15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 1

OVERVIEW – THE GENOME SEQUENCING PROBLEM

MAJOR THEMES

- Defining precise problem and data abstractions,
- Designing and programming
 - correct and efficient algorithms and data structures
 - for given problems and data abstractions

	Abstraction	Implementation
Functions	Problem	Algorithm
Data	Abstract Data Type	Data Structure

Overview – The Genome Sequencing Problem	2/43
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

PROBLEM VS. ALGORITHM

- Sorting, string matching, finding shortest paths in graphs,..., are problems
 - Input: A sequence $[a_1, a_2, \cdots, a_n]$
 - **Output**: A permutation of the sequence $[a_{i_1}, a_{i_2}, \dots, a_{i_n}]$ such that $\forall j, 1 \leq j < n, a_{i_j} \leq a_{i_{j+1}}$
- Quicksort, Mergesort, Insertion Sort, ..., are algorithms for sorting.

OVERVIEW – THE GENOME SEQUENCING PROBLEM	3/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Abstract Data Types vs. Data Structures

- A set is an abstract data type (ADT)
 - Test membership, intersect, union, difference, ...
- Sequences, trees, hash-tables are examples of data structures.
- ADT's determine functionality, data structures determine costs.

Overview – The Genome Sequencing Problem	4/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

TECHNOLOGY – MOORE'S LAW

OVERVIEW – THE GENOME SEQUENCING PROBLEM	5/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

PROCESSOR TECHNOLOGY

OVERVIEW – THE GENOME SEQUENCING PROBLEM CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

MULTI-CORE CHIPS

OVERVIEW – THE GENOME SEQUENCING PROBLEM CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

MULTI-CORE CHIPS

Intel Core i7 Processor Series Features & Specifications				
	Intel Core i7-965 Extreme Edition	Intel Core i7-940	Intel Core i7-920	
Clock Speed (GHz)	3.20	2.93	2.66	
QPI Speed (GT/sec)	6.4	4.8	4.8	
Socket		1366-pin LGA		
Cache	8 Megabytes			
Memory Speed Support	DDR3-1066			
TDP		130 Watts		
Overspeed Protection Removed	Yes	No	No	
Processor Architecture	New Intel Core micro architecture (Nehalem) 45nm			
Key Platform Features	 Intel Hyper-Threading Technology delivers 8-threaded performance on 4 cores Intel Turbo Boost Technology 8M Intel Smart Cache Integrated Memory Controller with support for 3 channels of DDR3 1066 memory Intel QuickPath interconnect to Intel X58 Express Chipset 			

OVERVIEW – THE GENOME SEQUENCING PROBLEM CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

PARALLEL ALGORITHMS

Serial Paralle		el		
		1-core	8-core	32h-core
Sorting 10M strings	2.90	2.90	0.40	.095 (30.5)
Remove dupl. 10M strings	0.66	1.00	0.14	.038 (17.4)
Min. span. tree 10M edges	1.60	2.50	0.42	.140 (11.4)
BFS 10M edges	0.82	1.20	0.20	.046 (17.8)

Running times in seconds

Overview – The Genome Sequencing Problem	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALI

9/43 All **2013**

15-210 vs. a Traditional Course

- Emphasis on parallel thinking at a high level
 - Parallel algorithms and parallel data structures
- Purely functional model of computation
 - Safe for parallelism
 - Higher level of abstraction

• Ideas still relevant for imperative computation

Lot of overlap, but covered differently!

Overview – The Genome Sequencing Problem	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FA

10/43 l **2013**

Synopsis

- A real world problem: Gene sequencing.
- The computational problem.
- Algorithms

OVERVIEW	N – THE GENOME SEQUENCING PROBLEM
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- The human DNA molecule encodes the complete set of genetic information using 4 bases
 - Adenine (A), Cytosine (C), Guanine (G) and Thymine (T)

A sequence of about

- 3 billion base pairs
- arranged into 46 chromosomes

makes up the human genome.

Overview – The Genome Sequencing Problem		
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

- A chromosome is a sequence of genes
- A gene is a sequence of the base pairs
 - But there seem to be a lot of base-pairs with no apparent functions.

Overview – The Genome Sequencing Problem		
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	

Overview – The Genome Sequencing Problem	14/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Overview – The Genome Sequencing Problem	15/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

OVERVIEW – THE GENOME SEQUENCING PROBLEM	16/43
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

- Determining the complete DNA sequence is a grand challenge.
- Very hard to do in one go with wet lab techniques.
- The Shotgun Technique has been found work quite well.

OVERVIE	w – The Genome Sequencing Problem
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SHOTGUN SEQUENCING

- Break up multiple DNA strands into short segments
 - Chemistry!
- Short segments are sequenced.
 - Chemistry!
- Stitch short sequences computationally.
 - This is where CS comes in.

OVERVIEW – THE GENOME SEQUENCING PROBLEM	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

SHOTGUN SEQUENCING

Strand	Sequence
Original	AGCATGCTGCAGTCATGCTTAGGCTA
First shotgun sequence	AGCATGCTGCAGTCATGCT TAGGCTA
Second shotgun sequence	AGCATG CTGCAGTCATGCTTAGGCTA
Reconstruction	AGCATGCTGCAGTCATGCTTAGGCTA

Overview – The Genome Sequencing Problem	19/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SHOTGUN SEQUENCING

• Suppose you have three strands sequenced

catt ag gagtat cat tagg ag tat ca tta gga gtat

• But they really come in a messy way, e.g.,

catt ag tta cat tagg ag gagtat tat ca gga gtat

So how do we stitch them?

 Given a set of overlapping genome subsequences, construct the "best" sequence that includes them all.

OVERVIEW – THE GENOME SEQUENCING PROBLEM	20/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Synopsis

- A real world problem: Gene sequencing.
- The computational problem.
- Algorithms

OVERVIEW	N – THE GENOME SEQUENCING PROBLEM
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE ABSTRACT PROBLEM

THE SHORTEST SUPERSTRING PROBLEM Given

- an alphabet of symbols Σ , and
- a set of finite strings $S \subseteq \Sigma^+$,

return

a shortest string *r* that contains every *s* ∈ *S* as a substring of *r*.

• $\Sigma = \{A, C, G, T\}$

OVERVIEW	N – THE GENOME SEQUENCING PROBLEM	22/43
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

Some Observations

 Ignore strings that are already in other strings. Why?

{catt, ag, gagtat, cat, tagg, ag, tat, ca, tta, gga, gtat}

{catt, gagtat, tagg, tta, gga,}

 \downarrow

 Each string must start at a distinct position in the result. Why?

OVERVIEW	7 – The Genome Sequencing Problem	23/43
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

Synopsis

- A real world problem: Gene sequencing.
- The computational problem.
- Algorithms:
 - The Brute Force Algorithm

Overview – The Genome Sequencing Problem	24/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE BRUTE FORCE ALGORITHM

THE BRUTE FORCE TECHNIQUE

Enumerate all possible candidate solutions for a problem

- score each solution, and/or
- check each satisfies the problem constraints

Return the **best** solution.

- How does this apply to the SS Problem?
 - Generate permutations
 - Remove overlaps
 - Stitch strings
 - Select the shortest resulting string

OVERVIEW – THE GENOME SEQUENCING PROBLEM	25/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE BRUTE FORCE ALGORITHM

- catt tta tagg gga gagtat
- catt tta tagg gga gagtat
- cattaggagtat

LEMMA

Given a finite set of strings $S \subseteq \Sigma^+$, the brute force technique finds the shortest superstring.

- See handout.
- So what is the problem with this technique?

OVERVIEW	v – The Genome Sequencing Problem	26/43
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE BRUTE FORCE ALGORITHM

- There are just too many permutations!
- So, $n = 100 \rightarrow 100! \approx 10^{158}$ permutations.
- Testing at 10¹⁰ permutations/sec, you need
 - $\approx 10^{148}$ seconds
 - $\approx 10^{143}$ days ($\approx 10^5$ seconds/day) $\approx 2.7 \times 10^{140}$ years

 - $\sim 2.7 \times 10^{138}$ centuries
- Not bloody likely you will test each permutation before hell freezes over!
 - Even if every subatomic particle in the universe was a processor

Overview – The Genome Sequencing Problem	27/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

PROSPECTS FOR A FASTER ALGORITHM?

- SS belongs to very important class of problems called NP (for Nondeterministic Polynomial).
- For such problems, no algorithm with polynomial work is known.
- But solutions can be verified in polynomial work!
- Wait for 15-451 and 15-453 for the gory details!
- But usually there are approximation algorithms
 - with bounds on the quality of results, and
 - perform better in practice.

OVERVIEW	– THE GENOME SEQUENCING PROBLEM	28/43
CMU-Q 1	5-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

Synopsis

- A real world problem: Gene sequencing.
- The computational problem.
- Algorithms:
 - The Brute Force Algorithm
 - Reducing SS to TSP

OVERVIE	w – The Genome Sequencing Problem
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

PROBLEM REDUCTION

- A reduction is a mapping from one problem (A) to another problem (B), so that the solution B problem can be used to solve A.
 - Solving a set of linear equations, reduces to inverting a matrix.
- Map the instance of problem A to an instance of B,
- Solve using algorithms for *B*
- Map the resulting solution back.

OVERVIEW	N – THE GENOME SEQUENCING PROBLEM
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE (ASYMMETRIC) TRAVELING SALESPERSON PROBLEM (TSP)

Given a weighted directed graph

- find the shortest path that starts at vertex s, and
- visits each vertex once, and
- returns to s.
- \equiv Hamiltonian path with the lowest total sum of weights
- So, how is this related to SS?

OVERVIEW – THE GENOME SEQUENCING PROBLEM	31/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

• If s_i is followed by s_j in how much will the SS length increase?

• $s_i = tagg$ followed by $s_i = gga \rightarrow tagga$

- General case?
 - $w_{i,j} = |s_j| overlap(s_i, s_j)$
 - overlap("tagg", "gga") = 2
 |"gga"| 2 = 1

OVERVIEW – THE GENOME SEQUENCING PROBLEM	32/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

Build a graph D = (V, A)

- One vertex for each s_i and one for special "null" node, Λ
- A directed edge from s_i to s_j has weight $w_{i,j} = |s_j| overlap(s_i, s_j)$
- $w_{\Lambda,i} = |s_i| \rightarrow$ no overlap, maximal increase
- $w_{i,\Lambda} = 0 \rightarrow$, no overlap, no increase

OVERVIE	w – The Genome Sequencing Problem
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Overview – The Genome Sequencing Problem	34/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- This tour \equiv cattacatta
- Length 10

4

Length 8

OVERVIEW – THE GENOME SEQUENCING PROBLEM	35/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- TSP considers all Hamiltonian paths (hence is brute force)
- TSP finds the minimum cost Hamiltonian path.
 Total cost is the length of the SS
- TSP is also NP-hard.

OVERVIEW	w – The Genome Sequencing Problem
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Synopsis

- A real world problem: Gene sequencing.
- The computational problem.
- Algorithms:
 - The Brute Force Algorithm
 - Reducing SS to TSP
 - The Greedy Algorithm

OVERVIE	W – THE GENOME SEQUENCING PROBLEM
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE GREEDY TECHNIQUE

THE GREEDY TECHNIQUE

Given a sequence of steps to be made, at each decision point

- make a locally optimal decision
- without ever backtracking on previous decisions.
- Greedy is a quite general algorithmic paradigm.
- In general, it does not get the best solution.
 - But it does work for some other problems (e.g., Huffman Encoding, MST)

OVERVIEW – THE GENOME SEQUENCING PROBLEM	38/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

- Start with a pair of strings with maximal overlap (Why?)
- Continue with strings that adds the least extension every time.
 - This is the locally optimal decision!
 - We already defined overlap(s_i, s_j)
 - join(s_i, s_j) ≡ concatenate s_j to s_i and remove overlap.
 - ★ *join*("tagg", "gga") = "tagga"

Overview – The Genome Sequencing Problem	39/4
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 201

GREEDYAPPROXSS fun greedyApproxSS(S) = 1 2 if |S| = 1 then s_0 else let 3 val $O = \{(\texttt{overlap}(s_i, s_j), s_i, s_j) : s_i \in S, s_j \in S, s_i \neq s_j\}$ 4 5 val $(o, s_i, s_i) = \max val <_{\#1} O$ val $s_k = join(s_i, s_i)$ 6 val $S' = (\{s_k\} \cup S) \setminus \{s_i, s_i\}$ 7 8 in 9 greedyApproxSS(**S**') 10 end

S' gets smaller by one string after each recursion.

OVERVIEW – THE GENOME SEQUENCING PROBLEM	40/43
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- GreedyApproxSS returns a string with length within 3.5 times the shortest string.
- Conjectured to return within a factor of 2.
- Does much better in practice.

OVERVIEW – THE GENOME SEQUENCING PROBLEM		
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

- Let's do an example.
- $S = {\text{catt, gagtat, tagg, tta, gga,}}$

OVERVIEW	N – THE GENOME SEQUENCING PROBLEM
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SUMMARY

- Interfaces vs Implementations
 - Precise interfaces are key.
- The Shortest Superstring Problem
 - The brute-force approach
 - Reduction to TSP
 - Approximate solution using greedy paradigm

OVERVIEW – THE GENOME SEQUENCING PROBLEM		
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 2

ALGORITHMIC COST MODELS

Synopsis

• Cost Models

- Parallelism
- Scheduling
- Cost Analysis for the Shortest Super String Problem
 - The Brute Force Algorithm
 - The Greedy Algorithm

Algorithmic Cost Models CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

COST MODELS

- Sequential: the Random Access Machine (RAM) model
- Parallel: the Parallel RAM model
- Parallel: the 15-210 model
 - Tied to high-level programming constructs operational semantics
 - Think parallel!

Algorithmic Cost Models	3/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

15-210 COST MODEL

- W(e): Work needed to evaluate e
- S(e): Span of the evaluation of e
- Parameterized with relevant problem size measures.
- Asymptotic Models
 - How do algorithms scale to large problems!

ALGORIT	HMIC COST MODELS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

PARAMETERIZATION

- We measure the size of **representation** of the input.
- Sorting: Number of items to sort
- Map, Reduce: Number of items in the sequence
- Graph Problems: Number of Nodes, Edges
- Searching: Number of items in the database
- Matrix operations: Number of rows and columns
- Prime number testing: Size number of bits to represent the number (not the value!)
- Computing nth Fibonacci number: Size number of bits to represent the number (not the value!)

Algorithmic Cost Models	5/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

RULES OF COMPOSITION

- (*e*₁, *e*₂): Sequential Composition
- Add work and span
 e₁||e₂: Parallel Composition
 - Add work but take the maximum span

RULES OF COMPOSITION

е	W (e)	S (e)
С	1	1
ор <i>е</i>	1	1
(e_1, e_2)	$1 + W(e_1) + W(e_2)$	$1 + S(e_1) + S(e_2)$
$(e_1 e_2)$	$1 + W(e_1) + W(e_2)$	$1 + \max(S(e_1), S(e_2))$
let val ${\it X}={\it e_1}$ in ${\it e_2}$ end	$1 + W(e_1) + W(e_2[\operatorname{Eval}(e_1)/x])$	$1 + S(e_1) + S(e_2[\operatorname{Eval}(e_1)/x])$
$\{f(x) \mid x \in A\}$	$1 + \sum_{x \in A} W(f(x))$	$1 + \max_{x \in A} S(f(x))$

ALGORITHMIC COST MODELS

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

RULES OF COMPOSITION

•
$$\{f(x) \mid x \in A\} \equiv \operatorname{map} f A$$

•
$$W(\operatorname{map} f \langle s_0, \ldots, s_{n-1} \rangle) = 1 + \sum_{i=0}^{n-1} W(f(s_i))$$

•
$$S(\operatorname{map} f \langle s_0, \ldots, s_{n-1} \rangle) = 1 + \max_{i=0}^{n-1} S(f(s_i))$$

ALGORITHMIC COST MODELS CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

UPPER AND LOWER BOUNDS

- Upper bound: The maximum asymptotic work (and span) that a given algorithm needs for all inputs of size n.
- Lower bound: The minimum asymptotic work (and span) that any algorithm for a problem needs for all inputs of size n.

ALGORITHMIC COST MODELS
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Synopsis

- Cost Models
- Parallelism
- Scheduling
- Cost Analysis for the Shortest Super String Problem
 - The Brute Force Algorithm
 - The Greedy Algorithm

10/32 <u>Fall **2013**</u>

PARALLELISM

• For a given W and S, what is the maximum number of processors you can utilize?

•
$$\mathbb{P} = \frac{W}{S}$$

- Why?
- Mergesort has $W = \theta(n \log n)$ and $S = \theta(\log^2 n)$
- P = θ(n/log n)
 The larger the problem is, the higher the parallelism

Algorithmic Cost Models	11/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

DESIGNING PARALLEL ALGORITHMS

- Keep work as low as possible
 - No unnecessary computation
- Keep span as low as possible
 - Hence get high-parallelism

ALGORIT	HMIC COST MODELS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Synopsis

- Cost Models
- Parallelism
- Scheduling
- Cost Analysis for the Shortest Super String Problem
 - The Brute Force Algorithm
 - The Greedy Algorithm

13/32 <u>Fall **2013**</u>

UNDER THE HOOD: TASK SCHEDULING

Mapping from a computation graph to processors

Algorithmic Cost Models	14/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

GREEDY SCHEDULING

• A greedy scheduler will schedule a ready task on an available processor.

Algorithmic Cost Models	15/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

A LOWER BOUND

Let T_p be the "time" needed when using p processors,

$$\max(\frac{W}{p}, S) \leq T_p$$

Algorithmic Cost Models
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

AN UPPER BOUND

• With *p* processors

$$T_{p} < rac{W}{p} + S$$

• Why?

ALGORITHMIC COST MODELS
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

TYING THINGS TOGETHER

• Speed-up is $\frac{W}{T_p}$

Maximum possible speed-up is p.

$$egin{aligned} T_{m{
ho}} &< & rac{W}{m{
ho}} + S \ &= & rac{W}{m{
ho}} + rac{W}{\mathbb{P}} \ &= & rac{W}{m{
ho}} \left(1 + rac{m{
ho}}{\mathbb{P}}
ight) \end{aligned}$$

• $\mathbb{P} \gg p \rightarrow$ near perfect parallelism

Algorithmic Cost Models	18/32
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	Fall 2013

Synopsis

- Cost Models
- Parallelism
- Scheduling
- Cost Analysis for the Shortest Super String Problem
 - The Brute Force Algorithm
 - The Greedy Algorithm

19/32 <u>Fall **2013**</u>

COSTS FOR THE BRUTE FORCE SS ALGORITHM

The brute-force algorithm

- For each permutation
 - Remove overlaps
 - ★ Stitch strings
- Output (one of) the shortest string(s)
- $\operatorname{overlap}(s_i, s_j)$ will be needed many times.
 - Preprocess S once and store overlaps as a table
 - What prefix to remove
 - Increase in length

Algorithmic Cost Models	20/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

PREPROCESSING – INPUTS

- A set S is n strings, s_1, s_2, \cdots, s_n
- Define

$$m = \sum_{i=1}^{n} |s_i|$$

and observe $n \leq m$.

ALGORITHMIC COST MODELS CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

PREPROCESSING A PAIR

- Work and span for preprocessing one pair, s_i and s_j?
 - $W = O(|s_i| \cdot |s_j|)$ Why?
 - $S = O(\log(|s_i| + |s_j|))$ Why?

ALGORIT	HMIC COST MODELS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Preprocessing – Work

$$\begin{split} \mathcal{W}_{ov} &\leq \sum_{i=1}^{n} \sum_{j=1}^{n} \mathcal{W}(\text{overlap}(s_{i}, s_{j})) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} O(|s_{i}||s_{j}|) \\ &\leq \sum_{i=1}^{n} \sum_{j=1}^{n} (k_{1} + k_{2}|s_{i}||s_{j}|) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} k_{1} + \sum_{i=1}^{n} \sum_{j=1}^{n} (k_{2}|s_{i}||s_{j}|) \\ &= k_{1}n^{2} + k_{2} \sum_{j=1}^{n} |s_{j}| (\sum_{i=1}^{n} |s_{i}|) = k_{1}n^{2} + k_{2}m^{2} \in O(m^{2}) \end{split}$$

ALGORITHMIC COST MODELS23/32CMU-Q15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMSFALL 2013

Preprocessing – Span

• All s_i , s_j pairs can be processed in parallel.

ALGORITHMIC COST MODELS CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

BRUTE FORCE SS ALGORITHM

- Work:
 - O(n) lookups each with O(1) work. Why?
 - n! permutations
 - $\bullet O(n \cdot n!) = O((n + 1)!)$
 - ► *W_{ov}* can be ignored!
- Span:
 - All permutations can be done in parallel, but!

```
func permutations S =
    if |S| = 1 then {S}
    else
      {append([s], p) :
        s in S, p in permutations(S\s)}
```

- This has span O(n). Why?
- S_{ov} can be ignored.

Algorithmic Cost Models	25/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Synopsis

- Cost Models
- Parallelism
- Scheduling
- Cost Analysis for the Shortest Super String Problem
 - The Brute Force Algorithm
 - The Greedy Algorithm

THE GREEDY SS ALGORITHM

$$\begin{array}{ll} & \text{fun greedyApproxSS}(S) = \\ & \text{if } |S| = 1 \text{ then } s_0 \\ & \text{alse let} \\ & \text{val } O = \{(\texttt{overlap}(s_i, s_j), s_i, s_j) : s_i \in S, s_j \in S, s_i \neq s_j\} \\ & \text{val } (o, s_i, s_j) = \texttt{maxval} <_{\#1} O \\ & \text{val } s_k = \texttt{join}(s_i, s_j) \\ & \text{val } S' = (\{s_k\} \cup S) \setminus \{s_i, s_j\} \\ & \text{in} \\ & \text{greedyApproxSS}(S') \\ & \text{end} \end{array}$$

Algorit	HMIC COST MODELS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE GREEDY SS ALGORITHM

1 fun greedyApproxSS(S) =
2 if
$$|S| = 1$$
 then s_0
3 else let
4 val $O = \{(\operatorname{overlap}(s_i, s_j), s_i, s_j) : s_i \in S, s_j \in S, s_i \neq s_j\}$
5 val $(o, s_i, s_j) = \max \operatorname{val} <_{\#1} O$
6 val $s_k = \operatorname{join}(s_i, s_j)$
7 val $S' = (\{s_k\} \cup S) \setminus \{s_i, s_j\}$
8 in
9 greedyApproxSS(S')
10 end

•
$$W_{ov} = O(m^2), \ S_{ov} = O(\log m)$$

ALGORIT	HMIC COST MODELS	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

THE GREEDY SS ALGORITHM

1 fun greedyApproxSS(
$$S$$
) =
2 if $|S| = 1$ then s_0
3 else let
4 val $O = \{(\text{overlap}(s_i, s_j), s_i, s_j) : s_i \in S, s_j \in S, s_i \neq s_j\}$
5 val $(O, s_i, s_j) = \max \text{val} <_{\#1} O$
6 val $s_k = \text{join}(s_i, s_j)$
7 val $S' = (\{s_k\} \cup S) \setminus \{s_i, s_j\}$
8 in
9 greedyApproxSS(S')
10 end

ALGORITHMIC COST MODELS CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE GREEDY SS ALGORITHM

```
fun greedyApproxSS(S) =
 1
       if |S| = 1 then s_0
 2
 3
       else let
         val O = \{(\texttt{overlap}(s_i, s_j), s_i, s_j) : s_i \in S, s_j \in S, s_i \neq s_j\}
 4
         val (o, s_i, s_j) = \max (o, s_i, s_j)
 5
         val s_k = join(s_i, s_j)
 6
         val S' = (\{s_k\} \cup S) \setminus \{s_i, s_i\}
 7
 8
       in
         greedyApproxSS(S')
 9
       end
10
```

- No more than $W = O(m^2)$, $S = O(\log m)$
- Why?

ALGORIT	HMIC COST MODELS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE GREEDY SS ALGORITHM

```
fun greedyApproxSS(S) =
 1
 2
       if |S| = 1 then s_0
 3
       else let
        val O = \{(\texttt{overlap}(s_i, s_j), s_i, s_j) : s_i \in S, s_j \in S, s_i \neq s_j\}
 4
 5
        val (o, s_i, s_i) = \max val <_{\#1} O
        val s_k = join(s_i, s_j)
 6
        val S' = (\{s_k\} \cup S) \setminus \{s_i, s_i\}
 7
 8
       in
        greedyApproxSS(S')
 9
       end
10
  At most n (sequential) calls to greedyApproxSS
```

- Each with $W = O(m^2)$, $S = O(\log m)$
- *W_{greedy}* = *O*(*nm*²) and *S_{greedy}* = *O*(*n* log *m*)
 Why?

31/32

FALL 2013

ALGORIT	HMIC COST MODELS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SUMMARY

- Cost Models: Rules of Composition
- Parallelism and Scheduling
- Cost Analysis for the Shortest Super String Problem
 - Preprocessing for overlaps
 - The Brute Force Algorithm
 - The Greedy Algorithm

Algorithmic Cost Models CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms 32/32 Fall **2013**

15-210 Parallel and Sequential Algorithms and Data Structures

Lecture 3

ALGORITHMIC TECHNIQUES AND DIVIDE-AND-CONQUER

Synopsis

- Algorithmic Techniques
- Divide-and-Conquer
 - Analysis of Costs
- The Maximum Contiguous Subsequence Sum Problem

Algorithmic Techniques and Divide-and-Conquer	2/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

ALGORITHMIC TECHNIQUES

• Brute Force

- Try all possibilities
- Almost always intractable
- Useful for testing small cases
- Code usually easy to write
- Reducing one problem to another
 - Transform the structure or the instance of a problem.

 - Apply algorithms for the new problem

Algorithmic Ti	CHNIQUES AND DIVIDE-AND-CONQUER	3/45
CMU-Q 15-210	PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

INDUCTIVE TECHNIQUES

- Solve one or more smaller problems to solve the large problem.
- Techniques differ on
 - The number of subproblems
 - How subproblem solutions are used
- Divide-and-Conquer
- Greedy
- Contraction
- Dynamic Programming

Algorithmic Techniques and Divide-and-Conquer		4/45
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

DIVIDE-AND-CONQUER

- Divide a problem of size *n* into *k* > 1 problems
 Sizes *n*₁, *n*₂, ..., *n*_k
- Solve each problem recursively.
- Combine the subproblem solutions.

Algorithmic Techniques and Divide-and-Conquer	
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALI

5/45 l **2013**

GREEDY

- Given a problem of size *n*
- Remove one (or more) elements using a greedy approach
 - Smallest, two smallest, nearest, lowest, etc.
- Solve the remaining smaller problem
 - Usually smaller by 1 or 2 items.

Algorithmic Techniques and Divide-and-Conquer		6/45
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

CONTRACTION

- Given a problem of size *n*
- Generate a significantly smaller (contracted) instance
 - e.g., of size n/2
- Solve the smaller instance
- Use the result to solve the original problem.

One recursive call instead of multiple!

Algorithmic Techniques and Divide-and-Conquer		7/45
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Dynamic Programming

- Like Divide-and-Conquer
- Solutions to subproblems used multiple times!
- Compute once and store, and then reuse.

ALGORIT	HMIC TECHNIQUES AND DIVIDE-AND-CONQUER
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

8/45 Fall **2013**

ADTS AND DATA STRUCTURES

- Techniques rely on Abstract Data Types (for functionality)
 - and on data structures that implement them (for costs)
- Sequences, Sets, Tables, Priority Queues, Graphs, Trees, ...

ALGORIT	HMIC TECHNIQUES AND DIVIDE-AND-CONQUER
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

9/45 Fall **2013**

RANDOMIZATION

- Introduce randomness at a choice point
 - Quicksort: choose a pivot randomly

• Testing for primality

- Miller-Rabin primality test
- 3/4 of numbers < n are "witnesses" to n's compositeness.
- Randomly choose 100 numbers < n</p>
- *P*(Failing to find a witness) = $1 (\frac{1}{4})^{100}$
- $P(n \text{ is prime}) = 1 (\frac{1}{4})^{100} = 0.9999 \dots 9327 \dots$

ALGORIT	HMIC TECHNIQUES AND DIVIDE-AND-CONQUER	10/45
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

Synopsis

- Algorithmic Techniques
- Divide-and-Conquer
 - Analysis of Costs
- The Maximum Contiguous Subsequence Sum Problem

Algorithmic Techniques and Divide-and-Conquer	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

11/45 Fall **2013**

DIVIDE-AND-CONQUER

- Very versatile.
- Easy to implement.
- Parallelizable
- Code follows the structure of a proof.
- Cost reasoning follows code structure.
 - Recurrences

Algorithmic Techniques and Divide-and-Conquer	12/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

STRENGTENING THE PROBLEM

- Compute more than "superficially" needed.
- No increase to work or span.
- More efficient combine step.
- At the end, this extra information can be discarded.

Algorithmic Techniques and Divide-and-Conquer	13/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

GENERAL STRUCTURE

• Base case(s)

- When problem small enough, use a different technique.
- For example, in quicksort, switch to insertion sort to sort < 30 elements.</p>

Inductive Step

- Divide into parts
 - ★ Sometimes quite simple: e.g., mergesort
 - Sometimes a bit tricky: e.g., quicksort
- Solve subproblems (in parallel)
- Combine results
 - ★ Sometimes quite simple: e.g., quicksort
 - ★ Sometimes a bit tricky: e.g., mergesort

Costs can be in the divide or combine steps or in both.

Algorit	HMIC TECHNIQUES AND DIVIDE-AND-CONQUER	14/45
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

GENERAL STRUCTURE

$$W(n) = W_{\text{divide}}(n) + \sum_{i=1}^{k} W(n_i) + W_{\text{combine}}(n)$$
$$S(n) = S_{\text{divide}}(n) + \max_{i=1}^{k} S(n_i) + S_{\text{combine}}(n)$$

ALGORITHMIC TECHNIQUES AND DIVIDE-AND-CONQUER CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS 15/45 Fall **2013**

SOLVING RECURRENCES

- Tree method (Brick method)
- Substitution method

ALGORIT	HMIC TECHNIQUES AND DIVIDE-AND-CONQUER	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

16/45 <u>Fall **2013**</u>

The Tree Method

• Expand recurrence into a tree structure.

• Add/Max costs at levels.

Algorithmic Techniques and Divide-and-Conquer	17/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE TREE METHOD

• Solve W(n) = 2W(n/2) + O(n)

• In general, solve

W(n) = 2W(n/2) + g(n)

where $g(n) \in O(f(n))$

ALGORITHMIC TECHNIQUES AND DIVIDE-AND-CONQUER CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS 18/45 <u>Fall 2</u>013

THE TREE METHOD

•
$$g(n) \in O(f(n)) \Rightarrow g(n) \le c \cdot f(n)$$

• For some $c > 0, N_0 > 0$ and $n \ge N_0$

• $g(n) \le k_1 \cdot f(n) + k_2$ for some k_1, k_2 and $n \ge 1$ • e.g., $k_1 = c$ and $k_2 = \sum_{i=1}^{N_0} |g(i)|$ (Why?)

Solve W(n) ≤ 2W(n/2) + k₁ ⋅ n + k₂
 f(n) = n in our case.

ALGORITHMIC TECHNIQUES AND DIVIDE-AND-CONQUER19/45CMU-Q15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMSFALL 2013

The Tree Method

• Solving $W(n) \leq 2W(n/2) + k_1 \cdot n + k_2$

- Questions:
 - Number of levels in the tree?
 - Problem size at level i?
 - Cost for each node at level i?
 - Number of nodes at level i?
 - Total cost at level i?

Algorithmic Techniques and Divide-and-Conquer	20/45
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

The Tree Method

Total cost at level i is at most

$$2^{i}\cdot\left(k_{1}\frac{n}{2^{i}}+k_{2}\right) = k_{1}\cdot n+2^{i}\cdot k_{2}$$

Total cost over all levels is

$$W(n) \leq \sum_{i=0}^{\log_2 n} (k_1 \cdot n + 2^i \cdot k_2)$$

= $k_1 n (1 + \log_2 n) + k_2 (2^0 + 2^1 + \dots + 2^{\log_2 n})$
 $\leq k_1 n (1 + \log_2 n) + 2k_2 n \text{ (Why?)}$
 $\in O(n \log n)$

Algorithmic Techniques and Divide-and-Conquer	21/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

The Brick Method

- Look at the cost structure at the levels of the cost tree
 - Leaves dominated
 - Balanced
 - Root dominated

Algorithmic Techniques and Divide-and-Conquer	22/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

LEAVES-DOMINATED COST TREES

• For some $\rho > 1$, for all levels *i*

$cost_{i+1} \ge \rho \cdot cost_i$

• Overall cost is $O(cost_d)$ where d is the depth.

