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How much can we turn the screw on counter-examples to the KK principle? The 

principle, also sometimes called “positive introspection”, says that if one knows that P, 

one knows that one knows that P. It is widely, although not universally, acknowledged 

that the KK principle is false, and not just for the boring reason that one can know that P 

without having formed the belief that one knows that P. One can know that P, and believe 

that one knows that P, without knowing that one knows that P, because one is not in a 

strong enough epistemic position to know that one knows that P (Williamson 2000: 114-

30). One’s epistemic position is weaker with respect to the fact that one knows that P 

than it is with respect to the fact that P itself. But how much weaker can one’s epistemic 

position be with respect to the fact that one knows that P than it is with respect to the fact 

that P? 

 Of course, if one does know that P, one’s epistemic position with respect to the 

fact that one knows that P cannot be so bad that one positively knows that one does not 

know that P, as opposed to merely failing to know that one knows that P, for knowing is 
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factive: one can know only what is indeed the case. But we can ask a more graded 

question in terms of evidential probabilities. Given that one knows that P, how low can 

the probability, on one’s own present evidence, that one knows that P sink? It will be 

argued here that it can sink arbitrarily close to 0. At the limit, the probability on one’s 

evidence that P can be 1 while the probability on one’s evidence that one knows that P is 

0. The difference between the probabilities can be as large as probabilistic differences can 

go. 

 One way of arguing for such a conclusion follows a traditional way of arguing 

against the KK principle, by using familiar examples that support some form of 

externalism about knowledge (Lemmon 1967). For instance, the unconfident examinee 

answers questions on English history under the impression that he is merely guessing. In 

fact, his answers are correct, and result from lessons on it that he has completely 

forgotten he ever had (Radford 1966). The example can be so filled in that it is extremely 

improbable on the examinee’s evidence that he had any such lessons, or any other access 

to the relevant knowledge of English history; nevertheless, he does know the historical 

facts in question. That description of the example may well be right. Dialectically, 

however, it has the disadvantage that those of a more internalist bent may simply deny 

that the examinee knows. This paper develops a more systematic, structural way of 

arguing for the realistic possibility of knowing when it is extremely improbable on one’s 

evidence that one knows, a way that does not depend on specifically externalist 

judgments about cases. 

 On the resulting view, one’s evidence can be radically misleading about one’s 

own present epistemic position. If the rationality of an action depends on one’s epistemic 
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position, then one’s evidence can be radically misleading about the rationality of the 

various actions available to one. Such phenomena will be used to cast light on some 

epistemological puzzles. 

 

1. It is useful to explore the issues within a framework taken from the standard possible 

worlds semantics for epistemic logic, introduced by Hintikka (1962). Such a formal 

framework keeps us honest, by making it straightforward to check whether our 

descriptions of examples are consistent and what their consequences are, and by 

facilitating the identification of structurally appropriate models. Of course, we must also 

consider whether the mathematical models we use are realistic on their intended 

epistemic interpretation in the relevant respects. It will be argued below that the respects 

in which they are idealized are consistent with the uses to which the models are here 

being put. 

 We recall some basic features of possible worlds models for epistemic logic. For 

present purposes, we can make two convenient simplifications. First, we need only 

consider one agent at a time. Although important analogues of the failure of the KK 

principle arise for the interpersonal case too (Williamson 2000: 131-4), we can ignore 

such complications here. Second, we can ignore the strictly semantic aspect of possible 

world models, by discussing propositions rather than sentences; the resultant structures 

are frames. 

 Given those simplifications, a frame is just an ordered pair <W, R>, where W is a 

set and R a binary relation on W (a set of ordered pairs of members of W). Informally, we 

think of W as the set of relevant worlds, and R as a relation of epistemic possibility 
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between them, where a world x is epistemically possible in a world w (Rwx) if and only 

if, for all one knows in w, one is in x, in other words, whatever one knows in w is true in x 

(where ‘one’ refers to the relevant agent and the present tense to the relevant time). 

Correspondingly, we think of the subsets of W as propositions; a proposition p⊆ W is true 

in a world w if and only if w p. Obviously the conjunction of two propositions is their 

set-theoretic intersection, the negation of a proposition is its complement in W, and so on. 

For p W, we define: 

∈

⊆

 Kp = {w W: x W (Rwx → x∈ ∀ ∈ ∈ p)} 

Informally, Kp is to be the proposition that one knows p. 

On its intended reading, the definition of K presupposes that one knows 

something if and only if it is true in all epistemic possibilities for one, that is, in all 

worlds in which whatever one knows is true. This involves assumptions about the agent’s 

logical omniscience, in two ways. First, any treatment of K as a function from 

propositions to propositions automatically requires that if p is the same proposition as q 

then Kp is the same proposition as Kq. Since propositions are being treated as sets of 

worlds, this means that if p is true in the same worlds as q, then Kp is true in the same 

worlds as Kp. Moreover, since truth in a world respects the usual truth-functions ― a 

conjunction is true in a world if and only if all its conjuncts are true in that world, the 

negation of a proposition is true in a world if and only if the original proposition is not 

true in that world, and so on ― truth-functionally equivalent propositions are identical, so 

both are known or neither is; in particular, every truth-functional tautology is known if 

any is. That first form of logical omniscience is independent of the specifics of the right-

hand side of the definition. The second form depends on those specifics, but unlike the 
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first applies whenever premises p1, …, pn entail a conclusion q (p1∩…∩pn⊆ q), even if 

the conclusion is not identical with any of the premises; it says that, in those 

circumstances, knowing the premises entails knowing the conclusion 

(Kp1∩…∩Kpn⊆ Kq), for if each premise is true in all worlds in which whatever one 

knows is true, the conclusion is also true in all worlds in which whatever one knows is 

true. 

On most views of propositional attitudes, logical omniscience is an extreme 

idealization. Someone can know that P → P without knowing that ((P → Q) → P) → P, 

even though both formulas are tautologies. For present purposes it is a harmless one, for 

if the total evidence of a logically omniscient agent can be radically misleading about 

their epistemic position, our own abject failure of logical omniscience will not save us 

from the same fate. We will return to this issue towards the end of the paper. 

One effect of full logical omniscience is that for each world w there is the 

strongest proposition known by the agent in w, R(w), in the sense that it is known in w 

and entails every proposition that is known in w. We can define R(w) = {x∈W: Rwx}. 

Then a proposition p is known in w if and only if p follows from R(w); more formally, 

w∈Kp if and only if R(x) p, by definition of K. ⊆

One constraint on the epistemic possibility relation will be maintained throughout. 

R is reflexive; every world is epistemically possible in itself, because knowledge entails 

truth: whatever one knows in a world is true in that world. Consequently, w∈R(w) for 

any world w, and Kp p for any proposition p. ⊆

 Now recall the formal structure of counterexamples to the KK principle in such 

frames for epistemic logic. Here is a toy example. W is a three-member set {x, y, z}: 
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x  ―――――――――― y  ―――――――――― z  

 

In the diagram, R holds between worlds just in case they are identical or neighbours; thus 

R is both reflexive and symmetric. R is not transitive, because Rxy and Ryz but not Rxz. 

