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CHAPTER ONE

Learning from Error

The essays and lectures of which this book is composed are varia-
tions upon one very simple theme—the thesis that we can learn
from our niistakes.

Karl Popper, Conjectures and Refutations, p. vii

“WE LEARN FROM OUR MISTAKES. Few would take issue with this dictum.
¥ it is more than merely a dliché, then it would seem of interest to
pistemologists to inquire how knowledge is obtained from mistakes
1. from error. But epistemologists have not explored, in any serious
way, the basis behind this truism—the different kinds of mistakes that
eem to matter, or the role of error in learmning about the world. Karl
Popper’s epistemology of science takes learning from error as its linch-
pin, as the opening to his Conjeciures and Refutations announces. In his
dedictive model the main types of error from which scientists learn
are clashes between a hypothesis and some experimental outcome in
esting. Nevertheless, Popper says little about what positive informa-
ion is acquired through error other than just that we learn an error
s somewhere been made. Since a great many current approaches
ake Popper’s problems as their starting place, and since I too make
arning from exror fundamental, I begin by pursuing this criticism of

1.1 POPPERIAN LEARNING THROUGH FALSIFICATION

r'the logical empiricists, learning from experiment was a matter of
ing observations to arrive at inductive support for hypotheses. Ex-
rimental observations were viewed as a relatively unproblematic
empitical basis; the task for philosophers was to build inductive logics
1ssigning degrees of evidential support to hypotheses on the basis
iven statements of the evidence. Popper questioned the supposition
xperimental data were unproblematic and denied that learning
atter of building up inductive support through confirming in-
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stances of hypotheses. For Popper, learning is a matter of deductive
falsification. In a nutshell, hypothesis H is deductively falsified if H en-
tails experimental outcome 0, while in fact the outcome is ~0. What is
learned is that H is false.

Several familiar problems stand in the way of such learning. Out-
come O, itself open to error, is “theory-laden” and derived only with
the help of auxiliary hypotheses. The anomaly cannot be taken as
teaching us that H is false because it might actually be due to some
error in the observations or one of the auxiliary hypotheses needed to
derive 0. By means of the modus tollens, Popper remarks, “we falsify the
whole system (the theory as well as the initial conditions) which was
required for the deduction of [the prediction], i.e., of the falsified state-
ment” (Popper 1959, 76). We cannot know, however, which of several
auxiliary hypotheses is to blame, which needs altering. Often H entails,
not a specific observation, but a claim about the probability of an out-
come. With such a statistical hypothesis 4, the nonoccurrence of an
outcome does not contradict H, even if there are no problems with the
auxiliaries or the observation.

As such, for a Popperian falsification to get off the ground, addi-
tional information is needed to determine (1) what counts as obser-
vational (and to decide which observations to accept in a particular
experiment), (2) whether auxiliary hypotheses are acceptable and al-
ternatives are ruled out, and (3) when to reject statistical hypotheses.
Only with (1) and (2) does an anomalous observation O falsify hypoth-
esis H, and only with (3) can statistical hypotheses be falsifiable. Be-
cause each determination is fallible, Popper and, later, Imre Lakatos

regard their acceptance as decisions, driven more by conventions than .

by experimental evidence.

Lakatos sets out to improve Popper by making these (and other)
decisions explicit, yielding “sophisticated methodological falsifica-
tionism.” Nevertheless, Lakatos finds the decisions required by a Pop-
perian falsificationist too risky, claiming that “the risks are daring to
the point of recklessness” (Lakatos 1978, 28), particularly decision 2,
to rule out any factors that would threaten auxiliary hypotheses. Says
Lakatos: “When he tests a theory together with a ceteris paribus clause
and finds that this copjunction has been refuted, he must decide
whether to take the refutation also as a refutation of the specific the-
ory. ... Yet the decision to ‘accept’ a ceteris paribus clause is a very risky
one because of the grave consequences it implies” {ibid., 110). Once
the decision is made to reject alternative auxiliary factors, a mere
anomaly becomes a genuine falsifier of the theory itself.