Algorithmic Techniques and Divide-and-Conquer	23/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

BALANCED COST TREES

- All levels have about the same cost
- Overall cost is O(d · max_i cost_i) where d is the depth.

Algorithmic Techniques and Divide-and-Conquer	24/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

ROOT-DOMINATED COST TREES

• For some $\rho < 1$, for all levels *i*

$cost_{i+1} \le \rho \cdot cost_i$

• Overall cost is $O(cost_0)$ where d is the depth.

Algorithmic Techniques and Divide-and-Conquer	25/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

The Brick Method

• What type of a cost tree is this?

Algorithmic Techniques and Divide-and-Conquer	26/45
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	Fall 2013

Synopsis

- Algorithmic Techniques
- Divide-and-Conquer
 - Analysis of Costs
- The Maximum Contiguous Subsequence Sum Problem

Algorithmic Techniques and Divide-and-Conquer		
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

27/45 Fall **2013**

THE MCSS PROBLEM

Find

THE MAXIMUM CONTIGUOUS SUBSEQUENCE SUM PROBLEM

• Given a sequence of numbers $S = \langle s_1, \ldots, s_n \rangle$,

$$ext{mcss}(S) = \max_{1 \leq i \leq j \leq n} \left\{ \sum_{k=i}^{j} s_k \right.$$

- $S = \langle 0, -1, 2, -1, 4, -1, 0 \rangle$, mcss(S) = 5
- How many possible subsequences are there?
- All positive numbers?

Algorithmic Techniques and Divide-and-Conquer	28/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

BRUTE FORCE ALGORITHM

- Compute the sum of all O(n²) possible subsequences (in parallel)
 - Use plus reduce
- Subsequence (*i*, *j*) needs
 - O(j i) work (Why?)
 - $O(\log(j i))$ span (Why?)

$$\begin{split} \mathcal{W}(n) &= 1 + \sum_{1 \le i \le j \le n} \mathcal{W}_{\text{reduce}}(j-i) \le 1 + n^2 \cdot \mathcal{W}_{\text{reduce}}(n) \\ &= 1 + n^2 \cdot O(n) \in O(n^3) \\ \mathcal{S}(n) &= 1 + \max_{1 \le i \le j \le n} S_{\text{reduce}}(j-i) \le 1 + S_{\text{reduce}}(n) \in O(\log n) \end{split}$$

ALGORIT	HMIC TECHNIQUES AND DIVIDE-AND-CONQUER	29/45
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

BRUTE FORCE ALGORITHM

• Compute maximum over all $O(n^2)$ sums

- Use max reduce
- Needs O(n²) work and O(log n) span
- Can be ignored (Why?)
- Total costs for brute force are:
 - $O(n^3)$ work
 - O(log n) span

Algorithmic Techniques and Divide-and-Conquer		
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

30/45 Fall **2013**

DIVIDE-AND-CONQUER – I

- Let's solve $S = \langle -2, -1, 2, 3, 2, -2 \rangle$
- Is this right?
- How do we combine subproblem results?

Algorithmic Techniques and Divide-and-Conquer	31/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

DIVIDE-AND-CONQUER – I

• Recursion handles

- When mcss(S) subsequence is in the left.
- When mcss(S) subsequence is in the right.
- What happens when mcss(S) spans across the divide point?

Algorithmic Techniques and Divide-and-Conquer	32/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

DIVIDE-AND-CONQUER – I

1 fun
$$mcss(s) =$$

2 case (showt s)
3 of $EMPTY = -\infty$
4 | $ELT(x) = x$
5 | $NODE(L, R) =$
6 let val $(m_L, m_R) = (mcss(L) \parallel mcss(R))$
7 val $m_A = bestAcross(L, R)$
8 in $max\{m_L, m_R, m_A\}$
9 end

•
$$W(n) = 2W(n/2) + O(n)$$
 (Why?) $\rightarrow W(n) \in O(n \log n)$
• $S(n) = S(n/2) + O(\log n)$ (Why?) $\rightarrow S(n) \in O(\log^2 n)$

Algorithmic Techniques and Divide-and-Conquer		33/45
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

IMPORTANT QUESTIONS

- Can we do better than $O(n \log n)$ work?
- What part of the divide-and-conquer is the bottleneck?
 - Combine takes linear work? (Why?)

• How can we improve?

ALGORIT	HMIC TECHNIQUES AND DIVIDE-AND-CONQUER	34/45
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

The answers lie here

- Strengthen the subproblems
 - Compute additional information

Algorithmic Techniques and Divide-and-Conquer	35/45
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

Left Subproblem

mps = maximum prefix sum mss = maximum suffix sum

Algorithmic Techniques and Divide-and-Conquer	36/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Left Subproblem

Right Subproblem

Algorithmic Techniques and Divide-and-Conquer	37/45
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

Algorithmic Techniques and Divide-and-Conquer	38/45
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

Algorithmic Techniques and Divide-and-Conquer	39/45
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

1	fun $mcss(a) =$
2	let
3	fun mcss'(a)
4 5	Case (showt a)
	of $EMPTY = (-\infty, -\infty, -\infty, 0)$
6	$ $ ELT $(\mathbf{x}) = (\mathbf{x}, \mathbf{x}, \mathbf{x}, \mathbf{x})$
7	NODE(L, R) =
8 9	let
9	val $((m_1, p_1, s_1, t_1), (m_2, p_2, s_2, t_2)) = (mcss(L) \parallel mcss(R))$
10	in
11	$(\max(s_1 + p_2, m_1, m_2), \max(p_1, t_1 + p_2), \max(s_1 + t_2, s_2), t_1 + t_2)$
12	end
13	val $(m, p, s, t) = mcss'(a)$
14	in <i>m</i> end

Algorithmic Techniques and Divide-and-Conquer	40/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

```
fun mcss(a) =
 1
 2
3
      let
        fun mcss'(a)
 4
5
6
7
          case (showt a)
            of EMPTY = (-\infty, -\infty, -\infty, 0)
               ELT(\mathbf{X}) = (\mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X})
               NODE(L, R) =
 8
               let
 9
                 val ((m_1, p_1, s_1, t_1), (m_2, p_2, s_2, t_2)) = (mcss(L) \parallel mcss(R))
10
               in
11
                 (\max(s_1 + p_2, m_1, m_2), \max(p_1, t_1 + p_2), \max(s_1 + t_2, s_2), t_1 + t_2)
12
               end
13
        val (m, p, s, t) = mcss'(a)
14
      in m end
```

Assuming showt has O(log n) work and span.
 W(n) = 2W(n/2) + O(log n)
 S(n) = S(n/2) + O(log n)
 Algorithmic Techniques and Divide-and-Conquer
 Multiple And Sequential Data Structures and Algorithms

• $W(n) = 2W(n/2) + O(\log n)$

•
$$W(n) \leq \sum_{i=0}^{\log n} k_1 2^i \log(n/2^i)$$

Algorithmic Techniques and Divide-and-Conquer	42/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SUBSTITUTION METHOD

- Solve W(n) ≤ 2W(n/2) + k ⋅ log n
 k > 0
 - $W(n) \le k$ for $n \le 1$
- Guess $W(n) \leq \kappa_1 n \kappa_2 \log n \kappa_3$
 - Need to find κ_1 , κ_2 , and κ_3 .
- Base case: $W(1) \leq k \Rightarrow \kappa_1 \kappa_3 \leq k$

Algorithmic Techniques and Divide-and-Conquer	43/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

SUBSTITUTION METHOD

Inductive Step

$$W(n) \leq 2W(\frac{n}{2}) + k \cdot \log n$$

$$\leq 2(\kappa_1 \frac{n}{2} - \kappa_2 \log(\frac{n}{2}) - \kappa_3) + k \cdot \log n$$

$$= \kappa_1 n - 2\kappa_2 (\log n - 1) - 2\kappa_3 + k \cdot \log n$$

$$= (\kappa_1 n - \kappa_2 \log n - \kappa_3) + (k \log n - \kappa_2 \log n + 2\kappa_2 - \kappa_3)$$

$$\leq \kappa_1 n - \kappa_2 \log n - \kappa_3$$

- Choose $\kappa_2 = k$ and $2\kappa_2 \kappa_3 \leq 0$ (Why?)
- For example, $\kappa_2 = k$, $\kappa_1 = 3k$, $\kappa_3 = 2k$ satisfies the constraints.

ALGORIT	HMIC TECHNIQUES AND DIVIDE-AND-CONQUER	44/45
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

SUMMARY

- Algorithmic Paradigms
- Divide-and-Conquer
 - General Form
 - Cost Analysis
 - Tree and Brick Methods
 - Substitution Method
- Maximum Contiguous Subsequence Problem
 - Brute Force
 - Divide-and-Conquer
 - Divide-and-Conquer with Subproblem Strengthening

Algorithmic Techniques and Divide-and-Conquer	45/45
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 4

DIVIDE-AND-CONQUER CONTINUED

Synopsis

- The Euclidian Travelling Salesperson Problem
- Divide-and-Conquer Heuristic Algorithm
- Analysis of Costs

CMU-O	15-210 Parallel and Sequential Data Structures and Algorithms

The Euclidian TSP

- Given a set of points in a *n*-dimensional Euclidian space.
 - What is a Euclidian space?
- Find the shortest Hamiltonian cycle.
 - What is a Hamiltonian cycle?
- We get a planar Euclidian Traveling Salesperson Problem when the points are in 2-dimensional space.

3/20

FALL 2013

DIVIDE-A	ND-CONQUER CONTINUED
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE PLANAR TSP

DIVIDE-AND-CONQUER CONTINUED	4/20
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

Synopsis

- The Euclidian Travelling Salesperson Problem
- Divide-and-Conquer Heuristic Algorithm
- Analysis of Costs

DIVIDE-A	ND-CONQUER CONTINUED
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- What is a heuristic?
- Approximation algorithm
 - Resulting tour length is guaranteed to be close to the actual minimum tour length
 - If you spend enough work (but polynomial).
- The Divide-and-Conquer does work both before and after the recursive calls.

DIVIDE-AND-CONQUER CONTINUED CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Assume P_l and P_r have tour lengths T_l and T_r.
Tour length for the combination?

DIVIDE-AND-CONQUER CONTINUED	7/20
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

 $T_{\ell}+T_{r}+\underbrace{\|u_{\ell}-u_{r}\|+\|v_{\ell}-v_{r}\|}_{\downarrow}-\underbrace{\|u_{\ell}-v_{\ell}\|-\|u_{r}-v_{r}\|}_{\downarrow}$ Subtract these Add these

DIVIDE-AND-CONQUER CONTINUED	8/20
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	Fall 2013

$$\frac{T_{\ell} + T_{r} + \underbrace{\|U_{\ell} - V_{r}\| + \|V_{\ell} - U_{r}\|}_{\text{Add these}} - \underbrace{\|U_{\ell} - V_{\ell}\| - \|U_{r} - V_{r}\|}_{\text{Subtract these}}$$

Divide-and-Conquer Continued	9/20
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- Try all pairs of edges e_{ℓ} from P_{ℓ} and e_r from P_r
 - How many pairs are there?
- For each pair of edges, find the smallest increase.
- Then combine the small tours into a large tour.

DIVIDE-A	ND-CONQUER CONTINUED
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

DIVIDE-AND-CONQUER CONTINUED	11/20
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

DIVIDE-AND-CONQUER CONTINUED	12/20
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Splitting the Points

Split at the median along the longer spread dimension.

DIVIDE-AND-CONQUER CONTINUED	13/20
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SWAP COST

• Given $e_{\ell} = (u_{\ell}, v_{\ell}) \in L$ and $e_r = (u_r, v_r) \in R$

 $swapCost((u_{\ell}, v_{\ell}), (u_r, v_r)) = Cost Added - Cost Removed$

Cost Added = min(
$$||u_{\ell} - u_{r}|| + ||v_{\ell} - v_{r}||,$$

 $||u_{\ell} - v_{r}|| + ||v_{\ell} - u_{r}||)$

 $Cost Removed = \|u_{\ell} - v_{\ell}\| + \|u_r - v_r\|$

DIVIDE-AND-CONQUER CONTINUED CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

SWAPPING EDGES

- swapEdges (append (L, R), e'_{ℓ} , e'_{r})
- Appends the Tour edge lists from subproblems
- Then removes and adds appropriate edges.

~	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITH	лs

Synopsis

- The Euclidian Travelling Salesperson Problem
- Divide-and-Conquer Heuristic Algorithm
- Analysis of Costs

DIVIDE-AND-CONQUER CONTINUED		
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

DIVIDE-AND-CONQUER CONTINUED	17/20
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

$$W(n) = 2W(n/2) + O(n^2)$$

 $S(n) = S(n/2) + O(\log n)$

$$S(n) \in O(\log^2 n)$$

DIVIDE-AND-CONQUER CONTINUED CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Solve (directly)

$$W(n) = 2W(n/2) + k \cdot n^{1+\varepsilon}$$

for constant $\varepsilon > 0$.

- Depth is log₂ n (Is this technically right?)
- At level *i*, we have 2^i nodes each costing $k \cdot (n/2^i)^{1+\varepsilon}$

$$W(n) = \sum_{i=0}^{\log n} k \cdot 2^{i} \cdot \left(\frac{n}{2^{i}}\right)^{1+\varepsilon}$$
$$= k \cdot n^{1+\varepsilon} \cdot \sum_{i=0}^{\log n} 2^{-i \cdot \varepsilon}$$
$$\leq k \cdot n^{1+\varepsilon} \cdot \sum_{i=0}^{\infty} 2^{-i \cdot \varepsilon}$$
$$W(n) \in O(n^{1+\varepsilon}) (Why?)$$

DIVIDE-AND-CONQUER CONTINUED

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SUMMARY

• Euclidian Traveling Salesperson Problem

- Divide-and-Conquer Heuristic
- Processing before and after the subproblem solutions.
- Cost Analysis

DIVIDE-AND-CONQUER CONTINUED CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

15-210 Parallel and Sequential Algorithms and Data Structures

Lecture 5

DATA ABSTRACTION AND SEQUENCES

Synopsis

- Abstractions and Implementations
 - Meldable Priority Queues
- The Sequence ADT
- The scan operation
- Introduction to contraction

DATA ABSTRACTION AND SEQUENCES CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS 2/35 Fall 2013

ABSTRACTIONS AND IMPLEMENTATIONS

	Abstraction	Implementation
Functions	Problem	Algorithm
Data	Abstract Data Type	Data Structure

DATA ABSTRACTION AND SEQUENCES		
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

3/35 Fall 2013

Meldable Priority Queues

Priority Queues

- Insert an item insert
- Return and delete the item with the minimum priority
 deleteMin

Meldable Priority Queue

Join two priority queues into one - meld

DATA ABSTRACTION AND SEQUENCES		
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

4/35 Fall **2013**

MELDABLE PRIORITY QUEUES

- S is a totally ordered set (integers, strings, reals, ...).
- \mathbb{T} is a type representing *subsets* of \mathbb{S} .

DATA ABSTRACTION AND SEQUENCES	5/35
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

MPQ DEFINITION IN SML

```
signature MPQ
 sig
   struct S : ORD
   type t
   val empty : t
   val insert : t * S.t -> t
   val deleteMin : t -> t * S.t option
   val meld : t * t -> t
end
```

• No semantics, only the types.

DATA ABSTRACTION AND SEQUENCES	6/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

MPQ: COST SPECIFICATIONS

Implementation 1:

Operation	Work
insert(<i>S</i> , <i>e</i>)	O(S)
deleteMin $({\it S})$	<i>O</i> (1)

 $\texttt{meld}(S_1,S_2) \qquad \textit{O}(|S_1|+|S_2|)$

- What is the underlying data structure? Sorted Array
- meld is actually an array merge.

DATA ABSTRACTION AND SEQUENCES	7/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

MPQ: COST SPECIFICATIONS

Implementation 2:

Operation	Work	
insert(<i>S</i> , <i>e</i>)	$O(\log S)$	
deleteMin (S)	$O(\log S)$	
 meld(S₁, S₂) What is the under 		ure? Heaps

DATA ABSTRACTION AND SEQUENCES	8/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

MPQ: COST SPECIFICATIONS

• Implementation 3:

Operation	Work
insert(<i>S</i> , <i>e</i>)	$O(\log S)$
deleteMin (S)	$O(\log S)$
meld(<i>S</i> ₁ , <i>S</i> ₂) • Later!	$O(\log(S_1 + S_2))$

DATA ABSTRACTION AND SEQUENCES CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

ABSTRACTIONS AND IMPLEMENTATIONS

- The Abstract Data Type
 - Functionality
 - Correctness
- The Cost Specification
 - Multiple Cost Specifications
 - We only need these to do cost analysis.
- Underlying Data Structure
 - Multiple Data Structures

DATA AB	STRACTION AND SEQUENCES
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

THE SEQUENCE ADT - SOME BASICS

- A *relation* is a set of ordered pairs.
 First from set *A*, second from set *B*
- A relation $\rho \subseteq A \times B$.
- A *function* is a relation ρ, where for every a ∈ A there is only one b such that (a, b) ∈ ρ.
- A *sequence* is a function where $A = \{0, ..., n-1\}$ for some $n \in \mathbb{N}$.

DATA ABS	STRACTION AND SEQUENCES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE SEQUENCE ADT – Functionality

A sequence is a type S_α representing functions from {0,..., n – 1} to α.

empty	:	\mathbb{S}_{lpha}	=	{}
length (A)	:	$\mathbb{S}_{\alpha} \to \mathbb{N}$	=	A
singleton($ u$)	:	$\alpha \to \mathbb{S}_{\alpha}$	=	$\{(0, v)\}$
nth (A , <i>i</i>)	:	$\mathbb{S}_{\alpha} \to \alpha$	=	A(i)
$\mathtt{map}(\mathit{f}, \mathit{A})$:	$(\alpha \to \beta) \times \mathbb{S}_{\alpha} \to \mathbb{S}_{\beta}$	=	$\{(i,f(oldsymbol{v})):(i,oldsymbol{v})\inoldsymbol{A}\}$
tabulate(f,n)	:	$(\mathbb{N} \to \alpha) \times \mathbb{N} \to \mathbb{S}_{\alpha}$	=	$\{(i, f(i)) : i \in \{0, \dots, n-1\}\}$
take (<i>A</i> , <i>n</i>)	:	$\mathbb{S}_{\alpha} \times \mathbb{N} \to \mathbb{S}_{\alpha}$	=	$\{(i, v) \in A \mid i < n\}$
drop (A , n)	:	$\mathbb{S}_{\alpha} \times \mathbb{N} \to \mathbb{S}_{\alpha}$	=	$\{(i-n,v):(i,v)\in A\mid i\geq n\}$
append (A , B)	:	$\mathbb{S}_{\alpha} \times \mathbb{S}_{\alpha} \to \mathbb{S}_{\alpha}$	=	$oldsymbol{A} \cup \{(i+ oldsymbol{A} ,oldsymbol{v}): (i,oldsymbol{v}) \in oldsymbol{B}\}$

DATA ABSTRACTION AND SEQUENCES	12/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE SEQUENCE ADT – COST SPECS

	ArraySequence		
	Work	Span	
length(T)	<i>O</i> (1)	<i>O</i> (1)	
nth(T)	<i>O</i> (1)	<i>O</i> (1)	
append (S_1, S_2)	$O(S_1 + S_2)$	<i>O</i> (1)	

DATA ABSTRACTION AND SEQUENCES		
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	

THE SEQUENCE ADT – COST SPECS

	ArraySequence	
	Work	Span
tabulate f n	$O\left(\sum_{i=0}^{n} W(f(i))\right)$	$O\left(\max_{i=0}^{n} S(f(i))\right)$
map f S	$O\left(\sum_{s\in S} W(f(s))\right)$	$O\left(\max_{s\in S} S(f(s))\right)$

DATA ABSTRACTION AND SEQUENCES	14/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE SEQUENCE ADT – COST SPECIFICATIONS

	TreeSequence	
	Work	Span
length(T)	<i>O</i> (1)	<i>O</i> (1)
nth(T)	$O(\log n)$	<i>O</i> (log <i>n</i>)
append (S_1, S_2)	$O(\log(S_1 + S_2))$	$O\left(\log(S_1 + S_2)\right)$

DATA ABSTRACTION AND SEQUENCES	15/35
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

THE SEQUENCE ADT – COST SPECIFICATIONS

DATA ABSTRACTION AND SEQUENCES	16/35
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

Some Notational Conventions

S_i	The <i>ith</i> element of sequence S
S	The length of sequence S
$\langle \rangle$	The empty sequence
$\langle \mathbf{v} \rangle$	A sequence with a single element v
$\langle i, \ldots, j \rangle$	A sequence of integers starting at <i>i</i> and
	ending at $j \ge i$.
$\langle {m e} : {m p} \in {m S} angle$	Map the expression <i>e</i> to each element <i>p</i> of
	sequence S.
	The same as "map (fn $p \Rightarrow e$) S" in ML.
$\langle \pmb{p} \in \pmb{S} \mid \pmb{e} angle$	Filter out the elements p in S that satisfy the predicate e .
	The same as "filter (fn $p \Rightarrow e$) S" in ML.

More examples are given in the "Syntax and Costs" document.

DATA ABS	STRACTION AND SEQUENCES	17/35
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE SCAN OPERATION

• Related to reduce.

scan f I S:
$$(\alpha \times \alpha \to \alpha) \to \alpha \to \alpha$$
 seq
 $\to (\alpha \text{ seq} \times \alpha)$

- I is the identity value
- f is an (associative) function
- S is a sequence
- Produces $\langle I, f(I, S_0), f(f(I, S_0), S_1), \ldots \rangle$ and reduce f I S
 - scan + 0(2, 1, 4, 6) = ((0, 2, 3, 7), 13)

DATA ABSTRACTION AND SEQUENCES	18/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE SCAN OPERATION

- scan computes prefix sums.
 - 1 fun scan f I S =
 - 2 $(\langle reduce \ f \ I \ (take(S, i)) : i \in \langle 0, \dots n-1 \rangle \rangle,$
 - reduce f | S)
- S has n elements

3

- Apply reduce to each prefix of S of i elements, $0 \le i \le n-1$
 - Gives you the α seq part
- Apply reduce to S
 - Gives you the α part
- So you get ($\alpha \ seq \rightarrow \alpha$)

DATA AB	STRACTION AND SEQUENCES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE SCAN OPERATION

$$\begin{aligned} scan + 0 \langle 2, 1, 3 \rangle &= (\langle reduce + 0 \langle \rangle, \\ reduce + 0 \langle 2 \rangle, \\ reduce + 0 \langle 2, 1 \rangle \rangle \\ reduce + 0 \langle 2, 1, 3 \rangle) \\ &= (\langle 0, 2, 3 \rangle, 6) \end{aligned}$$

- This is obviously not efficient!
- We will see how to do this with

$$W(scan f I S) = O(|S|)$$

S(scan f I S) = O(log |S|)

DATA ABSTRACTION AND SEQUENCES

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE INCLUSIVE SCAN OPERATION

reduce all prefixes ending at position *i*,
 0 ≤ *i* ≤ *n* − 1

scanI + 0 $\langle \, 2, 1, 3 \, \rangle$ = $\langle \, 2, 3, 6 \, \rangle$

DATA ABSTRACTION AND SEQUENCES CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE MAXIMUM CONTIGUOUS SUBSEQUENCE SUM PROBLEM

- Given a sequence of numbers $S = \langle s_1, \ldots, s_n \rangle$,
- Find

$$ext{mcss}(S) = \max_{1 \leq i \leq j \leq n} \left\{ \sum_{k=i}^{J} s_k \right\}$$

•
$$S = \langle 0, -1, 2, -1, 4, -1, 0 \rangle$$
, $mcss(S) = 5$

DATA ABSTRACTION AND SEQUENCES CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- Consider $S = \langle 1, -2, 3, -1, 2, -3 \rangle$
- Let $X = scanI + 0 S = \langle 1, -1, 2, 1, 3, 0 \rangle$

• What is
$$X_j - X_i$$
 for $j > i$?

•
$$\sum_{k=i+1}^{j} S_k$$

• $X_4 - X_0 = 3 - 1 = 2$

DATA ABSTRACTION AND SEQUENCES CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Define R_j as the maximum sum that starts at some i and ends at j > i.

$$\begin{aligned} R_{j} &= \max_{i=0}^{j} \sum_{k=i}^{j} S_{k} \\ &= \max_{i=0}^{j} (X_{j} - X_{i-1}) \\ &= X_{j} + \max_{i=0}^{j} (-X_{i-1}) \\ &= X_{j} + \max_{i=0}^{j-1} (-X_{i}) = X_{j} - \min_{i=0}^{j-1} X_{i} \text{ (Why?)} \end{aligned}$$

DATA ABSTRACTION AND SEQUENCES CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

$$R_j = X_j - \min_{i=0}^{j-1} X_i$$

You need X_j and the minimum previous X_i, i < j
 can be done by a minimum scan

$$(M, _{-}) = scan min 0 X = (\langle 0, 0, -1, -1, -1, -1 \rangle, -1)$$

$$\textit{\textit{R}} = \langle \textit{\textit{X}}_{\textit{j}} - \textit{\textit{M}}_{\textit{j}} : \textit{0} \leq \textit{j} < |\textit{S}| \, \rangle = \langle \textit{1}, -\textit{1}, \textit{3}, \textit{2}, \textit{4}, \textit{1} \, \rangle$$

Data Abstraction and SequencesCMU-Q15-210 Parallel and Sequential Data Structures and Algorithms

LET'S RECAP

- Given $S = \langle 1, -2, 3, -1, 2, -3 \rangle$
- We computed X with a + scan1.
 - $X = \langle 1, -1, 2, 1, 3, 0 \rangle$
- We computed *M* with a min *scan*

•
$$M = \langle 0, 0, -1, -1, -1, -1 \rangle$$

- We computed *R* = ⟨ *X_j* − *M_j* : 0 ≤ *j* < |*S*| ⟩
 R = ⟨ 1, −1, 3, 2, 4, 1 ⟩
- A final max reduce on R gives us the MCSS, 4.

DATA ABSTRACTION AND SEQUENCES			
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS		

1 fun
$$MCSS(S) =$$

2 let
3 val $X = scanI + 0 S$
4 val $(M, _) = scan \min 0 X$
5 in
6 $\max \langle X_j - M_j : 0 \le j < |S| \rangle$
7 end

DATA ABSTRACTION AND SEQUENCES	27/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

COPY SCAN

 Scan can also be used to pass information along a sequence.

 $\langle NONE, SOME(7), NONE, NONE, SOME(3), NONE \rangle$

 $\langle NONE, NONE, SOME(7), SOME(7), SOME(7), SOME(7), SOME(3) \rangle$

- Each element receives the nearest previous SOME () value.
- Easy to do sequentially with *iter*.

DATA ABS	STRACTION AND SEQUENCES	28/35
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

COPY SCAN

- Can we do this with scan?
- $f : \alpha \text{ option} \times \alpha \text{ option} \rightarrow \alpha \text{ option}$

1	fun copy(a , b) =
2	case b of
3	$SOME(_) \Rightarrow b$
4	\mid NONE \Rightarrow a

- Passes its right argument if it is SOME, else passes its left argument.
- How do you show *copy* is associative.

DATA ABS	STRACTION AND SEQUENCES	29/35
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

IMPLEMENTING SCAN – CONTRACTION

- scan looks inherently sequential.
 - Naive implementation needs $O(n^2)$ work.
 - Slightly clever sequential implementation needs O(n) work.
 - Divide an Conquer approaches do not break the sequentiality. (Why?)
- Contraction

 - Construct a much smaller instance of the problem
 - Solve the smaller instance recursively
 - Construct solution to the original instance.

DATA ABS	STRACTION AND SEQUENCES	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

IMPLEMENTING REDUCE WITH CONTRACTION

- Given $\langle 2, 1, 3, 2, 2, 5, 4, 1 \rangle$
- Apply + pairwise and (in parallel) to get $\langle 3, 5, 7, 5 \rangle$
 - This is the contracted instance!
- Apply + pairwise to get $\langle 8, 12 \rangle$
- Finally apply + pairwise to get $\langle 20 \rangle$
- The 3rd step of the contraction does nothing in this case.

DATA AB	STRACTION AND SEQUENCES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

IMPLEMENTING SCAN WITH CONTRACTION

Given S = (2, 1, 3, 2, 2, 5, 4, 1)
scan + 0 S = ((0, 2, 3, 6, 8, 10, 15, 19), 20)

- First do pairwise + on S to get $\langle 3, 5, 7, 5 \rangle$
- Now (recursively) do scan on this to get $(\langle 0, 3, 8, 15 \rangle, 20)$
 - What is the relation to the final scan?
- We have every other element of the final scan!
- How do we fill in the rest?

DATA ABSTRACTION AND SEQUENCES	32/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

IMPLEMENTING SCAN WITH CONTRACTION

Input = $\langle 2, 1, 3, 2, 2, 5, 4, 1 \rangle$ Partial Output = $(\langle 0, 3, 8, 15 \rangle, 20)$

Desired Output = $(\langle 0, 2, 3, 6, 8, 10, 15, 19 \rangle, 20)$

DATA ABSTRACTION AND SEQUENCES CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

IMPLEMENTING SCAN WITH CONTRACTION

123456789 % implements: the Scan problem on sequences that have a power of 2 length fun scanPow2 f i s = case |s| of $0 \Rightarrow (\langle \rangle, i)$ $| 1 \Rightarrow (\langle i \rangle, s[0])$ $\mid n \Rightarrow$ let val $s' = \langle f(s[2i], s[2i+1]) : 0 \le i < n/2 \rangle$ val (r, t) = scanPow2 f i s'10 in $(\langle p_i : 0 \le i < n \rangle, t)$, where $p_i = \begin{cases} r[i/2] & \text{if } even(i) \\ f(r[i/2], s[i-1]) & \text{otherwise.} \end{cases}$ 11 12 end

General case is in the course notes.

DATA ABSTRACTION AND SEQUENCES	34/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SUMMARY

- Abstractions and Implementations
 - Meldable Priority Queues
- The Sequence ADT
- The scan operation
- Introduction to contraction
- Implementing scan with contraction.

Data Abstraction and SequencesCMU-Q15-210 Parallel and Sequential Data Structures and Algorithms

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 6

SEQUENCES - II

Synopsis

- The reduce operation
- Implementing divide and conquer with reduce
 - Implementing MCSS with reduce
- Analyzing cost of higher order functions
 - Cost analysis for reduce

SEQUENCES - II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms 2/21 Fall **2013**

THE REDUCE OPERATION

reduce
$$f IS$$
 : $(\alpha \times \alpha \to \alpha) \to \alpha$
 $\to \alpha \ seq \to \alpha$

- When f is associative, reduce returns sum with respect to f.
- Same result as *iter* f I S
 - *iter* is sequential and allows more general *f* (e.g., $\beta \times \alpha \rightarrow \beta$
- If *f* is not associative, *reduce* and *iter* results may differ.

Sequences - II	3/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

THE REDUCE OPERATION

 Specific combination based on a perfect binary tree.

Sequences - II	4/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

DIVIDE AND CONQUER WITH REDUCE

- Many divide and conquer have the following structure
 - fun myDandC(S) =1 2 case showt(S) of 3 $EMPTY \Rightarrow | emptyVal$ 4 $ELT(\mathbf{v}) \Rightarrow | base | (\mathbf{v})$ 5 NODE (L, $R) \Rightarrow let$ 6 val $(L', R') = (myDandC(L) \parallel myDandC(R))$ 7 in 8 someMessyCombine (L', R')9 end
- This corresponds to a binary tree combination scheme.

Sequences - II	5/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

DIVIDE AND CONQUER WITH REDUCE

Sequences - II	6/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

DIVIDE AND CONQUER WITH REDUCE

MCSS USING REDUCE

Left Subproblem

Right Subproblem

MCSS USING REDUCE

$$ext{mcss}(s) = \max_{1 \leq i \leq j \leq n} \left\{ \sum_{k=i}^{j} s_k \right\}$$

- $\begin{array}{ll} \texttt{fun} & \texttt{combine}((M_L, P_L, S_L, T_L), (M_R, P_R, S_R, T_R)) = \\ & (\max(S_L + P_R, M_L, M_R), & \max(P_L, T_L + P_R), \\ & \max(S_R, S_L + T_R), & T_L + T_R) \end{array}$
- fun base(v) = (v, v, v, v)
- val $emptyVal = (-\infty, -\infty, -\infty, 0)$

fun mcss(S) = reduce combine emptyVal (map base S)

Sequences - II	9/21
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

Some Observations

• Which code to use is a matter of taste

- reduce version is shorter
- Divide and Conquer version exposes the inductive structure.
- reduce version not applicable when split is complicated
 - e.g., in Quicksort

SEQUENCES - II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

SCAN VIA REDUCE

- How do we implement the divide and conquer scan with this template?
 - scan f I S =
 reduce combine emptyVal (map base S)
- emptyVal=? ($\langle \rangle, I$)
- fun $base(v) = ?(\langle I \rangle, f(I, v))$
- fun combine =?

