
12 in (Node(L,L′, k ′, v), r ,R′) end
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CONCRETE IMPLEMENTATIONS: JOIN

1 fun join(T1,m,T2) =
2 case m of
3 SOME(k , v)⇒ Node(T1,T2, k , v)
4 | NONE⇒
5 case T1 of
6 Leaf⇒ T2
7 | Node(L,R, k , v)⇒ Node(L,join(R,NONE,T2), k , v))
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CONCRETE IMPLEMENTATIONS:
UNION

k1

L1 R1

T1 T2

L2 R2

< k1 > k1 k1

union(L1,L2) union(R1,R2)

For T1 with key k1 and children L1 and R1 at the root, use
k1 to split T2 into L2 and R2.

Recursively find Lu = union(L1,L2) and
Ru = union(R1,R2).

Now join(Lu, k1,Ru).
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CONCRETE IMPLEMENTATIONS:
UNION

1 fun union(T1,T2) =
2 case expose(T1) of
3 NONE⇒ T2
4 | SOME(L1,R1, k1, v1)⇒
5 let val (L2, v2,R2) = split(T2, k1)
6 val (L,R) = union(L1,L2) || union(R1,R2)
7 in join(L, SOME(k1, v1), R)
8 end

Returns the value from T1 if a key appears in
both trees.
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ANALYSIS OF UNION

1 fun union(T1,T2) =
2 case expose(T1) of
3 NONE⇒ T2
4 | SOME(L1,R1, k1, v1)⇒
5 let val (L2, v2,R2) = split(T2, k1)
6 val (L,R) = union(L1,L2) || union(R1,R2)
7 in join(L, SOME(k1, v1), R)
8 end

split costs O(log |T2|).
Two recursive calls to union

join costs O(log(|T1|+ |T2|)
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ANALYSIS OF UNION -
ASSUMPTIONS

T1 is perfectly balanced.
I expose return subtrees of size |T1|/2
I Each a key from T1 splits T2, it splits exactly in half.
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ANALYSIS OF UNION

W (|T1|, |T2|) = 2W (|T1|/2, |T2|/2)︸ ︷︷ ︸
recursive union calls

+O(log(|T1|+ |T2|))︸ ︷︷ ︸
split and join

,

and

W (1, |T2|) = O(log(1 + |T2|)).

When |T1| = 1, expose give us two empty
subtrees L1 and R1
union(L1,L2) returns L2, union(R1,R2) returns
R2 immediately!
Joining these costs at most
O(log(|T1|+ |T2|)) = O(log(1 + |T2|)
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ANALYSIS OF UNION

Let m = |T1| and n = |T2|
c log n

c log (n/2) c log (n/2)

c log (n/4) c log (n/4) c log (n/4) c log (n/4)

c log n

c 2 log (n/2)

c 4 log (n/4)

Bottom level: Each box costs log (n/m)

Leaf dominated (Why?)
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ANALYSIS OF UNION

How many leaves are there in this recursion
tree?

I T2 has no impact.
I We get m = |T1| leaves.

How deep is the tree?
I 1 + log2 m

What is the size of T2 at the leaves?
I n/2log2 m = n

m

Total cost at the leaves = O(m log(1 + n
m))

Union cost = O(m log(1 + n
m))
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SYNOPSIS

Overview of Binary Search Trees
Relationship between Quicksort and BSTs
Treaps
Expected Depth of a Treap
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BST OVERVIEW

There are many options for keeping trees
balanced.
split and join are the main structural
operations to implement find, insert,
delete, union, etc.
Cost of split and join are logarithmic in the
size of the input and output trees.
Union needs O(m log(1 + n

m)) work (m ≤ n).
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QUICKSORT AND BSTS

Write out the recursion tree for quicksort.
I Assume distinct keys.

Annotate each node with the pivot picked at that
stage.
You get a BST.
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SEQUENCE TO BST

1 fun qs_tree(S) =
2 if |S| = 0 then LEAF
3 else let
4 val p = pick a pivot from S
5 val S1 = 〈 s ∈ S | s < p 〉
6 val S3 = 〈 s ∈ S | s > p 〉
7 val (TL,TR) = (qs_tree(S1) ‖ qs_tree(S3) )
8 in
9 NODE(TL,p,TR)

10 end

Unlike Quicksort, we do not know what elements
will be in the tree, when we start.

I We can not select a (n) (future?) element to be the
root.
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TREAPS

Treap = TRee + hEAP
A treap is a randomized BST that maintains
balance in a probabilistic way.
Each element/key gets a unique random priority
The nodes in the treap satisfy BST property.

I Keys are stored in-order in the tree.

The associated priorities satify the (max) heap
property.
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THE MAX-HEAP PROPERTY

Priority at each node is greater than the priorities
of the children.
Suppose we have
S = (a,3), (b,9), (c,2), (e,6), (f ,5)

(b,9)

(a,3) (e,6)

(c,2) (f,5)
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LET’S DO AN EXAMPLE

Draw the treap for the following (key ,priority)
sequence.

(G,50),(C,35),(E,33),(H,29),(I,25),(B,24),(A,21),(L,16),(J,13),
(K,9),(D,8)
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TREAPS

THEOREM
For any set S of unique key-priority pairs, there is
exactly one treap T containing the key-priority pairs in
S which satisfies the treap properties.

Key k with highest priority must be at the root.
All keys < k must be in the left subtree
All keys > k must be in the right subtree
Subtrees of k are constructed inductively in the
same manner.
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BASIC BST OPERATIONS - SEARCH

1 fun search T k =
2 let val ( , v , ) = split(T , k)
3 in v
4 end
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BASIC BST OPERATIONS - INSERT

1 fun insert T (k , v) =
2 let val (L, v ′,R) = split(T , k)
3 in join(L,SOME(k , v),R)
4 end
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BASIC BST OPERATIONS - DELETE

1 fun delete T k =
2 let val (L, ,R) = split(T , k)
3 in join(L,NONE,R)
4 end

So if split and join are implemented the
other more useful operations are covered.
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JOIN AND SPLIT

split(T , k) : BST× key→
BST× (data option)× BST

split divides T into two BSTs,
I one consisting of all the keys from T less than k
I the other all the keys greater than k

If k appears in the tree with associated data d
then split returns SOME(d)
Otherwise it returns NONE.
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JOIN AND SPLIT

join(L,m,R) : BST× (key× data) option×
BST→ BST

Takes a left subtree (L) an optional key-data pair
m and a right subtree (R)

I Assumes all keys in L are less than all keys in R.
I If present, the optional key is also larger than all keys

in L and smaller than all keys in R.

Creates a new BST that is the union of L and R
and m.
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SPLIT ON TREAPS

Split code does not have to change.
Priority orders do not change.
Split does not put a larger priority below a
smaller priority.
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SPLIT ON TREAPS

datatype BST = Leaf |
Node of (BST * BST * key * data)

1 fun split(T , k) =
2 case T of
3 Leaf ⇒ (Leaf,NONE,Leaf)
4 | Node(L,R, k ′, v)⇒
5 case compare(k , k ′) of
6 LESS⇒
7 let val (L′, r ,R′) = split(L, k)
8 in (L′, r ,Node(R′,R, k ′, v)) end
9 EQUAL⇒ (L,SOME(v),R)

10 GREATER⇒
11 let val (L′, r ,R′) = split(R, k)
12 in (Node(L,L′, k ′, v), r ,R′) end
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JOIN ON TREAPS

Join needs to change!
I The priorities of the roots of two trees need to be

compared.
I The root with the larger priority becomes the new

root.
Basic join took the root of the first tree or the new
node as the root.