The strongest things known in each world are these: R(x) = {x, y}; R(y) = {x, y, z}; R(z) = 

{y, z}. In effect, if one is at one of the endpoints, what one knows is that one is not at the 

other endpoint; if one is at the midpoint, one knows nothing non-trivial about one’s 

position. Now let p = {x, y}. Then Kp = {x}: one knows p in x because p is true in all 

worlds epistemically possible in x; one does not know p in y because p is false in z, which 

is epistemically possible in y. Consequently KKp = K{x} = {}: one does not know Kp in x 

because Kp is false in y, which is epistemically possible in x. Thus the KK principle fails 

in x, because Kp is true and KKp false there. 

 As is well known, the non-transitivity of R is necessary and sufficient for a frame 

to contain a counterexample to the KK principle. For consider any frame <W, R>. 

Suppose that R is non-transitive. Thus for some x, y, z in W, Rxy and Ryz but not Rxz. By 

definition, KR(x) is true in x. KR(x) is not true in y, because Ryz and R(x) is not true in z 

(since not Rxz). Therefore KKR(x) is not true in x, because Rxy. Thus the KK principle 

fails in x. Conversely, suppose that there is a counter-example to the KK principle in <W, 

R>, say in x W. Thus for some p W, Kp is true in x and KKp false in x. By the latter, 

for some y W, Rxy and Kp is false in y, so for some z

∈ ⊆

∈ ∈W, Ryz and p is false in z. But not 

Rxz, otherwise Kp is false in x, contrary to hypothesis. Thus R is non-transitive. 
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 Of course, the existence of such non-transitive frames for epistemic logic does not 

by itself establish that there are counterexamples to the KK principle on its intended 

interpretation, for it remains to be shown that these mathematical structures represent 

genuinely possible epistemic situations. Before we turn to such matters, however, we 

must first enhance the frames with probabilistic structure, so that we can model issues 

about the probability on one’s evidence that one knows something.   

 

2. In adding probabilities to a frame <W, R>, the account of evidential probability in 

Williamson (2000: 209-37) will be followed. We start with a prior distribution Probprior 

over propositions. Thus we can take a probabilistic epistemic frame to be an ordered 

triple <W, R, Probprior>, where W and R are as before and Probprior is a probability 

distribution defined over subsets of W. 

In the frames considered in detail below, Probprior always takes the particularly 

simple form of a uniform distribution over the subsets of a finite set W, in the sense that 

every world has the same probabilistic weight as every other world. Thus, where |p| is the 

cardinality of p⊆ W, Probprior(p) = |p|/|W|. It is not suggested that non-uniform or infinite 

probability distributions are in any way illegitimate. However, if a non-uniform 

distribution were used to illustrate the epistemic phenomena in question, they might look 

like artefacts of gerrymandering. Similarly, if W were infinite, the phenomena might look 

like paradoxes of infinity, given the complications of probability distributions over 

infinite sets. It is therefore best to use a uniform prior distribution over a finite space 

where possible. 
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 For such uniform prior distributions, every nonempty subset of W has nonzero 

probability. We can therefore unproblematically define prior conditional probabilities by 

ratios in the usual way: Probprior(p | q) = Probprior(p∩q)/Probprior(q) whenever q is 

nonempty and so Probprior(q) > 0. 

The evidential probability of a proposition in a world w is identified with its 

probability conditional on one’s total evidence in w. One’s total evidence in w can in turn 

be identified with the total content of what one knows in w (Williamson 2000: 184-208). 

In a frame <W, R>, the total content of what one knows in w is just R(w). Since w∈R(w), 

R(w) is always nonempty, so probabilities conditional on R(w) are always well-defined. 

So if Probw(p) is the evidential probability in w of a proposition p: 

 

Probw(p) = Probprior(p | R(w)) = Probprior(p∩R(w))/Probprior(R(w)) 

 

Thus in finite uniform frames, the evidential probability in w of p is simply the proportion 

of epistemically possible worlds in w in which p is true. 

 We can locate propositions about evidential probabilities in the frame. For 

instance, the proposition [Pr(p) = c] that the evidential probability of p is the real number 

c is simply {w W: Probw(p) = c}, and similarly for inequalities involving evidential 

probabilities. Thus propositions about evidential probabilities will themselves have 

evidential probabilities.  

∈

 Let <W, R> be the three-world toy example from the previous section. As before, 

p is {x, y}, so Kp is {x}. Let Probprior be the uniform distribution for W, so Probprior({x}) = 

Probprior({y}) = Probprior({z}) = 1/3. Hence Prx(Kp) = ½, since Kp is true in just one of the 
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two worlds that are epistemically possible in x. Thus in x, even though one knows p, the 

probability on one’s evidence that one knows p is no more than 50-50. To say that the 

probability on one’s evidence that one knows p is just ½ is already to say something 

much worse about the epistemic status for one of the proposition that one knows p than 

merely to say that one does not know that one knows p. 

 Let <W, R, Probprior> be any probabilistic epistemic frame where W is finite, R is 

reflexive and Probprior is uniform. Suppose that the KK principle fails in the frame. Thus 

for some w∈W and p⊆ W, Kp is true in w while KKp is false in w. Thus for some 

x∈R(w), Kp is false in x. Since Probprior({x}) > 0, Probw(Kp) < 1. Thus wherever the KK 

principle fails in such models, one knows something although the probability on one’s 

evidence that one knows it is less than 1. By contrast, if the KK principle holds in a 

frame, if Kp is true in w then KKp is true in w, so R(w) Kp, so Probw(Kp) = 1: whenever 

one knows something, the probability on one’s evidence that one knows it is 1. Indeed, in 

such models knowing p is equivalent to its having probability 1 on one’s evidence; Kp = 

[Pr(p)=1]. Thus the KK principle is equivalent to the principle that if the evidential 

probability of p is 1, then the evidential probability that the evidential probability of p is 1 

is itself 1. 

⊆

 In frames where W is finite, R is reflexive and Probprior is uniform, how low can 

Probw(Kp) be when Kp is true in w? When one knows something, how low can the 

probability that one knows it be on one’s evidence? The probability can be any rational 

number whatsoever strictly between 0 and 1, so it can be arbitrarily close to 0. To see 

this, let m/n be any rational number such that 0 < m/n < 1, where m and n are positive 

integers, so 0 < m < n. We construct a model of the required kind with some worlds in 
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which Kp is true while the evidential probability of Kp is m/n. The idea is simple: take the 

three-world toy model used to illustrate the failure of the KK principle in section 1, 

multiply the world x by m, yielding m mutually indiscernible copies, and the world y by 

n−m, yielding n−m mutually indiscernible copies. Thus W = {x1, …, xm, ym+1, …, yn, z}. 