Lakatos regards such a decision as too arbitrary. Accepting what is
often referred to as the Duhem-Quine thesis, that “no experimental
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4lt can ever kill a theory: any theory can be saved f_rom Cou'nter—
' "sgtéhées either by some auxiliary hypothesis or by a.smtable reinter-
cetation of its terms” (Lakatos 1978, 32), Lakatos believes that an ap-
cal-procedure by which to avoid directing the modus tollens against a
heory is always available. o

. “"Moreover, Lakatos, like Thomas Kuhn, finds Pol?pers picture of
orijecture and refutation too removed from' actual science, which of-
eni lives with anomalies and contains not just falaﬁcauon.s but also
snfirmations. Attempting to save something of Popp(?r Whﬂe accom-
modating Kuhn, Lakatos erects his “methodology of scxentlﬁc reseall‘ch
yrogrammes.” Lakatos suggests that there is a kard ca.re against which
nodus tollens is not to be directed. In the face of incqnsmtency Oi anotn-
ly, we may iry to replace any auxiliaries outside this core (the. protec-
ive belt”), so long as the result is progressive, that is, predicts some
novel phenomena. Determining the progressiveness of the tl}eory
Hange requires us to look not at an isolated theory, but at a series of
heories—a research program. However, this holistic move does not re-
y solve Popper’s problem: as Lakatos recognizes, it enablqs any the-
y or research program to be saved—with sufficient genius it may
“be defended progressively, even if it is false (Lakatos 1978, 111). The
‘cornerstone of the Popperian doctrine against saving theories from fa.1-
ification is overturned. While Lakatos, like Popper, had hoped to avoid
conventionalistn, his solution results in making the growth of- k_:nowl—
_edge even more a matter of convention than did Popper’§ decisions. It
“is the unquestioned authority of the conventionally designated hard
.core, and not “the universe of facts,” that decides where to direct the
arrow of modus tollens. In Lakatos’s view:

The direction of science is determined primarily by human creative
jmagination and not by the universe of facts which surrounds us. Cre-
ative imagination is likely to find corroborating novel evidence even
for the most “absurd” programme, if the search has sufficient
drive. . .. A brilliant school of scholars (backed by a rich society to
finance a few well-planned tests) might succeed in pushing any fan-
tastic programine ahead, or, alternatively, if so inclined, in overthrow-
ing any arbitrarily chosen pillar of “established knowledge.” {Lakatos
1978, 99--100)

But let us pull back and recall the problems that set Lakatos .Off
in the first place. Affirming experimental data? Ruling out alternative
auxiliaries? Falsifying statistical claims? Why not see if there may not
be perfectly good grounds for warranting the information_that these
tasks require without resorting to conventional decisions in the first
place. This is where my project begins.
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The key is to erect a genuine account of learning from error—one
that is far more aggressive than the Popperian detection of logical in-
consistencies. Although Popper’s work is full of exhortations to put
hypotheses through the wringer, to make them “suffer in our stead in
the struggle for the survival of the fittest” (Popper 1962, 52), the tests
Popper sets out are white-glove affairs of logical analysis. If anomalies
are approached with white gloves, it is little wonder that they seem to
tell us only that there is an error somewhere and that they are silent
about its source. We have to become shrewd inquisitors of errors, in-
teract with them, simulate them (with models and computers), amplify
them: we have to learn to make them talk, A genuine account of learn-
ing from error shows where and how to justify Popper’s “risky deci-
stons.” The result, let me be clear, is not a filling-in of the Popperian
(or the Lakatosian) framework, but a wholly different picture of learn-
ing Irom error, and with it a different program for explaining the
growth of scientific knowledge.

1.2 Day-TO-DAY LEARNING FROM MISTAKES

The problem of learning from error in the sense of Popperian falsifica-
tion, say Lakatos and others, is that learning from error itself is fraught
with too much risk of error. But what grounds are there for thinking
that such possible errors are actually problematic? How do scientists
actually cope with them? It is not enough that mistakes are logically
possible, since we are not limited to logic. Unless one is radically skepti-
cal of anything short of certainty, specific grounds are needed for hold-
ing that errors actually occur in inquiries, that they go unnoticed, and
that they create genuine obstacles to finding things out. No such
grounds have been given. If we just ask ourselves about the specific
types of mistakes we can and do make, and how we discover and avoid
them—in short, how we learn from error—we would find that we
have already taken several steps beyond the models of both Popper
and Lakatos. Let me try to paint with broad brush strokes the kinds of
answers that I think arise in asking this question, with a promise to fill
in the details as we proceed.