1 fun join(T1,m,T2) =
2 case m of
3 SOME(k , v)⇒ Node(T1,T2,k,v)
4 | NONE⇒
5 case T1 of
6 Leaf⇒ T2
7 | Node(L,R,k,v)⇒ Node(L,join(R,NONE,T2),k,v)
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JOIN ON TREAPS

1 fun join(T1,m,T2) =
2 let
3 fun singleton(k , v) = Node(Leaf,Leaf, k , v)
4 fun join′(T1,T2) =
5 case (T1,T2) of
6 (Leaf, )⇒ T2
7 | ( ,Leaf)⇒ T1
8 | (Node(L1,R1, k1, v1),Node(L2,R2, k2, v2))⇒
9 if (priority(k1) > priority(k2)) then

10 Node(L1,join
′(R1,T2), k1, v1)

11 else
12 Node(join′(T1,L2),R2, k2, v2)
13 in
14 case m of
15 NONE⇒ join′(T1,T2))
16 | SOME(k , v)⇒ join′(T1,join

′(singleton(k , v),T2))
17 end
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EXPECTED DEPTH OF A KEY

Cost of split and join depend on the expected
depth of a key.
Given a set of keys K and priorities p : key→ int

I Priorities are unique!
Consider the elements of the tree laid out in
order

I keyi < keyj ⇒ · · · , keyi , · · · , keyj , · · ·
I keyj < keyi ⇒ · · · , keyj , · · · , keyi , · · ·

Aj
i is an indicator variable:

I Aj
i = 1 if keyj is an ancestor of keyi in the treap.

I Aj
i = 0 otherwise.
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EXPECTED DEPTH OF A KEY
· · · , keyi , · · · , keyj , · · ·

keyj

keyi < keyj
pi= max(pi, …., pj)

keyi

keyjkeyi

keyk

pk= max(pi, …., pj)
i<k<j

pj= max(pi, …., pj)

keyi

keyj

Ai
j = 0 Ai

j = 0 Ai
j = 1
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EXPECTED DEPTH OF A KEY
· · · , keyj , · · · , keyi , · · ·

keyj

keyi > keyj
pi= max(pj, …., pi)

keyi

keyikeyj

keyk

pk= max(pj, …., pi)
i<k<j

pj= max(pj, …., pi)

keyi

keyj

Ai
j = 0 Ai

j = 0 Ai
j = 1
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EXPECTED DEPTH OF A KEY

E [depth of i in T ] = E




n∑

j=1,j 6=i

Aj
i


 =

n∑

j=1,j 6=i

E
[
Aj

i

]
.

E
[
Aj

i

]
=

1
|j − i |+ 1

(Why?)
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EXPECTED DEPTH OF A KEY

E [depth of i in T ] =
n∑

j=1,j 6=i

1
|j − i |+ 1

(Split | | ⇒) =
i−1∑

j=1

1
i − j + 1

+
n∑

j=i+1

1
j − i + 1

(Change variables ⇒) =
i∑

k=2

1
k
+

n−i+1∑

k=2

1
k

= Hi − 1 + Hn−i+1 − 1
(ln n<Hn<ln n+1⇒) < ln i + ln(n − i + 1)

= O(log n)

Relative (sorted) position of a key determines expected
depth in treap.
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COST OF SPLIT AND JOIN

THEOREM
For treaps

join(T1,m,T2) returning T
split(T , (k , v))

have O(log |T |) expected work and span.

See notes for short proofs.
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EXPECTED MAX DEPTH OF A TREAP

Expected depth of treap node is O(log n)
I Find takes on the average O(log n) work and span.

What is the expected maximum depth of a treap?

I Why is this important?
I Expected worst-case cost!

But E [maxi{Ai}] 6= maxi{E [Ai ]}!
It turns out this is almost the same problem as
the expected span of the quicksort.
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EXPECTED MAX DEPTH OF A TREAP

Yn

n-1-Yn D(n)D(Yn)

1

Yn is the size of the larger partition.

D(n) = D(Yn) + 1⇒ D(n) ∈ O(log n)
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SYNOPSIS

Ordered Sets and Tables
Bingle Revisited
Augmenting Balanced Trees
Ordered Tables with Reduced Values
Application Examples
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ORDERED SETS AND TABLES

So far, we did not worry about the ordering of the
values/keys in sets and tables.

I Find, union, intersect, merge, etc.
For many applications, exploiting any order is
very important!

I Find all elements between 3 and 17.
I Find all customers who bought more that 5 of one

item.
I Find all emails in the week of March 31st.

Ordered sets and tables.
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ORDERED SET ADT

We have a totally ordered universe U, and S
represents the set of all subsets of U.
With the following operations

all operations supported by the Set ADT, and

last(S) : S→ U = max S
first(S) : S→ U = min S

split(S, k) : S× U→ S = ({k ′ ∈ S | k ′ < k} , k ?∈ S,
×bool × S {k ′ ∈ S | k ′ > k})

join(S1,S2) : S× S→ S = S1 ∪ S2,assuming
max S1 < min S2

getRange(S, k1, k2) : S× U× U→ S = {k ∈ S | k1 ≤ k ≤ k2}
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ORDERED SET ADT

Underlying implementation uses trees.
first and last are easy

I first traverses down the left spine to the minimum
value.

I last traverses down the right spine to the maximum
value.

getRange involves two splits.
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IMPROVISING BINGLE
signature INDEX = sig

type word = string
type docId = string
type ’a seq
type index
type docList

val makeIndex : (docId * string) seq -> index
val find : index -> word -> docList
val And : docList * docList -> docList
val AndNot : docList * docList -> docList
val Or : docList * docList -> docList
val size : docList -> int
val toSeq : docList -> docId seq

end

docList is a set.
index is a table.

MORE WITH TREES 6/23

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



IMPROVISING BINGLE

We want to limit the search to certain domains
(e.g., cmu.edu)

I or docs with a certain name.
We want to add
val inDomain : domain * docList -> docList

For example
inDomain("cs.cmu.edu",

and(find idx "cool", find idx "TAs"))

MORE WITH TREES 7/23
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IMPROVISING BINGLE

Assume doc ids are URLs.
Assume they are “reverse” lexicographically
ordered.

I The last character is the most important!

1 fun inDomain(domain,L) =
2 getRange(L,domain,string.prepend(domain,"$"))

$ is a character that is greater than any character.
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AUGMENTING BALANCED TREES

Sets (and underlying trees) hold the key and any
associated values.
We can add other additional values to help with
other search operations.