R is reflexive and symmetric; for any i, i*, j, j* where 1 ≤ i, i* ≤ m < j, j* ≤ n: Rxixi*, 

Rxiyj, Ryjyj*, and Ryjz, but not Rxiz; diagrammatically: 

 

x1    ym+1 

:    : 

xi  ―――――――――― yj  ―――――――――― z  

:    : 

xm    yn 

 

If p = {x1, …, xm, ym+1, …, yn}, for 1 ≤ i ≤ m, R(xi) = p. Thus Kp = {x1, …, xm}. 

Consequently, while in xi Kp is true, it is true in only m of the n epistemically possible 

worlds. Since Probprior is uniform, Probxi(Kp) = m/n, as required. In particular, for m = 1, 

Probxi(Kp) = 1/n, which goes to 0 as n goes to infinity. By using non-uniform prior 

probability distributions or infinite sets of worlds we could construct similar models in 

which Kp is true while actually having evidential probability 0, but such refinements are 

unnecessary here.1 

 In the model just illustrated, m/n is the highest evidential probability that Kp 

attains anywhere, since Probyj(Kp) = m/(n+1) and Probz(Kp) = 0. Thus the proposition 

[Pr(Kp)≤m/n] is true at every world in the model. Consequently, so is the proposition 
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Kk[Pr(Kp)≤m/n], where k is a natural number and Kk means k iterations of K (thus K0q is 

q and Kk+1q is KkKq). In other words, knowing p is compatible not just with the 

probability on one’s evidence that one knows p being close to 0, but even with knowing, 

and knowing that one knows, and knowing that one knows that one knows, … that the 

probability on one’s evidence that one knows p is close to 0.   

 We have added evidential probabilities to epistemic models in a way that 

embodies several strong assumptions. In particular, one’s total evidence was equated with 

the total content of one’s knowledge, and probabilities on that evidence were calculated 

by conditionalizing a prior probability distribution on it. These assumptions are 

defensible (Williamson 2000), but can of course be challenged. However, someone who 

denied that they always hold would not be thereby committed to rejecting their present 

applications. For they are being used to argue that a specific phenomenon can occur, not 

that it always occurs. That requires that the relevant models can be instantiated by 

genuine epistemic phenomena, not that all genuine epistemic phenomena have the 

structure of those models. Indeed, the assumptions at issue should make it harder to 

construct models with the target phenomenon, which involves a sort of tension between 

knowing and the evidential probability of knowing. For what is most distinctive about the 

present approach is the intimate connection it postulates between evidential probabilities 

and knowledge; the assumptions cramp attempts to arrange the tension between them. By 

contrast, an approach that allowed more independence between evidential probabilities 

and knowledge would have much more scope to arrange the tension, by varying the 

evidential dimension independently of the knowledge dimension or vice versa. Similarly, 

allowing non-uniform prior probability distributions or infinite sets of worlds would give 
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far more scope for arranging odd probabilistic phenomena, for example by giving special 

weight to ‘bad’ worlds. If the target phenomenon occurs even under the unhelpful 

restrictive conditions postulated by the present approach to evidential probabilities, it is 

robust. A less restrictive approach could hardly rule out the models already constructed. 

The challenge to opponents is to motivate an approach that is more restrictive in some 

relevant way. 

 So far, however, we have been working at the level of formal models, without any 

positive argument that they represent genuinely possible epistemic situations. We now 

turn to that task, and provide a much more realistic, only slightly schematized description 

of a mundane type of epistemic situation that exemplifies the target phenomenon.  

 

3. Imagine a plain, unmarked circular dial with a single pointer, like the hand of a 

modernist clock-face designed with an eye to the appearance not the reality of functional 

efficiency. The stationary hand can point at any one of n equally spaced unmarked 

positions on the perimeter of the dial; it is positioned at random. We measure distances 

between positions by the minimum number of steps needed to go from one to the other 

(clockwise or anti-clockwise). Number the positions 0, .., n−1 clockwise from the top.. 

For simplicity, we individuate ‘worlds’ (mutually exclusive and jointly exhaustive 

relevant circumstances) just by the position of the hand. Thus there are exactly n worlds 

w0, .., wn−1, where in wi the hand points at position i. We measure distances between 

worlds by the corresponding distances between positions. An interval of positions 

corresponds to a time interval; it is a nonempty proper subset of the set of positions such 

that the hand goes through every position in the set without going through any position 
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not in the set (intervals are ‘connected’). An endpoint of an interval is a member next to a 

non-member. Any interval with at least two members has two endpoints. An interval with 

an odd number of members has a unique midpoint, equidistant from its endpoints. Given 

the natural one-one correspondence between worlds and positions, the terms ‘interval’, 

‘endpoint’ and ‘midpoint’ can be applied just as well to sets of worlds as to sets of 

positions. 

 Now imagine that you are looking at the dial from a fixed point of view 

equidistant from all points on the perimeter, and that you have no independent 

information about the hand’s position. You can make some discriminations between 

positions, and correspondingly between worlds, but the difference between neighbouring 

positions is well below your threshold of discrimination. We may assume that your 

capacity to discriminate between positions depends only on their relative distance; thus if 

world w is at least as close to world x as world y is to world z, then you can discriminate 

w from x only if you can also discriminate y from z. Consequently, if you are in fact in 

world w, the worlds that for all you know you are in (the epistemically possible worlds) 

are those at most h steps from w, for some natural number h; h is greater than 0, 

otherwise your discrimination would be perfect. We can regard h as the width of the 

margin for error you require in order to know something in the model (Williamson 2000: 

125-34); it is a constant with respect to the given model. More formally, let R be the 

epistemic accessibility relation; then for all worlds w and x, Rwx if and only if the 

distance between w and x is at most h. Thus R has both reflective and rotational 

symmetry. For any world w, R(w) (the set of worlds epistemically possible in w) is not 

the whole of w, otherwise you could not make any discriminations at all. Thus R(w) is an 
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interval with w as its midpoint and 2h+1 members. For instance, if we imagine the 

distance h around the circumference as five minutes on a clock, R(w) corresponds to the 

period starting five minutes before the time w and ending five minutes after w. 

We can prove that R(w) is known only at w. For suppose that R(w) is known at a 

world x. Since R(x) is the strongest proposition known at x, R(x) R(w). But R(x) and 

R(w) have the same finite number of members, 2h+1. Thus R(x) = R(w). So the midpoint 

of R(x) is the midpoint of R(w); that is, x = w. Hence KR(w) is true in w and in no other 

world. 

⊆

Now add evidential probabilities to the model as above, with a uniform prior 

distribution, Probprior. Since KR(w) is true in just one of the 2h+1 worlds in R(w), its 

evidential probability in w, Probw(KR(w)), is 1/(2h+1). By increasing the number of 

positions round the dial while keeping your discriminatory capacities fixed, we can 

increase h without limit, and thereby make the evidential probability in w that one knows 

R(w) as small as desired, even though R(w) is in fact known in w. 

