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Abstract

Simplicity is analyzed topologically. Ockham’s razor is shown, under very general
conditions, to be the unique, convergent strategy that jointly minimizes errors,
retractions, and retraction times prior to convergence to the true theory.

1 Empirical Questions and Solutions

1.1 Input Streams

Let I be a set of potential inputs. An input stream is an element of Iω. If w is an
input stream let

w|i = (w(0), . . . , w(i− 1)),

so that w|0 = (), where () denotes the empty sequence. An input sequence of
length n is a member of In. A finite input sequence is a finite input sequence of
some length. If e is a finite input sequence, let |e| denote the length of e, which is
the same as the cardinality of e viewed as a set of ordered pairs. If e is a finite input
sequence and e′ is an input stream or finite input sequence, define e ≤ e′ if and only if
there exists n such that e′|n = e.

1.2 Empirical Problems

An empirical problem is a pair (K, Θ) where Θ is a partition of Iω so that

∅ ⊂ K ⊆
⋃

Θ ⊆ Iω.

Then K is called the empirical presupposition of the problem and Θ is called the
question posed by the problem. Let Hw denote the unique cell of Θ that contains
(i.e., is true of) w. Define:

K̂ = {w|i : w ∈ K and i ∈ ω},
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which is the set of all finite input sequences compatible with K. If e ∈ K̂, then define:

Ke = {w ∈ K : e < w};
K̂e = {e′ ∈ K̂ : e ≤ e′}.

Proposition 1 (problem restriction) Let (K, Θ) be a problem and let e ∈ K̂. Then
(Ke, Θ) is a problem.

Proof of proposition 1. Let e ∈ K̂. Then there exists w ∈ K and n ∈ ω such that
e = w|k. So w ∈ Ke 6= ∅. Furthermore, Ke ⊆ K ⊆ ⋃

Θ. ¥

1.3 Solutions

Define:
Θ+ = Θ ∪ {?},

where ? is a distinguished object indicating an unwillingness to choose and answer in
Θ. An empirical strategy for (K, Θ) is a map:

M : K̂ → Θ+.

An empirical strategy solves (K, Θ) (in the limit) if and only if:

(∀w ∈ K)(∃i)(∀j ≥ i) M(w|j) = Hw.

Then M is said to be a solution to (K, Θ) and (K, Θ) is said to be solvable.

1.4 Topology

The branching temporal structure of K generates a natural topology. The basis of the
space is:

ΩK = {Ke : e ∈ K̂}.
Then let Ω∗K denote the closure of ΩK under union. Finally, define

TK = (K, Ω∗K),

which will be called the branching future space on K with open sets Ω∗K . Topolog-
ical concepts relative to TK are indicated by the subscript K or by the more idiomatic
phrase “given K”, as in “openK” or “open given K”.

1.5 Sphere Systems and Induced Rankings

Following Grove (***), a sphere system for K is a downward-nested collection Λ of
subsets of K such that K =

⋃
Λ. Sphere system Λ is natural if and only if the order

type dΛe of the totally ordered set (Λ,⊃) is ≤ ω. Thus, for each i < dΛe, one may let Λi

denote the ith element of Λ in the ⊃ order. It is natural to think of differences between
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successive spheres as levels of complexity with respect to Λ. For each i < dΛe − 1,
define:

Λi = Λi r Λj .

If w ∈ K, define the rank of w in Λ as:

Λ(w) = sup
i<dΛe

w ∈ Λi.

The ranking can be extended to arbitrary propositions P ⊆ K as follows:

Λ(P ) = min
w∈P

Λ(w).

2 Sphere System Update

If K ′ ⊆ K, then define the restriction of Λ to K ′ as follows:

Λ|K = {S ∩K ′ : S ∈ Λ}.
In particular, abbreviate:

Λe = Λ|Ke;
Λe,i = (Λe)i;
Λe,i = (Λe)i.

Next, define:
Λ(e) = Λ(Ke).

Proposition 2 (Λ(e) is monotone) Let Λ be a sphere system for K and let e, e′ ∈ K̂.
Then:

e ≤ e′ implies Λ(e) ≤ Λ(e′).

Proof of proposition 2. Suppose that e ≤ e′. Then

Λ(e) = λ(Ke) = min
w∈Ke

Λ(w) ≥ min
w∈Ke′

Λ(w) = λ(Ke′) = Λ(e′).

¥

Proposition 3 (Λ(e) is bounded) Let Λ be a sphere system for K and let w ∈ Λn.
Then for each i:

Λ(w|i) ≤ n.

Proof of proposition 3. Let w ∈ Λn. Then Λ(w) = n. So by proposition 2, Λ(w|i) ≤ n.
¥

Proposition 4 (update) Let (K, Θ) be a problem with sphere system Λ such that
K ⊆ Λ0 and let e ∈ K̂. Then:

Λe,0 = Ke ∩ Λ(Λ(e)).
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Proof of proposition 4.
Recall that:

Λe = {Ke ∩ S : S ∈ Λ and Ke ∩ S 6= ∅}.
Then Λe,i is the ith entry in the descending enumeration of Λe and Λe,0 is the first
entry in the enumeration, so:

Λe,0 = Ke ∩ Λ0 = Ke.

Let m = Λ(e). So m is least such that Ke ∩ Λm 6= ∅. Suppose that there exists no
i < dΛe such that Ke ∩ Λi ⊂ Ke. Then Λe,0 = Ke and m = 0, so

Λe,0 = Ke = Ke ∩K = Ke ∩ Λ0 = Ke ∩ Λm.

Now suppose that there exists i ≤ dΛe such that Ke ∩Λi ⊂ Ke. Let n = the least such
i. Hence, n > 0 and Ke ∩ Λn−1 = Ke and Λe,0 = Ke ∩ Λn−1 r Λn. Furthermore, it
follows that m = n− 1, since

Ke ∩ (Λn−1 r Λn) = Ke r Λn 6= ∅,

but for each i < n,
Ke r Λi = Ke rKe = ∅.

Thus,
Λe,0 = Ke ∩ Λm r Λm+1 = Ke ∩ Λe,m.

¥

2.1 Data-driven Sphere Systems

Let (K, Θ) be a problem and let Λ be a sphere system for K. Say that Λ has verifiable
lower bounds if and only if for each i < dΛe:

Λi is open given Λ0.

This condition ensures that increasing information from world w ∈ K eventually verifies
that the rank of w is at least Λ(w). Say that Θ is decidable at each level of ranking
Λ if and only if for each i < dΛe and for each H ∈ Θ:

(H ∩ Λi) is open given Λi.

The condition that H ∩ Λi is open given Λi is equivalent to:

(∃ open S given Λ0) S ∩ Λi = H ∩ Λi.

This condition ensures that, after it is verified that the complexity of w is at least Λ(w),
further information from w verifies the correct answer Hw given ΛΛ(w). Say that Λ is
data-driven for (K, Θ) if and only if:
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1. Λ has verifiable lower bounds;

2. Θ is decidable at each level of Λ.

The motivation for for the terminology“data-driven” is recorded in the following propo-
sition.