 - Is this right?

$$\begin{array}{ll} \textit{fun} & \textit{combine}((S_1, T_1), (S_2, T_2)) = \\ & \textit{(append}(S_1, \textit{(map (fn x \Rightarrow f(T_1, x)) S_2), f(T_1, T_2))} \end{array}$$

Sequences - II	11/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

COST OF HIGHER ORDER FUNCTIONS

- We assume that *f* runs in O(1) work and span.

 → *reduce* has O(*n*) work and O(log *n*) span
- Easy for map and tabulate

SEQUENCES - II

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

MERGESORT VIA REDUCE

Remember the reduce template for divide and conquer?

SEQUENCES - II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

COST OF REDUCESORT

merge< is an associative function with costs:</p>

 $W(merge_{<}(S_1, S_2)) = O(n_1 + n_2)$ $S(merge_{<}(S_1, S_2)) = O(\log(n_1 + n_2))$

- f has no longer O(1) work and span.
- What is the cost of reduceSort.

SEQUENCES - II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

COST OF REDUCESORT

- For costs, reduction sequence matters!
- Sequential order
- On input $x = \langle x_0, x_1, \dots, x_{n-1} \rangle$, we get

 $merge_{<}(\dots merge_{<}(merge_{<}(merge_{<}(I, \langle x_{0} \rangle), \langle x_{1} \rangle), \langle x_{2} \rangle), \dots)$

- Left arg. has length 0 through n-1
- Right arg. always has length 1.
- Work:

$$W(\text{reduceSort } S) \leq \sum_{i=0}^{n-1} c \cdot (1+i) \in O(n^2) \text{ Why?}$$

• Equivalent to iter version

fun reduceSort'(S) =
 iter merge< (emptyVal (map base S)</pre>

Works really as an Insertion Sort.
 Inserts each element into a sorted prefix!

• No parallelism except in merge

$$S(\text{reduceSort } S) \leq \sum_{i=0}^{n-1} c \cdot \log(1+i) \in O(n \log n)$$

SEQUENCES - II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

- The reduction tree is very unbalanced!
- Suppose $n = 2^k$ and merge tree is as follows

SEQUENCES - II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

- *n* nodes at constant cost at each leaf ($i = \log_2 n$)
- n/2 nodes one level up, each costing c(1 + 1)
 (i = log₂ ⁿ/₂) (Why?)
- In general, for level *i*, we have 2ⁱ nodes merging two sequences each length ⁿ/_{2ⁱ⁺¹}

Sequences - II	18/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

For level *i*, we have 2ⁱ nodes merging two sequences each length ⁿ/_{2ⁱ⁺¹}

$$W(\text{reduceSort } x) \leq \sum_{i=0}^{\log n} 2^i \cdot c \left(\frac{n}{2^{i+1}} + \frac{n}{2^{i+1}} \right)$$
$$= \sum_{i=0}^{\log n} 2^i \cdot c \left(\frac{n}{2^i} \right) \in O(n \log n)$$

SEQUENCES - II

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- $W(\text{reduceSort}S) \in O(n \log n) \Rightarrow$ mergeSort.
- mergeSort and insertionSort are special cases of reduceSort using different reduction orders.

Sequences - II	20/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

REDUCE ORDER

- Result of reduce depends on the order when f is not associative
- When f is associative, different orders result in different costs.

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 7

COLLECT, SETS AND TABLES

Synopsis

- The collect operation
- The map-collect-reduce paradigm
- Sets
- Tables

COLLECT,	, Sets and Tables
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

Group items that share a common key.

val $Data = \langle ("jack sprat", "15-210"),$ ("jack sprat", "15-213"),("mary contrary", "15-251"),("mary contrary", "15-251"),("peter piper", "15-150"),("peter piper", "15-251"), $... \rangle <math>\downarrow$ **val** $rosters = \langle ("15-150", \langle "peter piper", ... \rangle)$ ("15-210", $\langle "jack sprat", "mary contrary", ... \rangle)$ ("15-213", $\langle "jack sprat", ... \rangle$) ("15-251", $\langle "mary contrary", "peter piper" \rangle)$... \rangle

COLLECT, SETS AND TABLES CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- Very common operation in Relational Databases
- Usually called the Group by operation.

val rosters = ⟨("15-150", ⟨"peter piper",...⟩) ("15-210", ⟨"jack sprat", "mary contrary",...⟩) ("15-213", ⟨"jack sprat",...⟩) ("15-251", ⟨"mary contrary", "peter piper"⟩) ...⟩

• Students are grouped by Course Numbers.

Collect, Sets and Tables	4/33
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	Fall 2013

 $collect: (\alpha \times \alpha \rightarrow order) \rightarrow (\alpha \times \beta) seq$ $\rightarrow (\alpha \times \beta seq) seq$

- $\alpha \times \alpha \rightarrow order$ is a function for comparing keys of type α
- **2** $(\alpha \times \beta)$ seq is a sequence of key-value pairs
- $(\alpha \times \beta \text{ seq}) \text{ seq}$ is the resulting sequence:
 - each unique α value is paired with a sequence of all
 β values it appears with

Collect, Sets and Tables	5/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

val collectStrings = collect String.compare

val rosters = collectStrings($\langle (n, c) : (c, n) \in Data \rangle$)

val
$$rosters = \langle ("15-150", \langle "peter piper", ... \rangle) ("15-210", \langle "jack sprat", "mary contrary", ... ("15-213", $\langle "jack sprat", ... \rangle$)
 ("15-251", $\langle "mary contrary", "peter piper" \rangle$)
 ... $\rangle$$$

⟨(n, c) : (c, n) ∈ Data⟩ arranges the data appropriately.

Collect, Sets and Tables	6/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

• How would you implement collect?

- Sort the items on their keys
- Partition the resulting sequence
- Pull out pairs between each key change

Collect, Sets and Tables	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FA

7/33

FALL 2013

- The dominant cost of collect is in sorting.
- Work is $O(W_c n \log n)$, Span is $O(S_c \log^2 n)$
 - W_c work bound for the comparison function
 - S_c span bound for the comparison function
- A O(n) work can be implemented with hashing.
 - Need a separate hash function
 - Output not in sorted order

USING COLLECT IN MAP-REDUCE

- The map-reduce paradigm is used to process very large collection of documents.
 - A document is a collection of words/strings.
 - Not the mapReduce of 15-150!
- map-reduce paradigm \equiv map-collect-reduce(s).

CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS
COLLECT,	SETS AND TABLES

USING COLLECT IN MAP-REDUCE

- *f_m* maps each document to a sequence of key-value pairs.
 - f_m : (document \rightarrow (key $\times \alpha$) seq)
- All key-value pairs in a document are collected.
- *f_r* is applied to the keys to get a single value for a key.
 - $f_r: key \times \alpha \ seq \rightarrow \beta$

Collect, Sets and Tables CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

AN EXAMPLE

 $docs = \langle "this is a document", "this is is another document", "a last document" \rangle$

\downarrow

 $\langle ("this", 1), ("is", 1), ("a", 1), ("document", 1), ("this", 1), ("is", 1), ("is", 1), ("a", 1), ("a", 1), ("another", 1), ("document", 1), ("a", 1), ("last", 1), ("document", 1) \rangle$

 \downarrow

 $\langle ("a", 2), ("another", 1), ("document", 3), ("is", 3), ("last", 1), ("this", 2) \rangle$

11/33

FALL 2013

Collect,	Sets and Tables
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

MAPREDUCE IN SML

```
 \begin{array}{ll} & \text{fun } mapCollectReduce \ f_m \ f_r \ docs = \\ & \text{let} \\ & \text{val } pairs = flatten \langle f_m(s) : s \in docs \rangle \\ & \text{val } groups = collect \ String.compare \ pairs \\ & \text{fn} \\ & & \langle f_r(g) : g \in groups \rangle \\ & \text{rend} \end{array}
```

• flatten $\langle \langle a, b, c \rangle, \langle d, e \rangle \rangle \Rightarrow \langle a, b, c, d, e \rangle$

COLLECT,	SETS AND TABLES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

MAPREDUCE IN SML

```
 \begin{array}{ll} & \text{fun } mapCollectReduce \ \textbf{f}_{m} \ \textbf{f}_{r} \ docs = \\ & \text{let} \\ & \text{val } pairs = flatten \langle \ \textbf{f}_{m}(\textbf{s}) : \textbf{s} \in docs \rangle \\ & \text{val } groups = collect \ String.compare \ pairs \\ & \text{in} \\ & & \langle \ \textbf{f}_{r}(\textbf{g}) : \textbf{g} \in groups \rangle \\ & \text{rend} \end{array}
```

```
fun f<sub>m</sub>(doc) = \langle (w, 1) : tokens doc \rangle
fun f<sub>r</sub>(w,s) = (w, reduce + 0 s)
```

COLLECT, SETS AND TABLES CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

MAPREDUCE EXAMPLE IN SML

fun $f_m(doc) = \langle (w, 1) : tokens doc \rangle$ fun $f_r(w, s) = (w, reduce + 0 s)$

val countWords = mapCollectReduce f_m f_r

countWords ("this is a document", "this is is another document", "a last document")

 $\Rightarrow \langle ("a", 2), ("another", 1), ("document", 3), ("is", 3), ("is", 1), ("this", 2) \rangle$

COLLECT, SETS AND TABLES CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

Sets

- Sets play a very important role in math.
- Often needed in many algorithms.
- Many languages either support sets directly or have libraries for sets.
- In 15-210 we use a purely functional definition for sets:
 - When updates are done, a new set is returned.

Sets as an ADT

- \mathbb{U} is a universe of elements.
- The SET ADT is a type S that represents the power set of U.

empty	:	S	=	Ø
size(S)	:	$\mathbb{S} o \mathbb{Z}_{>0}$	=	S
singleton(<i>e</i>)	:	$\mathbb{U} \to \mathbb{S}^{-}$	=	{ e }
filter (f, S)	:	$((\mathbb{U} o \{\mathtt{T},\mathtt{F}\})$	=	$\{s \in S \mid f(s)\}$
		$ imes \mathbb{S}) o \mathbb{S}$		

Collect, Sets and Tables CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

Sets as an ADT

- $\begin{array}{rcl} \text{intersection}(S_1,S_2) & : & \mathbb{S}\times\mathbb{S}\to\mathbb{S} & = & S_1\cap S_2\\ \text{union}(S_1,S_2) & : & \mathbb{S}\times\mathbb{S}\to\mathbb{S} & = & S_1\cup S_2\\ \text{difference}(S_1,S_2) & : & \mathbb{S}\times\mathbb{S}\to\mathbb{S} & = & S_1\setminus S_2 \end{array}$

What is the relationship between these two groups?

Collect, Sets and Tables	17/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Sets as an ADT

• We do not really need find, insert, delete!

find(S, e) = size(intersection(S, singleton(e))) = 1 insert(S, e) = union(S, singleton(e))delete(S, e) = difference(S, singleton(e))

• intersection, union, **and** difference

- can operate on multiple elements, and
- are suitable for parallelism

Collect, Sets and Tables	18/33
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

COST MODEL FOR SETS

- Underlying data structure can be
 - hash-tables
 - balanced trees
- We will assume a balanced-tree implementation.
- We will assume comparison of two set elements take
 - W_c work and S_c span.

COLLECT,	SETS AND TABLES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

COST MODEL FOR SETS

	Work	Span
size(<i>S</i>) singleton(<i>e</i>)	<i>O</i> (1)	<i>O</i> (1)
filter (f, S)	$O\left(\sum_{e\in S} W(f(e))\right)$	$O\left(\log S + \max_{e \in S} S(f(e)) ight)$
find (S,e) insert(S,e) delete(S,e)	$O(W_c \cdot \log S)$	$O(S_c \cdot \log S)$

Collect, Sets and Tables	20/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

COST MODELS FOR SETS

Span = $O(S_c \cdot \log(n+1)) = O(S_c \cdot \log n)$

Collect, Sets and Tables	21/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

TABLES

- Table is an ADT for sets of key-value pairs.
- { $(k_1 \mapsto v_1), (k_2 \mapsto v_2), \ldots, (k_n \mapsto v_n)$ }
- { $(k_1, v_1), (k_2, v_2), \dots, (k_n, v_n)$ }
- Each key appears only once
- Many languages provide either built-in support or libraries.

Collect, Sets and Tables	22/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

TABLES

- \mathbb{K} is the universe of keys.
- \mathbb{V} is the universe of values.
- \mathbb{T} is a type that represents the power set of $\mathbb{K}\times\mathbb{V}$
 - restricted so that each key appears at most once.
 - \mathbb{S} is the power set of \mathbb{K} .
 - $\mathbb{Z}_{\geq 0}$ denotes the positive integers.

COLLECT,	SETS AND TABLES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

TABLE FUNCTIONS

TABLE FUNCTIONS

find (T, k)	:	$\mathbb{T} imes \mathbb{K} o (\mathbb{V} \cup \bot)$	$= egin{cases} m{v} & (k,m{v})\in T \ ot & \ ot & \ otherwise \end{cases}$
$merge(f, T_1, T_2)$:	$(\mathbb{V} \times \mathbb{V} \to \mathbb{V}) \times \mathbb{T} \times \mathbb{T} \to \mathbb{T}$	=
			$(k, v_1) \in T_1 \land (k, v_2) \in T_2 (k, v_1) \in T_1 \land (k, v_2) \notin T_2 (k, v_2) \in T_2 \land (k, v_1) \notin T_1$
extract(<i>T</i> , <i>S</i>)	:	$\mathbb{T}\times\mathbb{S}\to\tilde{\mathbb{T}}$	$= \{(k, v) \in T k \in S\}$
erase(<i>T</i> , <i>S</i>)	:	$\mathbb{T}\times\mathbb{S}\to\mathbb{T}$	$= \{(k, v) \in T k \notin S\}$

COLLECT, SETS AND TABLES

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- Suppose we have the two tables:
 - Summer= {tree → green, sky → blue, cmuq → tan}
 - ▶ $Fall = \{grass \mapsto gray, tree \mapsto brown\}$
- merge (fn $(a, b) \Rightarrow b$) Summer Fall
 - {grass → gray, tree → brown, sky → blue, cmuq → tan}

Collect, Sets and Tables
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

- Suppose we have the two tables:
 - Summer= {tree → green, sky → blue, cmuq → tan}
 - $Fall = \{grass \mapsto gray, tree \mapsto brown\}$
- extract(*Summer*, {*sky*, *grass*})
 - $\{sky \mapsto blue\}$

COLLECT,	SETS AND TABLES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- Suppose we have the two tables:
 - Summer= {tree → green, sky → blue, cmuq → tan}
 - $Fall = \{grass \mapsto gray, tree \mapsto brown\}$
- erase(*Summer*, {*sky*, *grass*})
 - {*tree* \mapsto *green*, *cmuq* \mapsto *tan*}

Collect, Sets and Tables CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

- Other useful functions from the library
- collect:(key $\times \alpha$) seq $\rightarrow (\alpha \text{ seq})$ table
- fromSeq: (key × α) seq → α table
 fromSeq(A) = {k ↦ s₀ : (k ↦ S) ∈ collect(A)}

COLLECT, SETS AND TABLES CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

TABLE FUNCTIONS

- Major differences from sets:
 - ▶ find returns the value if key is in the table else returns ⊥ (NONE).
 - insert/merge need a function to combine if the key is already in the/both table(s).
- Just as with sets, there is symmetry between
 - extract and find
 - merge and insert
 - erase and delete

COLLECT,	Sets and Tables
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

COST MODELS FOR TABLES

Collect, Sets and Tables	31/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

COST MODELS FOR TABLES

	Work	Span
find(<i>S</i> , <i>k</i>) insert(<i>T</i> ,(<i>k</i> , <i>v</i>)) delete(<i>T</i> , <i>k</i>)	$O(W_c \log T)$	$O(S_c \log T)$
$extract(T_1, T_2)$ $merge(T_1, T_2)$ $erase(T_1, T_2)$	$O\left(W_cm\log(1+\frac{n}{m})\right)$	$O(S_c \log(n+m))$
	· (

 $n = \max(|T_1|, |T_2|)$ $m = \min(|T_1|, |T_2|)$

Collect, Sets and Tables CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

SUMMARY

- Collect
- Map-Collect-Reduce
- Sets
- Tables

Collect, Sets and Tables CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 8

SETS AND TABLES-II

Synopsis

- How search engines work
- Single-threaded sequences

SETS AND	TABLES-II
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

BUILDING A SEARCH ENGINE

How do search engines work?

- What are the inputs?
 - (Billions and billions of) documents consisting of "words".
- How do we interact with the search engine
 - (Boolean) Keyword queries
 - List of matching documents (URLS)

HOW DOES THE SEARCH REALLY WORK?

- User inputs a query (say a couple of words)
- SE starts searching for the words in each document one-by-one
- Returns documents when they match.
- Not really!
 - Not scalable (even for one user)
- Preprocessing

SETS AND	D TABLES-II
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Preprocessing

5/28

PLAN

- What kinds of queries we want to have.
- What is the interface we want to have.
- How do we implement all these

Sets and Tables-II	6/28
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

QUERIES

- Bingle (:-) supports logical queries on words involving
 - And: "15210" And "course" And "slides"
 - Or: "15210" Or "15150"
 - AndNot: "15210" AndNot "Pittsburgh"
- "CMU" And "fun" And ("courses Or "clubs")
- Result would be a list of webpages/documents that match.

Sets and Tables-II	7/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE INTERFACE

```
signature INDEX = sig
   type word = string
   type docId = string
   type 'a seq
   type index
   type docList
   val makeIndex : (docId * string) seq -> index
   val find : index -> word -> docList
   val And : docList * docList -> docList
   val AndNot : docList * docList -> docList
   val Or : docList * docList -> docList
   val size : docList -> int
   val toSeq : docList -> docId seq
SETS AND TABLES-II
                                                     8/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS
                                                   FALL 2013
```

DOCUMENTS

Indexing a tweet database.

 $T = \langle \text{ ("jack", "chess club was fun"),} \\ \text{("mary", "I had a fun time in 210 class today"),} \\ \text{("nick", "food at the cafeteria sucks"),} \\ \text{("sue", "In 217 class today I had fun reading my email"),} \\ \text{("peter", "I had fun at nick's party"),} \\ \text{("john", "tiddlywinks club was no fun, but more fun than 218"} \\ \rangle$

- "jack" is a document id
- "chess club was fun" is a document

SETS AND	TABLES-II	9/28
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

USING THE INTERFACE

 $T = \langle \text{ ("jack", "chess club was fun"),} \\ \text{("mary", "l had a fun time in 210 class today"),} \\ \text{("nick", "food at the cafeteria sucks"),} \\ \text{("sue", "ln 217 class today l had fun reading my email"),} \\ \text{("peter", "l had fun at nick's party"),} \\ \text{("john", "tiddlywinks club was no fun, but more fun than 218"),} \\ \rangle \\ \textbf{val } f = (find (makeIndex(T))) : word \rightarrow doclist$

Sets and	TABLES-II
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

USING THE INTERFACE

 $T = \langle \text{ ("jack", "chess club was fun"),} \\ \text{("mary", "I had a fun time in 210 class today"),} \\ \text{("nick", "food at the cafeteria sucks"),} \\ \text{("sue", "In 217 class today I had fun reading my email"),} \\ \text{("peter", "I had fun at nick's party"),} \\ \text{("john", "tiddlywinks club was no fun, but more fun than 218"),} \\ \rangle \\ size(AndNot(f "fun", f "tiddlywinks")) \\ \Rightarrow 4$

SETS AND TABLES-II CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE MAKEINDEX FUNCTION

```
fun makeIndex(docs) =
1
2
    let
3
     fun tagWords(id, str) = \langle (W, id) : W \in tokens(str) \rangle
4
     val Pairs = flatten \langle tagWords(d) : d \in docs \rangle
5
     val Words = Table.collect (Pairs)
6
    in
     \{ w \mapsto Set. fromSeq(d) : (w \mapsto d) \in Words \}
7
8
    end
```

• What does tagWords do?

tagWords("jack", "chess club was fun")
⇒ (("chess", "jack"), ("club", "jack"), ("was", "jack"), ("fun", "jack"))

Sets and Tables–II	12/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE PAIRS FUNCTION

```
fun makeIndex(docs) =
1
2
    let
3
     fun tagWords(id, str) = \langle (w, id) : w \in tokens(str) \rangle
4
     val Pairs = flatten \langle tagWords(d) : d \in docs \rangle
5
     val Words = Table.collect (Pairs)
6
    in
7
     \{ w \mapsto Set.fromSeq(d) : (w \mapsto d) \in Words \}
8
    end
```

• What does Pairs do?

Sets and Tables–II	13/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE COLLECT FUNCTION

1 fun makeIndex(docs) =
2 let
3 fun tagWords(id, str) =
$$\langle (W, id) : W \in tokens(str) \rangle$$

4 val Pairs = flatten $\langle tagWords(d) : d \in docs \rangle$
5 val Words = Table.collect (Pairs)
6 in
7 { $W \mapsto Set.fromSeq(d) : (W \mapsto d) \in Words$ }
8 end

• What does collect do?

$$\begin{aligned} \text{Words} &= \{ (``a" \mapsto \langle ``mary" \rangle), \\ (``at" \mapsto \langle ``mary", ``peter" \rangle), \\ & \\ & \\ (``fun" \mapsto \langle ``jack", ``mary", ``sue", ``peter", ``john" \rangle), \end{aligned}$$

Sets and Tables–II	14/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

FINAL TOUCHES

```
fun makeIndex(docs) =
1
2
    let
3
     fun tagWords(id, str) = \langle (W, id) : W \in tokens(str) \rangle
     val Pairs = flatten \langle tagWords(d) : d \in docs \rangle
4
5
     val Words = Table.collect (Pairs)
6
    in
      \{ w \mapsto Set. fromSeq(d) : (w \mapsto d) \in Words \}
7
8
    end
```

- What is happening here?
- Sequences are converted to tables.

Sets and Tables–II	15/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

MAKEINDEX COSTS

1 fun makeIndex(docs) =
2 let
3 fun tagWords(id, str) =
$$\langle (W, id) : W \in tokens(str) \rangle$$

4 val Pairs = flatten $\langle tagWords(d) : d \in docs \rangle$
5 val Words = Table.collect (Pairs)
6 in
7 { $W \mapsto Set.fromSeq(d) : (W \mapsto d) \in Words$ }
8 end

Assuming tokens have a upper bound on length

- *W_{makeIndex}(n)* ∈ *O*(*n* log *n*), *S_{makeIndex}* ∈ *O*(log² *n*)
 What does *n* represent?

Sets and Tables-II	16/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Rest of the Interface

- fun find T v = Table.find T v
- fun $And(s_1, s_2) = s_1 \cap s_2$
- fun $Or(s_1, s_2) = s_1 \cup s_2$
- fun AndNot $(s_1, s_2) = s_1 \setminus s_2$
- fun size(s) = |s|
- fun toSeq(s) = Set.toSeq(s)

Sets and Tables–II	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STR	UCTURES AND ALGORITHMS

SINGLE-THREADED ARRAY SEQUENCES

- Updating an array sequence in an imperative language takes O(1) work.
- In a functional setting, everything is persistent.
- An update to a sequence of *n* elements needs
 - O(n) work for arraySequence implementation to copy and update.
 - O(log n) work for treeSequence implementation (because of substructure sharing)
- Interfaces do not provide functions for updating a single position.
 - to discourage sequential (and expensive) computation.

SETS AND	TABLES-II	18/28
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SINGLE-THREADED ARRAY SEQUENCES

- A map can be implemented as follows fun map f S =iter (fn ((i, S'), v) \Rightarrow (i + 1, update (i, f(
 - iter (fn ((i, S'), v) \Rightarrow (i + 1, update (i, f(v)) S')) (0, S) S
- Iterates *n* times $(i = 0, \dots, n-1)$
- and updates the value S_i with $f(S_i)$.
- arraySequence: Each update will do O(n) work for a total O(n²) work
- treeSequence: Each update will do O(log n) work for a total O(n log n) work.

SETS AND TABLES-II	19/28
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

SINGLE-THREADED SEQUENCES

- A new ADT: Single Threaded Sequence: stseq
- Useful when a bunch of items need to be updated.
- Straigthforward interface
- Cost specification imply non-functional stuff under the hood!

SETS AND	TABLES-II
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

STSEQ INTERFACE AND COSTS

	Work	Span
fromSeq(S): $\alpha \text{ seq} \rightarrow \alpha \text{ stseq}$ Converts from a regular sequence to a stseq.	O(S)	<i>O</i> (1)
toSeq(ST) : α stseq $\rightarrow \alpha$ seq Converts from a stseq to a regular sequence.	O(S)	<i>O</i> (1)
nth ST i : α stseq \rightarrow int $\rightarrow \alpha$ Returns the i^{th} element of ST. Same as for seq.	<i>O</i> (1)	<i>O</i> (1)
update (i, v) S : $(int \times \alpha) \rightarrow \alpha$ stseq $\rightarrow \alpha$ stseq Replaces the <i>ith</i> element of S with v .	<i>O</i> (1)	<i>O</i> (1)
inject I S : (int $\times \alpha$) seq $\rightarrow \alpha$ stseq $\rightarrow \alpha$ stseq For each $(i, v) \in I$ replaces the i^{th} element of S with v .	<i>O</i> (<i>I</i>)	<i>O</i> (1)
	l. <i>.</i>	alial fa

• Cost bounds for nth and update only valid for the "current" version of the sequence.

Sets and Tables–II	21/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

MAP WITH STSEQ

```
1 fun map f S = let

2 val S' = StSeq.fromSeq(S)

3 val R = iter

4 (fn ((i, S"), v) \Rightarrow (i + 1, StSeq.update (i, f(v)) S"))

5 (0, S')

6 S'

7 in

8 StSeq.toSeq(R)

9 end
```

- Overall work and span is O(n) (Why?)
- Multiple updates can be done in O(n) time.

Sets and Tables-II	22/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

IMPLEMENTING STSEQ

• Keep two full copies of the sequence

- Original and Current
- We keep a change log: updates to the original to get Current.

• When Current is updated

- We create a "new" Current with the update, and update change log.
- Mark the previous version as old, remove its Current and but keep the old change log.
- Any item from the current version is accessible in constant work.
- Any item from the any previous version is accessible but needs more work.

SETS AND) TABLES–II	23/28
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

Change Log

()

Original

Current

Sets and Tables–II	24/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

There really is only one copy of the Original.
All point to that copy.

Sets and Tables-II	25/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SETS AND TABLES-II

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

26/28 Fall **2013**

SETS AND TABLES-II

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

27/28 Fall **2013**

SUMMARY

- How search engines work
- Single-threaded sequences

SETS AND	TABLES-II
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

28/28 Fall **2013**

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 9

GRAPHS

SYNOPSIS

- Graphs
- Graph terminology/definitions
- Graph representations/costs.
- Graph search

GRAPHS		
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	FA

2/35

GRAPHS

GRAPHS

- Most versatile ADT in the study of algorithms
- Captures relationships between pairs of items
- A graph consists of
 - a set of V vertices/nodes
 - a set edges $E \subseteq V \times V$
- Edges represent relationships between nodes.
 - directed edges (asymmetric relationships)
 - undirected edges (symmetric relationships)
- Nodes or edges can have additional weights or values associated.

CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

SOCIAL NETWORKS

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

FALL 2013

SOCIAL NETWORKS - QUESTIONS

- Who is popular?
- What is the largest "clique"?
- Do I know somebody who knows X?
- What is the "diameter"?

Graphs	5/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

TRANSPORTATION NETWORKS

Graphs	6/35
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

TRANSPORTATION NETWORKS - QUESTIONS

- What is the shortest route from NYC to Los Angeles?
 - without Toll Roads?
 - without any state roads?
- What is the expected driving time from Boston to Atlanta?
 - considering traffic congestion?

GRAPHS

FLOW NETWORKS

GRAPHS CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

FLOW NETWORKS - QUESTIONS

- Is it possible to send 1*M* cubic meters of gas to Paris daily?
- What is the maximum gas that can be pumped from Azerbaijan to Italy?

Graphs	9/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

OTHER EXAMPLES OF GRAPHS

- Course prerequisite relation graphs (directed-acyclic)
- Web-page linkage graph
- Protein-protein interaction graph
- Neural networks
- Semantic networks

GRAPHS	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

DIRECTED GRAPHS

• A directed graph (digraph) is G = (V, E)

- V is a set of vertices (or nodes), and
- $E \subseteq V \times V$ is a set of directed edges (or arcs).
- Each arc is an ordered pair e = (u, v)
 - Arcs represent asymmetric relationships
 - A graph can have self loops (u, u)

GRAPHS

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

UNDIRECTED GRAPHS

- An undirected graph is G = (V, E)
 - V is a set of vertices (or nodes), and
 - $E \subseteq V \times V$ is a set of edges
- Each edge is an unordered pair $e = \{u, v\}$
 - Edges represent symmetric relationships
 - A undirected graphs do not have self-loops.

GRAPHS
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

NEIGHBORS

GRAPHS

- In an undirected graph, G = (V, E), a vertex v is a neighbor of u if {u, v} ∈ E.
- In an undirected graph,
 N_G(v) = {u | {u, v} ∈ E} is the neighborhood of v
- If *U* is a set of nodes,
 - $N_G(U) = \bigcup_{v \in U} N_G(v)$ is the neighborhood of U

NEIGHBORS

- In a directed graph, G = (V, E),
 - u is an in-neighbor of v if $(u, v) \in E$
 - u is an out-neighbor of v if $(v, u) \in E$
- In a directed graph
 - $N_G^-(u)$ is the set of in-neighbors of u.
 - $N_G^{\neq}(u)$ is the set of out-neighbors of u.
 - When we use $N_G(v)$, we mean out-neighbors.
- If *U* is a set of nodes,
 - $N_G^+(U) = \bigcup_{u \in U} N_G^+(u)$ is the out-neighborhood of U.

NODE DEGREES

- Undirected graphs: degree d_G(v) of a vertex v
 is |N_G(v)|
- Directed graphs:
 - in-degree of a vertex v is $d_G^-(v) = |N_G^-(v)|$
 - out-degree of a vertex v is $d_G^+(v) = |\tilde{N}_G^+(v)|$
- We will remove subscript G if it is clear from context.

	Graphs	15
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS FAL	CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2

5/35 **2013**

PATHS

- A path is a sequence of adjacent vertices.
- For a graph G = (V, E)

 $Paths(G) = \{P \in V^+ \mid 1 \le i < |P|, (P_i, P_{i+1}) \in E\}$

- ► V⁺ is denotes of sequence of length 1 or more.
- Repeats are allowed.
- The length of a path is the number of edges.
- A path may have an infinite length.
- A simple path has no repeated vertices.
 - Often "simple" will be dropped.

GRAPHS		16/35
CMU-Q 15-210 PARA	llel and Sequential Data Structures and Algorithms	Fall 2013

REACHABILITY

- A vertex v is reachable from a vertex u in G if there is a path starting at u and ending at v in G.
- $R_G(u)$ is the set of vertices reachable from u.
- An undirected graph is connected if all vertices are reachable from all other vertices.
- A directed graph is strongly connected if all vertices are reachable from all other vertices.

GRAPHS		
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	

CYCLES

- A cycle is a path that starts and ends at the same vertex.
- In a directed graph a cycle can have length 1 (i.e. a self loop).
- In an undirected graph we require that a cycle must have length at least three.
 - Going from u to v and back to u does not count.
- A simple cycle is a cycle that has no repeated vertices other than the start vertex being the same as the end.

GRAPHS		18/35
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

TREES, FORESTS AND DAGS

- An undirected graph with no cyles is a forest.
- If it is connected then it is a tree.
- A directed graph is a forest or tree if it becomes a forest or tree when all arcs are made undirected.
- In a rooted tree one node is the root.
- For a directed graph, all edges are either towards the root or away from the root.
- A directed graph with no cycles is a directed acyclic graph (DAG)

GRAPHS		19/35
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

DISTANCE AND DIAMETER

- The distance δ_G(u, v) from a vertex u to a vertex v in a graph G is the shortest path (minimum number of edges) from u to v.
- The diameter of a graph is the maximum shortest path length over all pairs of vertices: diam(G) = max {δ_G(u, v) : u, v ∈ V}.

CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

GRAPHS

MULTI-GRAPHS

 Multi-graphs allow multiple edges between same pair of vertices.

GRAPHS	21/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SPARSE AND DENSE GRAPHS

- Let n = |V| and m = |E|.
- A directed graph can have at most *n*² edges.
- An undirected graph can have at most $\frac{n(n-1)}{2}$ edges.
- A graph is sparse if $m \ll n^2$. Otherwise it is called dense.
- In most applications, that graphs are sparse.
 - Nobody on Twitter has 10⁹ followers
 - Though some have very large number—but still small when compared to n.

GRAPHS		22/35
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

OPERATIONS ON GRAPHS

- **1** Map over the vertices $v \in V$.
- 2 Map over the edges $(u, v) \in E$.
- Map over the neighbors of a vertex $v \in V$, or in a directed graph the in-neighbors or out-neighbors.
- I Return the degree of a vertex $v \in V$.
- Determine if an edge (u, v) is in E.
- Insert or delete vertices.
- Insert or delete edges.

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

ADJACENCY MATRIX REPRESENTATION

- Assume vertices are numbered 1, 2, ..., n (or 0, 1, ..., n-1).
- Graph is représented by an n × n matrix of binary values in which location (i, j) is 1 if (i, j) ∈ E and 0 otherwise.

For undirected graphs, matrix is symmetric and has 0's along the diagonal.

GRAPHS

[0]	0	1	1]
0	0	0	1
1	0	0	1
1	1	1	0

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

ADJACENCY LIST REPRESENTATION

- Graph is represented by an array A of length n where each entry A[i] contains a pointer to a linked list of all the out-neighbors of vertex i.
 - In an undirected graph edge {u, v} will appear in the adjacency list for both u and v (not always necessary!)

GRAPHS		
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

OTHER REPRESENTATIONS

Adjacency Array

Edge List

((1,3),(1,4),(2,4),(3,1),(3,4),(4,1),(4,2),(4,3))

CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

26/35 <u>Fall **2013**</u>

MORE ABSTRACT REPRESENTATIONS

- Edge Sets
 - Directed graphs: Set items are pairs (u, v) representing arcs.
 - Undirected graphs: Set items are sets {u, v} representing edges.
- Edge Tables
 - Directed graphs: Table items are pairs ((u, v) → w_{u,v}) representing arcs and associated values.
 - ► Undirected graphs: Set items are pairs ({u, v} → w_{u,v}) representing edges and associated values.

GRAPHS		
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

EDGE SETS AND TABLES

- Similar to edge lists but abstracts from underlying representation.
- Search for an edge needs $O(\log m)$ work.
- Searching for neighbors is not efficient: O(m) work but O(log m) span. (Why?)

Okin no	20700
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

ADJACENCY TABLES

- Table items are (*key*, *value*) pairs.
- Keys are vertex/node labels.
- Values are either sets or tables
 - Sets: All neighbors node labels or out-neighbor node labels.
 - Tables: All pairs of neighbors node labels and associated edge values.
- Accessing neighbors needs O(log n) work and span.
- (Constant work) Map over neighbors needs $O(d_G(u))$ work and $O(\log d_G(u))$ span.
- Looking up an edge needs O(log n) work and span.

GRAPHS		29/35
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	Fall 2013

COST SUMMARY

	edge set		adj table	
	work	span	work	span
isEdge(<i>G</i> ,(<i>u</i> , <i>v</i>))	O(log m)	<i>O</i> (log <i>m</i>)	<i>O</i> (log <i>n</i>)	<i>O</i> (log <i>n</i>)
map over all edges	<i>O</i> (<i>m</i>)	<i>O</i> (log <i>m</i>)	<i>O</i> (<i>m</i>)	<i>O</i> (log <i>n</i>)
map over neighbors of V	<i>O</i> (<i>m</i>)	<i>O</i> (log <i>m</i>)	$O(\log n + d_G(v))$	<i>O</i> (log <i>n</i>)
$d_G(v)$	<i>O</i> (<i>m</i>)	O(log m)	<i>O</i> (log <i>n</i>)	O(log n)

GRAPHS

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

GRAPH SEARCH

- Fundamental operation of graphs
 - Start at some (set of) node(s)
 - Systematically visit all reachable nodes (only once)

THMS

- Used for determining properties of graphs/nodes
 - Connected?
 - Bipartite?

GRAPHS

- Node v reachable from node u?
- Shortest path from u to v?

CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGOR

GRAPH SEARCH

For all graph search methods vertices can be partitioned into three sets at any time during the search:

- vertices already visited (X),
- the unvisited neighbors of the visited vertices, called the *frontier* (*F*),
- and the rest.

OKAI II5	
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

32/35 Fall **2013**

GRAPH SEARCH METHODS

- Breadth-first Search (BFS)
 - Parallelizable but for shallow graphs!
- Depth-first Search (DFS)
 - Inherently sequential!
- Priority-first Search (PFS)
- All reachable nodes from a source are visited, but in different orders.

33/35 Fall **2013**

GRAPH SEARCH TREES

- Each search starting from a source node creates a search tree.
- We refer to the source node as the root.

Which search schemes do these correspond to?

Graphs	34/35
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SUMMARY

- Graphs
- Graph terminology/definitions
- Graph representations/costs.
- Graph search

GRAPHS		
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	FAT

35/35 <mark>all 2013</mark>

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 10

BREADTH-FIRST SEARCH

Synopsis

- Breadth-first search
- BFS Extensions
- BFS Costs
- BFS with Single-threaded Sequences

BREADTH-FIRST SEARCH CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

GRAPH SEARCH

- Fundamental operation of graphs
 - Start at some (set of) vertex(s)
 - Systematically visit all reachable vertices (only once)
- Used for determining properties of graphs/vertices
 - Connected?
 - Bipartite?
 - Vertex v reachable from vertex u?
 - Shortest path from u to v?

BREADTH	-FIRST SEARCH
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

GRAPH SEARCH METHODS

- Breadth-first Search (BFS)
 - Parallelizable but for shallow graphs!
- Depth-first Search (DFS)
 - Inherently sequential!
- Priority-first Search (PFS)
- All reachable vertices from a source are visited, but in different orders.

• Applicable to a variety of problems

- Connectedness
- Reachability
- Shortest path
- Diameter
- Bipartiteness
- Applicable to both directed and undirected graphs
 - For digraphs, we only consider outgoing arcs.

GRAPH SEARCH

- For all graph search methods vertices can be partitioned into three sets at any time during the search:
 - vertices already visited ($X \subseteq V$),
 - 2 the unvisited neighbors of the visited vertices, called the *frontier* (F),
 - the rest; unseen vertices.
- The search essential goes as follows:

```
while vertices remain
-visit some unvisited neighbors
of the visited set
```

Web navigation analogy.

Breadth-first Search	6/34
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- Starting from a source vertex s
 - Visit all vertices that are (out-)neighbors of s (at distance 1)
 - Visit all vertices at distance 2 from s
 - Visit all vertices at distance 3 from s, etc.
- A vertex at distance *i* + 1 must have a (in-)neighbor at distance *i*.

- BFS needs to keep track of vertices already visited
- X_i: all vertices visited at start of level i
 - Vertices in X_i have distance less than *i*.
- F_i : all unvisited neighbors of vertices in X_i
 - Vertices in F_i have distance exactly *i*.
- "Visit" ⇒ Do something with the vertices (e.g., print it)
- $X_{i+1} = X_i \cup F_i$
- $F_{i+1} = N_G(F_i) \setminus X_{i+1}$ $(N_G(F_i) = \bigcup_{v \in F_i} N(v))$

BREADTH	-FIRST SEARCH
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

```
fun BFS(G = (V, E), s) =
 1
 2
    let
 3
      fun BFS'(X, F, i) =
       if |F| = 0 then (X, i)
 4
 5
       else let
          val X' = X \cup F % Visit the Frontier
 6
 7
          val N = N_G(F) % Determine the neighbors
 8
                              % of the frontier
          val F' = N \setminus X' % Remove vertices that have
 9
                               % been visited
10
       in BFS'(X', F', i+1)% Next level
11
12
       end
    in BFS'(\{\}, \{s\}, 0)
13
14
    end
```

BREADTH-FIRST SEARCH9/34CMU-Q15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMSFALL 2013

Some Details

- Adjacency table representation
 - Entries of the sort (Vertex, {Neighbors}).
- Remember $N_G(F) = \bigcup_{v \in F} N(v)$

fun $N_G(F)$ = Table.reduce Set.Union {} Table.extract(G, F)

Breadth-first Search	10/34
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

PROVING BFS CORRECT

- State and prove an invariant.
- All reachable vertices are returned.
- Algorithm terminates.

BREADTH-FIRST SEARCH	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

PROVING BFS CORRECT

LEMMA

In algorithm BFS when calling BFS'(X, F, i), we have

- $X = \{ v \in V_G \mid \delta_G(s, v) < i \}$, and
- $F = \{ v \in V_G \mid \delta_G(s, v) = i \}$
- By induction on levels *i*
- For base case $(i = 0) X_0 = \{\}, F_0 = \{s\}$
 - Only s has distance 0 from s
 - ► No vertex has distance < 0 from *s*.
- So base case is true!

Breadth-first Search	12/34
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

PROVING BFS CORRECT

- Assume claims are true for *i*, show for i + 1.
- X_{i+1} is the union of
 - X_i : all vertices at distance < i
 - F_i : all vertices at distance = i
- Hence X_{i+1} must have all vertices at distance < i + 1
- $F_{i+1} = N_G(F_i) \setminus X_{i+1}$
 - Vertices in F_i have distance exactly i
 - Vertices in $N_G(F_i)$ have distance no more than i + 1
 - Vertices in N_G(F_i) are reachable from a vertex at distance i
 - When we remove X_{i+1} from N_G(F_i) only <u>unvisited</u> vertices at distance exactly i + 1 remain.

Breadth-first Search	13/34
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

ADDITIONAL OBSERVATIONS

- If v is reachable from s and has distance d, there must be a vertex u at distance d - 1.
 - ► BSF will not terminate without finding *v*.
- For any vertex δ(s, v) < |V|, so algorithm will terminate in at most |V| rounds/levels.

BREADTH	-first Search
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

14/34 <u>Fall **2013**</u>

EXTENSIONS TO BFS

- Finding shortest distances
- What do we need to keep?

```
fun BFS(G, s) = let
1
       fun BFS'(X, F, i) =
2
         if |F| = 0 then X
3
         else let
4
5
            val X' = X \cup \{v \mapsto i : v \in F\}
            val F' = N_G(F) \setminus domain(X')
6
         in BFS'(X', F', i+1) end
7
    in BFS'(\{\}, \{s\}, 0) end
8
```

BREADTH-FIRST SEARCH CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

EXTENSIONS TO BFS

• Finding BFS trees.

• There could be multiple BFS trees.

Breadth-first Search	16/34
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

FINDING BFS TREES

• What do we need to keep for each vertex?

Record a parent

- If v is in a frontier, then there should be one or more visited vertices u such that (u, v) ∈ E.
- Any of those could be the parent of *v*.

Breadth-first Search	17/34
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

IDENTIFYING PARENTS

- Post-process the BFS distance table
- Identify one (in-)neighbor vertex in N⁻(v) whose distance is one less.
- Another way is to keep a table of vertices mapping to parents.
 - For each $v \in F$, generate a table $\{u \mapsto v : u \in N(v)\}$
 - Maps each neighbor of v back to v.
- Merge these tables to X
 - Choose one if you have multiple parents.

BREADTH-FIRST SEARCH	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

COST ANALYSIS FOR BFS

- Most graph algorithms do NOT use divide and conquer.
 - So no natural way to develop recurrences and solve them.

19/34 all **2013**

Instead, we just count steps

Breadth-first Search	
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	F

COST ANALYSIS FOR BFS

- BFS works in a sequence rounds (one per level)
- We can add up work and span in each round.
 - But work at a level depends on number of outgoing edges from the frontier!
- Take a more global view
 - Each vertex appears exactly once in some frontier.
 - All their (out-)edges are processed once.
- $W_{BFS}(n,m) = W_v n + W_e m$

•
$$n = |V|$$
 and $m = |E|$

BREADTH-FIRST SEARCH CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

COSTS ANALYSIS FOR BFS

- Span is a bit more tricky!
- $S_{BFS}(n, m, d) = S_l d$ where d is the maximum distance $(d = \max_{v \in V} \delta(s, v))$
- Assuming $W_v = O(\log n)$ and $W_e = O(\log n)$ and span/level $S_l = O(\log^2 n)$

$$W_{BFS}(n, m) = O(n \log n + m \log n)$$

= $O(m \log n) (Why?)$
$$S_{BFS}(n, m, d) = O(d \log^2 n)$$

BREADTH-FIRST SEARCH CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

COSTS PER VERTEX AND EDGE

Nontrivial operations are

1
$$X' = X \cup F$$

2 $N = N_G(F)$
3 $F' = N \setminus X'$

- These all depend on size of *F* and number of outgoing edges from *F*.
- Let $||F|| = \sum_{v \in F} (1 + d_G^+(v))$
 - Vertices and outgoing edges in f.

BREADTH-FIRST SEARCH	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

COSTS PER VERTEX AND EDGE

WorkSpan
$$X \cup F$$
 $O(|F|\log n)$ $O(\log n)$ $N \setminus X'$ $O(|F|\log n)$ $O(\log n)$

• These come from set cost specs.

Work =
$$O(W_c \cdot |F| \log(1 + \frac{n}{|F|})) = O(|F| \log n)$$

Span = $O(S_c \cdot \log(n + |F|)) = O(\log n)$

BREADTH-FIRST SEARCH CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

COSTS PER VERTEX AND EDGE

WorkSpan
$$N_G(F)$$
 $O(||F||\log n)$ $O(\log^2 n)$

• Graph is represented as a table mapping vertices to a set of their outneigbors.

fun
$$N_G(F) = Table.reduce Set.Union {}
 (Table.extract(G, F))$$

Extract vertices from table: Work is O(|F| log n)

Breadth-first Search	24/34
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

DIGRESSION – BACK TO REDUCE!

 $\mathcal{R}(reduce \ f \ \mathbb{I} \ S) = \{ all \ function \ applications \ f(a, b) \ in \ the \ reduction \ tree \}.$

$$W(reduce f \mathbb{I} S) = O\left(n + \sum_{f(a,b) \in \mathcal{R}(f \mathbb{I} S)} W(f(a,b))\right)$$
$$S(reduce f \mathbb{I} S) = O\left(\log n \max_{f(a,b) \in \mathcal{R}(f \mathbb{I} S)} S(f(a,b))\right)$$

BREADTH-FIRST SEARCH CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

DIGRESSION – BACK TO REDUCE!

LEMMA

For any combine function $f: \alpha \times \alpha \to \alpha$ and a monotone size measure $s: \alpha \to \mathcal{R}_+$, if for any x, y,

- $s(f(x, y)) \leq s(x) + s(y)$ and
- $W(f(x, y)) \le c_f(s(x) + s(y))$ for some universal constant c_f depending on the function f,

then

$$W(\texttt{reduce} \ f \ \mathbb{I} \ S) = O\left(\log |S| \sum_{x \in S} (1 + s(x))
ight)$$

BREADTH-FIRST SEARCH CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

BACK TO COSTS

- In our case α is the set type, f is Set.union, s
 the size of a set.
 - Size of the union < sum of the sizes.</p>
 - Work of a union < is at most proportional to size of the sets!
- So Set.union satisfies the conditions of the lemma.
- *F_{ngh}* = Table.extract(*G*, *F*)
 F_{ngh} is a set of neighbor sets.

$$W(\textit{reduce union } \{\} \textit{F}_{ngh}) = O\left(\log|\mathcal{F}_{ngh}| \sum_{ngh \in \textit{F}_{ngh}} (1 + |ngh|)\right)$$
$$= O\left(\log n \cdot ||\mathcal{F}||\right)$$

BREADTH-FIRST SEARCH

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

BACK TO COSTS

$$S(reduce union \{\} F_{ngh}) = O(\log^2 n)$$

- Each union has span O(log n)
- The reduction tree is bounded by log n depth.
- So at level *i*, W = O(||F_i|| · log n) and each edge is processed once, ⇒
 - work per edge is O(log n).
- Span depends on *d*
 - $(S_{BFS}(n, m, d) = O(d \log^2 n))$
 - ▶ In worst $d \in O(n) \Rightarrow BFS$ is sequential.

BREADTH-FIRST SEARCH	28/34
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

BFS Costs revisited

$$W_{BFS}(n,m) = O(m \log n)$$

 $S_{BFS}(n,m,d) = O(d \log^2 n)$

Using single-threaded sequences reduces costs to

$$W_{BFS}(n,m) = O(m)$$

 $S_{BFS}(n,m,d) = O(d \log n)$

BREADTH-FIRST SEARCH CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

- Vertices are labeled with integers:
 - $V = \{0, 1, \dots, n-1\}$
 - Integer labeled (IL) graphs.
- We use (array) sequences to represent graphs.
 - Constant work access to vertices.
 - Neighbors also stored as integer indices
- IL graphs are implemented with type

(int seq) seq

BREADTH-FIRST SEARCH CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

- BFS returns a mapping from each vertex to its parent in the BFS tree.
- Visited vertices are maintained as (int option) stseq
 - ► NONE: Vertex has not been visited.
 - SOME (v): Vertex visited from parent v.

BREADTH	-FIRST SEARCH
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

```
12345678910
      fun BFS(G: (int seq) seq, s: int) =
      let
       fun BFS'(XF: int option stseq, F: int seq) =
           if |F| = 0 then stSeq.toSeq XF
           else let
                     % compute neighbors of the frontier
             val N = flatten \langle \langle (u, SOME(v)) : u \in G[v] \& XF[u] = NONE \rangle : v \in F \rangle
                     % add new parents
              val XF' = stSeq.inject(N, XF)
                     % remove duplicates
11
             val F' = \langle u : (u, v) \in N \mid XF'[u] = v \rangle
12
           in BFS'(XF', F') end
13
        val X_0 = stSeq.toSTSeq(\langle NONE : v \in \langle 0, ..., |G| - 1 \rangle \rangle)
14
      in
15
        BFS'(stSeq.update(s, SOME(s), X_0), \langle s \rangle)
16
      end
```

BREADTH-FIRST SEARCH32/34CMU-Q15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMSFALL 2013FALL 2013FALL 2013

COSTS

	XF:stseq	
line	work	span
flatten	$O(F_i)$	<i>O</i> (log <i>n</i>)
inject	$O(F_i)$	<i>O</i> (1)
remove dup.	$O(F_i)$	<i>O</i> (log <i>n</i>)
total across all <i>d</i> rounds	<i>O</i> (<i>m</i>)	$O(d \log n)$

BREADTH-FIRST SEARCH

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

33/34 Fall 2013

SUMMARY

- Breadth-first search
- BFS Extensions
- BFS Costs
- BFS with Single-threaded Sequences

BREADTH	-FIRST SEARCH
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

34/34 <u>Fall **2013**</u>

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 11

DEPTH-FIRST SEARCH

Synopsis

- Depth-first search
- Cycle-detection in directed and undirected graphs
- Topological Sorting
- Generalizing DFS
- DFS with Single-threaded Sequences

GRAPH SEARCH

- Fundamental operation of graphs
 - Start at some (set of) node(s)
 - Systematically visit all reachable nodes (only once)
- Used for determining properties of graphs/nodes
 - Connected?
 - Bipartite?
 - Node v reachable from node u?
 - Shortest path from u to v?

DEPTH-FI	RST SEARCH
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

GRAPH SEARCH METHODS

- Breadth-first Search (BFS)
 - Parallelizable but for shallow graphs!
- Depth-first Search (DFS)
 - Inherently sequential!
- Priority-first Search (PFS)
- All reachable nodes from a source are visited, but in different orders.

BREADTH-FIRST SEARCH

• Applicable to a variety of problems

- Connectedness
- Reachability
- Shortest path
- Diameter
- Bipartedness
- Applicable to both directed and undirected graphs
 - For digraphs, we only consider outgoing arcs.

GRAPH SEARCH

- For all graph search methods vertices can be partitioned into three sets at any time during the search:
 - vertices already visited ($X \subseteq V$),
 - 2 the unvisited neighbors of the visited vertices, called the *frontier* (F),
 - the rest; unseen vertices.
- The search essentially goes as follows:

```
while vertices remain
-visit some invisited neighbors
of the visited set
```

Web navigation analogy.

DEPTH-FII	RST SEARCH	6/33
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

TAKING CS COURSES

 Take the following courses – but one per semester

• What are some possible orders?

Depth-first Search	7/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

TOPOLOGICAL SORTING

- This problem is known as topological sorting.
 - Put vertices in a linear order that respects the graph precedence relationships.

тнмѕ

- How can we know if a schedule is even possible?
 - There should be no cycles!
- Both these problems can be solved by depth-first search (DFS)
 - DFS looks at any edge at most twice.

DEPTH-FI	RST SEARCH
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGOR

DFS vs BFS

BFS

- Explores vertices one level at a time.
 - Increases breadth
 - No backtracking
- Can solve/generate
 - reachability
 - connectedness
 - spanning tree
- Not suitable for topological sort

DFS

- Explores vertices one vertex at a time.
 - Increases depth
 - Backtracking when it can't go deeper
- Can solve/generate
 - reachability
 - connectedness
 - spanning tree
- Not suitable for shortest unweighted path

DEPTH-FIRST SEARCH

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

DFS vs. BFS

Depth-first Search	10/33
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

DFS vs. BFS

Depth-first Search	11/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE DFS ALGORITHM

DEP

CMU-Q

: fun DFS(G, s) = let : fun DFS'(X, v) = : if $(v \in X)$ TOUCH v : then X : else let ENTER v : val X' = X $\cup \{v\}$: val X'' = iter DFS' X' $(N_G(v))$ EXIT v : in X'' end : in DFS'({}, s) end

• Each iter does a mapping of the sort $f : \alpha \times \beta \rightarrow \alpha$

$S=s_0$	
foreach $a \in A$:	
S = f(S, a)	
PTH-FIRST SEARCH	12/33
IU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

Some Observations

- iter goes sequentially
 - Sets are unordered, ordering depends on implementation!
- When a vertex v is entered (ENTER v) in code
 - it picks the "first" outgoing edge (v, w₁)
 - ▶ through iter calls DFS'(X ∪ {v}, w₁)
- When $DFS'(X \cup \{v\}, w_1)$ returns
 - All vertices reachable from w₁ are explored
 - Vertex set returned is

 $X_1 = X \cup \{v\} \cup \{All \text{ vertices reachable from } w_1\}$

- iter picks next edge (v, w_2) and continues
- When iter is done

 $X'' = X \cup \{v\} \cup \{\text{All vertices reachable from } v\}$

Depth-first Search13/33CMU-Q15-210 Parallel and Sequential Data Structures and AlgorithmsFall 2013

TOUCHING, ENTERING AND EXITING

: fun DFS(G, s) = let : fun DFS'(X, v) = : if $(v \in X)$ TOUCH v : then X : else let ENTER v : val X' = X \cup {v} : val X'' = iter DFS' X' (N_G(v)) EXIT v : in X'' end : in DFS'({}, s) end

- We try to visit a vertex v
- We process v and its outgoing edges.
- We are done with v.

DEPTH-FII	RST SEARCH	14/33
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

DFS with Parallelism

• Can we do all outgoing edges in parallel?

- Yes if parallel searches never meet up (then we really have a tree!)
- No otherwise.

Depth-first Search	15/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

COST OF DFS

LEMMA

For a graph G = (V, E) with *m* out edges and *n* vertices:

- DFS' will be called at most *m* times
- There will be at most min(n, m) "enters".
- $v \in X$ can fail at most *m* times.
- we make call to DFS', when we have an edge (total *m* times)
 - But we can enter a vertex a most once per DFS'
- So number of enters $\leq \min(n, m)$

Depth-first Search	16/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

COST OF DFS

COROLLARY

The DFS algorithm on a graph with m out edges, and n vertices, and using the tree-based cost specification for sets, runs in $O(m \log n)$ work and span.

 Using ST sequences reduces work and span to O(m)

Depth-first Search
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

CYCLE DETECTION IN UNDIRECTED GRAPHS

- DFS' arrives at v a second time and this time from u. What can we conclude?
 - ► There must be two paths between *u* and *v*! (Why?)
- Not really! In undirected graphs cycles should have length at least 3.

CYCLE DETECTION IN UNDIRECTED GRAPHS

:	<pre>fun undirectedCycle(G, s) = let</pre>
:	fun dfs' p ((X, <u>C</u>), v) =
:	if $(v \in X)$
TOUCH V :	then (X, \underline{true})
:	else let
ENTER V :	val $X' = X \cup \{v\}$
:	val $(X'', C') = iter (\underline{DFS' v}) (X', C) (N_G(v) \setminus \{p\})$
EXIT V :	in (X'', C') end
:	in DFS' \underline{s} ({}, <u>false</u>), s) end

- C keeps tracks of cycles.
- *p* is the parent removed from neighbors and curried!

Depth-first Search	19/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

TOPOLOGICAL SORTING

- Order the vertices so that the ordering respects reachability.
 - If u is reachable from v, v must come earlier in the ordering.

Depth-first Search
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

PARTIAL ORDERS

- A DAG defines a partial order on the vertices.
- For vertices a, b ∈ V, a ≤_p b if and only if there is a directed path from a to b
- Partial order is a relation \leq_{ρ} that obeys
 - reflexivity $a \leq_{p} a$,
 - 2 antisymmetry if $a \leq_p b$ and $b \leq_p a$, then b = a, and
 - Itransitivity if $a \leq_{p} b$ and $b \leq_{p} c$ then $a \leq_{p} c$.

FALL 2013

21/33

TOPOLOGICAL SORT

• If \leq_t is the total ordering then

$$a \leq_{p} b \Rightarrow a \leq_{t} b$$

but not reverse is not necessarily true!

DEPTH-FIRST SEARCH CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

TOPOLOGICAL SORT WITH DFS

• Augment with a new source vertex s

$$G = (V, E)
ightarrow G' = (V \cup \{s\}, E \cup \{(s, v) : v \in V\})$$

• Why do we need to do this?

:	fun $topSort(G = (V, E)) = let$
:	val $s = a$ new vertex
:	val $G' = (V \cup \{s\}, E \cup \{(s, v) : v \in V\})$
:	fun dfs' $((X, \underline{L}), v) =$
:	$if \ (\boldsymbol{\nu} \in \boldsymbol{X})$
TOUCH V :	then (X, <u>L</u>)
:	else let
ENTER V :	val $X' = X \cup \{v\}$
:	val $(X'',L') = iter DFS' (X',L) (N_{G'}(v))$
EXIT V :	in $(X'', v:L')$ end
:	in DFS'(({}, []), s) end

—	
Depth-first Search	23/33
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

TOPOLOGICAL SORT WITH DFS

THEOREM

On a DAG when exiting a vertex v in DFS all vertices reachable from v have already exited.

- Assume *u* is reachable from *v*.
 - *u* is entered before *v*. *u* must exit before *v* is entered (otherwise there is a cycle!)
 - v is entered before u. u will exit first.

Depth-first Search24/33CMU-Q15-210 Parallel and Sequential Data Structures and AlgorithmsFall 2013

CYCLE DETECTION IN DIRECTED GRAPHS

- Important preprocessing step in Topological Sort
 - Topological sort will return garbage when graph has cycles.
- We augment the graph with a node *s* with an edge to every other vertex the graph.
 - ► This can not add cycles. Nothing comes into *s*.

DEPTH-FIKST SEARCH		
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

CYCLE DETECTION IN DIRECTED GRAPHS

:	fun directedCycle $(G = (V, E)) = $ let
:	val $s = a$ new vertex
:	val $G' = (V \cup \{s\}, E \cup \{(s, v) : v \in V\})$
:	fun dfs'(($X, \underline{Y}, \underline{C}$), v) =
:	if $(v \in X)$
TOUCH V :	then $(X, Y, \underline{v \in ? Y})$
:	else let
ENTER V :	val $X' = X \cup \{v\}$
:	val $Y' = Y \cup \{v\}$
:	val $(X'', \overline{Y'', C'}) = iter DFS' (X', Y', C) (N_{G'}(v))$
EXIT V :	in $(X'', Y'' \setminus \{v\}, C')$ end
:	val (_,_, <i>C</i>) = DFS'(({}, {}, {}, <u>false</u>), s)
:	in C end

Depth-first Search	26/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

BACK EDGES IN A DFS SEARCH

 A back edge goes from a vertex v to an ancestor u in the DFS tree.

THEOREM

A directed graph G = (V, E) has a cycle if and only if for $G' = (V \cup \{s\}, E \cup \{(s, v) : v \in V\})$ a DFS from shas a back edge.

DEPTH-FIRST SEARCH

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

GENERALIZING DFS

- All DFS code seem very much alike.
- They do work on
 - Touching,
 - Entering, and
 - Exiting

• We need to keep some state σ around

and update it appropriately!

 $\Sigma_{0} : \alpha$ touch : $\alpha \times vertex \times vertex \rightarrow \alpha$ enter : $\alpha \times vertex \times vertex \rightarrow \alpha$ exit : $\alpha \times vertex \times vertex \rightarrow \alpha$

DEPTH-FIRST SEARCH

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

GENERIC DFS ALGORITHM

DEPTH-FIRST SEARCH CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

UNDIRECTED CYCLE DETECTION

1 fun DFS(
$$G, \Sigma_0, s$$
) = let
2 fun DFS' p ((X, Σ), v) =
3 if ($v \in X$) then ($X, \underline{touch}(\Sigma, v, p$))
4 else let
5 val $\Sigma' = \underline{enter}(\Sigma, v, p)$
6 val (X', Σ'') = iter (DFS' p) ($X \cup \{v\}, \Sigma'$) $N_G^+(v)$
7 val $\Sigma''' = \underline{exit}(\Sigma, \Sigma'', v, p)$
8 in (X', Σ''') end
9 in DFS' s (({}, $\underline{\Sigma_0}$), s) end

$$\begin{split} \Sigma_0 &= ([s], \text{ false}) : \text{vertex list} \times \text{bool} \\ \text{fun touch}((L \text{ as } h :: T, \text{ fl}), v, p) = (L, h \neq p) \\ \text{fun enter}((L, \text{ fl}), v, p) = (v :: L, \text{ fl}) \\ \text{fun exit}((L \text{ as } h :: T, \text{ fl}), v, p) = (T, \text{ fl}) \end{split}$$

Depth-first Search	30/33
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

TOPOLOGICAL SORT

1 fun DFS(
$$G, \Sigma_0, s$$
) = let
2 fun DFS' $p((X, \Sigma), v) =$
3 if $(v \in X)$ then $(X, \underline{touch}(\Sigma, v, p))$
4 else let
5 val $\Sigma' = \underline{enter}(\Sigma, v, p)$
6 val $(X', \Sigma'') = iter (DFS' p) (X \cup \{v\}, \Sigma') N_G^+(v)$
7 val $\Sigma''' = \underline{exit}(\Sigma, \Sigma'', v, p)$
8 in (X', Σ''') end
9 in DFS' $s((\{\}, \underline{\Sigma_0}), s)$ end

$$\begin{split} \Sigma_0 &= []: \textit{vertex list} \\ \textit{fun touch}(L, v, p) &= L \\ \textit{fun enter}(L, v, p) &= L \\ \textit{fun exit}(L, v, p) &= v :: L \end{split}$$

DEPTH-FI	IRST SEARCH	
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms]

DIRECTED CYCLE DETECTION

1 fun DFS(
$$G, \Sigma_0, s$$
) = let
2 fun DFS' $p((X, \Sigma), v) =$
3 if $(v \in X)$ then $(X, \underline{touch}(\Sigma, v, p))$
4 else let
5 val $\Sigma' = \underline{enter}(\Sigma, v, p)$
6 val $(X', \Sigma'') = iter (DFS' p) (X \cup \{v\}, \Sigma') N_G^+(v)$
7 val $\Sigma''' = \underline{exit}(\Sigma, \Sigma'', v, p)$
8 in (X', Σ''') end
9 in DFS' $s((\{\}, \underline{\Sigma_0}), s)$ end

$$\begin{split} & \Sigma_0 = (\{\}, \text{ false}) : \text{Set} \times \text{bool} \\ & \text{fun } \text{touch}((S, \text{ fl}), \text{ v}, \text{ p}) = (S, \text{ v} \in ?S) \\ & \text{fun } \text{enter}((S, \text{ fl}), \text{ v}, \text{ p}) = (S \cup \{v\}, \text{ fl}) \\ & \text{fun } \text{exit}((S, \text{ fl}), \text{ v}, \text{ p}) = (S \setminus \{v\}, \text{ fl}) \end{split}$$

Depth-first Search CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

DFS WITH ST SEQUENCES

```
fun DFS(G: (int seq) seq, s: int) =
 1
 2345678
      let
         fun DFS' p ((X : bool stseq, \Sigma), v : int) =
            if (X[v]) then (X, touch(\Sigma, v, p))
            else let
               val X' = update(v, true, X)
               val \Sigma' = enter(\Sigma, v, p)
               val (X'', \Sigma'') = iter (DFS'v) (X', \Sigma') (G[v])
 9
            in (X'', exit(\Sigma'', v, p))
10
         val X_{init} = stSeq.fromSeq(\langle false: v \in \langle 0, \ldots, |G| - 1 \rangle \rangle)
11
      in
12
         stSeq.toSeq(DFS'((X_{init}, \Sigma_0), s))
13
      end
```

• O(m) work and span.