 As in section 2, the evidential probability in the model that the proposition is 

known is not only small, but known to be small, and known to be known to be small, and 

known to be known to be known to be small, and …. For since KR(w) is true in only one 

world, and for any world x R(x) has 2h+1 members, Probx(KR(w)) is always at most 

1/(2h+1). Thus the proposition [Pr(KR(w))≤1/(2h+1)] is true in every world in the 

model. Consequently, the proposition Kk[Pr(KR(w))≤1/(2h+1)] is also true in every 

world. In other words, one can have any number of iterations of knowledge that the 

probability of R(w) is at most 1/(2h+1). 
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 One cannot avoid these structural results by tightening the conditions for 

knowledge, short of complete scepticism. For reducing the range of truths known 

amounts in this setting to increasing the margin for error h. But, given the symmetry of 

the situation, the argument holds for any positive margin for error ― unless h is made so 

large that R(w) is the whole of W, which is in effect to say that one learns nothing by 

looking at the dial. 

 Even denying the equation of evidence with knowledge would make very little 

difference to the argument. It would presumably involve postulating one margin for error 

h for knowledge and a distinct margin for error h* for evidence: the worlds compatible 

with the total content of one’s evidence in w would be those within a distance h* of w; h* 

is nonzero too, for more than one position is compatible with one’s evidence. That would 

not affect the argument that KR(w) is true in no world except w. Hence the probability on 

one’s evidence in w of KR(w) would be 1/(2h*+1). By increasing the number of positions 

for the dial, one can make h* arbitrarily high, and therefore the probability on one’s 

evidence in w that one knows R(w) arbitrarily low. 

 We can even generalize the argument from knowledge to rational belief (or 

justified belief), while keeping an independent standard for evidence (as in the previous 

paragraph). Unlike knowledge, rational belief is supposed not to require truth. 

Standardly, epistemic logic for rational belief differs from epistemic logic for knowledge 

just in replacing the principle that what is known is true by the principle that what it is 

rational to believe is consistent. For an operator for rational belief (rather than 

knowledge), a world x is accessible from a world w if and only if whatever it is rational 

for one to believe (rather than whatever one knows) at w is true at x. Technically, the 
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constraint that the accessibility relation be reflexive is relaxed to the constraint that it be 

serial, in the sense that no world has it to no world. The effect is that the T schema  

KA → A is weakened to the D schema JA → ¬J¬A (writing J for ‘it is rational for one to 

believe that’ or ‘one is justified in believing that’). Of course, dropping the constraint that 

accessibility be reflexive does not imply adding the constraint that it be non-reflexive. In 

the present case, since we may build into the example that it is quite clear to one from 

general background information that one is not suffering from any illusion or systematic 

distortion of perception; one’s only problem is the limit on one’s powers of perceptual 

discrimination. Thus, as before, for any worlds w, x, y and z in the model, if w is at least 

as close to x as y is to z (in number of steps around the circumference) then x is accessible 

from w if z is accessible from y. As before, that implies that for some natural number h** 

(perhaps distinct from h and h*), constant across the model, one world is accessible from 

another if and only they are at most h** steps apart. In particular, every world is 

accessible from itself, not by force of any general constraint about rational belief, but 

simply as a feature of this specific epistemic situation. Rational belief sometimes behaves 

like knowledge. Thus the structure is just as in the previous paragraph, with the upshot 

that it can be rational for one to believe a proposition even though it is almost certain on 

one’s evidence that it is not rational for one believe that proposition. 

 If the condition for rational belief were relaxed from ‘in all accessible worlds’ to 

‘in most accessible worlds’, the inference from JA & JB to J(A & B) would fail. For ‘in 

most accessible worlds’ will be equivalent to ‘in at least k accessible worlds’ for some 

given natural number k greater than h** and less than 2h** + 1. Let w be a world, and let 

A be a subset of the set of worlds accessible from w with exactly k members, including 
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the two endpoints x and y of that set. Thus JA is true at w. We may assume that the total 

number of worlds is well over 4h**, since otherwise one’s eyesight in the model is so bad 

that when the hand is pointing at twelve o’clock, it is not even rational for one to believe 

that it is pointing between eleven o’clock and one o’clock. Then from any world other 

than w, x and y are not both accessible, so not all members of A are accessible, so fewer 

than k members of A are accessible, so it is false that most members of A are accessible. 

Thus w is the only world at which JA is true, the only world at which it is rational for one 

to believe A. From here the argument proceeds as before. 

The foregoing results should still hold on reasonable variations in the prior 

probability distribution R(w) that make it slightly non-uniform, for KR(w) will still be 

true only in w, and so its probability (the probability that one is in w) will still be low in w 

and a fortiori everywhere else too. Similarly, making the allowable space of positions for 

the hand continuous rather than discrete should not make much difference. One would 

also expect the target phenomenon often to arise in comparable ways when the epistemic 

accessibility relation R takes different forms, for example by being linear or multi-

dimensional. Nor do psychologically more realistic descriptions of knowledge seem to 

raise the probability on one’s evidence that one knows the strongest relevant proposition 

one can know, when one does in fact know it. Thus the target epistemic phenomenon 

seems robust. 

Reflection suggests a generalization of the example. One key structural feature of 

the model is this: 

 

(*) For all worlds w, x: R(x) R(w) only if x = w. ⊆
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That is, shifting from one world to another (as from w to x) always opens up new 

epistemic possibilities as well as perhaps closing down old ones. Some worlds are close 

enough to x to be epistemically possible in x but not close enough to w to be 

epistemically possible in w. This is a plausible feature of real-life examples of inexact 

knowledge. As we move through logical space, our epistemic horizon moves with us. In 

fact, this more limited feature may do in place of (*): 

 

(**) Some world w is such that for all worlds x: R(x)⊆ R(w) only if x = w. 

 

For, given (**), w is still the only world in which R(w) is known, so the evidential 

probability of KR(w) will tend to be small in w, given the subject’s imperfect powers of 

discrimination, even though KR(w) is always true in w. 

Note that if at least one verifying world w for (**) has R to a world other than 

itself then R is non-transitive. For suppose that Rwx, x ≠ w and R(x) R(w) only if x = w. 

Then for some world y, Rxy but not Rwy, so transitivity fails. 

⊆

 The existence of natural structural generalizations such as (*) and (**) provides 

some further confirmation of the robustness of the phenomenon of knowing that is highly 

improbable on the subject’s own evidence. 

 

4. One restrictive feature of the model in section 3 is that the width of the margin for 

error required for knowledge is in effect treated as beyond doubt, since it is built into the 

structure of the model. More specifically, since the model has only one world in which 
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the clock hand has a given position, worlds can differ over what positions are 

epistemically possible for the hand only by differing over which position it in fact has. 