Proposition 5 (data-driven convergence) Let (K, Θ) be a problem with data-driven
sphere system Λ. Then:

(∀w ∈ K)(∃i)(∀j ≥ i) w ∈ Λ(w|j),0 ⊆ Hw.

Proof of proposition 5. Let w ∈ Ke. Since Λe is a sphere system for (K, Θ), there exists
k such that w ∈ Λe,k. Since Λ is data-driven for (K, Θ), it follows that Λk is open given
K, so there exists n0 such that for each i ≥ n0:

w ∈ Kw|i ⊆ Λk.

Let i ≥ n0. Then:
Λ(w|i),0 = Kw|i ∩ Λk.

Hence, by nesting,
w /∈ Kw|i r Λk.

Furthermore: ⋃

k′>0

Λ(w|i),k′ = Kw|i ∩
⋃

k′>k

Λk′ .

Thus:

Λ(w|i),0 = Λ(w|i),0 r
⋃

k′>0

Λ(w|i),k′

=
(
Kw|i ∩ Λk

)
r

(
Kw|i ∩

⋃

k′>k

Λk′

)

= Kw|i ∩
(

Λk r
⋃

k′>k

Λk′

)

= Kw|i ∩ Λk.

Furthermore, data-driven-ness implies that Hw is open given Λk, so there exists n1 such
that for each j ≥ n1:

Kw|j ∩ Λk ⊆ Hw ∩ Λk.

Let j ≥ max(n0, n1). Then:
w ∈ Λ(w|j),0 ⊆ Hw.

¥

Another nice feature of data-driven sphere systems is that the property of being data-
driven is preserved under the arrival of new information.
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Proposition 6 Suppose that ranking Λ is data-driven for (K, Θ) and e ∈ K̂. Then Λe

is data-driven for (Ke, Θ).

Proof of proposition 6. Suppose that Λ is data-driven for (K, Θ). Let e ∈ K̂. (1) It is
immediate from the definition that Ke ∈ Λe.

(2) Since each S ∈ Λ is open given K, it follows that S ∩Ke is open given Ke, so Λe

has verifiable lower bounds.

(3) Let H ∈ Θ, i < dΛee. Then for some j,

Λe,i = Λj ∩Ke.

Since Λ is a simplicity concept for (K, Θ), there exists open S given K such that

H ∩ Λj ∩ S = H ∩ Λj .

Then (S ∩Ke) is open given Ke and:

H ∩ Λe,i ∩ (S ∩Ke) = H ∩ (Λj ∩Ke) ∩ (S ∩Ke)
= H ∩ Λj ∩ S ∩Ke

= H ∩ Λj ∩Ke

= H ∩ Λe,i.

¥

2.2 Retractions and Data-driven Sphere System Existence

A third nice feature of data-driven sphere systems is that every solvable problem has
one. Say that M retracts at e if and only if e is non-empty and

? 6= M(e−) 6= M(e).

Then define:

RM (w) = {i ∈ ω : M retracts at i on w};
rM (w) = |RM (w)|;

SM,i = {w ∈ K : rM (w) ≥ i};
ΛM = {SM,i : i < ω}r {∅}.

There is no guarantee that M retracts sensibly, so it is not necessarily the case that
SM,i 6= SM,i+1, even if both are nonempty.

Proposition 7 If M solves (K, Θ), then ΛM is data-driven.
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Proof of proposition 7. Let M solve (K, Θ). Let w ∈ K. (1) Then since M converges
to Hw in e, rM (w) is finite, so K = SM,0 ∈ ΛM .

(2) Next, observe that:
Λi =

⋃
{Ke : rM (e) ≥ i},

so Λi is open.

(3) Finally, let H ∈ Θ and let i < dΛe. Then there exists j such that

Λi = SM,j .

Define open:
Wj =

⋃
{Ke : rM (e) = j and M(e) = H}.

Since M is a solution,
Wj ∩ SM,j ∩H = SM,j ∩H.

¥

Proposition 8 (forcible path update) Let Λ|S be a forcible path through Λ in Θ
and e ∈ K̂ and Λe,0 ∩ S 6= ∅. Then for each i such that Λ(e) ≤ i < dΛe:

(Λe,(i−Λ(e)) ∩ S) = (Λi ∩Ke ∩ S) 6= ∅.

Proof of proposition 8, by induction on i − Λ(e). Suppose that Λ|S is a forcible path
through Λ in Θ and e ∈ K̂ and Λe,0 ∩ S 6= ∅. The base case is by hypothesis and
proposition 4. Now, suppose that Λ(e) ≤ i + 1 < dΛe. By induction hypothesis, let:

(*) w ∈ (Λe,(i−Λ(e)) ∩ S) = (Λi ∩Ke ∩ S).

Since Λ ∩ S traverses Λ and Λ(e) ≤ i + 1 < dΛe, it follows that Λi+1 ∩ S 6= ∅, so since
Λ|S is forcible in Θ, w is a limit point of Λi+1 ∩ S rHw. Thus, since w ∈ Ke and Ke

is open given K:
Λi+1 ∩ S ∩Ke 6= ∅.

So by (*) and the definition of Λe,((i+1)−Λ(e)),

(Λe,((i+1)−Λ(e)) ∩ S) = (Λi+1 ∩ S ∩Ke) 6= ∅.

¥

Proposition 9 (forcible path preservation) Let Λ|S be a forcible path through Λ
in Θ and let e ∈ K̂. Then:

Λe,0 ∩ S 6= ∅ implies that Λe|S is a forcible path through Λe.
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Proof of proposition 9. Suppose that Λ|S is a forcible path through Λ in Θ and e ∈ K̂
and Λe,0∩S 6= ∅. By proposition 8, one obtains that for each i such that Λ(e) ≤ i < dΛe:

(Λe,(i−Λ(e)) ∩ S) = (Λi ∩Ke ∩ S) 6= ∅.

Each level of Λe is the restriction of some level in Λ to Ke, so:

dΛee = dΛe − Λ(e).

Hence, for each i such that 0 ≤ i < dΛe:

(Λe,i ∩ S) = (Λ(i+Λ(e)) ∩Ke ∩ S) 6= ∅.

Therefore, Λe|S traverses Λe.

Suppose that 0 ≤ i ≤ dΛee and that w ∈ Λe,i∩S. Suppose, further, that Λe,(i+1)∩S 6= ∅.
Since Λe,0 ∩ S 6= ∅, applications of proposition 8 to the preceding two claims yield,
respectively:

w ∈ (Λ(Λ(e)+i) ∩Ke ∩ S),

and
(Λ(Λ(e)+i+1) ∩Ke ∩ S) 6= ∅.

So, since Λ|S is forcible in Θ, it follows that w is a limit point of (Λ(Λ(e)+i+1) ∩Ke ∩
S)rHw. So, by proposition 8, again, w is a limit point of Λe,(i+1) ∩ S. Hence, Λe|S is
forcible in Θ. ¥

2.3 Answer-Preservation

Say that Λ preserves answers if and only if:

(∀H ∈ Θ)(∃i < dΛe) H ⊆ Λi.