I Track key positions and certain subset sizes.

rank(S, k): How many elements in S are less
than k?
select(S, i): Which element in S has rank i?
splitIdx(S,i): Split S into two sets: first i
keys and the remaining n − i keys.
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AUGMENTING BALANCED TREES

rank(S, k) : S× U→ int = | {k ′ ∈ S | k ′ < k} |

select(S, i) : S× int → U = k such that | {k ′ ∈ S | k ′ < k} | = i

splitIdx(S, i) : S× int → = ({k ∈ S | k < select(S, i)} ,
S× S {k ∈ S | k ≥ select(S, i)})

Without additional information stored with the
keys, these operations would take θ(|S|) work.
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AUGMENTING BALANCED TREES

Let S = {1,2,3,4,5,6}
rank(S, 4) = |{1,2,3}| = 3
select(S, 3) = 4 since rank(S, 4) = 3
splitIdx(S, 3) = ({1,2,3}, {4,5,6})
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AUGMENTING BALANCED TREES

At each node keep the size of the subtree.
This allows size and the three other operations
in O(d) work with d as the depth of the tree.
Size can be computed on the fly by adding 1 to
the sum of the subtree sizes!
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SELECT WITH AUGMENTED TREES

1 fun select(T , i) =
2 case expose(T ) of
3 NONE⇒ raise Range
4 | SOME(L,R, k)⇒
5 case compare(i , |L|) of
6 LESS⇒ select(L, i)
7 | EQUAL⇒ k
8 | GREATER⇒ select(R, i − |L| − 1)
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RANK AND SPLITIDX

rank is easy: just split and return the size of the
left tree!
splitIdx is just like split (or you navigate using
sizes (as opposed to key values))

MORE WITH TREES 14/23

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



ORDERED TABLES WITH REDUCED
VALUES

Maintain at each node a “sum” based on an
associative operator f .

I Updated during insert/delete, merge, extract, etc.
Given f : v × v → v , and If

I All operations on ordered tables are supported, and
I

reduceVal(A) : T→ v = reduce f If A

I We want to be able to do reduceVal in O(1) work
(assuming f needs O(1) work).

I f is known beforehand!

MORE WITH TREES 15/23
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ORDERED TABLES WITH REDUCED
VALUES

(e,2,13)

(c, 1, 6)

(a, 3, 3) (d, 2, 2)

(g,5,5)

f is +

(e,2,5)

(c, 1, 3)

(a, 3, 3) (d, 2, 2)

(g,5,5)

f is max
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IMPLEMENTATION

1 datatype Treap = Leaf | Node of (Treap× Treap
2 ×key× data× data)
3 fun reduceVal(T ) =
4 case T of
5 Leaf⇒ Reduce.I
6 | Node( , , , , r)⇒ r

7 fun makeNode(L,R, k , v) =
8 Node(L,R, k , v ,Reduce.f (reduceVal(L),
9 Reduce.f (v ,reduceVal(R))))
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IMPLEMENTATION

1 fun join′(T1,T2) =
2 case (T1,T2) of
3 (Leaf, )⇒ T2
4 | ( ,Leaf)⇒ T1
5 | (Node(L1,R1, k1, v1, s1),Node(L2,R2, k2, v2, s2))⇒
6 if (priority(k1) > priority(k2)) then
7 makeNode(L1,join(R1,T2), k1, v1)
8 else
9 makeNode(join(T1,L2),R2, k2, v2)
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EXAMPLE APPLICATION - SALES
DATA

Sales information are kept by the time stamp in
an ordered table.

I (2/3/2013− 12 : 30, $120)

Find the total sales between t1 and t2
f is +

reduceVal(getRange(T , t1, t2)) takes O(logn)
work
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EXAMPLE APPLICATION - STOCK
DATA

Stock prices information are kept by the time
stamp in an ordered table.

I (2/3/2013− 12 : 30, $120/share)

Find the maximum price between t1 and t2
f is max
reduceVal(getRange(T , t1, t2)) takes O(logn)
work
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EXAMPLE APPLICATION- INTERVAL
TREES

An interval is a region on the real number line
starting at xl and ending at xr

an interval table supports the following
operations on intervals:

insert(A, I) : T× (real× real)→ T insert interval I into table A
delete(A, I) : T× (real× real)→ T delete interval I from table A
count(A, x) : T× real→ int return the number of

intervals crossing x in A
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INTERVAL TREES

Organize intervals as a BST based on
lower-boundary as key
Use the max upper boundary in the subtree as
additional information.

[16,21]
30

[8,9]
23

[25,30]
30

[5,8]
10

[0,3]
3

[6,10]
10

[15,23]
23

[17,19]
20

[19,20]
20

[26,26]
26
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COUNTING INTERVALS

1 datatype intTree = Leaf | Node of (intTree× intTree
2 ×real× real× real)

3 fun overlap(x , low ,high) =
4 if (x ≥ low & x ≤ high) then 1 else 0

5 fun countInt(T , x) =
6 case T of
7 Leaf⇒ 0
8 | Node(L,R, low ,high,max)⇒
9 if (x > max) then 0

10 else countInt(L, x)+
11 overlap(x , low ,high)+
12 if (x > low) then countInt(R, x) else 0

MORE WITH TREES 23/23
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SYNOPSIS

Dynamic Programming
Subset Sum Problem
Minimum Edit Distance Problem
Additional example applications
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ALGORITHMIC PARADIGMS
CONTRASTED

Inductive Paradigms combine solutions to
smaller subproblem(s).

Paradigm Subproblems Reuse of
Solutions

Divide and Conquer > 1 NO
Contraction = 1 NO
Greedy = 1 NO
Dynamic Programming > 1 YES
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REUSING SOLUTIONS

foo(A) 

foo(C) 

foo(B) 

foo(D) 

size k 

size j < k 

You can save some work if you semember the
solutions to the smaller subproblems.
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RESUSING SOLUTIONS

How much work does this code need?

1 fun fib(n) =
2 if (n ≤ 1) then 1
3 else fib(n − 1) + fib(n − 2)

It turns out Wfib(n) = O(cn) (Why?)
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REUSING SOLUTIONS

It also turns out that fib(n) can be computed
with O(n) work.

I Note that n is not the right measure for modeling work
here (Why? ) but it is convenient!

fib(5) 

fib(3) 

fib(4) 

fib(2) 

fib(1) 

fib(0) 
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SOLUTION COMPOSITION GRAPH

fib(5) 

fib(3) 

fib(4) 

fib(2) 

fib(1) 

fib(0) 

DAG
Each node is a subproblem
instance
Edges model dependences
Edges go from smaller to larger
subproblems
Vertices with no in-edges are
base cases
Vertices with no out edges are
the instance we are trying to
solve.
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DYNAMIC PROGRAMMING

Dynamic programming can be seen as evaluating
a DAG by navigating from the leaves to the root.

I Computing the subsolutions at each node as needed
and when possible.

Work and span fall out of the DGA structure!
I Work: sum over nodes
I Span: Find the longest path!

Many DP solutions have significant parallelism,
but some do not.
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DYNAMIC PROGRAMMING

The challenge is to find the appropriate DAG
structure for a given problem.
DP is most suitable for optimization problems.

I Solution optimizes (minimizes/maximizes) some
criteria.

DP is also suitable for decision problems.
I Is there a solution to this instance?
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DYNAMIC PROGRAMMING

Top-down approach
I Starts at the root
I Uses recursion to solve the subproblems
I But remembers the solutions – memoization.
I Usually elegant and evaluates only the needed

subproblems.
Bottom-up approach

I Starts at the leaves
I Traverses the DAG in some fashion.
I All subproblems may need to be computed.
I More parallelizable.