Yet it is plausible that there is inexactness in our knowledge of the width of the margin 

for error in addition to the inexactness in our knowledge of the position of the hand. If so, 

then in more realistic models the worlds epistemically possible in a given world w will 

include some in which the margin for error differs slightly from that in w, while the 

position of the hand is the same. In particular, in w a world x is epistemically possible in 

which the margin for error is slightly less than in w. In such cases we may have 

R(x) R(w) even though x ≠ w. Pictorially: a sphere may contain a sphere of slightly 

smaller radius whose centre is a slight distance from the centre of the first sphere. Then 

whatever is known in w is also known in x. In such cases, (*) and even (**) may fail.2 

⊆

To construct models with a variable margin for error is not hard. But doing so 

without making ad hoc choices is harder. In effect, one must specify higher-order 

margins for error distinct from the first-order margins for error. There is no obvious non-

arbitrary way of determining the relation between the widths of the margins at different 

orders. By contrast with the simpler case in section 3, it is not clear which models one 

should be considering. 

Nevertheless, in a setting with variable margins for error, one can still give an 

informal argument for a conclusion similar to that already reached in the case of constant 

margins. Let H(w) be the strongest proposition known in w about the position of the hand 

(or whatever other non-epistemic fact is relevant). Thus H(w) may be true at worlds other 

than w; its truth-value remains constant across worlds where the position of the hand is 

the same, even if the epistemic facts differ. Let h be the first-order margin for error (the 
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one relevant to knowledge of the position of the hand) in w. Thus H(w) is true in exactly 

those worlds where the distance of the hand position from that in w is at most h. Let 

ME<w be true in just those worlds in which the first-order margin of error is less than h, 

ME>w be true in just those worlds in which the first-order margin for error is greater than 

h, and ME=w be true in just those worlds in which the first-order margin for error is equal 

to h. These three possibilities are mutually exclusive and jointly exhaustive. Therefore, 

by definition of conditional probability: 

 

(1) Probw(KH(w)) = Probw(KH(w) | ME<w).Probw(ME<w) + 

Probw(KH(w) | ME=w).Probw(ME=w) + 

    Probw(KH(w) | ME>w).Probw(ME>w) 

 

In any world x in ME>w some world is epistemically possible in which H(w) is false, 

because the first-order margin for error in x is some k > h, and a sphere of radius k cannot 

be contained in a sphere of radius h. Thus ME>w is incompatible with KH(w), so 

Probw(KH(w) | ME>w) = 0. Consequently, (1) simplifies to: 

 

(2) Probw(KH(w)) = Probw(KH(w) | ME<w).Probw(ME<w) + 

Probw(KH(w) | ME=w).Probw(ME=w) 

 

Since Probw(KH(w) | ME<w) ≤ 1, (2) yields: 

 

(3) Probw(KH(w)) ≤ Probw(ME<w) + Probw(KH(w) | ME=w).Probw(ME=w) 
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For simplicity, we may reasonably assume that Probw(ME<w) = Probw(ME>w), that is, that 

the first-order margin for error is equally likely to be less or greater than its actual value. 

Since Probw(ME<w) +  Probw(ME=w) + Probw(ME>w) = 1, Probw(ME<w) = 

(1−Probw(ME=w))/2. Therefore, by (3): 

 

(4) Probw(KH(w)) ≤ (1−Probw(ME=w))/2 + Probw(KH(w) | ME=w).Probw(ME=w) 

 

But Probw(KH(w) | ME=w) is in effect the probability of KH(w) in the case considered 

previously of a constant margin for error (h). From that case we have at the very least that 

Probw(KH(w) | ME=w) < ½. Consequently, by (4): 

 

(5) Probw(KH(w)) ≤ (1−Probw(ME=w))/2 + Probw(ME=w)/2 = ½  

 

In other words, although you in fact know H(w) in w, it is no more probable than not on 

your evidence in w that you know H(w). 

Even if we slightly relax the simplifying assumption that Probw(ME<w) = 

Probw(ME>w), the probability on the evidence in w that H(w) is known will not rise 

significantly above evens. Indeed, the probability may well be close to zero. For if the 

width of the first-order margin for error varies only slightly (as a proportion of h) over the 

worlds epistemically possible in w, then Probw(KH(w) | ME<w) will be close to 

Probw(KH(w) | ME=w). Therefore, by (2), Probw(KH(w)) will be at most only slightly 

greater than Probw(KH(w) | ME=w).Probw(ME<w) + Probw(KH(w) | ME=w).Probw(ME=w) = 
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Probw(KH(w) | ME=w).Probw(ME≤w). But, as noted above, Probw(KH(w) | ME=w) is in 

effect the probability of KH(w) in the case already considered of a constant margin for 

error. That probability goes to zero as the number of hand positions increases. Hence 

Probw(KH(w)) may well be close to 0 even when the width of the margin for error varies. 

But even without that stronger conclusion, the result of the informal argument is enough 

for present purposes. Uncertainty about the width of the margin for error does not 

undermine the possibility of knowing something without its being probable on one’s 

evidence that one knows it. 

 

5. Examples of the kind considered in previous sections make trouble for accounts of 

propositional justification on which a sufficient condition for having such justification to 

believe p is that the probability of p on one’s evidence exceeds a threshold less than 1.  

For in such cases one would then have propositional justification to believe the Moore-

paradoxical conjunction p & ¬Kp. Consider a world w in which one knows p but 

Probw(Kp), the probability on one’s evidence in w that one knows p, is less than 1/n, so 

Probw(¬Kp) > (n−1)/n. Since one knows p, Probw(p) = 1. By elementary probability 

theory, it follows that Probw(p & ¬Kp) > (n−1)/n. Thus by letting n go high enough, we 

can find a case in which the probability on one’s evidence of the Moorean conjunction 

exceeds the given threshold and the supposedly sufficient condition for justification is 

met. But it is not plausible that one can have justification to believe a conjunction of the 

form of “It’s raining and I don’t know that it’s raining”. In effect, this point is a sort of 

abstract generalization of the objection to probabilistic acceptance rules from Moore 

paradoxes in lottery cases (“My ticket won’t win and I don’t know that it won’t win”), 
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but it avoids their reliance on the specific assumption that one is not in a position to know 

that one’s ticket won’t win. 

 However, the phenomenon at issue does not merely raise problems for particular 

philosophical views. More importantly, it raises problems for knowing and acting 

subjects as such, not just for those knowing and acting subjects who choose to theorize 

about knowing and acting subjects. Suppose, for instance, that it is rational for Hamlet to 

perform some action A if he knows p and not rational for him to perform A otherwise 

(given the relevant background circumstances, such as his other attitudes), and that those 

facts about rationality are clear to him.3 Suppose also that although Hamlet knows p, it is 

almost certain on his evidence that he does not know p. Should Hamlet do A? Since he 

knows p, it is rational for him to do A. However, since it is almost certain on his evidence 

that he does not know p, it is almost certain on his evidence that it is not rational for him 

to do A. It is therefore very tempting to say that after all it is not rational for him to do A. 