Otherwise, it splits answers across levels. A data-driven sphere system might split
answers across levels. For example, suppose that input streams are Boolean, let K be
the set of all streams that converge to zero and let the question be whether the total
number of unit bits is even or odd. Every data-driven ranking for this problem has to
split answers across levels. Skipping worlds would violate condition 1. Putting each
answer on its own level would violate condition 2. Putting both answers at the same
level would violate condition 3. But in such cases, one can always force the sphere
system to preserve answers by asking the refined question:

Θ ∧ Λ = {H ∩ Λi : H ∈ Θ and i < dΛe}.

Proposition 10 If Λ is a data-driven sphere system for (K, Θ), then Λ is a data-
driven, answer-preserving sphere system for (K, (Θ ∧ Λ)).
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Proof of proposition 10. Conditions (1) and (2) for a data-driven sphere system make
no reference to Θ. Also, if H is open given Λi, then H ∩ Λi is open given Λi. ¥

One could view the refinement of the original question either ontologically or epis-
temically. Ontologically, simplicity is a relevant fact that it would be hard to argue is
of no interest at all: surely, “even” because of a billion units is interestingly different
than “even” because of no units. Epistemically, insofar as Ockham’s razor “justifies”
inductive conclusions, believing in “even” because one believes in “zero” even though
the truth is “one billion” is a kind of Gettier case that is not penalized by merely
counting retractions. Forcing the scientist to estimate the complexity of the actual
world allows retractions to penalize these Gettier episodes.

The point of answer-preservation and forcible paths is summarized as follows.

Proposition 11 Let (K,Θ) be a problem, for which Λ is an answer-preserving, data-
driven sphere system for (K, Θ). Let e ∈ K̂ and let dΛee ≥ n + 1. Let M solve (K, Θ)
from e onward. Let Λe|S be a forcible path through Λe. Let j be arbitrary. Then
there exists wn ∈ (Λe,n ∩ S) and list of distinct answers (H0, . . . ,Hn) such that for
each m ≤ n, Hm ⊆ Λe,m and such that, in wn, solution M produces answer H0 for j
successive times starting no sooner than |e|+ 1 and . . . and produces answer Hn for j
successive times starting no sooner than |e|+ 1 + nj.

Proof of proposition 11, by induction on n. Let n = 0, so dΛee = 1. Then Λe,0 ∩S 6= ∅,
so let w0 ∈ Λe,0 ∩ S 6= ∅. Since M is a solution, there exists i0 ≥ |e| + 1 such that for
all i ≥ i, M(w0|i) = Hw0 . Hence, M produces Hw0 for j successive times starting no
sooner than |e|+1 in w0. So let the list be w0 and the unit list (Hw0) witness the claim
for n = 0.

Now, suppose that dΛee ≥ n + 2. Let wn ∈ Λe,n and list L = (H0, . . . , Hn) of answers
be as specified by the induction hypothesis. By proposition 9, Λe|S is a forcible path
through Λe. Since Λe|S is forcible in Θ and wn ∈ Λe,n and dΛee ≥ n+2, it follows that
wn is a limit point of Λe,n+1. Let en be the least initial segment along wn by which M
has produced each entry in list L for the j times promised by the induction hypothesis.
Then, since Ken is open, it follows that there exists wn+1 ∈ Λen,n+1 ∩ S. Since M is
a solution, there exists in+1 ≥ |en| + 1 such that for each i ≥ in+1, M(w|i) = Hwn+1 .
Since Ω preserves answers, Hwn+1 ⊆ Λe,(n+1), so Hwn+1 is distinct from all the preceding
answers in the list. Then wn+1 and list L ∗Hwn+1 witness the claim for n + 1. ¥

2.4 Empirical Simplicity

Data-driven sphere systems factor solvable problems into layers. In many cases, these
layers look like what is intuitively regarded as degrees of empirical complexity. But a
further property is required to rule out gratuitous distinctions in complexity. Say that
sphere system Λ is forcible if and only if for each i < dΛe − 1:

Λi ⊆ bdry(Λi+1).
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This property says that for each world w ∈ Λ0 that is not at the last level of Λ, an
arbitrary amount of information from w is compatible with the possibility that the
true world is at the next level of Λ and makes Hw false. So one might say that each
non-terminal level poses the problem of induction with respect to the succeeding level.
Let S ⊆ Λ0. Say that Λ|S traverses Λ if and only if for each i < dΛe:

Λ|Si ∩ Λi 6= ∅.

In other words, S includes at least one element of each level of Λ. Say that Λ|S is a
forcible path through Λ if and only if:

1. Λ|S is forcible;

2. Λ|S traverses Λ.

Say that Λ is a simplicity concept for (K, Θ) if and only if:

1. Λ is a data-driven sphere system for (K, Θ);

2. Λ preserves answers in Θ;

3. (∀e ∈ K̂)(∃S ⊆ Ke) Λ|S is a forcible path through Λe in Θ.

If, in addition, Λ is a forcible path through Λ in Θ, then say that Λ is a strong
simplicity concept for (K, Θ). If (K, Θ) is a problem with [strong] simplicity concept
Λ, say that (K, Θ, Λ) is a [strongly] simplified problem.

Proposition 12 (simplicity preservation) Let (K, Θ, Λ) be a simplified problem.
Then (Ke, Θ, Λe) is a simplified problem.

Proof of proposition 12. Suppose that ranking Λ is a simplicity ranking for (K, Θ).
Then Λ is data-driven for (K, Θ), so Λe is data-driven for (Ke, Θ) by proposition 6. Λe

preserves answers if Λ does, since restriction never separates levels. Finally, suppose
that e′ ∈ K̂e. Then there exists K ′ ⊆ Ke such that Λ|K ′ is a forcible path through
Λ|Ke. ¥

An important open question is:

Question 1 Let (K, Θ) be a solvable problem. Under what conditions does there exist
a simplicity concept for (K, Θ)?

According to proposition 7, the question reduces to the forcible path condition. But
obtaining forcible paths may require some surgery on ΛM . Alternatively, one might try
to impose some extra conditions on the solution M that ensure the the forcible path
condition but that can be shown not to preclude convergence to the truth.
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2.5 Univocal Problems

Say that simplified problem (K, Θ, Λ) is univocal if and only if for each e ∈ K̂, there
exists H ∈ Θ such that:

Λe,0 ⊆ H.

One way for a problem to be univocal is for it to be linear, in the sense that for each
i < dΛe,

Λi ∈ Θ.

Otherwise, the problem is branching. Less restrictively, accounting problems are
univocal if effects arrive unambiguously (i.e., no disjunctive announcements of effects)
and no possible sets of effects are ruled out.

2.6 Ockham’s Razor

Let (K, Θ, Λ) be a simplified problem. Let e ∈ K̂.
Define:

SimpΛ(e) = {H ∈ Θ : Λe,0 ∩H 6= ∅}.
Say that H ∈ Θ is simplest in (K, Θ, Λ) if and only if

H ∈ SimpΛ(e).

Say that H ∈ Θ is Ockham given e in (K, Θ, Λ) if and only if:

SimpΛ(e) = {H}.
Proposition 13 (Ockham answer characterization) Let (K, Θ, Λ) be a simplified
problem, let H ∈ Θ, let e ∈ K̂ and let Ke ∩H 6= ∅. Then:

SimpΛ(e) = {H} iff Λe,0 ⊆ H.