Coming up with the abstract inductive structure is
important.

I Sharing and coding comes later.
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THE SUBSET SUM PROBLEM

THE SUBSET SUM (SS) PROBLEM
Given a multiset of positive integers S and a positive
integer value k , determine if there is any X ⊆ S such
that

∑
x∈X x = k .

Given S = {1,4,2,9,9}
I No solution for k = 8
I For k = 7 {1,4,2} is a solution.

NP−hard if k is unconstrained.
We will include k in the work bounds.
k is polynomial in |S|, work is polynomial in |S|.
Pseudo-polynomial work solution.
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THE SUBSET SUM PROBLEM

Brute force: Consider all 2n subset for a total
work of O(n2n).
Divide and Conquer: also ends up being
exponential work.
Sharing solutions however works.
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THE SUBSET SUM PROBLEM

To solve SS(S, k), pick some element a ∈ S
Solve (recursively) SS(S \ {a}, k − a)

I If there is a solution, we are done.

If not, solve SS(S \ {a}, k).

1 fun SS(S, k) =
2 case (showl(S), k) of
3 ( ,0)⇒ true
4 | (NIL, )⇒ false
5 | (CONS(a,R), )⇒
6 if (a > k) then SS(R, k)
7 else (SS(R, k − a) orelse SS(R, k))
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THE SUBSET SUM PROBLEM DAG

SS({1,1,1}, 3) 

SS({1,1}, 2) 

SS({1}, 1) 

SS(ϕ, 0)  SS(ϕ, 1)  SS(ϕ, 1)  SS(ϕ, 2)  SS(ϕ, 1)  SS(ϕ, 2)  SS(ϕ, 2)  SS(ϕ, 3) 

SS({1}, 2) 

SS({1,1}, 3) 

SS({1}, 2)  SS({1}, 3) 
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THE SUBSET SUM PROBLEM DAG

SS({1,1,1}, 3) 

SS({1,1}, 2) 

SS({1}, 1) 

SS(ϕ, 1) SS(ϕ, 0)  SS(ϕ, 2)  SS(ϕ, 3) 

SS({1,1}, 3) 

SS({1}, 2)  SS({1}, 3) 

How many distinct subproblems do we need to
solve?
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THE SUBSET SUM PROBLEM

For SS(S, k), there are only |S| distinct lists ever
used.
The second argument decreases down to 0, so
has at most k + 1 values.
So we have at most |S|(k + 1) = O(k |S|)
instances.
Each instance has constant work⇒ total O(k |S|)
work.
Longest path in DAG is |S| ⇒ span is O(|S|)

I O(k) parallelism.
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THE SUBSET SUM PROBLEM

Why pseudo-polynomial?
For k , the input size is log k , but the work is
O(2log k |S|)

I Exponential in input size!

If k ≤ |S|c for some constant c, then work is
O(k |S|) = O(|S|c+1) on input of size
c log |S|+ |S|
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MINIMUM EDIT DISTANCE

MINIMUM EDIT DISTANCE (MED)
Given a character set Σ and two sequences of
characters S = Σ∗ and T = Σ∗, determine the
minimum number of insertions and deletions of single
characters required to transform S to T .

Start with S = 〈A,B,C,A,D,A 〉
I Delete C
I Delete last A
I Insert a C

You get T = 〈A,B,A,D,C 〉
So MED(S,T ) = 3
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APPLICATIONS OF MED

Spelling correction
I What is an English word close to Ynglisd?

Storing multiple versions of files efficiently.
Approximate matching of genome sequences
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MINIMUM EDIT DISTANCE

Given S = s :: S′ and T = t :: T ′

If s = t , MED(S,T ) is determined by S′ and T ′

Otherwise we have two subproblems:
I Find MED(S,T ′) – consider a deletion from T to get

T ′
I Find MED(S′,T ) – consider an deletion to S to get S′

Find the minimum and add 1.
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MINIMUM EDIT DISTANCE

1 fun MED(S,T ) =
2 case (showl(S),showl(T )) of
3 ( ,NIL)⇒ |S|
4 | (NIL, )⇒ |T |
5 | (CONS(s,S′),CONS(t ,T ′))⇒
6 if (s = t) then MED(S′,T ′)
7 else 1 + min(MED(S,T ′),MED(S′,T ))

If run recursively, this would take exponential
work.

I Binary tree with linear depth!
But there is significant sharing!
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MINIMUM EDIT DISTANCE

MED(ABC, DBC) 

MED(BC, DBC) 

MED(C, DBC) 

MED(C , BC) MED(ϕ, DBC)  MED(BC, C)  MED(ABC, ϕ) 

MED(ABC, BC) 

MED(BC, BC)  MED(ABC, C) 

MED(C, C) MED(ϕ, BC)  MED(BC, ϕ) 

MED(ϕ, ϕ) 

ABC = <A,B,C>   
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MINIMUM EDIT DISTANCE

There are at most |S|+ 1 possible values for the
first argument.
There are at most |T |+ 1 possible values for the
second argument.
So we have (|S|+ 1)× (|T |+ 1) = O(|S||T |)
possible subproblems, each of constant work.

I Total work is O(|S||T |).
Total span is O(|S|+ |T |) (Why?)
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THE LONGEST COMMON
SUBSEQUENCE (LENGTH)

A longest common subsequence of strings S1
and S2 is a longest subsequence shared by both.
LCS(ABCDEF ,EBCEG) = BCE
May be empty or not necessarily unique.
LLCS(S1,S2) computes the length of the LCS.
Subproblem structure is very similar to MED.
(Work it out!)
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OPTIMAL CHANGE

For a currency with coins C1,C2, . . .Cn = 1
(cents), what is the minimum number of coins
needed to make K cents of change.
US Currency has 25, 10, 5, 1 cent coins.
To give back 63 cents, you need to give
25+25+10+1+1+1, a total of 6 coins.

I Greedy works in this case, but not always
I If you had a 21 cent coin (for some strange reason),

greedy would not work.
DP solutions solves two subproblems K1 = i and
K2 = K − i for all i = 1, . . . bK/2c
Then chooses i that minimizes the sum of the
solutions
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0-1 KNAPSACK

Items with “benefit” pi and cost wi
I xi = 1 or 0 – take item i or not.

Maximize
∑n

j=1 pj · xj

Subject to
∑n

j=1 wj · xj ≤ c
Optimal Exam Strategy Problem (:-)

I Questions 1 through n, worth p1, . . .pn points.
I Time estimate for solving question j is wj
I You have T units of time.
I Which questions do you solve to maximize your

grade?
I Subproblem structure is resembles the thinking for

subset sum problem
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OPTIMAL MATRIX MULTIPLICATION

We need to multiply n matrices A1 × A2 × · · ·An
I Ai has sizes pi−1 × pi and Ai+1 has sizes pi × pi+1
I Multiplying Ai and Ai+1 needs O(pi−1 · pi · pi+1) work

What is the best way to “parenthesize” the
sequence to minimize the number of scalar
mutiplications?
m[i , j ] is the minimum number of scalar
multiplications for multiplying Ai × · · · × Aj

I A subproblem
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OPTIMAL MATRIX MULTIPLICATION

m[i , j ] =

{
0 i = j
mini≤k<j{m[i , k ] + m[k + 1, j ] + pi−1 · pk · pj} i < j

Find that k that minimizes the cost of multiplying
Ai × · · · × Aj

We need to compute m[1, n] and how we got that
(the choice of k ’s when we are minimizing
subproblems)
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SYNOPSIS

Top-down Dynamic Programming
Bottom-up Dynamic Programming
Optimal Binary Search Trees
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TOP-DOWN DP

Run the recursive code as is:
I Start with the root
I Work down to the leaves

Memoization: We need to avoid redundant
computation.