DEPTH-FIRST	T SEARCH	33/33
CMU-Q 15	5-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 13

SHORTEST WEIGHTED PATHS

Synopsis

- Representing weighted graphs.
- Priority-first Search
- Shortest weighted paths
- Dijkstra's Algorithm

SHORTES	T WEIGHTED PATHS
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

2/32 <u>Fall **2013**</u>

WEIGHTED GRAPH REPRESENTATION

- G = (V, E, w) where $w : E \rightarrow eVal$
- eVal is a set (type) of possible values
 - Typically real numbers, but could be anything!
- Table of (*edge* \mapsto *weight*).

 $W = \{(0, 1) \mapsto 0.7, \ (1, 2) \mapsto -2.0, \ (0, 2) \mapsto 1.5\}$

• We could use find W e to find w(e).

SHORTES	T WEIGHTED PATHS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

WEIGHTED GRAPH REPRESENTATION

• Table of (*vertex* \mapsto table of (*vertex* \mapsto *weight*))

 $G = \left\{ 0 \mapsto \left\{ 1 \mapsto 0.7, \ 2 \mapsto 1.5 \right\}, \ 1 \mapsto \left\{ 2 \mapsto -2.0 \right\}, \ 2 \mapsto \left\{ \right\} \right\} \ .$

- With one lookup, we can get to the neighbors and weights.
- We will mostly use this representation.

SHORTES	t Weighted Paths
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

PRIORITY-FIRST SEARCH

- Generalization of BFS and DFS also called <u>best-first search</u>
- Visits vertices in some priority order
 - Static decided ahead of time
 - Dynamic decided on the fly– while things change during the search

SHORTES	T WEIGHTED PATHS
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

PRIORITY-FIRST SEARCH

1 fun
$$pfs(G, s) = let$$

2 fun $pfs'(X, F) =$
3 if $(F = \{\})$ then X
4 else let
5 val $M = highest \ priority \ vertices \ in F$
6 val $X' = X \cup M$
7 val $F' = (F \cup N(M)) \setminus X'$
8 in $pfs'(X', F')$ end
9 in $pfs'(\{\}, \{s\})$ end

SHORTEST WEIGHTED PATHS	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

PRIORITY-FIRST SEARCH

- Several famous graph algorithms are instances of priority-first search.
 - Dijkstra's Algorithm for single-source shortest paths (SSSP).
 - Prim's Algorithm for minimum spanning trees (MST).
- PFS is a greedy algorithm.
 - It greedily adds vertices from the frontier based on a cost function.
 - It never backs up!

Shortest Weighted Paths	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SHORTEST WEIGHTED PATHS

•
$$G = (V, E, w)$$
 with $w : E \to \mathcal{R}$
• $w(u, v) = \infty$ if $(u, v) \notin E$

• The weight of a path is the sum of the weights of the edges on it.

THE SSSP PROBLEM

- Given a graph *G* and a source vertex *s*, find the shortest weighted path to every other vertex.
 - $\delta_G(u, v)$ is the weight of the shortest path from u to v

SHORTEST	T WEIGHTED PATHS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- Dijkstra's Algorithm solves SSSP when the weights are non-negative (w : E → R₊ ∪ {0}).
 - Greedy
 - Finds optimal solutions to a nontrivial task.
- Why do we need a new algorithm? Why not use BFS?

Shortest Weighted Paths	9/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

OBSERVATIONS

- Which vertices can we definitely claim we know the shortest path from $\overline{s?}$
 - s itself (Why?)
 - The vertex v nearest to s (Why?)
- In general
 - if we know the shortest path distances to a set of vertices
 - how can we determine the shortest path to another vertex?

SHORTES	T WEIGHTED PATHS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- At any point in time we know the exact shortest path weight from *s*
 - to vertices in $X \subset V$ ($s \in X$), and
 - ► to some vertex v ∈ T(= V \ X) that is closest to some vertex in X

based on paths going through only vertices in X.

- Thus, expand X by considering only the nearest neighbors of the vertices visited!
- Define \(\delta_{G,X}(s, v)\) to be the shortest path length from s to v in G that only goes through vertices in X (except for v)

SHORTEST	WEIGHTED PATHS	11/32
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

Consider a graph

•
$$G = (V, E), w \colon E \to \mathcal{R}_+ \cup \{0\},$$

- a source vertex $s \in V$
- For any partitioning of the vertices V into X and $T = V \setminus X$ with $s \in X$,

$$\min_{t\in T} \delta_{G,X}(s,t) = \min_{t\in T} \delta_G(s,t) .$$

- What is this assertion saying?
 - The actual shortest distance to the vertex in T that is closest to s, has to go through vertices in X!

Shortest Weighted Paths	12/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- Consider
 - a vertex $v_m \in T$ such that $\delta_G(s, v_m) = \min_{t \in T} \delta_G(s, t)$, and
 - a shortest path from s to v_m in G.
- The path must cross from X to T at some point using some edge (v_X, v_T) .
 - (Prefix) Subpaths of shortest paths are also shortest paths! (Why?)

Shortest Weighted Paths	13/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- The subpath from s to v_T is the shortest path to v_T
- Since edges weights are ≥ 0 $\delta_G(s, v_T) \leq \delta_G(s, v_m)$
 - It could be that $v_T = v_m$.
- Also, $\delta_{G,X}(s, v_T) = \delta_G(s, v_T)$ (Why?)

SHORTEST	Weighted Paths	14/32
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

 $\min_{t\in T} \delta_{G,X}(s,t) \leq \delta_{G,X}(s,v_T) = \delta_G(s,v_T) \leq \delta_G(s,v_m) = \min_{t\in T} \delta_G(s,t) .$

But

$$\min_{t\in T} \delta_{G,X}(s,t) \geq \min_{t\in T} \delta_G(s,t)$$
 Why?

$$\Rightarrow \min_{t\in T} \delta_{G,X}(s,t) = \min_{t\in T} \delta_G(s,t) .$$

SHORTEST WEIGHTED PATHS
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- We can find the shortest path to a node in $T = V \setminus X$, by just considering neighbors of X.
- Pick a vertex $t \in T$ that minimizes priority $\delta_{G,X}(s, t)$.
- At that point
 - ► δ_{G,X}(s, t) becomes δ_G(s, t) we now know the exact shortest path length to t.
 - $X = X \cup \{t\}$, that is, *t* is now visited.
 - $\quad T = T \setminus \{t\}$
 - $\delta_{G,X}(s, u)$ where $u \in T$ and $(t, u) \in E$ must be updated. (Why?/How?)

SHORTEST WEIGHTED PATHS
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

DIJKSTRA'S PROPERTY – UPDATES

Shortest Weighted Paths	17/32
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	Fall 2013

- Given a weighted graph G = (V, E, w) and a source s, Dijkstra's algorithm is priority first search on G
 - starting at *s*, with d(s) = 0 (and $d(v) = \infty, v \neq s$)
 - using priority $P(v) = \min_{t \in V} (d(t) + w(t, v))$ (to be minimized)
 - setting d(v) = P(v) when v is visited.

SHORTEST	r Weighted Paths
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

LEMMA

- When Dijkstra's Algorithm returns $d(v) = \delta_G(s, v)$ for all reachable v,
- Base case is true: d(s) = 0.
- Assume true for |X| = i, then add vertex that minimizes $P(v) = \delta_{G,X}(s, v)$.
- By Dijkstra's Property we know $\min_{v \in T} \delta_{G,X}(s, v) = \min_{v \in T} \delta_G(s, v)$
- So $d(v) = \delta_G(s, v)$ for |X| = i + 1.

SHORTES	T WEIGHTED PATHS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

FALL 2013

DIJKSTRA VARIANTS

- Update the neighbors in the priority queue instead of adding duplicates.
 - ► PQ needs to support decreaseKey function.
- Visit all equally closest vertices in parallel (like BFS)
 - Potentially not much parallelism!
 - PQ needs to return all such vertices.

SHORTEST	r Weighted Paths
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Shortest Weighted Paths	22/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Shortest Weighted Paths	23/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Shortest Weighted Paths	24/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Shortest Weighted Paths	25/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Shortest Weighted Paths	26/32
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

SHORTEST WEIGHTED PATHS	27/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Shortest Weighted Paths	28/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Shortest Weighted Paths	29/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

FALL 2013

COST ANALYSIS

- Priority Queue with $O(\log n)$ work and span.
- Graphs: tree-based table or arrays
- Table of distances: tree-based table, array sequence, or ST sequence.

Operation	Line	# of calls	PQ	Tree Table	Array	ST Array
deleteMin	4	<i>O</i> (<i>m</i>)	<i>O</i> (log <i>m</i>)	-	-	-
insert	10	<i>O</i> (<i>m</i>)	$O(\log m)$	-	-	-
Priority Q total			$O(m \log m)$	-	-	-
find	7	<i>O</i> (<i>m</i>)	-	<i>O</i> (log <i>n</i>)	<i>O</i> (1)	<i>O</i> (1)
insert	9	<i>O</i> (<i>n</i>)	-	<i>O</i> (log <i>n</i>)	O(n)	<i>O</i> (1)
Distances total			-	$O(m \log n)$	$O(n^2)$	<i>O</i> (<i>m</i>)
$N_G(v)$	11	<i>O</i> (<i>n</i>)	-	<i>O</i> (log <i>n</i>)	<i>O</i> (1)	-
iter	11	<i>O</i> (<i>m</i>)	-	<i>O</i> (1)	<i>O</i> (1)	-
Graph access total			-	$O(m + n \log n)$	<i>O</i> (<i>m</i>)	-

• Using a tree table work is $O(m \log n)$.

Shortest Weighted Paths	31/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SUMMARY

- Representing weighted graphs.
- Priority-first Search
- Shortest weighted paths
- Dijkstra's Algorithm

SHORTES	t Weighted Paths
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 14

SHORTEST WEIGHTED PATHS-II

Synopsis

- Graphs with negative edge weights.
- Bellman Ford Algorithm
- Cost Analysis

SHORTES	T WEIGHTED PATHS-II
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

2/27 Fall **2013**

GRAPHS WITH NEGATIVE WEIGHTS

• What is a problem with this graph?

SHORTEST WEIGHTED PATHS-II	3/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

GRAPHS WITH NEGATIVE WEIGHTS

Dijkstra fails! (Why?)

Shortest Weighted Paths–II	4/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

GRAPHS WITH NEGATIVE WEIGHTS

• What is a problem with this graph?

Shortest Weighted Paths-II	5/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

GRAPHS WITH NEGATIVE WEIGHTS

Negative cost cycle!
There is no shortest path from v₃ to v₅

Shortest Weighted Paths–II6/27CMU-Q15-210 Parallel and Sequential Data Structures and AlgorithmsFall 2013

GRAPHS WITH NEGATIVE WEIGHTS

Currency Exchange Arbitrage

- 100 USD \rightarrow 365 QAR \rightarrow 177.5 TL \rightarrow 80.68 EUR \rightarrow 104.9 USD
 - You just made 5 USD out of thin air!

SHORTEST WEIGHTED PATHS-II	7/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

GRAPHS WITH NEGATIVE WEIGHTS

- I have USDs but I want to buy BPs.
 - I can buy directly, or
 - I can buy through some intermediate currencies!

- Which way will get me more BPs?
- I need to do this fast!

Shortest Weighted Paths-II	8/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SHORTEST PATHS

- How does this problem relate to the shortest problem?
 - Where are the negative weights?

• Weights are – log of the exchange rates!

Shortest Weighted Paths-II	9/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SHORTEST PATHS WITH NEGATIVE WEIGHTS

- Define $\delta'_G(s, t)$ the shortest weighted path from s to t using at most l edges.
 - so the unweighted path length is /!
- Base cases:

 - $\delta_G^0(s, s) = 0$ $\delta_G^0(s, v) = \infty$ for all $v \neq s$.
- Induction

$$\delta^{k+1}(\mathbf{v}) = \min_{\mathbf{x}\in N^-(\mathbf{v})} (\delta^k(\mathbf{x}) + \mathbf{w}(\mathbf{x},\mathbf{v})) .$$

• Minimum of $\delta^k(x) + w(x, v)$ over the in-neighbors.

SHORTEST WEIGHTED PATHS-II 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS CMU-O

10/27 FALL 2013

THE BELLMAN FORD ALGORITHM

fun BellmanFord(G = (V, E), s) = 1 2 let 3 fun BF(D, k) =4 let **val** $D' = \{ v \mapsto \min_{u \in N_{C}^{-}(v)} (D_{u} + w(u, v)) : v \in V \}$ 5 6 in 7 if (k = |V|) then \perp else if $(all \{ D_v = D'_v : v \in V \})$ then D 8 else BF(D', k+1)9 end 10 val $D = \{ v \mapsto \text{if } v = s \text{ then } 0 \text{ else } \infty : v \in V \}$ 11 in BF(D,0) end 12

SHORTEST WEIGHTED PATHS-II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

path lengths = 0

Shortest Weighted Paths-II	12/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

path lengths ≤ 1

Shortest Weighted Paths-II	13/27
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

path lengths ≤ 2

14/27

FALL 2013

SHORTEST WEIGHTED PATHS-II	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

path lengths ≤ 3

SHORTEST WEIGHTED PATHS-II	15/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

path lengths ≤ 4

SHORTEST WEIGHTED PATHS-II	16/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

Bellman Ford Correctness

THEOREM

• Given a directed weighted graph G = (V, E, w), $w : E \rightarrow R$, and a source *s*, the *BellmanFord* algorithm returns the shortest path length from *s* to every vertex **or** indicates that there is a negative weight cycle in *G* reachable from *s*.

SHORTES	r Weighted Paths-II
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Bellman Ford Correctness

- Use induction on the the number of edges k in the path.
- Base case is correct, $D_s = 0$.
- On each step, for all $v \in V \setminus \{s\}$, a shortest path with at most k + 1 edges
 - must consist of a path of at most k edges for vertex u
 - followed by a single edge (u, v).
- Taking the minimum combination, gives us the shortest path with at most k + 1 edges.

SHORTES	r Weighted Paths-II
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

NEGATIVE COST CYCLES

- This can go at most for n = |V| 1 rounds
- If we reach round n, there must be reachable negative cost cycle.
- Otherwise, Bellman Ford will stop earlier with all simple shortest paths.

SHORTES	t Weighted Paths-II
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

COST ANALYSIS

- Graph represented as a table.
 - (R vtxTable) vtxTable, where first vtxTable maps vertices to their in-neighbors

 $G = \left\{ 0 \mapsto \left\{ 1 \mapsto 0.7, \ 2 \mapsto 1.5 \right\}, \ 1 \mapsto \left\{ 2 \mapsto -2.0 \right\}, \ 2 \mapsto \left\{ \right\} \right\}$.

Graph represented as a sequence of sequences.

SHORTEST WEIGHTED PATHS-II	20/27
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

Bellman - Ford Algorithm (Again)

```
fun BellmanFord(G = (V, E), s) =
 1
 2
3
4
5
      let
         fun BF(D, k) =
             let
                val D' = \{ v \mapsto \min_{u \in N_G^-(v)} (D_u + w(u, v)) : v \in V \}
 6
             in
 7
                if (k = |V|) then \perp
 8
                else if (all \{ D_v = D'_v : v \in V \}) then D
 9
                else BF(D', k+1)
10
             end
         val D = \{ v \mapsto \text{if } v = s \text{ then } 0 \text{ else } \infty : v \in V \}
11
12
      in BF(D,0) end
```

- Line 5 is tabulate over the vertices
- Line 8 is tabulate with a reduction over the vertices

Shortest Weighted Paths-II	21/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

COST ANALYSIS

val $D' = \{ v \mapsto \min_{u \in N_G^-(v)} (D_u + w(u, v)) : v \in V \}$

- Sum work and max span over vertices.
- n = |V| and m = |E|
- For each vertex we have the following costs:
 - Find the neighbors find G v: O(log n) work and span.
 - Map over neighbors find distance D_u and add: O(log n) work and span for each u in the in-neigborhood.
 - Min reduce: $O(1 + N_G(v))$ work and $O(\log |N_G(v)|)$ span.

SHORTEST WEIGHTED PATHS-II CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

WORK PER STAGE-1

val $D' = \{ v \mapsto \min_{u \in N_G^-(v)} (D_u + w(u, v)) : v \in V \}$

Operation	Over one vertex v	Over graph G
Find	<i>O</i> (log <i>n</i>)	$O(n \log n)$
Мар	$O(1+ N_G^-(v) \log n)$	$O(n + m \log n)$
Min Reduce	$O(1+ N_G^-(v))$	O(n+m)

• Total work is $O((n + m) \log n)$ and assuming m > n, $O(m \log n)$

Shortest Weighted Paths-II	23/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SPAN PER STAGE-1

 $val D' = \{v \mapsto \min_{u \in N_G^-(v)}(D_u + w(u, v)) : v \in V\}$

Operation	Over one vertex v	Over graph G
Find	<i>O</i> (log <i>n</i>)	<i>O</i> (log <i>n</i>)
Мар	$O(1 + \log n)$	$O(1 + \log n)$
Min Reduce	$O(\log N_G^-(v))$	<i>O</i> (log <i>n</i>)

• Total span is $O(\log n)$

Shortest Weighted Paths-II	24/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Work / Span per Stage - 2 – Total Cost

else if (all $\{D_v = D'_v : v \in V\}$) then D

- This involves a tabulate and an and-reduction.
- Work = $O(n \log n)$, Span = $O(\log n)$
- *n* sequential calls to *BF*, so total costs are:

$$W(n,m) = O(n \cdot m \log n)$$

$$S(n,m) = O(n \log n)$$

SHORTEST WEIGHTED PATHS-II CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

COSTS WITH ST SEQUENCES

- We use IL (integer labeled) graphs.
- find \rightarrow nth: O(1) work.
- Similar improvements for looking up neighbors and distance table.

$$W(n,m) = O(nm)$$

 $S(n,m) = O(n)$

SHORTEST WEIGHTED PATHS-II CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SUMMARY

- Graphs with negative edge weights.
- Bellman Ford Algorithm
- Analysis

SHORTEST WEIGHTED PATHS-II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 15

PROBABILITY AND RANDOMIZED ALGORITHMS

Synopsis

- Overview of Discrete Probability
- Finding the two largest elements
- Find the k^{th} smallest element.

PROBABII	LITY AND RANDOMIZED ALGORITHMS	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

2/28 Fall **2013**

RANDOMIZED ALGORITHMS

• Exploit randomness during computation

- Pivot selection in Quicksort
- Average case analysis
- Primality testing
- Question: How many comparisons are needed to find the second largest number on a sequence of n numbers?
 - Naive algorithm: 2n 3 comparisons
 - Divide and Conquer algorithm: 3n/2 comparisons
 - Simple randomized algorithm: n 1 + 2 log n comparisons on the average.

PROBABILITY AND RANDOMIZED ALGORITHMS	3/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

OVERVIEW OF DISCRETE PROBABILITY

- Probabilistic Experiment: outcome is probabilistic.
- Sample Space (Ω) : arbitrary and possibly countably infinite set of possible outcomes.
 - Tossing a coin
 - Throwing a die/pair of dice.
- Primitive Event: Any one of the elements of Ω .
- Event: Any subset of Ω
 - First die is a 5
 - Dice sum to 7
 - Any die is even.

PROBABILI	TY AND RANDOMIZED ALGORITHMS	4/28
CMU-Q 1	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

PROBABILITY FUNCTION

• Probability Function: $\Omega \rightarrow [0, 1]$

$$\sum_{m{e}\in\Omega}\mathbf{Pr}[m{e}]=1$$

• Probability of an event A:

$$\sum_{e \in A} \Pr[e]$$

- Probability of "first die is 4"?
- Probability of "dice sum to to 4"?

PROBABILITY AND RANDOMIZED ALGORITHMS	5/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

RANDOM VARIABLES

- Random Variable: $X : \Omega \to \Re$
 - X is the sum of the two die rolls
- Indicator Random Variable: $Y : \Omega \rightarrow \{0, 1\}$
 - ► Y is 1 if the dice are the same, 0 otherwise
 - ► Y is 1 if the total is larger than 7, 0 otherwise
- For $a \in \Re$, the event "X = a" is the set

$$\{\omega \in \Omega \mid X(\omega) = a\}$$

PROBABILITY AND RANDOMIZED ALGORITHMS CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms 6/28 Fall **2013**

EXPECTATION

The expectation of a random variable

$$\mathop{\mathsf{E}}_{\Omega,\operatorname{\mathsf{Pr}}[]}[X] = \sum_{e \in \Omega} X(e) \cdot \operatorname{\mathsf{Pr}}[e]$$

• The expectation of an *indicator* random variable:

$$\mathsf{E}[Y] = \sum_{e \in \Omega, p(e) = true} \mathsf{Pr}[e] = \sum_{e \in \Omega} \mathsf{Pr}[\{e \in \Omega \mid p(e)\}]$$

▶
$$p: \Omega \rightarrow \text{bool}$$

PROBABILITY AND RANDOMIZED ALGORITHMS	7/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

INDEPENDENCE

• Events A and B are independent if the occurrence of one does not affect the probability of the other

$\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$

PROBABILITY AND RANDOMIZED ALGORITHMS	8/28
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

INDEPENDENCE

 Events A₁,..., A_k are mutually independent if and only if for any non-empty subset I ⊆ {1,...,k},

$$\Pr[\bigcap_{i\in I}A_i]=\prod_{i\in I}\Pr[A_i].$$

- Random variable X and Y are independent if fixing one does NOT affect the probability distribution of the other.
 - X = "value of the first die" is independent of Y = "value of the second die".
 - X is NOT independent of Z = "sum of the dice"

PROBABILITY AND RANDOMIZED ALGORITHMS	9/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

LINEARITY OF EXPECTATIONS

Important Theorem: given two random variables
 X and Y

$$\mathsf{E}\left[X\right] + \mathsf{E}\left[Y\right] = \mathsf{E}\left[X + Y\right]$$

$$\sum_{e\in\Omega} \Pr[e]X(e) + \sum_{e\in\Omega} \Pr[e]Y(e) = \sum_{e\in\Omega} \Pr[e](X(e) + Y(e))$$

- Expected sum of two dice
 - Consider 36 outcomes and take average
 - Sum expectations for each dice (3.5 + 3.5 = 7)

PROBABILITY AND RANDOMIZED ALGORITHMS	10/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

LINEARITY OF EXPECTATIONS

In general, for a binary function f the equality

 $f(\mathbf{E}[X], \mathbf{E}[Y]) = \mathbf{E}[f(X, Y)]$

is **not** true in general.

- $\blacktriangleright \max(\mathbf{E}[X], \mathbf{E}[Y]) \neq \mathbf{E}[\max(X, Y)]$
- What is $\mathbf{E}[\max(X, Y)]$?
- $\mathbf{E}[X] \times \mathbf{E}[Y] = \mathbf{E}[X \times Y]$ is true if X and Y are independent.

PROBABILITY AND RANDOMIZED ALGORITHMS	11/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

EXAMPLES

 Toss n coins with probability of heads, p. What is the expected value of X, the number of heads?

$$\mathbf{E}[X] = \sum_{k=0}^{n} k \cdot \Pr[X = k]$$

$$= \sum_{k=1}^{n} k \cdot p^{k} (1-p)^{n-k} \binom{n}{k} (Why?)$$

$$= \sum_{k=1}^{n} k \cdot \frac{n}{k} \binom{n-1}{k-1} p^{k} (1-p)^{n-k} \quad [\text{because } \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}]$$

$$= n \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k} (1-p)^{n-k}$$

PROBABILITY AND RANDOMIZED ALGORITHMS	12/28
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

EXAMPLES

• Toss *n* coins with probability of heads, *p*. What is the expected value of *X*, the number of heads?

$$E[X] = \sum_{k=0}^{n} k \cdot Pr[X = k]$$
...
$$= n \sum_{j=0}^{n-1} {\binom{n-1}{j}} p^{j+1} (1-p)^{n-(j+1)} \quad [\text{ because } k = j+1]$$

$$= n \cdot p \sum_{j=0}^{n-1} {\binom{n-1}{j}} p^{j} (1-p)^{(n-1)-j)}$$

$$= n \cdot p \cdot (p + (1-p))^{n-1} \quad [\text{ Binomial Theorem }]$$

$$= n \cdot p$$

PROBABILITY AND RANDOMIZED ALGORITHMS	13/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

EXAMPLES

- Toss n coins with probability of heads, p. What is the expected value of X, the number of heads?
- Using linearity of expectations.
 - $X_i = \mathbb{I}\{i \text{-th coin turns up heads}\}$

•
$$X = \sum_{i=1}^{n} X_i$$

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbf{E}[X_{i}] = \sum_{i=1}^{n} p = n \cdot p$$

• because $\mathbf{E}[X_i] = p$.

PROBABILITY AND RANDOMIZED ALGORITHMS	14/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

EXAMPLES

- A coin has a probability p of coming up heads.
 What is the expected value of Y representing the number of flips until we see a head?
- Write a recurrence!
 - With probability p, we'll get a head and we are done,
 - With probability 1 p, we'll get a tail and we'll go back to square one

$\mathbf{E}[Y] = p \cdot \mathbf{1} + (1-p) \Big(\mathbf{1} + \mathbf{E}[Y] \Big)$ $= \mathbf{1} + (1-p) \mathbf{E}[Y] \implies \mathbf{E}[Y] = \mathbf{1}/p.$

PROBABII	LITY AND RANDOMIZED ALGORITHMS	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

FINDING THE TOP TWO ELEMENTS

```
fun max2(S) = let
1
      fun replace((m_1, m_2), v) =
2
3
         if v \leq m_2 then (m_1, m_2)
         else if v \leq m_1 then (m_1, v)
4
         else (v, m_1)
5
      val start = if S_1 \ge S_2 then (S_1, S_2) else (S_2, S_1)
6
   in iter replace start S(3,\ldots,n)
7
   end
8
```

- We will do exact analysis.
- 1 + 2(n-2) = 2n 3 comparisons in the worst case. (Why?)

```
    A Divide and Conquer algorithm gives 3n/2 - 2
Probability and Randomized Algorithms
    CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms
    Fall 2013
```

WORST CASE ANALYSIS

```
fun max2(S) = let
1
      fun replace((m_1, m_2), v) =
2
         if v \leq m_2 then (m_1, m_2)
3
         else if v \leq m_1 then (m_1, v)
4
5
         else (v, m_1)
      val start = if S_1 \ge S_2 then (S_1, S_2) else (S_2, S_1)
6
   in iter replace start S(3,\ldots,n)
7
8
   end
```

- An already sorted sequence (e.g., (1, 2, 3, ..., n)) will need exactly 2n 3 comparisons.
- But this happens with 1/n! chance!

PROBABIL	LITY AND RANDOMIZED ALGORITHMS	17/28
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

A RANDOMIZED ALGORITHM

- The worst-case analysis is overly pessimistic.
- Consider the following variant:
- On input of a sequence *S* of *n* elements:
 - Let $T = \text{permute}(S, \pi)$, where π is a random permutation (i.e., we choose one of the *n*! permutations).
 - Q Run the naïve algorithm on T.
- No need to really generate the permutation!
 - Just pick an unprocessed element randomly until all elements are processed.
 - It is convenient to model this by one initial permutation!

PROBABII	LITY AND RANDOMIZED ALGORITHMS	18/28
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

X_i = 1 if T_i is compared in Line 4, 0 otherwise.
Y is the number of comparisons

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

FALL 2013

- This expression in true regardless of the random choice we're making.
- We're interested in computing the expected value of Y.
- By linearity of expectation,

$$E[Y] = E\left[1 + (n-2) + \sum_{i=3}^{n} X_i\right]$$

= 1 + (n-2) + $\sum_{i=3}^{n} E[X_i]$.

PROBABILITY AND RANDOMIZED ALGORITHMS CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms 20/28 Fall **2013**

- Problem boils down to computing $\mathbf{E}[X_i]$, for i = 3, ..., n!
- What is the probability that $T_i > m_2$?
 - T_i > m₂ holds when T_i is either the largest or the second largest in {T₁,..., T_i}
- So, what is the probability that T_i is one of the two largest elements in a randomly permuted sequence of length i?

$$\blacktriangleright \quad \frac{1}{i} + \frac{1}{i} = \frac{2}{i}$$

• **E**
$$[X_i] = 1 \cdot \frac{2}{i} = 2/i$$

PROBABILITY AND RANDOMIZED ALGORITHMS CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms 21/28 Fall **2013**

$$E[Y] = 1 + (n-2) + \sum_{i=3}^{n} E[X_i]$$

= 1 + (n-2) + $\sum_{i=3}^{n} \frac{2}{i}$
= 1 + (n-2) + 2 $\left(\frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}\right)$
= n - 4 + 2 $\left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}\right)$
= n - 4 + 2 H_n

H_n is the *nth* Harmonic number
 H_n ≤ 1 + log₂ *n* **E** [Y] ≤ *n* − 2 + 2 log₂ *n*

PROBABILITY AND RANDOMIZED ALGORITHMS22/28CMU-Q15-210 Parallel and Sequential Data Structures and AlgorithmsFall 2013

- Input: a sequence of *n* numbers (not necessarily sorted)
- Output: the kth smallest value in S (i.e., (nth (sort S) k)).
- Requirement: O(n) expected work and O(log² n) span.
- We can't really sort the sequence!

PROBABILITY AND RANDOMIZED ALGORITHMS	23/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

1 fun
$$kthSmallest(k, S) = let$$

2 val $p = a$ value from S picked uniformly at random
3 val $L = \langle x \in S \mid x
4 val $R = \langle x \in S \mid x > p \rangle$
5 in if $(k < |L|)$ then $kthSmallest(k, L)$
6 else if $(k < |S| - |R|)$ then p
7 else $kthSmallest(k - (|S| - |R|), R)$
• Let $X_n = max\{|L|, |R|\}$
 $W(n) = W(X_n) + O(n)$
 $S(n) = S(X_n) + O(log n)$$

PROBABILITY AND RANDOMIZED ALGORITHMS CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms 24/28 Fall **2013**

• We want to find $\mathbf{E}[X_n]$?

$$\mathbf{E}[X_n] = \sum_{i=1}^{n-1} \max\{i, n-i\} \cdot \frac{1}{n} \le \sum_{j=n/2}^{n-1} \frac{2}{n} \cdot j \le \frac{3n}{4}$$

PROBABILITY AND RANDOMIZED ALGORITHMS	25/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- $\mathbf{E}[X_n] \leq \frac{3n}{4} \Rightarrow$ geometrically decreasing sum $\Rightarrow O(n)$ work.
- What is $\Pr[X_n \leq \frac{3}{4}n]$?
- Since $|R| < n |\dot{L}|$,

$$X_n \leq rac{3}{4}n \Leftrightarrow n/4 < |L| \leq 3n/4$$

and the probability is

$$\frac{3n/4 - n/4}{n} = \frac{n/2}{n} = \frac{1}{2}$$

PROBABILITY AND RANDOMIZED ALGORITHMS CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms 26/28 Fall **2013**

$$\overline{W}(n) = \sum_{i} \Pr[X_n = i] \cdot \overline{W}(i) + c \cdot n$$
Using stepwise approximation
$$\leq \Pr[X_n \leq \frac{3n}{4}] \overline{W}(3n/4) + \Pr[X_n > \frac{3n}{4}] \overline{W}(n) + c \cdot n$$

$$= \frac{1}{2} \overline{W}(3n/4) + \frac{1}{2} \overline{W}(n) + c \cdot n$$

$$\implies (1 - \frac{1}{2}) \overline{W}(n) = \frac{1}{2} \overline{W}(3n/4) + c \cdot n$$

$$\implies \overline{W}(n) \leq \overline{W}(3n/4) + 2c \cdot n$$

• Root Dominated hence solves to O(n).