Proof of proposition 13. Suppose that SimpΛ(e) = {H}. Suppose for contradiction
that w /∈ H. Then since K ⊆ ⋃

Θ, there exists H ′ ∈ Θ such that H ′ 6= H and
H ′ ∈ SimpΛ(e), so SimpΛ(e) 6= {H}. Hence, w /∈ Λe,0.

Conversely, suppose that Λe,0 ⊆ H. Then H ∈ SimpΛ(e). Let H ′ ∈ Θ such that
H ′ 6= H. Then H ∩ H ′ = ∅, since (K, Θ) is a problem. Hence, Λe,0 ∩ H ′ = ∅, so
H ′ /∈ SimpΛ(e). So SimpΛ(e) = {H}. ¥

Say that M is Ockham at e if and only if:

M(e) = ? or M(e) is Ockham at e.

Say that M is weakly Ockham at e if and only if:

M(e) = ? or M(e) is simplest at e.

If M is not Ockham at e, say that M violates Ockham’s razor at e and that M violates
Ockham’s razor strongly at e if M is not simplest at e.
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2.7 Normal Ockham Strategies

Strategy M is responsive at e in (K, Θ) if and only if

(∀w ∈ Ke)(∀i > |e|)(∃j > i) M(e|j) 6= ?.

Strategy M is stalwart at e if and only if:

if e 6= () and ? 6= M(e−) 6= M(e), then M(e−) is not Ockham at e.

Finally, say that M is normally Ockham at e in (K, Θ, Λ) if and only if

M is Ockham, stalwart, and responsive at e in (K, Θ, Λ).

2.8 Looking Forward

For each relation Φ(K,Θ,Λ, e), one can say that Φ holds from e onward if and only
if:

(∀e′ ∈ K̂e) Φ(K,Θ,Λ, e′).

Furthermore, Φ holds everywhere if and only if:

(∀e ∈ K̂) Φ(K, Θ, Λ, e).

Thus, M can be a solution to (K,Θ) from e onward, Ockham from e onward or every-
where, stalwart from e onward or everywhere, etc.

3 Normal Ockham Convergence

One reason to follow a normal Ockham strategy is that it converges to the truth. The
trouble is that many possible strategies converge to the truth. It remains to argue that
normal Ockham strategies do so more efficiently than all other strategies.

Proposition 14 (normal Ockham convergence) Let (K, Θ, Λ) be a simplified prob-
lem, let e ∈ K̂ and let M be normally Ockham from e onward in (K, Θ,Λ). Then M
solves (Ke, Θ, Λe).

Proof of proposition 14. Let e ∈ K̂ and let w ∈ Ke. So by proposition 5, there exists
n0 such that for each i ≥ n0:

w ∈ Λ(w|j),0 ⊆ Hw.

Let i ≥ n0. So by proposition 13, Hw is Ockham given w|i in (K, Θ,Λ). Since M
is responsive from e onward, there exists i > n1 such that M(w|i) 6= ?. Since M is
Ockham from e onward, M(w|i) = Hw. Since M is stalwart from e onward, for each
j ≥ i, M(w|j) = Hw. ¥
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3.1 Normal Ockham Strategy Existence

Here is an obvious way to construct a normal Ockham solution for an arbitrary, simpli-
fied problem (K, Θ, Λ). Notice that this is the most aggressive such solution, in the
sense that it leaps to the simplest answer immediately. Stalling with ? for an arbitrary
amount of time is also permitted.

MΛ(e) =
{

H if SimpΛ(e) = {H};
? otherwise.

Proposition 15 (normal Ockham existence) Let (K, Θ, Λ) be a simplified prob-
lem. Then MΛ is normally Ockham for (K, Θ, Λ).

Proof of proposition 15. The Ockham and Stalwart properties are immediate. Respon-
siveness follows from propositions 5 and 13. ¥

Say that M we M ′ if and only if for each n < |e|,

M(e|n) = M ′(e|n).

This relationship is agreement along e. It is not too hard to see that each strategy
agrees along e with a strategy that is normally Ockham thereafter. If M0 is an arbitrary
strategy for (K, Θ), define:

M̃Λ(e′) =
{

M(e′) if e′ ≤ e−;
MΛ(e′) otherwise.

Proposition 16 (normal Ockham extension) Let (K, Θ, Λ) be a simplified prob-
lem and let e ∈ K̂. Let M be a strategy. Then M̃Λ we− M and M̃Λ is normally
Ockham from e onward in (K, Θ, Λ).

Proof of proposition 16. By proposition 15, M̃0Λ is normally Ockham from e onward.
¥

4 Efficiency

Let the total number of errors committed by M in w be denoted by ε(M,w) and let
ρ(M, w) denote the sequence τ of times at which M retracts in w (which is finite for
convergent strategies) is the total number of retractions performed. The cost ρ is called
timed retractions. Let the composite loss of strategy M on w ∈ K be given by
the pair:

λ(M, w) = (ε(M, w), ρ(M, w)).

If σ, τ are finite, ascending sequences of natural numbers, define:

σ ¹ τ iff there exists a subsequence γ of τ such that
for each i ≤ length(e), e(i) ≤ γ(i).
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Hence, (1, 3, 7) ≤ (2, 3, 4, 8) in virtue of sub-sequence (2, 3, 8). Then if (b, σ) and (c, τ)
are both cumulative costs, define:

(b, σ) ¹ (c, τ) iff b ¹ c and σ ¹ τ.

(b, σ) ∼= (c, τ) iff (b, σ) ¹ (c, τ) and (c, τ) ¹ (b, σ);
(b, σ) ≺ (c, τ) iff (b, σ) ¹ (c, τ) and (c, τ) 6¹ (b, σ).

5 Worst-case Cost Bounds

A potential cost bound is a pair (b, σ), where b ≤ ω and σ is a finite or infinite,
non-descending sequence of entries ≤ ω in which no finite entry occurs more than once.
If (b, σ) is a cost vector and (c, τ) is a cost bound, then (b, σ) ≤ (c, τ) can be defined
just as for cost vectors, themselves. Cost bounds (c, τ), (d, γ) may now be compared as
follows:

(c, τ) ≤ (d, γ) iff for each cost vector(b, σ), if (b, σ) ≤ (c, τ) then (b, σ) ≤ (d, γ);
(c, τ) ≡ (d, γ) iff (c, τ) ≤ (d, γ) and (d, γ) ≤ (c, τ);
(c, τ) < (d, γ) iff (c, τ) ≤ (d, γ) and (d, γ) 6≤ (c, τ).

It follows, for example, that (4, (2)) < (ω, (2, ω)) < (ω, (0, 1, 2, . . .)) ≡ (ω, (ω, ω, ω, . . .)).
Now, each set C of cost vectors has a unique (up to equivalence) least upper bound
sup(C) among the potential upper bounds (Kelly 2006). Then one may define the
worst-case cost of strategy M given e over Λn as follows:

λn(M, e) = sup
w∈Λn

λ(M, w).