I If we encounter the same arguments, we just look up
the solution

I If not, we compute once and store in a memo table.
Checking for equal arguments could be costly.

I We use simple surrogates for actual arguments (e.g.,
integers)
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TOP-DOWN DP FOR MED

MED takes two sequences and on each recursive
call, uses suffixes of the original sequences.

I There is a one-to-one mapping from non-negative
integers to suffixes (rather to suffix lengths!)

I Could also use prefixes!
I This makes indexing a bit easier.

DYNAMIC PROGRAMMING – II 4/25

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2013



ORIGINAL MED CODE

1 fun MED(S,T ) =
2 case (showl(S),showl(T )) of
3 ( ,NIL)⇒ |S|
4 | (NIL, )⇒ |T |
5 | (CONS(s,S′),CONS(t ,T ′))⇒
6 if (s = t) then MED(S′,T ′)
7 else 1 + min(MED(S,T ′),MED(S′,T ))
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MED WITH SURROGATES
1 fun MED(S,T ) = let
2 fun MED′(i ,0) = i
3 | MED′(0, j) = j
4 | MED′(i , j) =case (Si = Tj) of
5 true⇒ MED′(i − 1, j − 1)
6 | false⇒ 1 + min(MED′(i , j − 1),
7 MED′(i − 1, j))
8 in
9 MED′(|S|, |T |)

10 end

MED’ has i and j , instead of S and T
I i represents S 〈0, . . . , i − 1 〉
I j represents T 〈0, . . . , j − 1 〉

No memo table yet!
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MEMO TABLE

We can now add a memo table, accessed with
(i , j)

I We can also use a two dimensional array!

1 fun memo f (M,a) =
2 case find(M,a) of
3 SOME(v)⇒ (M, v)
4 | NONE⇒ let
5 val (M ′, v) = f (M,a)
6 in
7 (update(M ′,a, v), v)
8 end
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MEMOIZED MED

1 fun MED(S,T ) = let
2 fun MED′(M, (i ,0)) = (M, i)
3 | MED′(M, (0, j)) = (M, j)
4 | MED′(M, (i , j)) =case (Si = Tj) of
5 true⇒ MED′′(M, (i − 1, j − 1))
6 | false⇒ let
7 val (M ′, v1) = MED′′(M, (i , j − 1))
8 val (M ′′, v2) = MED′′(M ′, (i − 1, j))
9 in (M ′′,1 + min(v1, v2)) end

10 and MED′′(M, (i , j)) = memo MED′ (M, (i , j))
11 in
12 MED′({} , (|S|, |T |))
13 end

Purely functional

but highly sequential
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BOTTOM-UP DP

Start with the leaves
Works through the subproblems consistent with
the DAG

I if (u, v) is a dependency edge in the DAG, compute u
before v , for all such u.

I All values will be available for v when they are
needed!

Uses a memo table.
Understanding the DAG structure is important
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BOTTOM-UP DP FOR MED

t 
1 

c 
2 

a 
3 

t 
4 

a  1 

t  2 

c  3 

i

j

0 
   0 

Dag for MED(”tcat”, ”atc”)
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BOTTOM-UP DP FOR MED

3          

2          

1          

0          

t 
1 

c 
2 

a 
3 

t 
4 

a  1 

t  2 

c  3 

4           5           6           7          

0 
   0 

i

k

We can go by diagonals.
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BOTTOM-UP DP FOR MED

t 

1 

c 

2 

a 

3 

t 

4 

a  1 

t  2 

c  3 

i

j

0 

   0 

We can go by rows.
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BOTTOM-UP DP FOR MED

t 

1 

c 

2 

a 

3 

t 

4 

a  1 

t  2 

c  3 

i

j

0 

   0 

We can go by columns.
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BOTTOM-UP DP FOR MED
1 fun MED(S,T ) = let
2 fun MED′(M, (i, 0)) = i
3 | MED′(M, (0, j)) = j
4 | MED′(M, (i, j)) =case (Si = Tj ) of
5 true⇒ Mi−1,j−1

6 | false⇒ 1 + min(Mi,j−1,Mi−1,j )

7 fun diagonals(M, k) =
8 if (k > |S|+ |T |) then M
9 else let

10 val s = max(0, k − |T |)
11 val e = min(k , |S|)
12 val M′ = M ∪ {(i, k − i) 7→ MED′(M, (i, k − i)) : i ∈ {s, . . . , e}}
13 in
14 diagonals(M′, k + 1)
15 end

16 in
17 diagonals({} , 0)
18 end
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BOTTOM-UP DP FOR MED

In Round 0, we compute M0,0

In Round 1, we compute M0,1 and M1,0

In Round 2, we compute M0,2, M1,1, M2,0

In Round 3, we compute M0,3, M1,2, M2,1, M3,0

. . .
How about parallelism?
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OPTIMAL BINARY SEARCH TREES

Let’s revisit BSTs
I The cost of finding a key is proportional to the depth

of the key in the tree.
I Fully balanced BST with n nodes⇒ average depth is

log n

Suppose you have a (fixed/static) dictionary and
you know the probability that a given key will be
accessed
What is the BST structure with the lowest overall
cost?
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OPTIMAL BINARY SEARCH TREES

OPTIMAL BST
The optimal binary search tree (OBST) problem is
given an ordered set of keys S and a probability
function p : S → [0 : 1], to find T̂

T̂ = arg minT∈Trees(S)

(∑

s∈S

d(s,T ) · p(s)
)

where Trees(S) is the set of all BSTs on S, and
d(s,T ) is the depth of the key s in the tree T
(Assume the root has depth 1).
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OPTIMAL BINARY SEARCH TREES

key k1 k2 k3 k4 k5 k6
p(key) 1/8 1/32 1/16 1/32 1/4 1/2

k5

k1 k6

k3

k2 k4

Cost =
1
8
×2+

1
32
×4+

1
16
×3+

1
32
×4+

1
4
×1+

1
2
×2 =

31
16
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OPTIMAL BINARY SEARCH TREES

How many binary search trees of n distinct keys
are there?

I Hint: Think of matrix chain multiplication!

in DP, an optimal solution should be based on
optimal subproblem solutions.
One of the keys (Sr ) must be at the root of the
optimal tree.

I Both subtrees must be optimal.
How do we select Sr?

I Pick the key with highest probability and put it at the
root, and recurse?