But to say that would be to contradict the conditions of the example. Thus there is 

pressure to say instead that the example cannot really arise, that if it is almost certain on 

one’s evidence that one does not know p then one does not really know p. We have 

already seen that such pressure should be resisted, since it will not stop short of 

scepticism. Nevertheless, its effect when we consider particular cases may be to make us 

withdraw true knowledge ascriptions, under the false impression that they have been 

defeated by the negative evidence. 

 Of course, we have no general difficulty with the idea that a claim may be true 

even though it is almost certain on someone’s evidence that it is false ― for example, 

when the claim states the actual outcome of a long sequence of unobserved coin tosses. 
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What we find harder to accept is the possibility of the same combination when the claim 

ascribes knowledge to the very person whose evidence is in question at that very time. 

Their strong evidence that they do not know p seems incompatible with whatever sort of 

reliance on p is mandated by their knowing p. But the apparent incompatibility is an 

illusion, which can seriously distort our assessment of particular ascriptions of knowledge 

and with it our epistemological theorizing. 

 The phenomenon that we find hard to accept is an extreme case of anti-

luminosity, the failure of non-trivial states to satisfy the constraint that whenever one is in 

them one is in a position to know that one is in them (Williamson 2000: 93-113). In 

evidential terms, when luminosity fails one is in a state S even though it is not certain on 

one’s evidence that one is in S. In the present case, S is the state of knowing p. But the 

phenomenon at issue is stronger than a mere failure of luminosity, since it involves being 

in S even though it is almost certain on one’s evidence that one is not in S. 

 If we do resist the sceptical pressure, and acknowledge the possibility of the 

phenomenon, then we must regard Hamlet’s problem above as a genuine problem for 

him, an instance of a more general practical problem for agents acting on inexact 

knowledge, not as something to be dissolved by epistemological redescription. The 

solution is clear from the conditions of the example: it is rational for Hamlet to do A if 

and only if he knows p, and he does know p, so it is rational for him to do A. The trouble 

is that he has strongly misleading evidence about those facts. But that does not mean that 

they are not facts after all; it just means that he has a good excuse ― not justification ― 

for not doing A.4 
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 By a parallel argument, just as it can be rational for one to do A even though it is 

extremely improbable on one’s evidence that it is rational for one to do A, so it can 

happen that one should do A, even though it is extremely improbable on one’s evidence 

that one should do A.  

 We must check these general comments by examining a specific case in more 

detail. That is the business of the following final section. 

 

6. Competent deduction is a way of extending our knowledge, as in mathematical 

reasoning. A natural formulation of the underlying principle is this form of multi-premise 

closure: 

 

MPC If one believes a conclusion on the basis of competent deduction from premises 

each of which one knows, one knows the conclusion. 

 

For present purposes we can leave the phrase ‘on the basis of competent deduction’ 

vague, and assume that something in the spirit of MPC is correct.5 

 MPC faces a strong challenge from cases of reasoning from many premises, each 

with a small independent risk of error, where those risks combine into a large risk of error 

for the conclusion. Such situations arise most simply when the conclusion is the 

conjunction of the premises, since then the conclusion entails the premises and any error 

in a premise involves an error in the conclusion; the deduction of the conclusion from the 

premises also takes a particularly elementary form. Suppose that each premise is true, so 

the conclusion is true too. We may further suppose that, according to ordinary standards, 
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one knows each premise. For example, each premise may state a separate matter of 

particular historical fact that one has carefully checked. To deny that one knows a given 

premise would look like extreme scepticism. From those propositions one has 

competently deduced their conjunction and believes it on that basis. By MPC, one 

thereby knows the conclusion. Nevertheless, much past experience may show that there is 

a small non-zero rate of error for such carefully checked historical claims, on the basis of 

which it is almost inevitable that the long conjunction contains several false conjuncts. 

Thus one’s belief in the conjunction may seem to have too strong a risk of error to 

constitute knowledge. This is a variant of the Preface Paradox, adapted to knowledge. 

On a fallibilist conception of knowledge, it seems, the risk of error for any one 

premise may be within the threshold for knowledge, while the risk of error for the 

conclusion is outside the threshold; thus MPC fails. By contrast, on an infallibilist 

conception, knowledge requires that there be no risk of error, rather than at most a small 

risk, so MPC may hold; but such infallibilism seems to lead to scepticism. Alternatively, 

one might try to preserve MPC by postulating some sort of variation across contexts of 

utterance in the reference of ‘know’, or some loss of knowledge in the premises through 

the very act of deducing the conclusion.6 

 Once we recognize the phenomenon of knowing when it is almost certain on 

one’s evidence that one fails to know, we can see a possible diagnosis of the problem 

cases for MPC which allows us to keep MPC while neither falling into scepticism nor 

postulating truth-conditions for ‘knowledge’-ascriptions of any non-standard kind. One 

does indeed know each premise, without knowing that one knows it. Since one believes 

the conclusion on the basis of competent deduction from the premises, by MPC one also 
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knows the conclusion, although without knowing that one knows it. For each premise, it 

is very probable on one’s evidence that one knows it. However, it is very improbable on 

one’s evidence that one knows every premise. Given that one knows the conclusion (the 

conjunction) only if one knows every premise, it is very improbable on one’s evidence 

that one knows the conclusion. Since we are tempted to conceive knowing as at least 

somewhat luminous, we are tempted to deny that one knows the conclusion.7 

 We can give a formal epistemic model of that description. As noted in section 1, 

such a model automatically validates not just MPC but logical omniscience, an 

unrealistically strong version of multi-premise closure that does not even require the 

agent to have carried out the relevant deductions, competently or otherwise. As a positive 

argument for MPC, it might well be accused of both begging the question and proving 

too much. However, its role here is different. It is being used to defuse an objection to 

MPC, by showing that even on the assumption of the strongest possible version of multi-

premise closure, one would predict the occurrence of epistemic phenomena that it is very 

tempting to misinterpret along the lines of the objection as counter-examples to multi-

premise closure. In particular, if we treat ascriptions of knowledge as defeated by a low 

probability of knowing, but not by a high probability short of 1 of knowing, on the 

subject’s evidence, then we shall tend to judge that the subject knows each conjunct 

without knowing the conjunction, even though the conditions for MPC are satisfied; we 

are deceived by the false appearance of a counterexample to MPC.8 

 Here are the details of such a model.9 For worlds we use n-tuples of numbers 

drawn from the set {0, 1, …, 2k}, where n is the number of premises (conjuncts) and k is 

a large natural number. Thus there are (2k+1)n worlds. The n components of a world 
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represent its locations on n independent dimensions of a state space. The ith dimension is 

the one relevant to the ith premise pi. Let the ith component of the n-tuple w be wi, and 

the world just like w except that its ith component is m be w[i|m], so w[i|m]i = m and 

w[i|m]j = wj if i ≠ j. Let pi be true in w if and only if wi > 0. Let x be epistemically 

possible in w (Rwx) if and only if for all i, |wi–xi| ≤ k, that is, w and x do not differ by ‘too 

much’ in any of their respective components. In effect, a margin for error is applied to 

each of the n dimensions separately. The relation R is obviously reflexive and symmetric. 