The same approach can be taken toward worst-case bounds over retraction sequences
alone.

5.1 Upper Cost Bound for Normal Ockham Solutions

Proposition 17 (normal Ockham retractions) Let (K,Θ,Λ) be a simplified prob-
lem, let e ∈ K̂ and let M be normally Ockham for (K, Θ,Λ) from e onward. Then if
M retracts at e′ ∈ Ke,

Λ(e′−) < Λ(e′).

Proof of proposition 17. Under the proposition’s hypothesis, suppose that M retracts
at e′ ∈ Ke. Then, since M is Ockham, propositions 4 and 13 imply that for some
H ∈ Θ:

Ke′− ∩ ΛΛ(e′−) ⊆ H,

and since M is stalwart, proposition 13 implies that:

Ke′ ∩ ΛΛ(e′) 6⊆ H.

14



Hence,
Λ(e′−) 6= Λ(e′).

So by proposition 2:
Λ(e′−) < Λ(e′).

¥

Let a(M, e,w) denote the number of errors committed along e by M in world w. Then
define:

a0(M, e) = max
w∈Λe,0

a(M, e−, w).

Also, let: σ(M, e) denote the sequence of times at which M retracts along e. Define:

ω(n) = (ω . . . ω︸ ︷︷ ︸
n

).

Let ∗ denote sequence concatenation.

Proposition 18 (normal Ockham upper bound) Let (K, Θ,Λ) be a simplified prob-
lem, let e ∈ K̂, let M be normally Ockham for (K, Θ, Λ) from e onward. Let a =
a0(M, e) and let σ = σe−(M, e−). Then:

λ0(M, e) ≤
{

1. (a, σ ∗ |e|) always;
2. (a, σ) if M does not retract at e.

λn+1(M, e) ≤
{

3. (ω, (σ ∗ |e| ∗ ω(n))) always;
4. (ω, (σ ∗ ω(n))) if M does not retract at e.

Proof of proposition 18.

Proof of 1. Let w ∈ Λe,0 and let i ≥ |e|. Suppose that M(w|i) = H 6=?. Then,
since M is Ockham from e onward, proposition 13 yields that Λ(w|i),0 ⊆ H. Hence,
H = Hw, so M commits no error at w|i. Furthermore, since w ∈ Λe,0, it follows that
Λ(w|(i+1)),0 = Λ(w|i),0∩Kw|(i+1) ⊆ Hw, so Hw is also Ockham at w|(i+1), by proposition
13. Since M is stalwart, M(w|(i+1)) = Hw, so M does not retract at i+1 in w. Then:
λ(M,w) ≤ (a0(M, e), σ(M, e−) ∗ |e|), so since w is an arbitrary element of Λe,0:

λ0(M, e) ≤ (a0(M, e), (σ(M, e−) ∗ |e|)).
Proof of 3. Let w ∈ Λe,(n+1) and let i > |e|. Suppose that M retracts at i. Then by
propositions 17 and 2,

Λe(w|(i− 1)) < Λe(w|i).
So by proposition 3, M retracts at most n + 1 times after e in w. Hence:

λn+1(M, e) ≤ (ω, (σ(M, e−) ∗ |e| ∗ (ω . . . ω︸ ︷︷ ︸
n+1

))).

Proofs of 2,4. If M does not retract at e, the arguments are the same as for 1, 3, except
that the “extra” retraction at |e| is dropped. ¥
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5.2 Lower Cost Bound for Arbitrary Solutions

Proposition 19 (invariance of Ockham errors) Let (K, Θ, Λ) be a simplified prob-
lem and let e′ < e ∈ K̂ and let H ∈ Θ be Ockham in (K, Θ, Λ) given e′. Then:

Λe,0 ⊆ H or Λe,0 ∩H = ∅.

Proof. Let e′ < e ∈ K̂ and suppose that H is Ockham given e′. Then, by proposition
13, Λe′,0 ⊆ H.

Case: Λe′ = Λe. Then, by proposition 8, Λe,0 ⊆ Λe′,0, so Λe,0 ⊆ H. Hence, for each
w′ ∈ Λe,0, H is not an error in w′.

Case: Λe′ 6= Λe. Then, by proposition 8, Λe,0∩Λe′,0 = ∅, so since Λe preserves answers,
H is an error in each w′ ∈ Λe,0. ¥

Proposition 20 (lower bound for arbitrary solutions) Let (K, Θ, Λ) be a simpli-
fied problem, let e ∈ K̂, let M be a solution to (K,Θ) from e onward. Let a = a0(M, e)
and σ = σe−(M, e−). Then:

λ0(M, e) ≥





1. ((a + 1), (σ ∗ (|e|+ 1))) if M(e) is not simplest at e;
2. ((a + 1), (σ ∗ (|e|+ 1))) if M does not retract at e and

e is the least e′ ≤ e such that
M(e′) is not Ockham at e′;

3. ((a + 1), (σ ∗ |e| ∗ (|e|+ 1))) if M retracts at e and
e is the least e′ ≤ e such that
M(e′) is not Ockham at e′;

4. (a, (σ ∗ |e|)) if M retracts at e;
5. (a, σ) always.

If n + 1 < dΛee, then:

λn+1(M, e) ≥





6. (ω, (σ ∗ (|e|+ 1) ∗ ω(n+1))) if e is not simplest at e;
7. (ω, (σ ∗ (|e|+ 1) ∗ ω(n+1))) if M does not retract at e and

e is the least e′ ≤ e such that
M(e′) is not Ockham at e′;

8. (ω, (σ ∗ |e| ∗ ω(n+1))) if M retracts at e;
9. (ω, (σ ∗ ω(n+1))) always.

Proof of proposition 20. Let M be a solution from e onward and suppose that e ∈ K̂.

Proof of 1. Suppose that H = M(e) is not simplest at e. So Λe,0 ∩ H = ∅. Choose
w ∈ Λe,0 so that M commits a0(M, e) errors along e− in w. Then, since Λe,0 ∩H = ∅,
answer H is another error in w, for a total of a + 1 errors. Furthermore, since M is a
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solution, there exists i > |e| such that M(w|i) 6= H, so λ0(M, e) ≥ ((a+1), (σ∗(|e|+1))).

Proof of 2. Suppose that H = M(e) is not Ockham at e and that H = M(e) = M(e−)
and that for each e′ < e, either M(e′) =? or M(e′) is Ockham at e. Hence, M(e−) = H
and H is Ockham at e−. So Λe−,0 ⊆ H and Λe,0 6⊆ H. Hence, Λe,0 6= Λe−,0. So, since
Λ preserves answers, Λe,0 ∩H = ∅, so H is not simplest at e. Apply (1).

Proof of 3. Suppose that H = M(e) is not Ockham at e and that M retracts at e
and that for each e′ < e, either M(e′) =? or M(e′) is Ockham at e. By proposi-
tion 13, there exists w ∈ H r Λe,0. By proposition 19, a(M, e−, e) = a0(M, e). So
a(M, e, e) = a0(M, e) + 1. Since w /∈ H and M is a solution, M converges to Hw 6= H
at some stage i > |e|. Hence, λ(M, w) ≥ ((a + 1), (σ ∗ |e| ∗ (|e|+ 1))).