L. After-trial checking (correcting myself). By “after-trial” 1 mean after
the data or evidence to be used in some inference is at hand. A tenta-
tive conclusion may be considered, and we want to check if it is correct,
Having made mistakes in reaching a type of inference in the past, we
often learn techniques that can be applied the next time to check if we
are comunitting the same error. For example, I have often discovered I
was mistaken to think that A caused B when I found that B occurs
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ven without 4. In a subsequent inference about the effeFt of some
acﬂjr F 1 may deliberately consider what occurs without F in or(%er to
heck this mistake. Other familiar after-trial checks are the techniques
e-develop for checking complex arithmetic operations or for balanc-
.o checkbooks.

In addition to techniques for catching ourselves in error are tech-
ques for correcting errors. Especially important error-correcting tech-
'i'ques are those designed to go from less accurate to more accurate
results, such as taking several measurements, say, of the length of
wood or fabric, and averaging them.

2. Before-trial planning. Knowledge of past mistakes gives rise 1:.0
tforts to avoid the errors ahead of time, before running an experi-
ment or obtaining data. For example, teachers who suspect that
‘knowing the author of a paper may influence their grading may go
“out of their way to ensure anonymity before starting to grade. This is
‘an informal analogue to techniques of astute experimental design,
such as the use of control groups, double blinding, and large sample

“size.

3. An error reperioire. The history of mistakes made in a type of m
uiry gives rise to a list of mistakes that we would either work .to avoid
‘(before-trial planning) or check if committed (after-trial checking), for
xample, a list of the familiar mistakes when inferring a cause of a
orrelation: Is the correlation spurious? Is it due to an extraneous fac-
‘tor? Am I confusing cause and effect? More homely examples are fa-
miliar from past efforts at fixing a car or a computer, at cooking, and
the like.

—

4, The effects of mistakes. Through the study of mistakes we learn
about the kind and extent of the effect attributable to different errors
or factors, This information is then utilized in subsequent inquiries or
criticisms. One such use is to rule out certain errors as responsible for
an effect. Perhaps putting in too much water causes the rice to be softer
but not saltier.

Knowledge of the effects of mistakes is also exploited to “subtract
out” their influences after the trial. If the effects of different factors can
be sufficiently distinguished or subtracted out later, then the inferences
are not threatened by a failure to control for them. Thus knowing the
effects of mistakes is often the key to justifying inferences. In chapter
7 we will see how Jean Perrin debunked an allegation that his results
on Brownian motion were due to temperature variations in his experi-
ment. Such variations, he showed, only caused a kind of current ecasily
distinguishable from Brownian motion.



6 CHAPTER ONE

3. Simulating errors. An important way to glean information about
the effects of mistakes is by utilizing techniques (real or artificial) to
display what it would be like if a given error were committed or a given
factor were operative. Observing an antibiotic capsule in a glass of wa-
ter over several days revealed, by the condition of the coating, how an
ulceration likely occurred when its coating stuck in my throat. In the
same vein, we find scientists appealing to familiar chance mechanisms
(e.g., coin tossing) to simulate what would be expected if a result were
due to experimental artifacts.

6. Amplifying and listening to error patterns. One way of learning from
error is through techniques for magnifying their effects. T can detect a
tiny systematic error in my odometer by driving far enough to a place
of known distance. I can learn of a slight movement across my thresh-
old with a sensitive motion detector. Likewise, a pattern may be
gleaned from “noisy” data by introducing a known standard and study-
ing the deviations from that standard. By studying the pattern of dis-
crepancy and by magnifying the effects of distortions, the nature of
residuals, and so forth, such deviations can be made to speak volumes.

7. Robustriess. From the information discussed above, we also learn
when violating certain recommendations or background assumptions
does not pose any problem, does not vitiate specific inferences. Such
outcomes or inferences are said to be robust against such mistakes.
These are the kinds of considerations that may be appealed to in an-
swering challenges to an inference. In some cases we can argue that
the possibility of such violations actually strengthens the inference.
{(Por example, if my assumptions err in specific ways, then this result
is even more impressive.) An example might be inferring that a new
teaching technique is more effective than a standard one on the basis
of higher test scores among a group of students taught with the new
technique (the treated group) compared with a group of students
taught with the old (the control group). Whereas an assumption of the
study might have been that the two groups had about equal ability,
discovering that the treated group was actually less able than the con-

trol group before being taught with the new technique only strength-

ens the inference.