I Does not really work!
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OPTIMAL BINARY SEARCH TREES

Try all elements as a potential root
For each, recursively find their optimal solutions
Pick the best among the |S| possibilities.
All elements under a root are contiguous in the
sorted sequence.

k5

k1 k6

k3

k2 k4
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OPTIMAL BINARY SEARCH TREES

Use (i , j) as a surrogate for the tree spanning
Si , . . . ,Sj .
Let T be the tree covering Si , . . . ,Sj with root
Sr , i ≤ r ≤ j , with TL TR as the subtrees.
Cost(T ) =

∑

s∈T

d(s,T ) · p(s)

= p(Sr ) +
∑

s∈TL

(d(s,TL) + 1) · p(s) +
∑

s∈TR

(d(s,TR) + 1) · p(s)

=
∑

s∈T

p(s) +
∑

s∈TL

d(s,TL) · p(s) +
∑

s∈TR

d(s,TR) · p(s)

=
∑

s∈T

p(s) + Cost(TL) + Cost(TR)

Find the r , i ≤ r ≤ j that minimizes this cost.
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OPTIMAL BINARY SEARCH TREES

1 fun OBST(S) =
2 if |S| = 0 then 0
3 else

(∑
s∈S p(s)

)
+ mini∈〈1...|S| 〉(OBST(S1,i−1)+

4 OBST(Si+1,|S|))

How many possible subproblems are there?
I A subsequence can end at n different positions
I For the i th end position there are i possible start

positions.
∑n

i=1 i = n(n + 1)/2 ∈ O(n2) possible subproblems.

Longest path of dependences in the DAG is O(n) since
recursion can go down for n levels (Why?)
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WORK AND SPAN

Cost of each subproblem is not uniform! (Why?)
Each subproblem has O(n) work and O(log n)
span (Why?)
We get total O(n3) work and O(n log n) span.
(Why?)
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CODE FOR OPTIMAL BST

1 fun OBST(S) = let
2 fun OBST’(i , l) =
3 if l = 0 then 0
4 else

∑l−1
k=0 p(Si+k) + minl−1

k=0(OBST’(i , k)+
5 OBST’(i + k + 1, l − k − 1))
6 in
7 OBST’(1, |S|)
8 end
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BOTTOM-UP OPTIMAL BST

For a bottom up version, a triangular table is
sufficient

C1

C2

C3

C4

C5

C12

C23

C34

C45

C13

C24

C35

C14

C25C15

cij = optimal cost of the tree covering Sij
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SYNOPSIS

Hashing and Hash Tables
Handling Collisions

I Linear Probing
I Quadratic Probing

HASH TABLES 2/55
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HASH TABLES – BASIC IDEAS

Data structure that allows you to quickly insert,
delete, and retrieve items with expected O(1)
work.
Relies on

I a fixed size array data structure (of some size m), and
I a hash function that can map from a potentially

infinite space of keys to integer indexes [0, . . . ,m − 1]

Disadvantages
I Collisions
I Increased memory use to avoid collisions
I Not work efficient for findmin, findmax, or extracting

keys in sorted order
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HASH TABLE - BASIC IDEAS
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HASH FUNCTIONS

There is a deep theory behind hash functions.
We will be interested in some simple functions.
We will assume hash functions have the
idealized property of simple uniform hashing:

I The hash function uniformly distributes keys in range
[0, . . . ,m − 1]

I Hash value for one key is independent of the hash
value for another key.
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HASH FUNCTIONS

For integers key we can use a linear congruential
hash function

h(x) = (ax + b) mod m

where a ∈ [1, . . . ,m − 1], b ∈ [0, . . . ,m − 1], and
m is prime.
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HASH FUNCTIONS

For strings, we can use a polynomial like

h(S) =



|S|∑

i=1

siai


 mod m

HASH TABLES 7/55
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HASH TABLES

Support insert, find and delete.
Can implement abstract data types Set and
Table.
Do not require total ordering on the universe of
keys.
Collision is the main issue

I Two keys hash to the same location.
I Impossible to avoid if we do not know the keys in

advance
F Size of key universe >> size of table.

HASH TABLES 8/55
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COLLISIONS

For a table size of 365, one needs 23 keys for a
50% chance of collision and 66 for a 99% chance
of collision (Why?)

I Birthday paradox

HASH TABLES 9/55
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HANDLING COLLISIONS

Separate chaining
I Store elements not in a table, but in linked lists

(containers,bins) hanging off the table.
Open addressing:

I Put everything into the table, but not necessarily into
cell h(k).

The perfect hash:
I When you know the keys in advance, construct hash

functions that avoids collisions entirely.
Multiple-choice hashing/Cuckoo hashing:

I Consider exactly two locations h1(k) and h2(k) only.
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HANDLING COLLISIONS

We will only consider the first two.
We will assume we have a set n keys K and a
hash function h : key→ [0, . . . ,m − 1] for some
m.
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SEPARATE CHAINING

Maintain an array of linked lists (buckets).
Keys that hash to the same value live in the
same list at location h(k)
Insertion: Insert at the beginning

I Multiple inserts for the same key⇒ traverse the list
I May as well insert at the end.

Find: hash to h(k) and search in the list.
Delete: remove from the list.
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SEPARATE CHAINING

Costs depend on the load factor λ = n/m which
is also the average length of a list.
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SEPARATE CHAINING

Assume h(k) takes O(1) work and we have
simple uniform hashing
Unsuccessful search takes expected Θ(1 + λ)
work.

I O(1) for h(k) and λ for traversing the list.
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SEPARATE CHAINING

Successful search takes expected Θ(1 + λ) work.
Cost of Successful search = Cost of unsuccessful
search at the time of insertion (Why?)
With i keys, the unsuccesssful search would take
(1 + i/m) work.
Averaging over i we get

1
n

n−1∑

i=0

(1+i/m) = 1+(n−1)/2m = 1+λ/2−λ/2m = Θ(1+λ)

Considering constant factors, successful search
looks at 1/2 the list on the average.
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OPEN ADDRESSING

No lists – everything is stored in the array directly
The arrays is some constant factor larger than
the maximum number of keys we want to store.
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE

HASH TABLES 31/55

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2013



AN EXAMPLE
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AN EXAMPLE
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AN EXAMPLE
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OPEN ADDRESSING

Open addressing uses an ordered sequence of
locations.
h(k , i) gives us the i th location for key k .
〈h(k ,0),h(k ,1),h(k ,2), . . . 〉 is the probe
sequence.
Try these locations in order until an empty cell is
found and insert there.
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OPEN ADDRESSING - INSERT

1 fun insert(T , k) =
2 let
3 fun insert′(T , k , i) =
4 case nth T h(k , i) of
5 NONE⇒ update(h(k , i), k) T
6 | ⇒ insert′(T , k , i + 1)
7 in
8 insert′(T , k ,1)
9 end

T must be an ST array - otherwise work and
span are not constant.
Need to check if table is full and the key is
already in the table or not.
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OPEN ADDRESSING-SEARCH

1 fun find(T , k) =
2 let
3 fun find′(T , k , i) =
4 case nth T h(k , i) of
5 NONE⇒ false
6 | SOME(k ′)⇒ if (eq(k , k ′)) then true
7 else find′(T , k , i + 1)
8 in
9 find′(T , k ,1)

10 end
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OPEN ADDRESSING-DELETE

We can not just delete an items and set its cell to
NONE! (Why ?)
find will stop searching if it encounters an
empty cell.
Use lazy delete

I Instead of deleting, use a special value HOLD.