Proof of 4. Choose w ∈ Λe,0 such that M commits a0(M, e) errors along e− in w. Then,
since M retracts at e, λ0(M, e) ≥ (a, (σ ∗ |e|)).

Proof of 5. Like the proof of (4), ignoring retraction at |e|.

Proof of 6. Suppose that dΛee > n + 1, so that Λe,(n+1) 6= ∅. Since Λ is a simplicity
concept for (K, Θ), there exists S such that Λe|S is a forcible path through Λe. Since
S traverses Λe and Λe,(n+1) 6= ∅, it follows that Λe,0 ∩ S 6= ∅, so let w0 ∈ Λe,0 ∩ S 6= ∅.
Suppose that H = M(e) is not simplest at e. Let j ∈ ω be arbitrary. Since H is not
simplest at e, Λe,0 ∩H = ∅, so Hw0 6= H. Since M is a solution, there exists i0 > |e|
such that M(e|i0) = Hw 6= H. Let e0 = w|i0. Since w0 ∈ Λe,0 ∩ S, Λe(e0) = 0, so by
proposition 8, it is the case that dΛe0e ≥ dΛee. By proposition 9, Λe0 |S is a forcible
path through Λe0 . So, by proposition 11, there exists wn+1 ∈ (Λe0,n+1 ∩ S) and a list
of distinct answers (H0, . . . , Hn+1) such that for each m ≤ n+1, Hm ⊆ Λe0,m and such
that M produces each successive answer in the list j times in immediate succession
along wn+1 after the end of e0. Since wn+1 ∈ Λe0,n+1, for each m < n + 1, answer
Hm 6= Hwn+1 , so since n + 1 > 0, M produces at least j errors in wn+1 and, after the
retractions σ already produced by M along e−, retracts at least n + 1 more times no
sooner than:

((|e|+ 1), (|e|+ 1 + j), (|e|+ 1 + 2j), . . . , (|e|+ 1 + (n + 1)j))).

Thus:

λ(M, wn+1) ≥ (ω, σ ∗ ((|e|+ 1), (|e|+ 1 + j), (|e|+ 1 + 2j), . . . , (|e|+ 1 + (n + 1)j))).

Since w0 ∈ (Λe,0 ∩ S ∩Ke0), it follows that Λ(e0) = 0. Hence, by proposition 8:

Λe0,n+1 ∩ S = Λe,n+1 ∩ S ∩Ke0 ,

so wn+1 ∈ Λe,n+1. So, since j is arbitrary:

λn+1(M, e) ≥ (ω, (σ ∗ |e| ∗ ω(n+1))).
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Proof of 7. The argument for (2) establishes that M(e) is not simplest at e. Then
apply (6).

Proofs of 8, 9. Apply proposition 11 at e and proceed as in the proof of (6). ¥

5.3 Relative Efficiency

Now it is possible to compare strategies in terms of their worst-case costs over problem
instances of various sizes. Several such comparisons come immediately to mind:

M ≤e M ′ iff (∀n) λn(M, e) ≤ λn(M ′, e);
M <e M ′ iff M ≤e M ′ and M ′ 6≤e M ;
M ≺e M ′ iff (∀n) if Ce(n) 6= ∅ then λe(M, n) < λe(M ′, n).

When M ≤e M ′, say that M is as efficient as M ′ given e. If M <e M ′ say that M
is (weakly) more efficient than M ′ given e. Finally, in the event that M ≺e M ′, say
that M is strongly more efficient than M ′ given e.

5.4 Efficiency and Optimality

Define optimality relative to simplified problem (K, Θ, Λ) as follows:

M is optimal at e iff M is a solution at e and for each strategy M ′ we− M that
is a solution at e, M ≤e M ′.

M is optimal from e onward iff for each e′ extending e, M is optimal at e′.

When e is empty, say simply that M is optimal.

5.5 Beating

Define beatings relative to simplified problem (K, Θ, Λ) as follows:

M is (weakly) beaten at e iff there exists M ′ we− M such that M ′ is a solution
at e and M ′ <e M ;

M is strongly beaten at e iff there exists M ′ we− M such that M ′ is a solution
at e and M ′ ≺e M ;

M is [strongly] beaten iff there exists e ∈ K̂ such that M is [strongly] beaten
at e;

M is never [strongly] beaten iff there exists no e ∈ K̂ such that M is [strongly]
beaten at e′.
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5.6 Normal Ockham Optimality Theorem

Proposition 21 (Ockham optimality) Let (K, Θ, Λ) be a simplified problem and let
M be a normally Ockham strategy always. Then M is an optimal solution to (K, Θ, Λ)
always.

Proof of proposition 21. Let M be a normally Ockham strategy always. Then M is nor-
mally Ockham from e onward so, by proposition 14, M solves (K, Θ). Let M ′ we− M
solve (K, Θ). Then a0(M, e) = a0(M ′, e) and σe−(M, e−) = σe−(M ′, e−).

Case 1: M does not retract at e. Then, by propositions 18.2 and 20.5:

λ0(M, e) ≤ (a, σ) ≤ λ0(M ′, e),

and if n + 1 < dΛe, then propositions 18.4 and 20.9 yield:

λn+1(M, e) ≤ (ω, (σ ∗ ω(n))) ≤ λn+1(M ′, e).

Case 2: M ′ retracts at e. Then, by propositions 18.1 and 20.4:

λ0(M, e) ≤ (a, (σ ∗ |e|)) ≤ λ0(M ′, e),

and if n + 1 < dΛe, then propositions 18.3 and 20.8 yield:

λn+1(M, e) ≤ (ω, (σ ∗ |e| ∗ ω(n))) ≤ λn+1(M ′, e).

Case 3: M retracts at e and M ′ does not retract at e. Since M is normally Ockham
always and M retracts at e, M(e−) is not Ockham at e. Since M ′ we− M , it follows
that M ′(e) = M(e−) and that is the first Ockham violation by M ′ along e. Then, by
propositions 18.1 and 20.3:

λ0(M, e) ≤ (a, (σ ∗ |e|)) < (a + 1, (σ ∗ (|e|+ 1))) ≤ λ0(M ′, e),

and if n + 1 < dΛe, then propositions 18.3 and 20.7 yield:

λn+1(M, e) ≤ (ω, (σ ∗ |e| ∗ ω(n))) < (ω, (σ ∗ (|e|+ 1) ∗ ω(n))) ≤ λn+1(M ′, e).

¥

6 Necessity of the Normal Ockham Property

It is not enough that principles jointly suffice for optimality. The clincher is that they
be necessary for optimality.

Proposition 22 (necessity of responsiveness) Let (K, Θ) be a problem, let e ∈ K̂
and let M ′ be a solution that either violates responsiveness at e. Then M is not a
solution from e onward.
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Proof of proposition 22. Immediate. ¥

Proposition 23 (stable necessity of stalwartness) Let (K, Θ,Λ) be a simplified
problem, let e ∈ K̂ and let M ′ be a solution that either violates stalwartness or that
strongly violates Ockham’s razor at e. Then every strategy M we− M ′ that is normally
Ockham from e onward is a more efficient solution than M ′ at e.