PROBABILITY AND RANDOMIZED ALGORITHMS	27/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

$$S(n) = S(X_n) + O(\log n)$$

$$\overline{S}(n) = \leq \sum_{i} \Pr[X_n = i] \cdot \overline{S}(i) + c \log n$$

$$\leq \Pr[X_n \leq \frac{3n}{4}] \overline{S}(3n/4) + \Pr[X_n > \frac{3n}{4}] \overline{S}(n) + c \cdot \log n$$

$$\leq \frac{1}{2} \overline{S}(3n/4) + \frac{1}{2} \overline{S}(n) + c \cdot \log n$$

$$\implies (1 - \frac{1}{2}) \overline{S}(n) \leq \frac{1}{2} \overline{S}(3n/4) + c \log n$$

$$\implies \overline{S}(n) \leq \overline{S}(3n/4) + 2c \log n$$

• This solves to
$$O(\log^2 n)$$
.

PROBABILITY AND RANDOMIZED ALGORITHMS	28/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 16

GRAPH CONTRACTION

Synopsis

- Graph Contraction
- Finding Connected Components
- Edge Contraction
- Star Contraction

MOTIVATION

Most graph search algorithms were either

- sequential, or
- had span dependent on the diameter.
- Can we make these algorithms more parallel?
 - Polylogarithmic span: span is bounded by a polynomial in log n
- We will look at contraction as a way to build parallel algorithms for some graph problems:
 - Graph Connectivity
 - Spanning Trees

GRAPH CONTRACTION	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

GRAPH CONNECTIVITY

- Two vertices in an undirected graph are connected if there is a path between them.
- A graph is connected if all pairs of vertices are connected.
- The graph connectivity problems partitions a graph into its maximal connected subgraphs.

has two connected subgraphs: $\{a, b, c, d\}$ and $\{e, f\}$

GRAPH CONTRACTION	4/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

GRAPH CONNECTIVITY

- BFS or DFS
 - Identify vertices of a connected component
 - Identify all connected components!
- BFS could be parallel but has span \propto diameter d
- Each connected component needs to be done sequentially!

GRAPH C	GRAPH CONTRACTION	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

GRAPH CONTRACTION

- Problem \rightarrow Smaller Problem
- Shrink the size of the graph and solve the connectivity problem on the small graph.
 - Different components can be handled in parallel!
- Applicable to other problems
 - Spanning Trees
 - Minimum Spanning Trees

GRAPH CONTRACTION

 $\textit{contract}: \textit{graph} \rightarrow \textit{partition}$

- Takes a graph G(V, E) and returns a partitioning of V into connected subgraphs.
 - Not necessarily maximally connected subgraphs (yet)
 - But vertices in a partition are connected.

GRAPH CONTRACTION	7/32
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

GRAPH CONTRACTION

 If the graph contracts on each round, eventually each maximal connected component will shrink down to a single vertex!

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

FALL 2013

REPRESENTING **P**ARTITIONS

 \downarrow

$$\begin{array}{c} \left\{ \left\{ a,b,c\right\} ,\left\{ d\right\} ,\left\{ e,f\right\} \right\} \\ \downarrow \\ \left(\left\{ a,d,e\right\} ,\left\{ a\mapsto a,b\mapsto a,c\mapsto a,d\mapsto d,e\mapsto e,f\mapsto e\right\} \right) \end{array}$$

GRAPH CONTRACTION	9/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

```
fun numComponents((V, E), i) =
1
   if |E| = 0 then |V|
2
   else let
3
      val (V', P) = contract((V, E), i)
4
      val E' = \{(P[u], P[v]) : (u, v) \in E \mid P[u] \neq P[v]\}
5
6
   in
      numComponents((V', E'), i+1)
7
8
   end
 Ignore i for the time being!
 • V' is the set of representative vertices
 • P maps every v \in V to a v' \in V'.

    E' is the set of edges in the contracted graph.
```

Self-loops are removed!

GRAPH CONTRACTION	10/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

1 fun components((V, E), i) =
2 if
$$|E| = 0$$
 then $\{v \mapsto v : v \in V\}$
3 else let
4 val $(V', P) = contract((V, E), i)$
5 val $E' = \{(P[u], P[v]) : (u, v) \in E \mid P[u] \neq P[v]\}$
6 val $P' = components((V', E'), i + 1)$
7 in
8 $\{v \mapsto P'[P[v]] : v \in V\}$
9 end

GRAPH CONTRACTION CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

1 fun components((V, E), i) =
2 if
$$|E| = 0$$
 then $\{v \mapsto v : v \in V\}$
3 else let
4 val $(V', P) = contract((V, E), i)$
5 val $E' = \{(P[u], P[v]) : (u, v) \in E \mid P[u] \neq P[v]\}$
6 val $P' = components((V', E'), i+1)$
7 in
8 $\{v \mapsto P'[P[v]] : v \in V\}$
9 end

Base case: Every vertex maps to itself!

GRAPH CONTRACTION	12/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

1 fun components((V, E), i) =
2 if
$$|E| = 0$$
 then $\{v \mapsto v : v \in V\}$
3 else let
4 val $(V', P) = contract((V, E), i)$
5 val $E' = \{(P[u], P[v]) : (u, v) \in E \mid P[u] \neq P[v]\}$
6 val $P' = components((V', E'), i+1)$
7 in
8 $\{v \mapsto P'[P[v]] : v \in V\}$
9 end

 (Recursively) find components of the contracted graph

GRAPH CONTRACTION	13/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

1 fun components((V, E), i) =
2 if
$$|E| = 0$$
 then $\{v \mapsto v : v \in V\}$
3 else let
4 val $(V', P) = contract((V, E), i)$
5 val $E' = \{(P[u], P[v]) : (u, v) \in E \mid P[u] \neq P[v]\}$
6 val $P' = components((V', E'), i+1)$
7 in
8 $\{v \mapsto P'[P[v]] : v \in V\}$
9 end

 Map each vertex to the representative vertex of its partition!

GRAPH CONTRACTION	14/32
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

1 fun components((V, E), i) =
2 if
$$|E| = 0$$
 then $\{v \mapsto v : v \in V\}$
else let
4 val $(V', P) = contract((V, E), i)$
5 val $E' = \{(P[u], P[v]) : (u, v) \in E \mid P[u] \neq P[v]\}$
6 val $P' = components((V', E'), i+1)$
7 in
8 $\{v \mapsto P'[P[v]] : v \in V\}$
9 end
• After 4: $V' = \{a, d, e\}$
• $P = \{a \mapsto a, b \mapsto a, c \mapsto a, d \mapsto d, e \mapsto e, f \mapsto e\}$
• After 6: $P' = \{a \mapsto a, d \mapsto a, e \mapsto a\}$
• 8 returns: $\{a \mapsto a, b \mapsto a, c \mapsto a, d \mapsto a, e \mapsto a, f \mapsto a\}$

е

GRAPH CONTRACTION	15/32
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

IMPLEMENTING CONTRACT

- Edge Contraction:Only pairs of vertices connected by an edge are contracted.
- Star Contraction: Vertices around a "center star" collapse to the "star"
- Tree Contraction: disjoint trees within the graph are identified and vetices in a tree are collapsed to the root.
- Parallel
- Reduce graph size (vertices/edges?) by a constant factor every round.
 - ► Will lead to *O*(log *n*) rounds!.

GRAPH CONTRACTION	16/32
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

EDGE CONTRACTION

Find disjoint edges – edges can not share vertices.

- Vertex matching problem
- Can be done in parallel
 - Each edge picks a random priority in [0, 1]
 - Any edge which has highest priority for both vertices gets selected.

It turns out this has some problems!

GRAPH CONTRACTION	17/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

EDGE CONTRACTION

Consider a graph like

- How many edges can be contracted each round?
- How many rounds are needed to contract to 1 node?
- Not very parallel!

GRAPH CONTRACTION	18/32
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

STAR CONTRACTION

• Star subgraphs can be contracted in parallel!

• How do we find disjoint stars?

GRAPH CONTRACTION	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND AL	GORITHMS

FINDING DISJOINT STARS

- Each vertex throws a coin
 - Heads \rightarrow vertex is a star-center
 - Tails \rightarrow vertex is a *potential satellite* (Why *potential*?)
- Each satellite then selects a center.

GRAPH CONTRACTION	20/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

RANDOM COIN TOSSES

- Pretend each vertex has a potentially infinite sequence of random coin flips
- heads(v, i): vertex × int → bool provides access to these coin tosses.
- This can be implemented with a pseudorandom number generator.

GRAPH C	ONTRACTION
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

STAR CONTRACTION

1 fun starContract(G = (V, E), i) =2 let 3 % select edges that go from a tail to a head 4 val $TH = \{(u, v) \in E \mid \neg heads(u, i) \land heads(v, i)\}$ 5 % make mapping from tails to heads, removing duplicates 6 val $P = \bigcup_{(u,v)\in TH} \{u \mapsto v\}$ 7 % remove vertices that have been remapped 8 val $V' = V \setminus domain(P)$ 9 % Map remaining vertices to themselves 10 val $P' = \{u \mapsto u : u \in V'\} \cup P$ 11 in (V', P') end

GRAPH CONTRACTION CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

val $TH = \{(u, v) \in E \mid \neg heads(u, i) \land heads(v, i)\}$

•
$$TH = \{(c, a), (c, b), (e, b)\}.$$

GRAPH CONTRACTION
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

val
$$P = \bigcup_{(u,v)\in TH} \{u \mapsto v\}$$

•
$$TH = \{(c, a), (c, b), (e, b)\}$$

• $P = \{c \mapsto b, e \mapsto b\}$

val $V' = V \setminus domain(P)$

P = {c → b, e → b}
domain(P) = {c, e}
V' = {a, b, d}

val $P' = \{u \mapsto u : u \in V'\} \cup P$

•
$$P = \{c \mapsto b, e \mapsto b\}, V' = \{a, b, d\}$$

• $P' = \{a \mapsto a, b \mapsto b, c \mapsto b, d \mapsto d, e \mapsto b\}$

GRAPH CONTRACTION26/32CMU-Q15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMSFALL 2013

ANALYSIS OF STAR CONTRACTION

LEMMA

For a graph *G* with *n* non-isolated vertices, let X_n be the random variable indicating the number of vertices removed by starContract(G, ...). Then, $\mathbf{E}[X_n] \ge n/4$.

- H_v : vertex v comes up heads, T_v : vertex v comes up tails
- R_v : vertex v is removed in contraction
- v has at least one neighbor u.
- $T_v \wedge H_u$ implies R_v
 - If v is a tail, join u's star or some other star.
- $\mathbf{Pr}[R_v] \geq \mathbf{Pr}[T_v]\mathbf{Pr}[H_u] = 1/4$
- Expected total $\geq n/4$

GRAPH CONTRACTION		27/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL	DATA STRUCTURES AND ALGORITHMS	FALL 2013

ANALYSIS OF STAR CONTRACTION

1 fun starContract(G = (V, E), i) =234567 let % select edges that go from a tail to a head -O(m) work, O(1) span val $TH = \{(u, v) \in E \mid \neg heads(u, i) \land heads(v, i)\}$ % make mapping from tails to heads, removing duplicates % O(n) work, $O(\log n)$ span val $P = \bigcup_{(u,v)\in TH} \{u \mapsto v\}$ 8 % remove vertices that have been remapped 9 % O(n) work, $O(\log n)$ span 10 val $V' = V \setminus domain(P)$ 11 % Map remaining vertices to themselves -O(n) work, $O(\log n \text{ span})$ 12 val $P' = \{u \mapsto u : u \in V'\} \cup P$ 13 in (V', P') end

- n nodes, m edges
- O(n+m) work, $O(\log n)$ span.

GRAPH CONTRACTION	28/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

ANALYSIS OF CONNECTIVITY

1 fun numComponents((V, E), i) =
2 if
$$|E| = 0$$
 then $|V|$
3 else let
4 val $(V', P) = starContract((V, E), i)$
5 val $E' = \{(P[u], P[v]) : (u, v) \in E \mid P[u] \neq P[v]\}$
6 in
7 numComponents((V', E'), i+1)
8 end
• $S(P) = S(P') + O(\log P)$

•
$$S(n) = S(n) + O(\log n)$$

• $n' = n - X_n$ and $E[X_n] = n/4$, so $E[n'] = 3n/4$
• $S(n) \in O(\log^2 n)$

GRAPH CONTRACTION		29/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DA	ATA STRUCTURES AND ALGORITHMS	FALL 2013

ANALYSIS OF CONNECTIVITY

- We can remove a constant fraction of vertices every round.
- For each vertex removed, we remove at least one edge.
- Consider a hypothetical contraction

round	vertices	edges
1	n	m
2	n/2	m – n/2
3	n/4	m – 3n/4
4	n/8	m – 7n/8

• Number of edges does not go below m - n.

GRAPH CONTRACTION	30/32
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

ANALYSIS OF CONNECTIVITY

 $W(n,m) \leq W(n',m) + O(n+m),$

• As before, $\mathbf{E}[n'] = 3n/4$, so $\mathbf{E}[W(n,m)] \in O(n+m\log n)$

GRAPH CONTRACTION
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

31/32 <u>Fall **2013**</u>

TREE CONTRACTION

- Identify disjoint trees and contract them.
- For every tree of t vertices contracted, t 1 edges are removed.
- Number of edges also go down geometrically at every round.
- Leads to O(m) work and $O(\log^2 n)$ span.

GRAPH CONTRACTION CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 17

NO LECTURE

SYNOPSIS

• There is no lecture 17

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHM	RES AND ALGORITHMS

2/2 Spring 2013

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 18

MINIMUM SPANNING TREES

Synopsis

- Minimum Spanning Trees
- Kruskal's and Prim's Algorithms
- Using Star Contraction for MST

MINIMUM	1 SPANNING TREES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

2/22 <u>Fall **2013**</u>

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

FALL 2013

3/22

MINIMUM SPANNING TREES	4/22
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

- Given a connected undirected graph G = (V, E)
 - Each edge *e* has $w_e \ge 0$
- Find a spanning tree, *T* that minimizes

$$w(T) = \sum_{e \in E(T)} w_e.$$

- Sequential algorithms:
 - Kruskal's Algorithm
 - Prim's Algorithm

MINIMUM	I SPANNING TREES	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fali

5/22 L **2013**

MINIMUM SPANNING TREES	6/22
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

LIGHT EDGE RULE

- Given G = (V, E), $U \subsetneq V$ partitions the graph into two parts with vertices U and $V \setminus U$.
- The edges between U and $V \setminus U$ are called the cut edges $E(U, \overline{U})$.

MINIMUM SPANNING TREES	7/22
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	Fall 2013

LIGHT EDGE RULE

THEOREM

Let G = (V, E, w) be a connected undirected weighted graph with distinct edge weights.

- For any nonempty $U \subsetneq V$
- the minimum weight edge *e* between *U* and *V* \ *U* is in the minimum spanning tree MST(*G*) of *G*.

MINIMUM SPANNING TREES	8/22
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

LIGHT EDGE RULE

- Assume e = (u, v) is the minimum edge in the cut but not in the MST.
- MST should have at least another edge in the cut.
- Adding e to the path between u and v creates a cycle.
- Removing the max edge from path (blue line) and adding e should give a ST with less weight.

	Original (claimed) MST (through blue line) can not be	ิล
MINIMUM	1 Spanning Trees	9/22
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Kruskal's Algorithm

- Greedy
- Each vertex is a subtree by itself initially
- Combine the two sub-trees on both sides of the next smallest edge (if they are different)
- Uses the union-find data structure.
- $O(m \log n)$ work and span!

MINIMUN	1 SPANNING TREES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Kruskal's Algorithm

MINIMUM SPANNING TREES	11/22
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	Fall 2013

PRIM'S ALGORITHM

- Greedy
- Based on Priority-based Search Variant of Dijsktra's Algorithm
- Maintain visited X and frontier F vertices.
- Visit the nearest unvisited vertex in the frontier.
- O(m log n) work and span!

MINIMUN	4 SPANNING TREES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

```
PRIM'S ALGORITHM
      fun prim(G) =
  1
  2345678
      let
        fun enqueue v (Q, (u, w)) = PQ.insert (w, (v, u)) Q
        fun proper(X, Q, T) =
           case PQ.deleteMin(Q) of
               (NONE, \_) \Rightarrow T
            | (SOME(d, (u, v)), Q') \Rightarrow
               if (v \in X) then proper(X, Q', T)
  9
               else let
                 val X' = X \cup \{v\}
 10
                 val T' = T \cup \{(u, v)\}
 11
 12
                 val Q'' = iter (enqueue v) Q' N_G(v)
 13
               in proper(X', Q'', T') end
        val s = an arbitrary vertex from G
 14
 15
         val Q = iter (enqueue s) {} N_G(s)
 16
      in
 17
        proper(\{s\}, Q, \{\})
 18
      end
```

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

PRIM'S ALGORITHM

MINIMUM SPANNING TREES	14/22
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

PARALLEL MST ALGORITHMS

OBSERVATION

- The minimum weight edge out of every vertex of a weighted graph G belongs to its MST.
- Why should this be the case?

• MST can contain other edges!

MINIMUM SPANNING TREES	15/22
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

PARALLEL MST - IDEA #1

- Throw all minimum weight edges into MST
- Tree contract the vertices for all these edges
- Repeat until no edges remain!

 Each rounds removes at least 1/2 of the vertices (Why?)

MINIMUM SPANNING TREES	16/22
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	Fall 2013

Parallel MST - Idea #2

- Let minE be the set of minimum weight edges.
- Let H = (V, minE) be a subgraph of G
- We apply (modified) star contraction to H
 - The tails hook up through the minimum weight edge!

1 fun minStarContract(
$$G = (V, E), i$$
) =
2 let
3 val minE = minEdges(G)
4 val $P = \{u \mapsto (v, w) \in minE \mid \neg heads(u, i) \land heads(v, i)\}$
5 val $V' = V \setminus domain(P)$
6 in (V', P) end

MINIMUM SPANNING TREES CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

PARALLEL MST - IDEA #2

• Even though we are working with a subgraph, the star contract lemma still applies.

LEMMA

For a graph *G* with *n* non-isolated vertices, let X_n be the random variable indicating the number of vertices removed by *minStarContract*(*G*, *r*). Then, $\mathbf{E}(X_n) \ge n/4$.

• MST will take expected O(log n) rounds.

MINIMUM	1 SPANNING TREES	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

BOOKKEEPING

- As the graph contracts, the end point of each edge changes!
- At the end, the edges may not have the original end points.
- Associate a unique label to each edge initially:
 - (vertex × vertex × weight × label)
 - The end points change but the label does not!

MINIMUM SPANNING TREES	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

Modified Star Contract

```
1 fun minStarContract(G = (V, E), i) =

2 let

3 val minE = minEdges(G)

4 val P = \{(u \mapsto (v, w, \ell)) \in minE \mid \neg heads(u, i) \land heads(v, i)\}

5 val V' = V \setminus domain(P)
```

- 6 in (V', P) end
 - Line 3: Finds min edge for each vertex.
 - All these belong to the MST
 - Line 4: Picks tails and heads, and the creates mapping from tails to heads.
 - Line 5: Removes all tail vertices from the vertex set.

MINIMUM	I SPANNING TREES	20/22
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE MST ALGORITHM

1 fun
$$MST((V, E), T, i) =$$

2 if $|E| = 0$ then T
3 else let
4 val $(V', PT) = minStarContract((V, E), i)$
5 val $P = \{u \mapsto v : u \mapsto (v, w, \ell) \in PT\} \cup \{v \mapsto v : v \in V'\}$
6 val $T' = \{\ell : u \mapsto (v, w, \ell) \in PT\}$
7 val $E' = \{(P[u], P[v], w, l) : (u, v, w, l) \in E \mid P[u] \neq P[v]\}$
8 in
9 $MST((V', E'), T \cup T', i + 1)$
10 end

Invoked by MST(G, {}, 1).

MINIMUM	I SPANNING TREES	21/22
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

IMPLEMENTING MINEDGES (G)

fun
$$joinEdges((v_1, w_1, l_1), (v_2, w_2, l_2)) =$$

if $(w_1 \le w_2)$ then (v_1, w_1, l_1) else (v_2, w_2, l_2)

fun minEdges(E) =let val $ET = \{u \mapsto (v, w, l) : (u, v, w, l) \in E\}$ in (merge joinEdges) {} ET end

MINIMUM SPANNING TREES CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 19

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS

Synopsis

- Quicksort
- Work and Span Analysis of Randomized Quicksort
- Lower Bound for Comparison-based Sorting
- Lower Bound for Merging

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS		
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

2/27 Fall **2013**

QUICKSORT

- Originally invented and analyzed by Hoare in 1960's.
- I strongly urge to watch Jon Bentley on "Three beautiful Quicksorts" at
 - www.youtube.com/watch?v=QvgYAQzg1z8.

Quickso	RT ANALYSIS AND SORTING LOWER BOUNDS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

3/27 Fall 2013

SEQUENTIAL QUICKSORT

```
int i, j;
for( i = low, j = high - 1; ; )
{
    while( a[ ++i ] < pivot );
    while( pivot < a[ --j ] );
    if( i >= j )
    break;
    swap( a, i, j );
}
// Restore pivot
swap( a, i, high - 1 );
quicksort( a, low, i - 1 ); // Sort small elements
quicksort( a, i + 1, high ); // Sort large elements
```

QUICKSORT ANALYSIS AND SORTING LOWER BOUN	IDS	4/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA	A STRUCTURES AND ALGORITHMS	FALL 2013

QUICKSORT

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	5/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

QUICKSORT

- Each call to Quicksort either makes
 - No recursive calls (base case), or
 - Two recursive calls
- Call tree is a binary
- Depth the call tree determines the span of the algorithm.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

6/27 Fall **2013**

PICKING THE PIVOT

- Always pick the first element
 - Worst case $O(n^2)$ work.
 - In practice, almost sorted inputs are not uncommon.
- Pick the median of 3 elements (e.g., first, middle and last elements)
 - could possible divide evenly
 - worst case is still bad
- Pick an element at random
 - we hope this divides evenly in expectation
 - leading to expected O(n log n) work and O(log² n) span.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	7/27
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

PICKING THE PIVOT

- Pick first element
 - Worst case O(n²) work.
 Expected O(n log n) work
 - - ★ Averaged over all possible orderings.
 - Work well on the average
 - Slow on some, possibly common, cases.
- Pick a random element
 - Expected worst-case O(n log n) work.
 - * For input in **any** order, the expected work is $O(n \log n)$
 - No input has expected $O(n^2)$ work.
 - With a small probability, we could be unlucky and have $O(n^2)$ work.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	8/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

RANDOMIZED QUICKSORT

 Assign a uniformly random priority to each number in [0, 1].

```
 \begin{array}{lll} & \text{fun } quicksort(S) = \\ & \text{if } |S| = 0 \ \text{then } S \\ & \text{else let} \\ & & \text{val } p = pick \ as \ pivot \ the \ highest \ priority \ element \ from \ S \\ & & \text{val } S_1 = \langle s \in S \mid s  p \rangle \\ & & \text{val } (R_1, R_3) = (\ quicksort(S_1) \parallel \ quicksort(S_3)) \\ & \text{in} \\ & & append(R_1, append(S_2, R_3)) \\ & \text{end} \end{array}
```

Once the priorities are assigned, the algorithm is deterministic.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	9/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

RANDOMIZED QUICKSORT

- Count comparisons made!
 - Almost all the work is comparisons.

 $X_n = \# \text{ of comparisons } quicksort$

makes on input of size *n*

- Find $\mathbf{E}[X_n]$ for any input sequence S
- Notation:
 - Let T = sort(S)
 - ► T_i and T_j refer to elements in the final sorted order and i < j and T_i ≤ T_j.
 - p_i refers to priority chosen for T_i .
 - A_{i,j} = 1 if T_i and T_j were ever compared during the sort.

QUICKSO	RT ANALYSIS AND SORTING LOWER BOUNDS	10/27
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

- Crucial point is how to model A_{i,j}.
- In any one call to quicksort, there are three cases:
 - Pivot *p* is either T_i or $T_j \Rightarrow A_{i,j} = 1$
 - T_i
 - Either $p < T_i$ or $p > T_j \Rightarrow T_i, T_j \in S_1$ or $T_i, T_j \in S_3$
- If two elements are compared in a quicksort call, they will never be compared again in any other call!

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	11/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

$$X_n \leq 3\sum_{i=1}^n \sum_{j=i+1}^n A_{ij}$$

- The non-optimized code compares each element to pivot 3 times.
- By linearity of expectation

$$\mathbf{E}[X_n] \le 3\sum_{i=1}^n \sum_{j=i+1}^n \mathbf{E}[A_{ij}] = 3\sum_{i=1}^n \sum_{j=i+1}^n \mathbf{Pr}[A_{ij} = 1]$$

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS12/27CMU-Q15-210 Parallel and Sequential Data Structures and AlgorithmsFall 2013

- Consider first when the pivot is one of $T_i, T_{i+1}, ..., T_j$
- T_i and T_j are compared $\Leftrightarrow p_i$ or p_j is the highest priority among $\{p_i, p_{i+1}, \dots, p_j\}$.
 - Assume T_k , i < k < j has higher priority.
 - For any subdivision \cdots , T_i , \cdots , T_k , \cdots , T_j will become a pivot and separate T_i and T_j
 - T_i and T_j will never be compared!

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	13/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

$$\begin{split} \mathbf{E}\left[A_{ij}\right] &= \mathbf{Pr}[A_{ij} = 1] \\ &= \mathbf{Pr}[p_i \text{ or } p_j \text{ is the maximum in } \{p_i, \dots, p_j\}] \\ &= \frac{2}{j - i + 1} \text{ (Why ?)} \end{split}$$

- j i + 1 elements between p_i and p_j and each is equally likely to be the maximum.
- We want either p_i or p_j , hence $\frac{2}{i-i+1}$
- T_i is compared to T_{i+1} with probability 1

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	14/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

$$\begin{split} \mathbf{E}\left[X_{n}\right] &\leq 3\sum_{i=1}^{n}\sum_{j=i+1}^{n}\mathbf{E}\left[A_{ij}\right] \\ &= 3\sum_{i=1}^{n}\sum_{j=i+1}^{n}\frac{2}{j-i+1} \\ &= 3\sum_{i=1}^{n}\sum_{k=2}^{n-i+1}\frac{2}{k} \quad \text{(change variables)} \\ &\leq 6\sum_{i=1}^{n}H_{n} \\ &\leq 6\cdot n\cdot H_{n}\in O(n\log n) \end{split}$$

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	15/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- Indirectly, average work for basic deterministic quicksort is O(n log n).
 - Just shuffle data randomly and apply the basic algorithm
 - \equiv to picking random priorities

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	16/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

ALTERNATIVE ANALYSIS

 Write a recurrence for the number of comparisons:

$$X(n) = X(Y_n) + X(n - Y_n - 1) + n - 1$$

• Random variable Y_n is the size of S_1 .

$$E[X(n)] = E[X(Y_n) + X(n - Y_n - 1) + n - 1]$$

= $E[X(Y_n)] + E[X(n - Y_n - 1)] + n - 1$
= $\frac{1}{n} \sum_{i=0}^{n-1} (E[X(i)] + E[X(n - i - 1)]) + n - 1$

17/27 Fall **2013**

ALTERNATIVE ANALYSIS

$$\mathbf{E}[X(n)] = \frac{1}{n} \sum_{i=0}^{n-1} (\mathbf{E}[X(i)] + \mathbf{E}[X(n-i-1)]) + n - 1$$

$$= \frac{2}{n} \sum_{i=0}^{n-1} \mathbf{E}[X(i)] + n - 1$$

• With telescoping, this also solves as $O(n \log n)$

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	18/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

EXPECTED SPAN

- S is split into L(ess), E(qual) and (g)R(eater).
- Let $X_n = \max\{|L|, |R|\},\$
- We use filter to partition.

 $S(n) = S(X_n) + O(\log n)$

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	19/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

EXPECTED SPAN

- Let $\overline{S}(n)$ denote **E** [S(n)]
- We bound $\overline{S}(n)$ by considering $\Pr[X_n \le 3n/4]$ and $\Pr[X_n > 3n/4]$.
- $\Pr[X_n \le 3n/4] = 1/2$
 - As with SmallestK, 1/2 of the randomly chosen pivots results in larger partition of at most size 3n/4 elements.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	20/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

EXPECTED SPAN

$$\overline{S}(n) = \sum_{i} \Pr[X_n = i] \cdot \overline{S}(i) + c \log n$$

$$\leq \Pr[X_n \leq \frac{3n}{4}] \overline{S}(\frac{3n}{4}) + \Pr[X_n > \frac{3n}{4}] \overline{S}(n) + c \cdot \log n$$

$$\leq \frac{1}{2} \overline{S}(\frac{3n}{4}) + \frac{1}{2} \overline{S}(n) + c \cdot \log n$$

$$\implies (1 - \frac{1}{2}) \overline{S}(n) \leq \frac{1}{2} \overline{S}(\frac{3n}{4}) + c \log n$$

$$\implies \overline{S}(n) \leq \overline{S}(\frac{3n}{4}) + 2c \log n$$

$$\implies \overline{S}(n) \in O(\log^2 n)$$

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	21/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

LOWER BOUND FOR SORTING

- What is asymptotically the minimum number comparisons any sorting algorithm has to make?
- Lower-bounds apply to problems not to algorithms.
 - Algorithms provide upper bounds!
- We say sorting is $\Omega(n \log n)$
- No (comparison-based) sorting algorithm has work asymptotically lower than *n* log *n*.

Quickso	RT ANALYSIS AND SORTING LOWER BOUNDS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

22/27 Fall **2013**

DECISION TREES

 If there are N outcomes, the number of questions is at least log₂ N.

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	23/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

For *n* items, how many possible outcomes can there be?
 n! ⇒ we need at least log₂(*n*!) "questions".

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	24/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SORTING AS A DECISION PROBLEM

 $\log(n!) = \log n + \log(n-1) + \dots + \log(n/2) + \dots + \log 1$ $\geq \log n + \log(n-1) + \dots + \log(n/2)$ $\geq \frac{n}{2} \cdot \log(n/2) \in \Omega(n \log n)$

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS	25/27
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

LOWER BOUND FOR MERGING

- We have sorted sequences A, |A| = n and B, |B| = m and $m \le n$.
 - Assume all elements are unique.
- All interleavings are possible
- We need to choose *m* positions out of n + m to place the elements of *B* amongst elements of *A*.
- This can be done in $\log_2 \binom{n+m}{m}$ ways.

Quickso	RT ANALYSIS AND SORTING LOWER BOUNDS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

26/27 Fall **2013**

LOWER BOUND FOR MERGING

• $\binom{n}{r} \ge \left(\frac{n}{r}\right)^r$ • See Lemma in the notes.

$$\log_2\binom{n+m}{m} \geq \log_2(\frac{n+m}{m})^m = m\log_2(1+\frac{n}{m})$$

QUICKSORT ANALYSIS AND SORTING LOWER BOUNDS CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS 27/27 Fall **2013**

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 20

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION

Synopsis

- Binary Search Trees
- Basic Structural Operations on BSTs
- Basic Operations on BSTs
- Concrete Implementations
- Cost Analysis

SEARCH 7	FREES I: BSTS SPLIT, JOIN, AND UNION
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

BINARY TREES

- Trees where each node has at most 2 children each of which is a binary tree.
 - Left child / Left subtree
 - Right child / Right subtree

EARCH TREES I: BSTS SPLIT, JOIN, AND UNION	
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	

BINARY SEARCH TREES

- Binary trees with the "search" property
- For each node v with key k
 - The key of the left child $k_L < k$
 - The key of the right child $k_R > k$

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

BALANCED TREES

- We try to keep binary search trees balanced.
 - Both children are about the same height
 - Both subtrees are about the same size
- AVL Trees
 - Left and right subtree heights differ by at most 1.
 - O(log n) root height maintained after each insertion and deletion.
- Splay Trees
 - Balanced in the amortized sense
 - A sequence of n find, insert, or delete operations take O(n log n) work.
 - ► So average is *O*(log *n*) work.