1 datatype α entry = EMPTY | HOLD | FULL of α

Find and Insert will need to be changed
accordingly.
Lazy delete effectively increases load factor.
Rehashing to the rescue!
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OPEN ADDRESSING

Linear Probing
Quadratic Probing
Double Hashing
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LINEAR PROBING

We check cell at h(k , i) = (h(k) + i) mod m in
i th probe.
m possible probe sequences.
Keys tend to cluster – primary clustering.

I Inserts add to a cluster
I Probe sequences get longer and longer
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IMPACT OF CLUSTERING

Assume table is half full (λ = 1/2)

Minimum clustering when every other cell is
empty!
Average probes for insert is 3/2

I One probe to check cell h(k)
I + with 1/2 chance try the next cell (which by design

should be empty)
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IMPACT OF CLUSTERING

Worst case: all keys are clustered to the second
half of the array. (Remember λ = 1/2⇒ m = 2n)
How many probes for positions 0 through n − 1?

I 1 (Why?)
How many probes when initial hash is to cell n?

I n (Why?)
How many probes when initial hash is to cell
n + 1?

I n − 1 (Why?)
Average is
(n+[n+(n−1)+(n−2)+....+1])/m = n/m+n(n+1)/2m ≈ n/4

Even though though the average cluster length is
2, the cost is about n/4 probes.
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COSTS FOR LINEAR PROBING

Given a hash table of size m and with n = λm
keys.
The cost of an unsuccessful search/insert is

1
2

(
1 +

1
1− λ2

)

The cost of an successful search is

1
2

(
1 +

1
1− λ

)
.
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COSTS FOR LINEAR PROBING
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COSTS FOR LINEAR PROBING
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COSTS FOR LINEAR PROBING
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COSTS FOR LINEAR PROBING
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QUADRATIC PROBING

We check cell at h(k , i) = (h(k) + i2) mod m in
i th probe.
Makes longer jumps
Avoids primary clustering
But has secondary clustering.
Since there are m possible positions there are m
probe sequences.
Not all available cells get probed (Why?)
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QUADRATIC PROBING

If m is prime and the table is at least half empty,
then quadratic probing will always find an empty
location.
Furthermore, no locations are checked twice.
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QUADRATIC PROBING

Consider two probe locations h(k) + i2 and
h(k) + j2,0 ≤ i , j < dm/2e.
Suppose the locations are the same but i 6= j .

h(k) + i2 ≡ (h(k) + j2) mod m

i2 ≡ j2 mod m

i2 − j2 ≡ 0 mod m
(i − j)(i + j) ≡ 0 mod m

Therefore, either i − j or i + j are divisible by m.
But since both i − j and i + j are less than m and
m is prime, they cannot be divisible by m.
Thus the first dm/2e probes are distinct and
guaranteed to find an empty location.
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QUADRATIC PROBING

Computing the next hash value is only slightly
more expensive

hi − hi−1 ≡ (i2 − (i − 1)2) mod m
hi ≡ (hi−1 + 2i − 1) mod m

If the table gets too full, one can resize and
rehash

I Constant additional overhead
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DOUBLE HASHING

Uses two hash-functions:
I initial location
I size of the jump

i th probe is

h(k , i) = (h1(k) + i · h2(k)) mod m.

Different keys are likely to have different values
jump function if they collide.
Avoids secondary clustering
h2(k) should be relatively prime to m to probe
each locations.

I m prime and 0 < h2(k) < m is one option.
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DOUBLE HASHING

The average number of probes for an
unsuccessful search or an insert is at most

1 + λ + λ2 + ... =

(
1

1− λ

)

I Why?
The average number of probes for a successful
search is

1
λ

(
1 + ln

(
1

1− λ

))
.

I Same argument of averaging over probes at insertion
time.
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DOUBLE HASHING

λ 1/4 1/2 2/3 3/4 9/10

successful 1.2 1.4 1.6 1.8 2.6
unsuccessful 1.3 1.5 2.0 3.0 5.5

Allows for smaller tables than linear or quadratic
probing
Higher cost for hash function
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PARALLEL HASHING

injectCond(IV ,S) : (int × α)seq× (αoption)seq →
(αoption)seq.

Conditionally writes each value vj into location ij of S
I if the location is set to NONE

1 fun insert(T ,K ) =

2 let
3 fun insert′(T ,K , i) =
4 if |K | = 0 then T
5 else let
6 val T ′ = injectCond({(h(k , i), k) : k ∈ K} ,T )

7 val K ′ = {k : k ∈ K | T [h(k , i)] 6= k}
8 in
9 insert′(T ′,K ′, i + 1) end

10 in
11 insert′(T , k , 1)
12 end

HASH TABLES 55/55

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS SPRING 2013



15-210
PARALLEL AND SEQUENTIAL

ALGORITHMS AND DATA
STRUCTURES

LECTURE 27

PRIORITY QUEUES



SYNOPSIS

Priority Queues
Heaps
Meldable Priority Queues
Leftist Heaps

PRIORITY QUEUES 2/36
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PRIORITY QUEUES

Abstract Data Type supporting
I deleteMin/deleteMax
I insert

Used in many useful algorithms
I Dijkstra’ Algorithm
I Prim’s Algorithm for MST
I Constructing Huffman Codes
I Heapsort
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HEAPSORT

1 fun sort S =
2 let
3 val pq = iter Q.insert Q.empty S

4 fun sort′ pq =
5 let
6 case (PQ.deleteMin pq) of
7 NONE ⇒ []
8 | SOME(v ,pq′)⇒ v :: sort′(pq′)
9 in

10 Seq.fromList(sort′pq)
11 end
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UNDERLYING IMPLEMENTATIONS

Sorted and Unsorted Lists/Arrays
I One of deleteMin and insert is fast (O(1))
I The other is slow. O(n)

Balanced binary search trees
I Both operations have O(log n) work and span.

Binary heaps
I Both operations have O(log n) work and span.
I But binary heaps provide a O(1) work findMin

operation.

PRIORITY QUEUES 5/36
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HEAPS

A min-heap (max-heap) is a rooted tree
Key at every node is ≤ (≥) all descendants.
A binary heap is heap which has

I Shape property: The tree is a complete binary tree
F All levels of the tree are completely filled except the

bottom level, which is filled from the left
I Heap Property

PRIORITY QUEUES 6/36
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BINARY HEAPS

A complete tree
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BINARY HEAPS

An incomplete tree
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BINARY HEAPS

Shape Property⇒ binary heap can be
maintained in an array.
Index of a parent or a child is very easy to
compute
Operations first restore shape property, then
heap property.
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BINARY HEAPS AND ARRAYS
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BUILDING PRIORITY QUEUES

We can insert elements one-by-one
I With balanced binary trees and binary heaps, work is

O(n log n)
I Can we do better?