Proof of proposition 23. Let M ′ violate stalwartness at e and let M we− M ′ be normally
Ockham from e onward. Then M ′ retracts at e and M does not. So by propositions
18.1 and 20.4,

λ0(M, e) ≤ (a, σ) < (a + 1, (σ ∗ |e|)) ≤ λ0(M ′, e),

and if n + 1 < dΛe, then propositions 18.4 and 20.8 yield:

λn+1(M, e) ≤ (ω, ω(n))) < (ω, (σ ∗ |e| ∗ ω(n))) ≤ λn+1(M ′, e).

¥

Proposition 24 (stable necessity of weak Ockham) Let (K, Θ, Λ) be a simplified
problem, let e ∈ K̂ and let M ′ be a solution that strongly violates Ockham’s razor at
e. Then every strategy M we− M ′ that is normally Ockham from e onward is a more
efficient solution than M ′ at e.

Proof of proposition 24. Let M ′ violate weak Ockham’s razor at e and let M we− M ′

be normally Ockham from e onward. Then M(e) is not simplest given e. So by
propositions 18.2 and 20.1,

λ0(M, e) ≤ (a, (σ ∗ |e|)) < (a + 1, (σ ∗ (|e|+ 1))) ≤ λ0(M ′, e),

and if n + 1 < dΛe, then propositions 18.4 and 20.6 yield:

λn+1(M, e) ≤ (ω, σ ∗ |e| ∗ ω(n))) < (ω, (σ ∗ (|e|+ 1) ∗ ω(n))) ≤ λn+1(M ′, e).

¥

Proposition 25 (necessity of Ockham) Let (K, Θ, Λ) be a simplified problem, let
e ∈ K̂ and let M ′ be a solution that violates Ockham’s razor for the first time at e.
Then every strategy M we− M ′ that is normally Ockham from e onward is a (weakly)
more efficient solution than M ′ at e.

Proof of proposition 25. Let M ′ violate Ockham’s razor for the first time at e and let
M we− M ′ be normally Ockham from e onward.

Case 1: M ′ does not retract at e. Then, since M we− M ′ and M is Ockham along
e−, M ′ is Ockham along e− as well, so e is the first Ockham violation by M ′, so by
propositions 18.1 and 20.2:

λ0(M, e) ≤ (a, (σ ∗ |e|)) < (a + 1, (σ ∗ (|e|+ 1))) ≤ λ0(M ′, e),
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and if n + 1 < dΛe, then propositions 18.3 and 20.2 yield:

λn+1(M, e) ≤ (ω, (σ ∗ |e| ∗ ω(n))) < (ω, (σ ∗ (|e|+ 1) ∗ ω(n))) ≤ λn+1(M, e).

Case 2: M ′ retracts at e. Then, by propositions 18.1 and 20.3:

λ0(M, e) ≤ (a, (σ ∗ |e|)) < (a + 1, (σ ∗ |e| ∗ (|e|+ 1))) ≤ λ0(M ′, e),

and if n + 1 < dΛe, then propositions 18.3 and 20.8 yield:

λn+1(M, e) ≤ (ω, (σ ∗ |e| ∗ ω(n))) ≤ λn+1(M ′, e).

¥

Theorem 1 (efficiency characterization) Let (K, Θ, Λ) be a simplified problem. The
following are equivalent:

1. M is always an optimal solution;

2. M is always a normal Ockham srategy;

3. M is never (weakly) beaten.

Proof of proposition 1. By definition, (1) implies (3). By propositions 16, 22, 23, 25,
one obtains that (3) implies (2). By proposition 21, it follows that (2) implies (1). ¥

6.1 Univocal Case

Proposition 26 (stable Ockham optimality in univocal problems) Let (K, Θ, Λ)
be a nested, simplified problem, let e ∈ K̂ and let M be a normally Ockham strategy
from e onward. Then M is an optimal solution to (K, Θ,Λ) from e onward.

Proof of theorem 26. Let M be a normally Ockham strategy from e onward. It suffices
to revisit case 3 in the proof of proposition 21, since the assumption that M is normally
Ockham from e onward suffices for cases 1 and 2. In case 3, M retracts at e and M ′

does not retract at e. Since, in case 3, M is normally Ockham always and M retracts
at e, it follows that M(e−) = M ′(e) is not Ockham at e. So, since (K, Θ, Λ) is univocal,
M ′(e) is not simplest at e. Then, by propositions 18.1 and 20.1:

λ0(M, e) < (a + 1, (σ ∗ (|e|+ 1))) ≤ λ0(M ′, e),

and if n + 1 < dΛe, then propositions 18.3 and 20.6 yield:

λn+1(M, e) < (ω, (σ ∗ (|e|+ 1) ∗ ω(n))) ≤ λn+1(M ′, e).

¥
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Proposition 27 (stable necessity of Ockham in univocal problems) Let (K, Θ, Λ)
be a univocal, simplified problem, let e ∈ K̂ and let M ′ be a solution that violates Ock-
ham’s razor for the first time at e. Then every strategy M we− M ′ that is normally
Ockham from e onward is a more strongly more efficient solution than M ′ at e.

Proof of proposition 27. Let M ′ violate Ockham’s razor at e and let M we− M ′ be
normally Ockham from e onward. By proposition 13, Λe,0 6⊆ M(e), so since (K, Θ, Λ)
is univocal, Λe,0 ∩M(e) = ∅, so M(e) is not simplest given e. Proceed as in the proof
of proposition 24. ¥

Theorem 2 (univocal efficiency characterization) Let (K, Θ, Λ) be a univocal, sim-
plified problem and let e ∈ K̂. The following are equivalent:

1. M is an optimal solution from e onward;

2. M is a normal Ockham srategy from e onward;

3. M is never strongly beaten from e onward.

Proof of proposition 1. Proof of proposition 1. By definition, (1) implies (3). By
propositions 16, 22, 23, 27, one obtains that (3) implies (2). By proposition 26, it
follows that (2) implies (1). ¥

6.2 Strong Simplicity Case

Univocality is a strong condition that is not met in interesting applications like learning
from effects (e.g., causal graph inference), the problem is non-uinivocal but there exists
a strong simplicity concept. One cannot strengthen the general results for errors and
retractions jointly. For example, suppose that the problem is to determine the total
counts of blue effects and red effects. Strategy M has seen no red effects but guesses
“one red effect” twenty times along e− and changes its tune to “one blue effect” right
at e, when it is announced that an effect of some color is coming. Now one can only
force an extra retraction from M by presenting a red effect (the option of presenting
no effects is ruled out). But presenting just one blue effect would maximize errors.