We can easily check that for any world w, pi is known (Kpi is true) in w if and only if wi > 

k.10 Similarly, we can check that pi is known to be known (KKpi is true) in w if and only 

if wi > 2k; hence pi is not known to be known (KKpi is not true) in any world in this 

model. In particular, in the world <2k, …, 2k>, each premise pi is known and none is 

known to be known. 

As usual, the prior probability distribution is uniform: for any world w, 

Probprior({w}) = 1/(2k+1)n. We must check that the model makes the n dimensions 

probabilistically independent. For any given i, a proposition q is i-based if and only if for 

all worlds x and y, if xi = yi then q is true in x if and only if q is true in y (1 ≤ i ≤ n). That 

is, whether an i-based proposition is true in a world depends only on the ith component of 

that world. In particular, pi is an i-based proposition. Obviously, the negation of any i-

based proposition is also i-based, as is any conjunction of i-based propositions. We can 

also prove that whenever q is an i-based proposition, so is Kq.11 Thus Kpi and KKpi are 

also i-based propositions. Then we can prove that whenever for each i qi is an i-based 

proposition, q1, …, qn are mutually probabilistically independent on the evidence in any 

world w, in the usual sense that the probability (on the evidence in w) of their conjunction 
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is the product of the probabilities (on the evidence in w) of the conjuncts.12 Although a 

model could have been constructed in which the evidence at some worlds establishes 

epistemic interdependences between the different dimensions, for present purposes we 

can do without such complications. In particular, p1, …, pn are mutually probabilistically 

independent on the evidence in any world, as are Kp1, …, Kpn. But, on the evidence in the 

world <2k, …, 2k>, for any given i, the probability that pi is known is k/(k+1).13 By 

probabilistic independence, the probability of the conjunction Kp1 ∩…∩ Kpn is 

(k/(k+1))n. That is the probability that each conjunct is known. But, by the logical 

omniscience built into the model, knowing a conjunction (K(p1 ∩…∩ pn)) is equivalent to 

knowing each conjunct. Thus the probability on the evidence in <2k, …, 2k> that the 

conjunction p1 ∩…∩ pn is known is also (k/(k+1))n. For fixed k, this probability becomes 

arbitrarily close to 0 as n becomes arbitrarily large. Thus, for suitable k and n, the world 

<2k, …, 2k> exemplifies just the situation informally sketched: for each conjunct one 

knows it without knowing that one knows it, and it is almost but not quite certain on 

one’s evidence that one knows the conjunct; one also knows the conjunction without 

knowing that one knows it, and it is almost but not quite certain on one’s evidence that 

one does not know the conjunction. 

 Of course, in some examples one’s epistemic position with respect to each 

conjunct is better: one not only knows it but knows that one knows it. If one also knows 

the relevant closure principle, and knows that one satisfies the conditions for its 

application, one may even know that one knows the conjunction. Consequently, the 

probability on one’s evidence that one knows the conjunction is 1. However, the previous 

pattern may still be repeated at a higher level of iterations of knowledge. For example, for 
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each conjunct one knows that one knows it without knowing that one knows that one 

knows it, and it is almost but not quite certain on one’s evidence that one knows that one 

knows the conjunct; one also knows that one knows the conjunction without knowing 

that one knows that one knows it, and it is almost but not quite certain on one’s evidence 

that one does not know that one knows the conjunction. To adapt the previous model to 

this case, we can simply expand the set of worlds by using n-tuples of numbers from the 

set {0, 1, …, 3k} rather than {0, 1, …, 2k}, leaving the definitions of the epistemic 

possibility relation R and the truth-conditions of the pi unchanged (so pi is true in w if and 

only if wi > 0); then <3k, …, 3k> is a world of the required type. More generally, if one 

uses as worlds n-tuples of numbers from the set {0, 1, …, hk}, leaving the other features 

of the model unchanged, then <hk, …, hk> will be a world at which one has h–1 but not h 

iterations of knowledge of each conjunct, and it is almost but not quite certain on one’s 

evidence that one has h–1 iterations of knowledge of the conjunct; one also has h–1 but 

not h iterations of knowledge of the conjunction, and it is almost but not quite certain on 

one’s evidence that one does not have h–1 iterations of knowledge of the conjunction.14,15 

Many other variations can be played on the same theme. The general idea is this. 

Suppose that the epistemic status E satisfies an appropriate principle of multi-premise 

closure. In some situations, one attains E with respect to each conjunct, without knowing 

that one does so (this is possible by the anti-luminosity argument). By multi-premise 

closure, one also attains status E with respect to the conjunction, without knowing that 

one does so. Then for each conjunct it may be almost certain on one’s evidence that one 

attains E with respect to it, even though it is almost certain on one’s evidence that one 

does not attain E with respect to the conjunction. If we treat ascriptions of E as defeated 
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by a low probability of E, but not by a high probability short of 1 of E, on the subject’s 

evidence, then we shall tend to judge that the subject attains E with respect to each 

conjunct but not with respect to the conjunction, even though the conditions for multiple-

premise closure principle are satisfied; we are deceived by the false appearance of a 

counterexample to the multi-premise closure principle. 

 

7 The considerations of this paper raise a more general question. Knowledge claims 

are often thought to be defeated by various sorts of misleading evidence. In how many 

cases is the correct account that the subject knows, even though it is almost certain on the 

subject’s evidence at the time that they do not know? That is left as an open question.
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Notes 

 

 

* Despite its inclusion in a volume mainly devoted to Earl Conee and Richard 

Feldman’s influential work on evidentialism, this paper does not react to their ideas. 

Rather, it illustrates how the systematic investigation of evidence can play a central role 

in a quite different approach to epistemology. The main idea for the paper arose in 

response to discussion with John Hawthorne. Earlier versions of the material were 

presented in classes and a discussion groups at Oxford, at an Arché workshop on Basic 

Knowledge at St Andrews, where Philip Ebert was the commentator, at a workshop on 

epistemology at the University of Wisconsin at Madison, where Jim Pryor was the 

commentator, at graduate conferences at University College London and the University 

of Miami, at a workshop on mathematical methods in philosophy in Banff (Alberta), at a 

symposium for Jaakko Hintikka in Copenhagen, at the Moral Sciences Club in 

Cambridge, the Argentine Society for Analytic Philosophy in Buenos Aires and the 

Serbian Philosophical Society in Belgrade, and at colloquia in the philosophy 

departments of Lund University, Nottingham University, the University of Texas at 

Austin and Brandeis University. I thank all those who have contributed to the paper with 

their comments and questions. 