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION	5/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

• Data type is defined by structural induction

- Leaf
- Node with a left child, a right child, a key, optional additional data.

datatype BST = Leaf |
 Node of (BST * BST * key * data)

SEARCH 7	TREES I: BSTS SPLIT, JOIN, AND UNION
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

•
$$split(T, k)$$
: $BST \times key \rightarrow BST \times (data option) \times BST$

- *split* divides *T* into two BSTs,
 - one consisting of all the keys from T less than k
 - the other all the keys greater than k
- If k appears in the tree with associated data d then split returns SOME(d)
- Otherwise it returns NONE.

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION	7/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

• join(L, m, R): BST × (key × data) option × BST → BST

- Takes a left subtree (L) an optional key-data pair m and a right subtree (R)
 - Assumes all keys in L are less than all keys in R.
 - If present, the optional key is also larger than all keys in L and smaller than all keys in R.
- Creates a new BST that is the union of L and R and m.
- We also assume both split and join maintain balance.

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION		8/21
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

• $expose(T) : BST \rightarrow (BST \times BST \times key \times data)$ option

• Returns the components if BST *T* is not empty.

SEARCH T	REES I: BSTS SPLIT, JOIN, AND UNION
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

BASIC BST OPERATIONS - SEARCH

1 fun search T
$$k =$$

2 let val
$$(_, v, _) = split(T, k)$$

- 3 **in** *v*
- 4 **end**

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION	10/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

BASIC BST OPERATIONS - INSERT

- 1 fun insert T(k, v) =
- 2 let val (L, v', R) = split(T, k)
- 3 in join(L, SOME(k, v), R)
- 4 **end**

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION	11/21
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

BASIC BST OPERATIONS - DELETE

1 fun delete T
$$k =$$

- 2 let val $(L, _, R) = split(T, k)$
- 3 in join(L, NONE, R)
- 4 **end**

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION	12/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

CONCRETE IMPLEMENTATIONS: Split

```
datatype BST = Leaf
                           Node of (BST * BST * key * data)
   1
       fun split(T,k) =
  23456789
          case T of
             Leaf \Rightarrow (Leaf, NONE, Leaf)
           | Node(L, R, k', v) \Rightarrow
                case compare(k, k') of
                   LESS \Rightarrow
                      let val (L', r, R') = split(L, k)
                      in (L', r, Node(R', R, k', v)) end
                   EQUAL \Rightarrow (L, SOME(v), R)
 10
                   GREATER \Rightarrow
 11
                      let val (L', r, R') = split(R, k)
                      in (Node(L, L', k', v), r, R') end
 12
SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION
                                                                                 13/21
       15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS
                                                                               FALL 2013
CMU-Q
```

CONCRETE IMPLEMENTATIONS: JOIN

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION	14/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

CONCRETE IMPLEMENTATIONS: UNION

- For T_1 with key k_1 and children L_1 and R_1 at the root, use k_1 to split T_2 into L_2 and R_2 .
- Recursively find $L_u = union(L_1, L_2)$ and $R_u = union(R_1, R_2)$.

• Now join (L_u, k_1, R_u) .

SEARCH TREES I: BSTs Split, Join, and Union15/21CMU-Q15-210 Parallel and Sequential Data Structures and AlgorithmsFall 2013

CONCRETE IMPLEMENTATIONS: UNION

Returns the value from T₁ if a key appears in both trees.

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION	16/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

1 fun
$$union(T_1, T_2) =$$

2 case $expose(T_1)$ of
3 $NONE \Rightarrow T_2$
4 $| SOME(L_1, R_1, k_1, v_1) \Rightarrow$
5 $let val (L_2, v_2, R_2) = split(T_2, k_1)$
6 $val (L, R) = union(L_1, L_2) || union(R_1, R_2)$
7 $in join(L, SOME(k_1, v_1), R)$
8 end

- split costs $O(\log |T_2|)$.
- Two recursive calls to union
- join costs $O(\log(|T_1| + |T_2|))$

SEARCH T	TREES I: BSTS SPLIT, JOIN, AND UNION	17/21
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

ANALYSIS OF UNION -ASSUMPTIONS

- T_1 is perfectly balanced.
 - expose return subtrees of size $|T_1|/2$
 - Each a key from T_1 splits T_2 , it splits exactly in half.

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION	18/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

$$W(|T_1|, |T_2|) = \mathcal{W}(|T_1|/2, |T_2|/2) + \mathcal{O}(\log(|T_1| + |T_2|)),$$

recursive union calls

split and join

and

$$W(1, |T_2|) = O(\log(1 + |T_2|)).$$

- When $|T_1| = 1$, *expose* give us two empty subtrees L_1 and R_1
- union(L₁, L₂) returns L₂, union(R₁, R₂) returns R₂ immediately!
- Joining these costs at most $O(\log(|T_1| + |T_2|)) = O(\log(1 + |T_2|))$

SEARCH TR	REES I: BSTS SPLIT, JOIN, AND UNION	19/21
CMU-Q 1	15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

Bottom level: Each box costs log (n/m)

Leaf dominated (Why?)

SEARCH TREES I: BSTS SPLIT, JOIN, AND UNION	20/21
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- How many leaves are there in this recursion tree?
 - T_2 has no impact.
 - We get $m = |T_1|$ leaves.
- How deep is the tree?
 - $1 + \log_2 m$
- What is the size of T_2 at the leaves?

•
$$n/2^{\log_2 m} = \frac{n}{m}$$

- Total cost at the leaves = $O(m \log(1 + \frac{n}{m}))$
- Union cost = $O(m \log(1 + \frac{n}{m}))$

SEARCH 7	TREES I: BSTS SPLIT, JOIN, AND UNION	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

21/21 Fall **2013**

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 21

SEARCH TREES II: TREAPS

Synopsis

- Overview of Binary Search Trees
- Relationship between Quicksort and BSTs
- Treaps
- Expected Depth of a Treap

SEARCH T	REES II: TREAPS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

BST OVERVIEW

- There are many options for keeping trees balanced.
- split and join are the main structural operations to implement find, insert, delete, union, etc.
- Cost of split and join are logarithmic in the size of the input and output trees.
- Union needs $O(m \log(1 + \frac{n}{m}))$ work $(m \le n)$.

SEARCH T	TREES II: TREAPS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

QUICKSORT AND BSTS

- Write out the recursion tree for quicksort.
 - Assume distinct keys.
- Annotate each node with the pivot picked at that stage.
- You get a BST.

SEARCH TREES II: TREAPS CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SEQUENCE TO BST

```
fun qs\_tree(S) =
 1
 2
         if |S| = 0 then LEAF
 3
         else let
               val p = pick \ a \ pivot \ from \ S
 4
 5
               val S_1 = \langle s \in S \mid s 
               val S_3 = \langle s \in S \mid s > p \rangle
 6
 7
               val (T_L, T_R) = (qs\_tree(S_1) \parallel qs\_tree(S_3))
 8
            in
 9
               NODE(T_L, p, T_R)
10
            end
```

- Unlike Quicksort, we do not know what elements will be in the tree, when we start.
 - We can not select a (n) (future?) element to be the root.

SEARCH TREES II: TREAPS	5/26
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

TREAPS

- Treap = TRee + hEAP
- A treap is a randomized BST that maintains balance in a probabilistic way.
- Each element/key gets a unique random priority
- The nodes in the treap satisfy **BST property**.
 - Keys are stored in-order in the tree.
- The associated priorities satify the (max) heap property.

SEARCH T	REES II: TREAPS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE MAX-HEAP PROPERTY

- Priority at each node is greater than the priorities of the children.
- Suppose we have S = (a, 3), (b, 9), (c, 2), (e, 6), (f, 5)

SEARCH TREES II: TREAPS FALL 2013 CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

7/26

Let's do an Example

Draw the treap for the following (key, priority) sequence.

(G,50),(C,35),(E,33),(H,29),(I,25),(B,24),(A,21),(L,16),(J,13), (K,9),(D,8)

SEARCH T	TREES II: TREAPS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

TREAPS

THEOREM

For any set S of unique key-priority pairs, there is exactly one treap T containing the key-priority pairs in S which satisfies the treap properties.

- Key k with highest priority must be at the root.
- All keys < k must be in the left subtree
- All keys > k must be in the right subtree
- Subtrees of k are constructed inductively in the same manner.

SEARCH T	TREES II: TREAPS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

BASIC BST OPERATIONS - SEARCH

1 fun search T
$$k =$$

2 let val
$$(_, v, _) = split(T, k)$$

- 3 **in** *v*
- 4 **end**

SEARCH 7	Frees II: Treaps
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

BASIC BST OPERATIONS - INSERT

- 1 fun insert T(k, v) =
- 2 let val (L, v', R) = split(T, k)
- 3 in join(L, SOME(k, v), R)
- 4 **end**

SEARCH 7	Frees II: Treaps
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

BASIC BST OPERATIONS - DELETE

- 1 fun delete T k =
- 2 let val $(L, _, R) = split(T, k)$
- 3 in join(L, NONE, R)
- 4 **end**
 - So if split and join are implemented the other more useful operations are covered.

SEARCH TREES II: TREAPS	12/26
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

JOIN AND SPLIT

•
$$split(T, k)$$
 : $BST \times key \rightarrow BST \times (data option) \times BST$

- *split* divides *T* into two BSTs,
 - one consisting of all the keys from T less than k
 - the other all the keys greater than k
- If k appears in the tree with associated data d then split returns SOME(d)
- Otherwise it returns NONE.

SEARCH 7	TREES II: TREAPS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

JOIN AND SPLIT

- join(L, m, R): BST × (key × data) option × BST → BST
- Takes a left subtree (L) an optional key-data pair m and a right subtree (R)
 - Assumes all keys in L are less than all keys in R.
 - If present, the optional key is also larger than all keys in L and smaller than all keys in R.
- Creates a new BST that is the union of *L* and *R* and *m*.

SEARCH TREES II: TREAPS	14/26
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

SPLIT ON TREAPS

- Split code does not have to change.
- Priority orders do not change.
- Split does not put a larger priority below a smaller priority.

SEARCH I	REES II: TREAPS
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SPLIT ON TREAPS

datatype BST = Leaf Node of (BST * BST * key * data) fun split(T, k) =1 23456789 case T of Leaf \Rightarrow (Leaf, NONE, Leaf) | $Node(L, R, k', v) \Rightarrow$ case compare(k, k') of $LESS \Rightarrow$ let val (L', r, R') = split(L, k)in (L', r, Node(R', R, k', v)) end $EQUAL \Rightarrow (L, SOME(v), R)$ 10 $GREATER \Rightarrow$ 11 let val (L', r, R') = split(R, k)12 in (Node(L, L', k', v), r, R') end

SEARCH TREES II: TREAPS	16/26
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

JOIN ON TREAPS

- Join needs to change!
 - The priorities of the roots of two trees need to be compared.
 - The root with the larger priority becomes the new root.
- Basic join took the root of the first tree or the new node as the root.

```
1 fun join(T_1, m, T_2) =

2 case m of

3 SOME(k, v) \Rightarrow Node(T_1, T_2, k, v)

4 | NONE \Rightarrow

5 case T_1 of

6 Leaf \Rightarrow T_2

7 | Node(L, R, k, v) \Rightarrow Node(L, join(R, NONE, T_2), k, v)
```

Search 7	TREES II: TREAPS	17/26
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

JOIN ON TREAPS

```
1
         fun join(T_1, m, T_2) =
   23456789
         let
            fun singleton(k, v) = Node(Leaf, Leaf, k, v)
            fun join'(T_1, T_2) =
                case (T_1, T_2) of
                    (Leaf, \_) \Rightarrow T_2
                  \begin{array}{c} ( \_, \texttt{Leaf}) \Rightarrow T_1 \\ | (\texttt{Node}(L_1, R_1, k_1, v_1), \texttt{Node}(L_2, R_2, k_2, v_2)) \Rightarrow \end{array} 
                        if (priority(k_1) > priority(k_2)) then
 10
                           Node(L_1, join'(R_1, T_2), k_1, v_1)
 11
                        else
 12
                           Node(join'(T_1, L_2), R_2, k_2, v_2)
 13
         in
 14
             case m of
 15
                NONE \Rightarrow join'(T_1, T_2))
                SOME(k, v) \Rightarrow join'(T_1, join'(singleton(k, v), T_2))
 16
 17
         end
SEARCH TREES II: TREAPS
```

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

EXPECTED DEPTH OF A KEY

- Cost of split and join depend on the expected depth of a key.
- Given a set of keys *K* and priorities $p : ke_Y \rightarrow int$
 - Priorities are unique!
- Consider the elements of the tree laid out in order
 - $key_i < key_j \Rightarrow \cdots, key_i, \cdots, key_j, \cdots$
 - $key_j < key_i \Rightarrow \cdots, key_j, \cdots, key_i, \cdots$
- A_i^{\prime} is an indicator variable:
 - $A_i^j = 1$ if key_i is an ancestor of key_i in the treap.
 - $A_i^j = 0$ otherwise.

SEARCH T	REES II: TREAPS	19/26
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

$\begin{array}{c} \textbf{EXPECTED DEPTH OF A KEY} \\ & \cdots, key_i, \cdots, key_j, \cdots \\ & key_i < key_j \\ p_i = \max(p_i, \dots, p_j) \\ p_k = \max(p_i, \dots, p_j) \\ i < k < j \\ key_i \\ key_i \\ key_i \\ key_i \\ key_i \\ key_i \\ key_j \\ key_i \\ key_j \\ key_i \\ key_$

SEARCH TREES II: TREAPS	20/26
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

$\begin{array}{c} \textbf{EXPECTED DEPTH OF A KEY} \\ & \cdots, key_{j}, \cdots, key_{i}, \cdots \\ & key_{j} > key_{j} \\ p_{i} = \max(p_{j}, \ldots, p_{i}) \\ p_{i} = \max(p_{j}, \ldots, p_{i}) \\ p_{k} = \max(p_{j}, \ldots, p_{i}) \\ p_{i} = \max(p_{i}, \ldots, p_{i}) \\ p_{i} = \max(p_{i}$

SEARCH TREES II: TREAPS	21/26
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

EXPECTED DEPTH OF A KEY

$$\mathbf{E} [\text{depth of } i \text{ in } T] = \mathbf{E} \left[\sum_{j=1, j \neq i}^{n} A_{i}^{j} \right] = \sum_{j=1, j \neq i}^{n} \mathbf{E} \left[A_{i}^{j} \right]$$
$$\mathbf{E} \left[A_{i}^{j} \right] = \frac{1}{|j-i|+1} \quad (\text{Why?})$$

SEARCH TREES II: TREAPS CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

EXPECTED DEPTH OF A KEY

$$\begin{aligned} \mathbf{E} \left[\text{depth of } i \text{ in } T \right] &= \sum_{j=1, j \neq i}^{n} \frac{1}{|j-i|+1|} \\ (\text{Split} \mid \mid \Rightarrow) &= \sum_{j=1}^{i-1} \frac{1}{i-j+1} + \sum_{j=i+1}^{n} \frac{1}{j-i+1} \\ (\text{Change variables } \Rightarrow) &= \sum_{k=2}^{i} \frac{1}{k} + \sum_{k=2}^{n-i+1} \frac{1}{k} \\ &= H_i - 1 + H_{n-i+1} - 1 \\ (\ln n < H_n < \ln n + 1 \Rightarrow) &< \ln i + \ln(n-i+1) \\ &= O(\log n) \end{aligned}$$

 Relative (sorted) position of a key determines expected depth in treap.

SEARCH TREES II: TREAPS	23/26
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

COST OF SPLIT AND JOIN

THEOREM

For treaps

- join(T₁, m, T₂) returning T
- *split*(*T*,(*k*,*v*))

have $O(\log |T|)$ expected work and span.

See notes for short proofs.

SEARCH 7	Frees II: Treaps
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

EXPECTED MAX DEPTH OF A TREAP

- Expected depth of treap node is $O(\log n)$
 - Find takes on the average $O(\log n)$ work and span.
- What is the expected maximum depth of a treap?
 - Why is this important?
 - Expected worst-case cost!
- But $\mathbf{E}[\max_i \{A_i\}] \neq \max_i \{\mathbf{E}[A_i]\}!$
- It turns out this is almost the same problem as the expected span of the quicksort.

SEARCH TREES II: TREAPS
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- Y_n is the size of the larger partition.
- $D(n) = D(Y_n) + 1 \Rightarrow D(n) \in O(\log n)$

SEARCH TREES II: TREAPS	26/26
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

15-210 Parallel and Sequential Algorithms and Data Structures

Lecture 23

MORE WITH TREES

Synopsis

- Ordered Sets and Tables
- Bingle Revisited
- Augmenting Balanced Trees
- Ordered Tables with Reduced Values
- Application Examples

MORE WI	TH TREES
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

ORDERED SETS AND TABLES

- So far, we did not worry about the ordering of the values/keys in sets and tables.
 - ► Find, union, intersect, merge, etc.
- For many applications, exploiting any order is very important!
 - Find all elements between 3 and 17.
 - Find all customers who bought more that 5 of one item.
 - Find all emails in the week of March 31st.
- Ordered sets and tables.

MORE WI	гн Trees
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

ORDERED SET ADT

- We have a totally ordered universe U, and S represents the set of all subsets of U.
- With the following operations

all operations supported by the Set ADT, and

More with Trees	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

ORDERED SET ADT

- Underlying implementation uses trees.
- first and last are easy
 - first traverses down the left spine to the minimum value.
 - last traverses down the right spine to the maximum value.
- getRange involves two splits.

IMPROVISING BINGLE

```
signature INDEX = sig
type word = string
type docId = string
type 'a seq
type index
type docList
val makeIndex : (docId * string) seq -> index
val find : index -> word -> docList
val And : docList * docList -> docList
val And : docList * docList -> docList
val AndNot : docList * docList -> docList
val Or : docList * docList -> docList
val size : docList -> int
val toSeq : docList -> docId seq
end
```

- docList is a set.
- index is a table.

More with Trees		6/23
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

IMPROVISING BINGLE

- We want to limit the search to certain domains (e.g., cmu.edu)
 - or docs with a certain name.
- We want to add

val inDomain : domain * docList -> docList

For example

MORE WI	TH TREES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

IMPROVISING BINGLE

- Assume doc ids are URLs.
- Assume they are "reverse" lexicographically ordered.
 - The last character is the most important!
- 1 fun inDomain(domain, L) =
 2 getRange(L, domain, string.pre
 - getRange(L, domain, string.prepend(domain, "\$"))

• \$ is a character that is greater than any character.

More with Trees	8/23
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- Sets (and underlying trees) hold the key and any associated values.
- We can add other additional values to help with other search operations.
 - Track key positions and certain subset sizes.
- rank(S, k): How many elements in S are less than k?
- select(S, i): Which element in S has rank i?
- splitIdx(S,i): Split S into two sets: first i keys and the remaining n i keys.

More	WITH	TREES	
	~		

2 15-210 Parallel and Sequential Data Structures and Algorithms

rank(S,k)	:	$\mathbb{S} \times \mathbb{U} \to \textit{int}$	=	$ \left\{ k' \in \mathcal{S} \mid k' < k ight\} $
select(S ,i)	:	$\mathbb{S} imes \mathit{int} ightarrow \mathbb{U}$	=	$k \text{ such that } \{k' \in S \mid k' < k\} = i$
splitIdx(S ,i)	:	$\mathbb{S} imes int ightarrow \mathbb{S} imes \mathbb{S}$	=	$egin{aligned} &\{ m{k} \in m{S} \mid m{k} < ext{select}(m{S},m{i}) \} , \ &\{ m{k} \in m{S} \mid m{k} \geq ext{select}(m{S},m{i}) \}) \end{aligned}$

• Without additional information stored with the keys, these operations would take $\theta(|S|)$ work.

More with Trees	10/23
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

• Let
$$S = \{1, 2, 3, 4, 5, 6\}$$

- rank(S, 4) = $|\{1, 2, 3\}| = 3$
- select (S, 3) = 4 since rank(S, 4) = 3
- splitIdx(S, 3) = ({1,2,3}, {4,5,6})

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- At each node keep the size of the subtree.
- This allows size and the three other operations in O(d) work with d as the depth of the tree.
- Size can be computed on the fly by adding 1 to the sum of the subtree sizes!

ND ALGORITHMS

MORE W	ITH TREES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES A

SELECT WITH AUGMENTED TREES

MORE WI	TH TREES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

RANK AND SPLITIDX

- rank is easy: just split and return the size of the left tree!
- splitIdx is just like split (or you navigate using sizes (as opposed to key values))

More with Trees	14/23	
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	Fall 2013	

14/23

ORDERED TABLES WITH REDUCED VALUES

- Maintain at each node a "sum" based on an associative operator f.
 - Updated during insert/delete, merge, extract, etc.
- Given $f: v \times v \rightarrow v$, and I_f
 - All operations on ordered tables are supported, and

 $reduceVal(A): \mathbb{T} \rightarrow V = reduce f I_f A$

- We want to be able to do reduceVal in O(1) work (assuming f needs O(1) work).
- f is known beforehand!

More with Trees	15/23
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

ORDERED TABLES WITH REDUCED VALUES

More with Trees	16/23
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

IMPLEMENTATION

```
datatype Treap = Leaf | Node of (Treap × Treap
1
2
                              \times key \times data \times data)
3
   fun reduceVal(T) =
      case T of
4
5
         Leaf \Rightarrow Reduce.I
       | Node(\_,\_,\_,\_,r) \Rightarrow r
6
   fun makeNode(L, R, k, v) =
7
      Node(L, R, k, v, Reduce.f(reduceVal(L),
8
9
                               Reduce.f(v, reduceVal(R))))
```

MORE WI	TH TREES
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

IMPLEMENTATION

$$\begin{array}{ll} & \text{fun } join'(T_1, T_2) = \\ & \text{case } (T_1, T_2) \text{ of} \\ & (Leaf, _) \Rightarrow T_2 \\ & \text{i} (_, Leaf) \Rightarrow T_1 \\ & \text{j} (Node(L_1, R_1, k_1, v_1, s_1), Node(L_2, R_2, k_2, v_2, s_2)) \Rightarrow \\ & \text{if } (Node(L_1, R_1, k_1, v_1, s_1), Node(L_2, R_2, k_2, v_2, s_2)) \Rightarrow \\ & \text{if } (priority(k_1) > priority(k_2)) \text{ then} \\ & makeNode(L_1, join(R_1, T_2), k_1, v_1) \\ & \text{else} \\ & \text{makeNode}(join(T_1, L_2), R_2, k_2, v_2) \end{array}$$

More with Trees
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

EXAMPLE APPLICATION - SALES DATA

- Sales information are kept by the time stamp in an ordered table.
 - ► (2/3/2013 12 : 30, \$120)
- Find the total sales between t_1 and t_2
- *f* is +
- reduceVal(getRange(T, t₁, t₂)) takes O(logn)
 work

EXAMPLE APPLICATION - STOCK DATA

- Stock prices information are kept by the time stamp in an ordered table.
 - ► (2/3/2013 12 : 30, \$120/*share*)
- Find the maximum price between t_1 and t_2
- f is max
- reduceVal(getRange(T, t₁, t₂)) takes O(logn)
 work

MORE WITH TREES
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

EXAMPLE APPLICATION- INTERVAL TREES

- An interval is a region on the real number line starting at x_l and ending at x_r
- an interval table supports the following operations on intervals:

insert(A ,I)	:	$\mathbb{T} imes (\mathit{real} imes \mathit{real}) ightarrow \mathbb{T}$	insert interval I into table A
delete(A , I)	:	$\mathbb{T} imes (\mathit{real} imes \mathit{real}) o \mathbb{T}$	delete interval I from table A
count(A, x)	:	$\mathbb{T} \times real \rightarrow int$	return the number of
			intervals crossing x in A

More with Trees	21/23
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

INTERVAL TREES

- Organize intervals as a BST based on lower-boundary as key
- Use the max upper boundary in the subtree as additional information.

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

COUNTING INTERVALS

1 2	datatype intTree = Leaf Node of (intTree × intTree × real × real × real × real)
3 4	fun $overlap(x, low, high) =$ if $(x \ge low \& x \le high)$ then 1 else 0
5	fun $countInt(T, x) =$
6	case T of
7	$Leaf \Rightarrow 0$
8	$ $ Node(L, R, low, high, max) \Rightarrow
9	if $(x > max)$ then 0
10	else countInt(L,x)+
11	overlap(x, low, high) +
12	if $(x > low)$ then countInt (R, x) else 0

More with Trees	23/23
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 24

DYNAMIC PROGRAMMING

Synopsis

- Dynamic Programming
- Subset Sum Problem
- Minimum Edit Distance Problem
- Additional example applications

Dynamic	C PROGRAMMING
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

2/28 Fall **2013**

Algorithmic Paradigms Contrasted

 Inductive Paradigms combine solutions to smaller subproblem(s).

Paradigm	Subproblems	Reuse of Solutions
Divide and Conquer	> 1	NO
Contraction	= 1	NO
Greedy	= 1	NO
Dynamic Programming	> 1	YES

Dynamic Programming	3/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

REUSING SOLUTIONS

• You can save some work if you semember the solutions to the smaller subproblems.

Dynamic Programming	4/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

Resusing Solutions

• How much work does this code need?

1 fun
$$fib(n) =$$

2 if $(n \le 1)$ then 1
3 else $fib(n-1) + fib(n-2)$

• It turns out $W_{fib}(n) = O(c^n)$ (Why?)

DYNAMIC PROGRAMMING	
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

5/28 Fall **2013**

)

REUSING SOLUTIONS

- It also turns out that fib(n) can be computed with O(n) work.
 - Note that n is not the right measure for modeling work here (Why?) but it is convenient!

Dynamic Programming	6/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

SOLUTION COMPOSITION GRAPH

DAG

- Each node is a subproblem instance
- Edges model dependences
- Edges go from smaller to larger subproblems
- Vertices with no in-edges are base cases
- Vertices with no out edges are the instance we are trying to solve.

Dynamic Programming	7/28
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

DYNAMIC PROGRAMMING

- Dynamic programming can be seen as evaluating a DAG by navigating from the leaves to the root.
 - Computing the subsolutions at each node as needed and when possible.
- Work and span fall out of the DGA structure!
 - Work: sum over nodes
 - Span: Find the longest path!
- Many DP solutions have significant parallelism, but some do not.

Dynamic	C PROGRAMMING
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

8/28 Fall **2013**

DYNAMIC PROGRAMMING

- The challenge is to find the appropriate DAG structure for a given problem.
- DP is most suitable for optimization problems.
 - Solution optimizes (minimizes/maximizes) some criteria.
- DP is also suitable for decision problems.
 - Is there a solution to this instance?

9/28 Fall **2013**

Dynamic Programming

• Top-down approach

- Starts at the root
- Uses recursion to solve the subproblems
- But remembers the solutions memoization.
- Usually elegant and evaluates only the needed subproblems.

Bottom-up approach

- Starts at the leaves
- Traverses the DAG in some fashion.
- All subproblems may need to be computed.
- More parallelizable.
- Coming up with the abstract inductive structure is important.
 - Sharing and coding comes later.

Dynamic Programming	10/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE SUBSET SUM PROBLEM

THE SUBSET SUM (SS) PROBLEM

Given a multiset of positive integers *S* and a positive integer value *k*, determine if there is any $X \subseteq S$ such that $\sum_{x \in X} x = k$.

- Given $S = \{1, 4, 2, 9, 9\}$
 - No solution for k = 8
 - For *k* = 7 {1, 4, 2} is a solution.
- NP—hard if k is unconstrained.
- We will include *k* in the work bounds.
- k is polynomial in |S|, work is polynomial in |S|.
- *Pseudo-polynomial work* solution.

Dynamic Programming		11/28
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

The Subset Sum Problem

- Brute force: Consider all 2ⁿ subset for a total work of O(n2ⁿ).
- Divide and Conquer: also ends up being exponential work.
- Sharing solutions however works.

DYNAMIC PROGRAMMING		
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	

12/28 Fall **2013**

THE SUBSET SUM PROBLEM

- To solve SS(S, k), pick some element $a \in S$
- Solve (recursively) $SS(S \setminus \{a\}, k a)$
 - If there is a solution, we are done.
- If not, solve $SS(S \setminus \{a\}, k)$.

$$\begin{array}{lll} & \text{fun } SS(S,k) = \\ & \text{case } (showl(S), k) \text{ of} \\ & (_,0) \Rightarrow true \\ & | (NIL,_) \Rightarrow false \\ & | (CONS(a,R),_) \Rightarrow \\ & \text{if } (a > k) \text{ then } SS(R, k) \\ & \text{else } (SS(R,k-a) \text{ orelse } SS(R, k)) \end{array}$$

DYNAMIC PROGRAMMING CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms 13/28 Fall **2013**

THE SUBSET SUM PROBLEM DAG

Dynamic Programming	14/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

THE SUBSET SUM PROBLEM DAG

• How many distinct subproblems do we need to solve?

Dynamic Programming	15/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

THE SUBSET SUM PROBLEM

- For SS(S, k), there are only |S| distinct lists ever used.
- The second argument decreases down to 0, so has at most k + 1 values.
- So we have at most |S|(k+1) = O(k|S|)instances.
- Each instance has constant work \Rightarrow total O(k|S|)work.
- Longest path in DAG is $|S| \Rightarrow$ span is O(|S|)
 - O(k) parallelism.

DYNAMIC	C PROGRAMMING	16/28
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

The Subset Sum Problem

- Why pseudo-polynomial?
- For k, the input size is log k, but the work is O(2^{log k}|S|)
 - Exponential in input size!
- If $k \le |S|^c$ for some constant c, then work is $O(k|S|) = O(|S|^{c+1})$ on input of size $c \log |S| + |S|$

DYNAMIC PROGRAMMING CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

MINIMUM EDIT DISTANCE (MED)

Given a character set Σ and two sequences of characters $S = \Sigma^*$ and $T = \Sigma^*$, determine the minimum number of insertions and deletions of single characters required to transform *S* to *T*.

- Start with $S = \langle A, B, C, A, D, A \rangle$
 - Delete C
 - Delete last A
 - Insert a C
- You get $T = \langle A, B, A, D, C \rangle$
- So MED(S, T) = 3

DYNAMIC	C PROGRAMMING
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

APPLICATIONS OF MED

- Spelling correction
 - What is an English word close to Ynglisd?
- Storing multiple versions of files efficiently.
- Approximate matching of genome sequences

- Given S = s :: S' and T = t :: T'
- If s = t, MED(S, T) is determined by S' and T'
- Otherwise we have two subproblems:
 - Find MED(S, T') consider a deletion from T to get T'
 - Find MED(S', T) consider an deletion to S to get S'
- Find the minimum and add 1.

1 fun
$$MED(S, T) =$$

2 case $(showl(S), showl(T))$ of
3 $(_, NIL) \Rightarrow |S|$
4 $|(NIL, _) \Rightarrow |T|$
5 $|(CONS(s, S'), CONS(t, T')) \Rightarrow$
6 if $(s = t)$ then $MED(S', T')$
7 else $1 + min(MED(S, T'), MED(S', T))$

- If run recursively, this would take exponential work.
 - Binary tree with linear depth!
- But there is significant sharing!

DYNAMIC	PROGRAMMING	21/28
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

Dynamic Programming	22/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- There are at most |S| + 1 possible values for the first argument.
- There are at most |T| + 1 possible values for the second argument.
- So we have $(|S| + 1) \times (|T| + 1) = O(|S||T|)$ possible subproblems, each of constant work.
 - Total work is O(|S||T|).
- Total span is O(|S| + |T|) (Why?)

Dynamic Programming	
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THE LONGEST COMMON SUBSEQUENCE (LENGTH)

- A longest common subsequence of strings S₁ and S₂ is a longest subsequence shared by both.
- LCS(ABCDEF, EBCEG) = BCE
- May be empty or not necessarily unique.
- $LLCS(S_1, S_2)$ computes the length of the LCS.
- Subproblem structure is very similar to MED. (Work it out!)