Proposition 28 (lower bound for strong simplicity) Let (K, Θ, Λ) be a strongly
simplified problem, let e ∈ K̂, let M be a solution to (K, Θ) from e onward such that
M(e) is not Ockham at e. Let σ = σe−(M, e−). Then:

1. ρ0(M, e) ≥ (σ ∗ (|e|+ 1));

2. ρn+1(M, e) ≥ (σ ∗ (|e|+ 1) ∗ ω(n+1)), if n + 1 < dΛee.
Proof of proposition 28. Since M(e) is not Ockham at e, it follows from proposition 13
that there exists w0 ∈ Λe,0 6⊆ H. Since M is a solution, there exists i > |e| such that
M(w0|i) = Hw0 6= M(e). Hence:

ρ0(M, e) ≥ (σ ∗ (|e|+ 1)).
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Let n + 1 < dΛee. Since Λ is a strong simplicity concept, Λe is a forcible path through
Λe. Let e0 = w0|i. Since w0 ∈ Λe,0 ∩ S, it follows that Λe(e0) = 0, so dΛe0e ≥ dΛee.
Continue as in the proof of proposition 20.6. ¥

Proposition 29 (stable Ockham optimality with strong simplicity) Let (K, Θ, Λ)
be a strongly, simplified problem, let e ∈ K̂ and let M be a normally Ockham strategy
from e onward. Let the cost be timed retractions (i.e., ρ). Then M is an optimal
solution to (K, Θ, Λ) from e onward.

Proof of theorem 26. Let M be a normally Ockham strategy from e onward. It
suffices to revisit case 3 in the proof of proposition 21, since the assumption that M
is normally Ockham from e onward suffices for cases 1 and 2. In case 3, M retracts
at e and M ′ does not retract at e. Since M is stalwart from e onward, it follows that
M(e−) = M ′(e−) = M ′(e) is not Ockham at e So, by propositions 18.1 and 28.1:

λ0(M, e) ≤ (σ ∗ |e|)) < (σ ∗ (|e|+ 1)) ≤ λ0(M ′, e),

and if dΛee > n + 1 then by propositions 18.3 and 28.2:

λn+1(M, e) ≤ (σ ∗ |e| ∗ ω(n+1)) < (σ ∗ (|e|+ 1) ∗ ωω) ≤ λ0(M ′, e).

¥

Proposition 30 (stable necessity of Ockham with strong simplicity) Let (K,Θ,Λ)
be a nested, simplified problem, let e ∈ K̂ and let M ′ be a solution that violates Ock-
ham’s razor for the first time at e. Then every strategy M we− M ′ that is normally
Ockham from e onward is a more strongly more efficient solution than M ′ at e.

Proof of proposition 27. Let Λ be a strong simplicity concept for (K, Θ). Let M ′ violate
Ockham’s razor at e and let M we− M ′ be normally Ockham from e onward. So, by
propositions 18.1 and 28.1:

λ0(M, e) ≤ (σ ∗ |e|)) < (σ ∗ (|e|+ 1)) ≤ λ0(M ′, e),

and if dΛee > n + 1 then by propositions 18.3 and 28.2:

λn+1(M, e) ≤ (σ ∗ |e| ∗ ω(n+1)) < (σ ∗ (|e|+ 1) ∗ ωω) ≤ λ0(M ′, e).

¥

Theorem 3 (efficiency characterization for strong simplicity) Let (K, Θ, Λ) be
a strongly simplified problem and let e ∈ K̂. Let the cost be timed retractions (i.e., ρ).
The following are equivalent:

1. M is an optimal solution from e onward;

2. M is a normal Ockham srategy from e onward;

3. M is never strongly beaten from e onward.

Proof of proposition 1. Proof of proposition 1. By definition, (1) implies (3). It follows
from propositions 16, 22, 23, 30 that (3) implies (2). By proposition 29 one obtains
that (2) implies (1). ¥
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7 Simplicity in Topological Spaces

It is often the case that one thinks of an empirical problem not in terms of infinite
input streams themselves but, rather, in terms of points in some space, as in the
case of curve-fitting with real-valued parameters. In that problem, answers are models
corresponding to finite sets of parameters. One could first translate such a problem into
the input streams one might encounter, but one could also define simplicity directly on
the problem as presented. The latter approach will now be developed.

8 Topological Problems

A topological empirical problem is a triple P = (K,Ω, Θ) such that T = (K, Ω)
is a topological space and Θ is a partition on K, where Ω is the collection of open
sets. Let Hx denote the unique cell Ω that contains x ∈ K. The possibilities in
X are now just points, rather than infinite input streams. As before, think of open
sets as verifiable propositions. The definitions that follow are all relative to P. An
information stream for x ∈ K is a downward-nested ω-sequence of elements of Ω.
Let S denote the set of all information streams drawn from elements of Ω. Define, for
all x ∈ X,w ∈ S:

I(x,w) iff (∀S ∈ Ωx)(∃i) w(i) ⊆ S,

in which case w is informative for x. Then define:

K̇x = {w ∈ SΩ : I(x,w)}.

If H ∈ Θ, define:
Ḣ = {w ∈ K̇x : x ∈ H},

and let the induced question be:

Θ̇ = {Ḣ : H ∈ Θ}.

Then the induced problem:
Ṗ = (K̇, Θ̇)

is an empirical problem of the sort defined earlier, so all of the earlier definitions and
results apply. In particular,it makes sense to write ̂̇KP , ̂̇KP,e, etc. Let Ṫ = (K̇, Ω̇∗)
denote the branching future space on K̇.

8.1 Erotemorphism

Let R be a relation in X ×X ′: Then define the direct and inverse projections of R
as follows, where S ⊆ X, S′ ⊆ X ′:

R(S) = {x′ ∈ X ′ : (∃x ∈ S) R(x, x′)};
R−1(S′) = {x ∈ X : (∃x′ ∈ S′) R(x, x′)}.
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Suppose that T = (X, Ω), T ′ = (X ′,Ω′) are topological spaces and R ⊆ X ×X ′. Then
say that R is directly continuous if and only if R−1 takes open sets in T ′ to open
sets in T . Say that R is directly total if and only if R(X) = X ′. If Θ partitions X
and Θ′ partitions X ′, then say that R preserves cells directly if and only if:

(∀H ∈ Θ)(∃H ′ ∈ Θ′) R(H) ⊆ H ′.

Each of these properties holds of R inversely if and only if it holds directly for R−1.
Each property is held symmetrically if and only if it holds directly and inversely (so
symmetrical continuity is bi-continuity). Say that R ⊆ X ×X ′ is an erotemorphism
if and only if:

1. R is symmetrically total;

2. R is symmetrically continuous;

3. R is symmetrically cell-preserving.

Then write P ≡ P ′ and say that P is erotemorphic to P ′. Say that P = (X, Ω,Θ) is
presentable if and only if I is directly total.

Proposition 31 If P is presentable, then relation I witnesses P ≡ Ṗ.

Proof.

8.2 Strategies

A strategy gets to draw conclusions from finite initial segments of open sets. However,
the fact that the open sets may arrive by any schedule means that there is no informa-
tion encoded in the order in which information arrives, so one may as well look only at
the last open set presented. Let the content of e ∈ K̂ ′ be given as:

c(e) =
{

K if|e| = 0;
e(|e| − 1) otherwise.

Say that strategy M is content-driven if and only if for each e, e′ ∈ K̂ ′:

c(e) = c(e′) implies M(e) = M(e′).

Thus, a content-driven strategy may be expressed as a mapping directly from open sets
to answers:

M(e) = M ′(c(e)).
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