Build the heap recursively
I If left and right sides are already heaps, just shift

down the root element.
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BUILDING HEAPS DIRECTLY

1 fun sequentialFromSeqS =
2 let
3 fun heapify(S, i) =
4 if (i >= |S|/2) then S
5 else let
6 val S′ = heapify(S, 2 ∗ i + 1)
7 val S′′ = heapify(S′, 2 ∗ i + 2)
8 in shiftDown(S′′, i) end
9 in heapify(S,0) end
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COST ANALYSIS

shiftDown does O(log n) work on subtree of
size n
W (n) = 2W (n/2) + O(log n) ∈ O(n)

Opportunities for parallelism?
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PARALLEL HEAPIFY

Green cells are OK
All the pinks cells can be shifted down in parallel
Then all purple cells can be shifted down in
parallel
(All) Red cell(s) can be shifted down in parallel

PRIORITY QUEUES 14/36

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FALL 2013



PARALLEL HEAPIFY

0

1 2

3 4 5 6

87 109 1211 1413
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PARALLEL HEAPIFY

We use Single-threaded sequences
1 fun fromSeq S : ’a seq =
2 let
3 fun heapify (S, d) =
4 let
5 val S′ = shiftDown (S,

〈
2d − 1, . . . ,2d+1 − 2

〉
, d)

6 in
7 if (d = 0) then S′

8 else heapify (S′, d − 1)
9 in heapify (S, blog2 nc − 1) end

S(n) = S(n/2) + O(log n) ∈ O(log2 n)
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PARALLEL HEAPIFY
0

1 2

3 4 5 6

87 109 1211 1413

d = 2⇒ shiftDown (S, <3, 4, 5, 6>, 2)
d = 1⇒ shiftDown (S, <1, 2>, 1)
d = 0⇒ shiftDown (S, <0>, 0)
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PRIORITY QUEUES – SUMMARY

Data. Str. findMin deleteMin insert fromSeq

sorted linked O(1) O(1) O(n) O(n log n)
list

unsorted linked O(n) O(n) O(1) O(n)
list

balanced O(log n) O(log n) O(log n) O(n log n)
search tree

binary heap O(1) O(log n) O(log n) O(n)
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MELDABLE PRIORITY QUEUES

Priority Queues with an additional meld operation

I Just like the union in BSTs
I Takes two meldable PQs and returns the union as a

meldable PQ
Implementations uses leftist heaps

I Same work and span as binary heaps for insert,
deletemin

I Meld has O(log n + log m) work and span where m
and n are the heap sizes
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MIN HEAPS

Binary tree
Maintains the heap property
But does not maintain the complete binary tree
property
Here is an example

o 3
/ \

7 o o 8
/ \

11 o o 15
/ \

22 o o 16
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MIN HEAPS

To implement deleteMin
I Remove the root

7 o o 8
/ \

11 o o 15
/ \

22 o o 16

We can then use meld to union the heaps.
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MIN HEAPS

To implement insert
I We create a single node heap
I meld it with the original heap

fromSeq is also easy using reduce
val pq = Seq.reduce Q.meld Q.empty

(Seq.map Q.singleton S)
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THE MELD OPERATION

So we only need the meld operation
Consider

4 o o 3
/ \ / \

11 o o 7 8 o o 5
/ \ /

19 o o 23 14 o

Which element goes to the root?
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THE MELD OPERATION

Select the tree with the smaller root and
recursively meld with one of its children

o 3
/ \

8 o = meld ( 4 o , o 5 )
/ / \

14 o 11 o o 7
/ \

19 o o 23
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THE MELD OPERATION

Applying recursively

o 3
/ \

8 o o 4
/ / \

14 o 11 o = meld ( o 7 o 5)
/ \

19 o o 23
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THE MELD OPERATION

Applying recursively

o 3
/ \

8 o o 4
/ / \

14 o 11 o o 5
/ \ \

19 o o 23 = meld( o 7 ,empty)

Melding A with an empty heap gives A
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THE MELD OPERATION

1 datatype PQ = Leaf | Node of (key× PQ × PQ)

2 fun meld(A,B) =
3 case (A,B) of
4 ( ,Leaf)⇒ A
5 | (Leaf, )⇒ B
6 | (Node(ka, La, Ra), Node(kb, Lb, Rb))⇒
7 case Key.compare (ka, kb) of
8 LESS⇒ Node(ka, La, meld(Ra, B))
9 | ⇒ Node(kb, Lb, meld(A, Rb))

Traverses the right spines of the trees

Could be Θ(|A|+ |B|) in the worst case.
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LEFTIST HEAPS

When melding, keep trees deeper on the left.
Define

rank(x) = # of nodes on the right

spine of the subtree rooted at x ,

For all nodes, rank can be inductively defined

rank(leaf) = 0
rank(node( , ,R) = 1 + rank(R)
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LEFTIST PROPERTY

For all node x in a leftist heap,

rank(L(x)) ≥ rank(R(x))

I L(x) and R(x) are the left and child children of x
Allows for

o 1
/
o 2
/
o 3
.
.
o n

But this is OK (Why?)
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LEFTIST HEAPS

Most items pile to the left
Right spine is relatively short!

LEMMA
In a leftist heap with n entries, the rank of the root
node is at most log2(n + 1).
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LEFTIST HEAPS

1 datatype PQ = Leaf | Node of (int× key× PQ × PQ)

2 fun rank Leaf = 0
3 | rank (Node(r , , , )) = r

4 fun makeLeftistNode (v , L, R) =
5 if (rank(L) < rank(R))
6 then Node(1 + rank(L), v , R, L)
7 else Node(1 + rank(R), v , L, R)

Puts lower rank subtree to the right!
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LEFTIST HEAPS

1 fun meld (A, B) =
2 case (A, B) of
3 ( , Leaf)⇒ A
4 | (Leaf, )⇒ B
5 | (Node( , ka, La, Ra), Node( , kb, Lb, Rb))⇒
6 case Key.compare(ka, kb) of
7 LESS⇒ makeLeftistNode (ka,La,meld(Ra, B))
8 | ⇒ makeLeftistNode (kb,Lb,meld(A, Rb))
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LEFTIST HEAPS

THEOREM
If A and B are leftists heaps then

the meld(A,B) algorithm runs in
O(log(|A|) + log(|B|)) work, and
returns a leftist heap containing the union of A
and B.

Code traverses the right spines, one node at a
time

I so needs at most rank(A) + rank(B) steps
I Each step needs constant work

makeLeftistNode guarantees leftist result
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PROVING THE LEMMA

CLAIM
If a heap has rank r , it contains at least 2r − 1 entries.

n(r) ≡ nodes in the smallest heap of rank r
I Monotone: if r ′ ≥ r , then n(r ′) ≥ n(r)
I n(0) = 0

rank(L(x)) ≥ rank(R(x)) = r − 1

n(r) = 1 + n(rank(L(x))) + n(rank(R(x)))

≥ 1 + n(r − 1) + n(r − 1) = 1 + 2 · n(r − 1).

n(r) ≥ 2r − 1
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PROVING THE LEMMA

Apply the claim
Suppose leftist heap of n nodes has rank r
n ≥ n(r) ≥ 2r − 1
2r ≤ n + 1⇒ r ≤ log2(n + 1)

Rank of a leftist node of n nodes is at most
log2(n + 1)
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SUMMARY OF PRIORITY QUEUES

Implementation insert findMin deleteMin meld

(Unsorted) Sequence O(n) O(n) O(n) O(m + n)

Sorted Sequence O(n) O(1) O(n) O(m + n)

Balanced Tree O(log n) O(log n) O(log n) O(m log(1 + n
m ))

Leftist Heap O(log n) O(1) O(log n) O(log m + log n)
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