 

1 For an argument that epistemically possible propositions can have probability 0, 

even when infinitesimal probabilities are allowed, see Williamson 2007b. 
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2 On an epistemic account of vagueness, such variable margins for error yield 

distinctive forms of higher-order vagueness. Williamson (1999: 136-8) argues that if the 

‘clearly’ operator for vagueness obeys the analogue of the B (for ‘Brouwersche’) axiom  

p → K¬K¬p (which corresponds to the condition of symmetry on R) then any formula 

with second-order vagueness has nth-order vagueness for every n > 2, but does not 

endorse the B axiom for ‘clearly’. In response, Mahtani (2008) uses variable margins for 

error to argue against the B axiom for ‘clearly’ and suggests that they allow vagueness to 

cut out at any order. Dorr (2008) provides a formal model in which he proves Mahtani’s 

suggestion to hold. These arguments all have analogues for the overtly epistemic case. 

 

3 For a recent discussion of the relation between knowledge and reasons for action 

see Hawthorne and Stanley 2008. By what was argued in section 3, we can make a 

corresponding argument for rational belief in place of knowledge. 

 

4 For a critique of internalism about justification see Williamson 2007a. 

 

5 Such a principle is called ‘intuitive closure’ at Williamson 2000: 117-18. 

 

6 For discussion of MPC in relation to the Preface Paradox see Hawthorne 2004: 

46-50, 154, 182-3. Similar cases involving future chances are used in Hawthorne and 

Lasonen-Aarnio 2009 against the safety conception of knowledge in Williamson 2000; 

for a reply see Williamson 2009. 
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7 A similar problem arises for single-premise closure principles when one 

competently carries out a long chain of single-premise deductive steps, each with a small 

epistemic probability of inferential error (in the multi-premise case, for simplicity, one’s 

deductive competence is treated as beyond doubt); see Lasonen-Aarnio 2008 for 

discussion. Here is a parallel account of that case. One knows the premise without 

knowing that one knows it. For each deductive step, one carries it out competently 

without knowing that one does so. By single-premise closure, one knows the conclusion, 

without knowing that one knows it. For each deductive step, it is very probable on one’s 

evidence that one carries it out competently. However, it is very improbable one one’s 

evidence that one carries out every deductive step competently. Since it is granted that 

one knows the conclusion only if one carries out every deductive step competently, it is 

very improbable on one’s evidence that one knows the conclusion. 

 

8 The usual form of epistemic modelling is not appropriate for treating possible 

errors in deductive reasoning, since logical omniscience suppresses the dependence of 

inferential knowledge on correct inferential processes. 

 

9 The technical details are taken from Williamson 2009. 

 

10 Proof: Suppose that wi > k. If Rwx then |wi–xi| ≤ k, so xi > 0, so x  pi. Thus 

w∈Kpi. Conversely, suppose that wi ≤ k. Then Rww[i|0], for |wi–w[i|0]i| = |wi–0| = wi ≤ k 

and if i ≠ j then |wj–w[i|0]j| = 0; but w[i|0]

∈

∉ pi because w[i|0]i = 0, so w∉Kpi. 
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11 Proof: Suppose that q is i-based and xi = yi. Suppose also that x Kq. Then for 

some z, Rxz and z∉ q. But then Ryy[i|zi], for |yi–y[i|zi]i| = |yi–zi| = |xi–zi| (because xi = yi)  

∉

≤ k (because Rxz), and if i ≠ j then |yj–y[i|zi]j| = 0. Moreover, y[i|zi]∉q because z q, q is i-

based and y[i|zi]i = zi. Hence y∉Kq. Thus if y

∉

∈Kq then x∈Kq. By parity of reasoning the 

converse holds too. 

 

12 Proof: Set #(i, q, w) = {j: 0 ≤ j ≤ 2k, w[i|j]∈ q and |wi–j| ≤ k} for any w∈W, q⊆ W, 

1 ≤ i ≤ n.  For each i, let qi be i-based. Let ∩qi = q1 ∩…∩ qn. For w∈W,  

R(w) ∩ ∩qi = {x: ∀ i, xi #(i, qi, w)}, since for each i and x∈ ∈W, x∈ qi iff w[i|xi]∈ qi since 

qi is i-based. Since Probprior is uniform, Probw(∩qi) = |{R(w) ∩ ∩qi|/|R(w)| for w∈W. But 

|R(w) ∩ ∩qi| = |{x: ∀ i, xi∈ #(i, qi, w)}| = |#(1, q1, w)|… |#(n, qn, w)|. By the special case 

of this equation in which each qi is replaced by W (which is trivially i-based for any i), 

|R(w)| = |#(1, W, w)|… |#(n, W, w)|. Consequently: 

Probw(∩qi) = (|#(1, q1, w)|… |#(n, qn, w)|)/( |#(1, W, w)|… |#(n, W, w)|). 

For any given i, consider another special case in which qj is replaced by W whenever  

i ≠ j. Since n–1 of the ratios cancel out, Prw(qi) = |#(i, qi, w)|/|#(i, W, w)|. Therefore  

Probw(∩qi) = Probw(q1)… Probw(qn), as required. 

 

13 Proof: We have already established that x∈Kpi iff xi > k. Thus, in the notation of 

the previous footnote, #(i, Kpi, <2k, …, 2k>) = {j: k < j ≤ 2k}, so   

|#(i, Kpi, <2k, …, 2k>)| = k, while  #(i, W, <2k, …, 2k>) = {j: k ≤ j ≤ 2k}, so   

|#(i, W, <2k, …, 2k>)| = k+1. By the formula for Probw(qi) in the previous footnote (with 

Kpi in place of qi), Prob<2k,…,2k>(Kpi) = k/(k+1). 
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14 A similar generalization to higher iterations of knowledge is possible for the case 

of multiple risks of inferential error in a single-premise deduction. One has at least n 

iterations of knowledge of the premise. For each deductive step, one has n−1 but not n 

iterations of knowledge that one carried it out competently. By single-premise closure 

and plausible background assumptions, one has n but not n+1 iterations of knowledge of 

the conclusion. For each deductive step, it is very probable on one’s evidence that one 

has at least n−1 iterations of knowledge that one carried it out competently. However, it 

is very improbable one one’s evidence that one has at least n−1 iterations of knowledge 

that one carried out every deductive step competently. Since it is granted that one has at 

least n iterations of knowledge of the conclusion only if one has at least n−1 iterations of 

knowledge that one carried out every deductive step competently, it is very improbable 

on one’s evidence that one has at least n iterations of knowledge of the conclusion. 

 

15  See Williamson 2008 for more discussion of the structure and semantics of 

higher-order evidential probabilities. The phenomenon discussed in the text involves the 

apparent loss of only one iteration of knowledge between premises and conclusion. 

However, the apparent absence of a given number of iterations of knowledge can cause 

doubts about all lower numbers of iterations, by a domino effect, since lack of knowledge 

that one has n+1 iterations implies lack of warrant to assert that one has n iterations 

(Williamson 2005: 233-4).
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