Dynamic	C PROGRAMMING
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Optimal Change

- For a currency with coins C₁, C₂,... C_n = 1 (cents), what is the minimum number of coins needed to make K cents of change.
- US Currency has 25, 10, 5, 1 cent coins.
- To give back 63 cents, you need to give 25+25+10+1+1+1, a total of 6 coins.
 - Greedy works in this case, but not always
 - If you had a 21 cent coin (for some strange reason), greedy would not work.
- DP solutions solves two subproblems $K_1 = i$ and $K_2 = K i$ for all $i = 1, ... \lfloor K/2 \rfloor$
- Then chooses *i* that minimizes the sum of the solutions

Dynamic Programming	25/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

0-1 KNAPSACK

- Items with "benefit" p_i and cost w_i
 - $x_i = 1$ or 0 take item *i* or not.
- Maximize $\sum_{j=1}^{n} p_j \cdot x_j$
- Subject to $\sum_{j=1}^{n} w_j \cdot x_j \leq c$
- Optimal Exam Strategy Problem (:-)
 - Questions 1 through n, worth p_1, \ldots, p_n points.
 - Time estimate for solving question j is w_j
 - You have T units of time.
 - Which questions do you solve to maximize your grade?
 - Subproblem structure is resembles the thinking for subset sum problem

Dynamic Programming	26/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

OPTIMAL MATRIX MULTIPLICATION

- We need to multiply *n* matrices $A_1 \times A_2 \times \cdots \times A_n$
 - A_i has sizes $p_{i-1} \times p_i$ and A_{i+1} has sizes $p_i \times p_{i+1}$
 - Multiplying A_i and A_{i+1} needs $O(p_{i-1} \cdot p_i \cdot p_{i+1})$ work
- What is the best way to "parenthesize" the sequence to minimize the number of scalar mutiplications?
- m[i, j] is the minimum number of scalar multiplications for multiplying $A_i \times \cdots \times A_j$
 - A subproblem

Dynamic	C PROGRAMMING
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

OPTIMAL MATRIX MULTIPLICATION

$$m[i,j] = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1} \cdot p_k \cdot p_j\} & i < j \end{cases}$$

- Find that k that minimizes the cost of multiplying $A_i \times \cdots \times A_j$
- We need to compute m[1, n] and how we got that (the choice of k's when we are minimizing subproblems)

Dynamic Programming	28/28
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

15-210 Parallel and Sequential Algorithms and Data Structures

Lecture 25

DYNAMIC PROGRAMMING – II

Synopsis

- Top-down Dynamic Programming
- Bottom-up Dynamic Programming
- Optimal Binary Search Trees

2/25 <u>Spring</u> 2013

TOP-DOWN DP

- Run the recursive code as is:
 - Start with the root
 - Work down to the leaves
- Memoization: We need to avoid redundant computation.
 - If we encounter the same arguments, we just look up the solution
 - If not, we compute once and store in a memo table.
- Checking for equal arguments could be costly.
 - We use simple surrogates for actual arguments (e.g., integers)

DYNAMIC PROGRAMMING – II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

TOP-DOWN DP FOR MED

- MED takes two sequences and on each recursive call, uses suffixes of the original sequences.
 - There is a one-to-one mapping from non-negative integers to suffixes (rather to suffix lengths!)
 - Could also use prefixes!
 - This makes indexing a bit easier.

DYNAMIC PROGRAMMING – II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

ORIGINAL MED CODE

1 fun
$$MED(S, T) =$$

2 case $(showl(S), showl(T))$ of
3 $(_, NIL) \Rightarrow |S|$
4 $|(NIL, _) \Rightarrow |T|$
5 $|(CONS(s, S'), CONS(t, T')) \Rightarrow$
6 if $(s = t)$ then $MED(S', T')$
7 else $1 + min(MED(S, T'), MED(S', T))$

DYNAMIC PROGRAMMING – II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

MED WITH SURROGATES

DYNAMIC PROGRAMMING – II6/25CMU-Q15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMSSPRING 2013

Memo Table

- We can now add a memo table, accessed with (*i*, *j*)
 - We can also use a two dimensional array!

1 fun memo f
$$(M, a) =$$

2 case find (M, a) of
3 SOME $(v) \Rightarrow (M, v)$
4 | NONE \Rightarrow let
5 val $(M', v) = f(M, a)$
6 in
7 $(update(M', a, v), v)$
8 end

DYNAMIC PROGRAMMING – II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

MEMOIZED MED

- Purely functional
- but highly sequential

Dynamic Programming – II	8/25
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

BOTTOM-UP DP

- Start with the leaves
- Works through the subproblems consistent with the DAG
 - if (u, v) is a dependency edge in the DAG, compute u before v, for all such u.
 - All values will be available for v when they are needed!
- Uses a memo table.
- Understanding the DAG structure is important

DYNAMIC PROGRAMMING – II CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Dynamic Programming – II	10/25
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	SPRING 2013

We can go by diagonals.

Dynamic Programming – II	11/25
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

We can go by rows.

Dynamic Programming – II	12/25
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

We can go by columns.

Dynamic Programming – II	13/25
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

1 2 3 4 5 6	fun $MED(S, T) = let$ fun $MED'(M, (i, 0)) = i$ $\mid MED'(M, (0, j)) = j$ $\mid MED'(M, (i, j)) = case (S_i = T_j) of$ $true \Rightarrow M_{i-1,j-1}$ $\mid false \Rightarrow 1 + min(M_{i,j-1}, M_{i-1,j})$	
7	fun diagonals $(M, k) =$	
8	if $(k > S + T)$ then M	
8 9	else let	
10	val $s = \max(0, k - T)$	
11	val $e = \min(k, S)$	
12	val $M' = M \cup \{(i, k - i) \mapsto MED'(M, (i, k - i)) : i \in \{s,, e\}\}$	
13	in	
14	diagonals(M', k + 1)	
15	end	
16 17 18	<pre>in diagonals({},0) end</pre>	
DYNAMI	C PROGRAMMING – II	14/25
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	SPRING 2013

- In Round 0, we compute $M_{0,0}$
- In Round 1, we compute $M_{0,1}$ and $M_{1,0}$
- In Round 2, we compute $M_{0,2}$, $M_{1,1}$, $M_{2,0}$
- In Round 3, we compute *M*_{0,3}, *M*_{1,2}, *M*_{2,1}, *M*_{3,0}
- 9...
- How about parallelism?

- Let's revisit BSTs
 - The cost of finding a key is proportional to the depth of the key in the tree.
 - Fully balanced BST with n nodes ⇒ average depth is log n
- Suppose you have a (fixed/static) dictionary and you know the **probability** that a given key will be accessed
- What is the BST structure with the lowest overall cost?

DYNAMIC PROGRAMMING – II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

Optimal BST

The optimal binary search tree (OBST) problem is given an ordered set of keys S and a probability function $p: S \rightarrow [0:1]$, to find \hat{T}

$$\hat{T} = argmin_{T \in Trees(S)}\left(\sum_{s \in S} d(s, T) \cdot p(s)\right)$$

where Trees(S) is the set of all BSTs on S, and d(s, T) is the depth of the key s in the tree T (Assume the root has depth 1).

DYNAMIC PROGRAMMING – II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SPRING 2013

- How many binary search trees of n distinct keys are there?
 - Hint: Think of matrix chain multiplication!
- in DP, an optimal solution should be based on optimal subproblem solutions.
- One of the keys (S_r) must be at the root of the optimal tree.
 - Both subtrees **must be optimal**.
- How do we select S_r ?
 - Pick the key with highest probability and put it at the root, and recurse?
 - Does not really work!

DYNAMIC	E PROGRAMMING – II	19/25
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Spring 2013

- Try all elements as a potential root
- For each, recursively find their optimal solutions
- Pick the best among the |S| possibilities.
- All elements under a root are contiguous in the sorted sequence.

DYNAMIC PROGRAMMING – II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

- Use (i, j) as a surrogate for the tree spanning S_i, \ldots, S_j .
- Let *T* be the tree covering S_i, \ldots, S_j with root $S_r, i \le r \le j$, with $T_L T_R$ as the subtrees.

$$Cost(T) = \sum_{s \in T} d(s, T) \cdot p(s)$$

= $p(S_r) + \sum_{s \in T_L} (d(s, T_L) + 1) \cdot p(s) + \sum_{s \in T_R} (d(s, T_R) + 1) \cdot p(s)$
= $\sum_{s \in T} p(s) + \sum_{s \in T_L} d(s, T_L) \cdot p(s) + \sum_{s \in T_R} d(s, T_R) \cdot p(s)$
= $\sum_{s \in T} p(s) + Cost(T_L) + Cost(T_R)$

• Find the $r, i \leq r \leq j$ that minimizes this cost.

Dynamic Programming – II	21/25
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

OPTIMAL BINARY SEARCH TREES

1 fun
$$OBST(S) =$$

2 if $|S| = 0$ then 0
3 else $(\sum_{s \in S} p(s)) + \min_{i \in \langle 1...|S| \rangle} (OBST(S_{1,i-1}) + OBST(S_{i+1,|S|}))$

- How many possible subproblems are there?
 - A subsequence can end at n different positions
 - For the *ith* end position there are *i* possible start positions.
- $\sum_{i=1}^{n} i = n(n+1)/2 \in O(n^2)$ possible subproblems.
- Longest path of dependences in the DAG is O(n) since recursion can go down for n levels (Why?)

Dynamic Programming – II	22/25
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

WORK AND SPAN

- Cost of each subproblem is not uniform! (Why?)
- Each subproblem has O(n) work and O(log n) span (Why?)
- We get total O(n³) work and O(n log n) span.
 (Why?)

23/25 Spring 2013

CODE FOR OPTIMAL BST

DYNAMIC PROGRAMMING – II CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms 24/25 Spring 2013

BOTTOM-UP OPTIMAL BST

 For a bottom up version, a triangular table is sufficient

C15	C25	C35	C45	C 5
C14	C24	C34	C4	
C13	C23	C3		
C12	C 2			
C1		•		

cij = optimal cost of the tree covering Sij

Dynamic Programming – II	25/25
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	SPRING 2013

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 26

HASH TABLES

Synopsis

- Hashing and Hash Tables
- Handling Collisions
 - Linear Probing
 - Quadratic Probing

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

HASH TABLES – BASIC IDEAS

- Data structure that allows you to quickly insert, delete, and retrieve items with expected O(1) work.
- Relies on
 - ▶ a fixed size array data structure (of some size *m*), and
 - a hash function that can map from a potentially infinite space of keys to integer indexes $[0, \ldots, m-1]$
- Disadvantages
 - Collisions
 - Increased memory use to avoid collisions
 - Not work efficient for findmin, findmax, or extracting keys in sorted order

HASH TAI	BLES	3/55
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Spring 2013

HASH TABLE - BASIC IDEAS

HASH TA	BLES	
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms	S

HASH FUNCTIONS

- There is a deep theory behind hash functions.
- We will be interested in some simple functions.
- We will assume hash functions have the idealized property of simple uniform hashing:
 - The hash function uniformly distributes keys in range
 [0,...,m-1]
 - Hash value for one key is independent of the hash value for another key.

HASH TABLES

HASH FUNCTIONS

 For integers key we can use a linear congruential hash function

$$h(x) = (ax + b) \mod m$$

where $a \in [1, ..., m - 1]$, $b \in [0, ..., m - 1]$, and *m* is prime.

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

HASH FUNCTIONS

• For strings, we can use a polynomial like

$$h(S) = \left(\sum_{i=1}^{|S|} s_i a^i\right) \mod m$$

HASH TABLES

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

HASH TABLES

- Support insert, find and delete.
- Can implement abstract data types *Set* and *Table*.
- Do not require total ordering on the universe of keys.
- *Collision* is the main issue
 - Two keys hash to the same location.
 - Impossible to avoid if we do not know the keys in advance
 - ★ Size of key universe >> size of table.

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

COLLISIONS

- For a table size of 365, one needs 23 keys for a 50% chance of collision and 66 for a 99% chance of collision (Why?)
 - Birthday paradox

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

HANDLING COLLISIONS

Separate chaining

 Store elements not in a table, but in linked lists (containers, bins) hanging off the table.

Open addressing:

Put everything into the table, but not necessarily into cell h(k).

The perfect hash:

When you know the keys in advance, construct hash functions that avoids collisions entirely.

Multiple-choice hashing/Cuckoo hashing:

• Consider exactly two locations $h_1(k)$ and $h_2(k)$ only.

CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

HANDLING COLLISIONS

- We will only consider the first two.
- We will assume we have a set *n* keys *K* and a hash function $h : ke_Y \rightarrow [0, ..., m-1]$ for some *m*.

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- Maintain an array of linked lists (buckets).
- Keys that hash to the same value live in the same list at location h(k)
- **Insertion**: Insert at the beginning
 - Multiple inserts for the same key \Rightarrow traverse the list
 - May as well insert at the end.
- **Find**: hash to h(k) and search in the list.
- Delete: remove from the list.

• Costs depend on the *load factor* $\lambda = n/m$ which is also the average length of a list.

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

13/55 <u>Spring</u> 2013

- Assume h(k) takes O(1) work and we have simple uniform hashing
- Unsuccessful search takes expected $\Theta(1 + \lambda)$ work.
 - O(1) for h(k) and λ for traversing the list.

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- Successful search takes expected $\Theta(1 + \lambda)$ work.
- Cost of Successful search = Cost of unsuccessful search at the time of insertion (Why?)
- With *i* keys, the unsuccesssful search would take (1 + i/m) work.
- Averaging over *i* we get

$$\frac{1}{n}\sum_{i=0}^{n-1}(1+i/m) = 1+(n-1)/2m = 1+\lambda/2-\lambda/2m = \Theta(1+\lambda)$$

 Considering constant factors, successful search looks at 1/2 the list on the average.

HASH TA	BLES	15/55
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Spring 2013

OPEN ADDRESSING

- No lists everything is stored in the array directly
- The arrays is some constant factor larger than the maximum number of keys we want to store.

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Hash Tables18/55CMU-Q15-210 Parallel and Sequential Data Structures and AlgorithmsSpring 2013

Insert 100

Hash Tables19/55CMU-Q15-210 Parallel and Sequential Data Structures and AlgorithmsSpring 2013

Insert 121

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

20755 SPRING 2013

Hash Tables21/55CMU-Q15-210 Parallel and Sequential Data Structures and AlgorithmsSpring 2013

Insert 169

Hash Tables22/55CMU-Q15-210 Parallel and Sequential Data Structures and AlgorithmsSpring 2013

Insert 196

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

23/55 SPRING 2013

Insert 256 COLLISION because location

6 is full. Try location 6+1=7

HASH TABLES	24/55
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

Insert 289 COLLISION because location

9 is full. Try location (9+1)mod 10=0

HASH TABLES	25/55
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Spring 2013

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SPRING 2013

Insert 289 COLLISION because location

9 is full.

Try location (9+1)mod 10= 0 FULL

Try location (9+2)mod 10= 1 FULL

Try location (9+3)mod 10= 2 AVAILABLE

HASH	TABLES
CMU-	Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

28/55 <u>Spring</u> 2013

Insert 324 COLLISION because location

4 is full.

Try location (4+1)mod 10= 5 FULL

HASH TABLES	29/55
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

Insert 324 COLLISION because location

4 is full.

Try location (4+1)mod 10= 5 FULL

Try location (4+2)mod 10= 6 FULL

HASH TABLES	30/55
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

Insert 324 COLLISION because location

4 is full.

Try location (4+1)mod 10= 5 FULL

Try location (4+2)mod 10= 6 FULL

Try location (4+3)mod 10= 7 FULL

HASH TABLES	31/55
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

Insert 324 COLLISION because location
4 is full.
Try location (4+1)mod 10= 5 FULL
Try location (4+2)mod 10= 6 FULL
Try location (4+3)mod 10= 7 FULL
Try location (4+4)mod 10= 8 AVAILABLE

HASH TA	BLES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

AN EXAMPLE

Insert 361 COLLISION because location

1 is full.

Try location (1+1)mod 10= 2 FULL

HASH TABLES	33/55
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

AN EXAMPLE

Insert 361 COLLISION because location

1 is full.

Try location (1+1)mod 10= 2 FULL

Try location (1+2)mod 10= 3 AVAILABLE

HASH TABLES	3
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Spring

34/55 ring **2013**

OPEN ADDRESSING

- Open addressing uses an ordered sequence of locations.
- h(k, i) gives us the *i*th location for key k.
- (h(k, 0), h(k, 1), h(k, 2), ...) is the probe sequence.
- Try these locations in order until an empty cell is found and insert there.

OPEN ADDRESSING - INSERT

```
fun insert(T, k) =
1
2
    let
3
       fun insert'(T, k, i) =
          case nth T h(k,i) of
4
             NONE \Rightarrow update(h(k, i), k) T
5
          | \_ \Rightarrow insert'(T, k, i+1)
6
7
    in
       insert'(T, k, 1)
8
9
    end
```

- *T* must be an ST array otherwise work and span are not constant.
- Need to check if table is full and the key is already in the table or not.

HASH TABLES	36/55
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

OPEN ADDRESSING-SEARCH

1 fun find(
$$T, k$$
) =
2 let
3 fun find'(T, k, i) =
4 case nth T h(k, i) of
5 NONE \Rightarrow false
6 | SOME(k') \Rightarrow if (eq(k, k')) then true
7 else find'($T, k, i + 1$)
8 in
9 find'($T, k, 1$)
10 end

HASH TABLES
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

OPEN ADDRESSING-DELETE

- We can not just delete an items and set its cell to NONE! (Why ?)
- find will stop searching if it encounters an empty cell.
- Use lazy delete
 - Instead of deleting, use a special value HOLD.
 - 1 datatype α entry = EMPTY | HOLD | FULL of α
- Find and Insert will need to be changed accordingly.
- Lazy delete effectively increases load factor.
- Rehashing to the rescue!

HASH TABLES	38/55
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Spring 2013

OPEN ADDRESSING

- Linear Probing
- Quadratic Probing
- Double Hashing

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

LINEAR PROBING

- We check cell at $h(k, i) = (h(k) + i) \mod m$ in i^{th} probe.
- *m* possible probe sequences.
- Keys tend to cluster primary clustering.
 - Inserts add to a cluster
 - Probe sequences get longer and longer

HASH TABLES
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

IMPACT OF CLUSTERING

- Assume table is half full ($\lambda = 1/2$)
- Minimum clustering when every other cell is empty!
- Average probes for insert is 3/2
 - One probe to check cell h(k)
 - + with 1/2 chance try the next cell (which by design should be empty)

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

IMPACT OF CLUSTERING

- Worst case: all keys are clustered to the second half of the array. (Remember $\lambda = 1/2 \Rightarrow m = 2n$)
- How many probes for positions 0 through n 1?
 1 (Why?)
- How many probes when initial hash is to cell n?
 n (Why?)
- How many probes when initial hash is to cell n+1?

▶ *n* − 1 (Why?)

• Average is

 $(n+[n+(n-1)+(n-2)+...+1])/m = n/m+n(n+1)/2m \approx n/4$

Even though though the average cluster length is
 2, the cost is about n/4 probes.

HASH TABLES	42/55
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

- Given a hash table of size *m* and with $n = \lambda m$ keys.
- The cost of an unsuccessful search/insert is

$$\frac{1}{2}\left(1+\frac{1}{1-\lambda^2}\right)$$

• The cost of an successful search is

$$\frac{1}{2}\left(1+\frac{1}{1-\lambda}
ight)$$
 .

HASH TABLES

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Expected Probes for Insertion and Unsuccessful Search

HASH TA	BLES	44/55
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Spring 2013

Expected Probes for Insertion and Unsuccessful Search

HASH TABLES45/55CMU-Q15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMSSpring 2013

Expected Probes for Successful Searches

HASH TA	BLES	46/55
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Spring 2013

- We check cell at $h(k, i) = (h(k) + i^2) \mod m$ in i^{th} probe.
- Makes longer jumps
- Avoids primary clustering
- But has *secondary clustering*.
- Since there are *m* possible positions there are *m* probe sequences.
- Not all available cells get probed (Why?)

HASH TABLES CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

- If m is prime and the table is at least half empty, then quadratic probing will always find an empty location.
- Furthermore, no locations are checked twice.

- Consider two probe locations $h(k) + i^2$ and $h(k) + j^2$, $0 \le i, j < \lceil m/2 \rceil$.
- Suppose the locations are the same but $i \neq j$.

 $h(k) + i^{2} \equiv (h(k) + j^{2}) \mod m$ $i^{2} \equiv j^{2} \mod m$ $i^{2} - j^{2} \equiv 0 \mod m$ $(i - j)(i + j) \equiv 0 \mod m$

- Therefore, either i j or i + j are divisible by m.
- But since both i j and i + j are less than m and m is prime, they cannot be divisible by m.
- Thus the first $\lceil m/2 \rceil$ probes are distinct and guaranteed to find an empty location.

HASH TABLES	50/55
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

 Computing the next hash value is only slightly more expensive

$$h_i - h_{i-1} \equiv (i^2 - (i-1)^2) \mod m$$

 $h_i \equiv (h_{i-1} + 2i - 1) \mod m$

- If the table gets too full, one can resize and rehash
 - Constant additional overhead

HASH TABLES CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms

DOUBLE HASHING

- Uses two hash-functions:
 - initial location
 - size of the jump
- *ith* probe is

$$h(k, i) = (h_1(k) + i \cdot h_2(k)) \mod m.$$

- Different keys are likely to have different values jump function if they collide.
- Avoids secondary clustering
- *h*₂(*k*) should be relatively prime to *m* to probe each locations.
 - *m* prime and $0 < h_2(k) < m$ is one option.

HASH TABLES	52/55
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	SPRING 2013

DOUBLE HASHING

 The average number of probes for an unsuccessful search or an insert is at most

$$1 + \lambda + \lambda^{2} + \dots = \left(\frac{1}{1 - \lambda}\right)$$

Why?

 The average number of probes for a successful search is

$$\frac{1}{\lambda}\left(1+\ln\left(\frac{1}{1-\lambda}\right)\right)$$

 Same argument of averaging over probes at insertion time.

HASH TABLES	53/55
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	SPRING 2013

DOUBLE HASHING

λ	1/4	1/2	2/3	3/4	9/10
successful unsuccessful					

- Allows for smaller tables than linear or quadratic probing
- Higher cost for hash function

HASH TABLES CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

PARALLEL HASHING

- injectCond(IV, S): $(int \times \alpha)seq \times (\alpha option)seq \rightarrow (\alpha option)seq$.
- Conditionally writes each value v_j into location i_j of S
 - if the location is set to NONE

```
fun insert(T, K) =
   123456789
        let
          fun insert'(T, K, i) =
             if |K| = 0 then T
             else let
                val T' = injectCond(\{(h(k,i),k): k \in K\}, T)
                val K' = \{k : k \in K \mid T[h(k, i)] \neq k\}
             in
                insert'(T', K', i + 1)
                                             end
 10
        in
 11
          insert'(T, k, 1)
 12
        end
HASH TABLES
```

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

15-210 Parallel and Sequential Algorithms and Data Structures

LECTURE 27

PRIORITY QUEUES

Synopsis

- Priority Queues
- Heaps
- Meldable Priority Queues
- Leftist Heaps

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

PRIORITY QUEUES

Abstract Data Type supporting

- deleteMin/deleteMax
- insert

Used in many useful algorithms

- Dijkstra' Algorithm
- Prim's Algorithm for MST
- Constructing Huffman Codes
- Heapsort

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

HEAPSORT

1	fun sort $S =$
2	let
3	val pq = iter Q.insert Q.empty S
4	fun sort' pq =
5	let
6	case (<i>PQ.deleteMin</i> <i>pq</i>) of
7	$NONE \Rightarrow []$
8	\mid SOME(v, pq') \Rightarrow v :: sort'(pq')
9	in
10	Seq.fromList(sort' pq)
11	end

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

UNDERLYING IMPLEMENTATIONS

Sorted and Unsorted Lists/Arrays

- One of deleteMin and insert is fast (O(1))
- The other is slow. O(n)

Balanced binary search trees

• Both operations have $O(\log n)$ work and span.

Binary heaps

- Both operations have $O(\log n)$ work and span.
- But binary heaps provide a O(1) work findMin operation.

HMS

PRIORITY	QUEUES
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORIT

HEAPS

- A min-heap (max-heap) is a rooted tree
- Key at every node is $\leq (\geq)$ all descendants.
- A binary heap is heap which has
 - Shape property: The tree is a complete binary tree
 - ★ All levels of the tree are completely filled except the bottom level, which is filled from the left
 - Heap Property

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

BINARY HEAPS

A complete tree

Priority Queues	7/36
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

BINARY HEAPS

An incomplete tree

Priority Queues	8/36
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

BINARY HEAPS

- Shape Property ⇒ binary heap can be maintained in an array.
- Index of a parent or a child is very easy to compute
- Operations first restore shape property, then heap property.

PRIORITY QUEUES

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

BINARY HEAPS AND ARRAYS

BUILDING PRIORITY QUEUES

- We can insert elements one-by-one
 - With balanced binary trees and binary heaps, work is O(n log n)
 - Can we do better?
- Build the heap recursively
 - If left and right sides are already heaps, just shift down the root element.

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

BUILDING HEAPS DIRECTLY

```
fun sequentialFromSeqS =
1
   let
2
     fun heapify(S, i) =
3
        if (i \ge |S|/2) then S
4
        else let
5
            val S' = heapify(S, 2 * i + 1)
6
            val S'' = heapify(S', 2 * i + 2)
7
            in shiftDown(S", i) end
8
   in heapify(S, 0) end
9
```

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

COST ANALYSIS

- shiftDown does O(log n) work on subtree of size n
- $W(n) = 2W(n/2) + O(\log n) \in O(n)$
- Opportunities for parallelism?

Priority Queues	13/36
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

- Green cells are OK
- All the pinks cells can be shifted down in parallel
- Then all purple cells can be shifted down in parallel
- (All) Red cell(s) can be shifted down in parallel

PRIORITY QUEUES	14/36
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

\sim	15/36
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS F	FALL 2013

We use Single-threaded sequences

```
fun fromSeq S: 'a seq =
1
2
   let
3
      fun heapify (S, d) =
4
      let
       val S' = shiftDown (S, \langle 2^d - 1, \dots, 2^{d+1} - 2 \rangle, d)
5
6
      in
       if (d = 0) then S'
7
       else heapify (S', d-1)
8
9
   in heapify (S, |\log_2 n| - 1) end
```

•
$$S(n) = S(n/2) + O(\log n) \in O(\log^2 n)$$

PRIORITY QUEUES CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

• $d = 2 \Rightarrow \text{shiftDown} (S, <3, 4, 5, 6>, 2)$ • $d = 1 \Rightarrow \text{shiftDown} (S, <1, 2>, 1)$ • $d = 0 \Rightarrow \text{shiftDown} (S, <0>, 0)$

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

PRIORITY QUEUES – SUMMARY

Data. Str.	findMin	deleteMin	insert	fromSeq
sorted linked list	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i> log <i>n</i>)
unsorted linked list	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (1)	<i>O</i> (<i>n</i>)
balanced search tree	<i>O</i> (log <i>n</i>)	<i>O</i> (log <i>n</i>)	<i>O</i> (log <i>n</i>)	<i>O</i> (<i>n</i> log <i>n</i>)
binary heap	<i>O</i> (1)	<i>O</i> (log <i>n</i>)	O(log n)	<i>O</i> (<i>n</i>)

Priority Queues	18/36
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

MELDABLE PRIORITY QUEUES

• Priority Queues with an additional *meld* operation

- Just like the union in BSTs
- Takes two meldable PQs and returns the union as a meldable PQ
- Implementations uses *leftist heaps*
 - Same work and span as binary heaps for insert, deletemin
 - Meld has O(log n + log m) work and span where m and n are the heap sizes

Priority	QUEUES
CMU-Q	15-210 Parallel and Sequential Data Structures and Algorithms

MIN HEAPS

Binary tree

- Maintains the heap property
- But does not maintain the complete binary tree property
- Here is an example

Priority Queues	20/36
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

MIN HEAPS

- To implement deleteMin
 - Remove the root

7 0 0 8 / \ 11 0 0 15 / \ 22 0 0 16

• We can then use meld to union the heaps.

Priority Queues	21/36
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

MIN HEAPS

To implement insert

 We create a single node heap
 meld it with the original heap

 fromSeq is also easy using reduce
 val pq = Seq.reduce Q.meld Q.empty
 (Seq.map Q.singleton S)

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- So we only need the meld operation
- Consider

PRIORITY OUE

• Which element goes to the root?

CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

• Select the tree with the smaller root and recursively meld with one of its children

PRIORITY QUEUES CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Applying recursively

PRIORITY QUEUES

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

Applying recursively

Melding A with an empty heap gives A

Priority Queues	26/36
CMU-Q 15-210 Parallel and Sequential Data Structures and Algorithms	FALL 2013

datatype $PQ = Leaf \mid Node$ of $(key \times PQ \times PQ)$ 1 2 fun meld(A, B) =case (A, B) of 3 $(_, Leaf) \Rightarrow A$ 4 $| (Leaf, _) \Rightarrow B$ $| (Node(k_a, L_a, R_a), Node(k_b, L_b, R_b)) \Rightarrow$ 5 6 7 case Key.compare (k_a, k_b) of 8 $LESS \Rightarrow Node(k_a, L_a, meld(R_a, B))$ $] \implies Node(k_b, L_b, meld(A, R_b))$ 9

- Traverses the right spines of the trees
- Could be $\Theta(|A| + |B|)$ in the worst case.

Priority Queues	27/36
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

When melding, keep trees deeper on the left.

Define

rank(x) = # of nodes on the right

spine of the subtree rooted at *x*,

• For all nodes, rank can be inductively defined

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

$$rank(leaf) = 0$$

 $rank(node(-, -, R) = 1 + rank(R)$

LEFTIST PROPERTY

• For all node x in a leftist heap,

 $\operatorname{rank}(L(x)) \geq \operatorname{rank}(R(x))$

L(x) and R(x) are the left and child children of x
Allows for

PRIORITY QUEUES

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- Most items pile to the left
- Right spine is relatively short!

LEMMA

In a leftist heap with *n* entries, the rank of the root node is at most $log_2(n+1)$.

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

- 1 datatype $PQ = Leaf \mid Node$ of $(int \times key \times PQ \times PQ)$ 2 fun rank Leaf = 03 $\mid rank (Node(r, _, _, _)) = r$ 4 fun makeLeftistNode (v, L, R) =5 if (rank(L) < rank(R))6 then Node(1 + rank(L), v, R, L)7 else Node(1 + rank(R), v, L, R)
 - Puts lower rank subtree to the right!

Priority Queues	31/36
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

1 fun meld
$$(A, B) =$$

2 case (A, B) of
3 $(_, Leaf) \Rightarrow A$
4 $| (Leaf, _) \Rightarrow B$
5 $| (Node(_, k_a, L_a, R_a), Node(_, k_b, L_b, R_b)) \Rightarrow$
6 case Key.compare (k_a, k_b) of
7 $LESS \Rightarrow makeLeftistNode (k_a, L_a, meld(R_a, B))$
8 $| _ \Rightarrow makeLeftistNode (k_b, L_b, meld(A, R_b))$

PRIORITY QUEUES
CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

THEOREM

If A and B are leftists heaps then

- the meld(A, B) algorithm runs in $O(\log(|A|) + \log(|B|))$ work, and
- returns a leftist heap containing the union of A and B.
- Code traverses the right spines, one node at a time
 - so needs at most rank(A) + rank(B) steps
 - Each step needs constant work
- makeLeftistNode guarantees leftist result

Priority	QUEUES	33/36
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	FALL 2013

PROVING THE LEMMA

CLAIM

If a heap has rank r, it contains at least $2^r - 1$ entries.

• $n(r) \equiv$ nodes in the smallest heap of rank r

• Monotone: if $r' \ge r$, then $n(r') \ge n(r)$

•
$$n(0) = 0$$

•
$$\operatorname{rank}(L(x)) \ge \operatorname{rank}(R(x)) = r - 1$$

 $n(r) = 1 + n(\operatorname{rank}(L(x))) + n(\operatorname{rank}(R(x)))$
 $\ge 1 + n(r - 1) + n(r - 1) = 1 + 2 \cdot n(r - 1).$

• $n(r) \ge 2^r - 1$

PRIORITY	QUEUES	34/36
CMU-Q	15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS	Fall 2013

PROVING THE LEMMA

- Apply the claim
- Suppose leftist heap of n nodes has rank r
- $n \ge n(r) \ge 2^r 1$
- $2^r \leq n+1 \Rightarrow r \leq \log_2(n+1)$
- Rank of a leftist node of n nodes is at most log₂(n+1)

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS

SUMMARY OF PRIORITY QUEUES

Implementation	insert	findMin	deleteMin	meld
(Unsorted) Sequence	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(m+n)
Sorted Sequence	<i>O</i> (<i>n</i>)	<i>O</i> (1)	<i>O</i> (<i>n</i>)	O(m+n)
Balanced Tree	<i>O</i> (log <i>n</i>)	$O(\log n)$	$O(\log n)$	$O(m\log(1+\frac{n}{m}))$
Leftist Heap	<i>O</i> (log <i>n</i>)	<i>O</i> (1)	$O(\log n)$	$O(\log m + \log n)$

CMU-Q 15-210 PARALLEL AND SEQUENTIAL DATA STRUCTURES AND ALGORITHMS