An important strategy that may be placed under this rubric is that
of deliberately varying the assumptions and seeing whether the result
or argument still holds. This often allows for the argument that the
inference is sound, despite violations, that inaccuracies in underlying
factors canmot be responsible for a result. For, were they responsible
we would not have been able to consistently obtain the same results
despite variations.
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. 8. Severely probing error. Points 1 through 7 form the basis of learn-
Lo to detect errors. We can put together so potent an arsenal for un-
afthing a given error that when we fail to find it we have excellent
unds for concluding that the error is absent. Having failed to detect
iven infection with several extremely reliable blood tests, my physi-
ian infers that it is absent. The “error” inferred to be absent here is
' laring that there is no infection when there is one.
. The same kind of reasoning is at the heart of experimental testing.
‘shall call it arguing from error. After learning enough about certain
ypes of mistakes, we may construct (often from other tests) a testing
procedure with an overwhelmingly good chance of revealing the pres-
ence of a specific error, if it exists—but not otherwise. Such a testing
_procedure may be called a severe (or reliable) test, or a severe error probe.
If a hypothesized error is not detected by a test that has an overwhelm-
ngly high chance of detecting it, if instead the test yields a result that
ccords well with no error, then there are grounds for the claim that
error is absent. We can infer something positive, that the particular
yror is absent (or is no greater than a certain amount). Equivalently,
¢ have grounds for rejecting the hypothesis, H’, that the error is pres-
nt, and affirming f, that it is absent. When we have such information,
‘we say that H has passed a severe test, Alternatively, we can say that
‘the test result is a good indication that H is correct.
Is it possible for such humdrum observations to provide a fresh
‘perspective from which to address problems that still stand in the way
:of a satisfactory epistemology of science? I propose that they can, and
‘that is the underlying thesis of this book.
: To turn the humdrum observations into tools for experimental
earning, they need to be amplified, generalized, and systematized. As
‘1 see it, this is the chief task of an adequate epistemnology of experi-
‘ment. 1 understand “experiment,” 1 should be clear at the outset, far
‘more broadly than those who take it to require literal control or ma-
' ipulation. Any planned inquiry in which there is a deliberate and
:reliable argument from error may be said to be experimental.
How can these day-to-day techniques for learning from error take
us beyvond Popper’s deductive falsification model?

1.3 ACCENTUATE THE POSITIVE, ELIMINATE THE NEGATIVE

I endorse many of Popper’s slogans. Like Popper's, the present ap-
roach views the growth of knowledge as resulting from severe criti-
ism—from deliberately trying to find errors and mistakes in hypothe-
‘ses. It likewise endorses his idea that learning about a hypothesis is
based on finding out whether it can withstand severe tests. Each of
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these slogans, however, is turned into a position where something pos-
itive is extracted from the severe criticism; for us, the focus is on con-
structive criticism, on learning from criticizing. It seems incumbent upon
anyone mounting such an approach to dispel the ghosts of Popper’s
negativism right away, or at least sketch how they will be dispelled.

The most devastating criticism of Popper’s approach is this: having
rejected the notion that learning is a matter of building up probability
in a hypothesis, Popper seems 1o lack any meaningful way of saying
why passing severe tests counts in favor of a hypothesis.! Popper’s ac-
count seems utterly incapable of saying anything positive. There are
two variants to this criticism, which 1 shall take up in turn.

a. Why Should Passing Severe Tests Count in Favor of Hypotheses?

If the refuted hypothesis is rejected for one that passes the test it
failed, that new hypothesis, Popper says, is preferable. But why should
it be preferred? What is it that makes it better? The most Popper can
say on its behalf is that it did better in passing the test the previous
hypothesis failed and that “it will also have to be regarded as possibly
true, since at the time ¢ it has not been shown to be false” (Popper
1979, 14). Popper concedes that there are infinitely many other hy-
potheses that would also pass the tests that our current favorite has:

By this method of elimination, we may hit upon a true theory. But in
no case can the method establish its truth, even if it is true; for the
number of possibly true theories remains infinite, (Popper 1979, 15)

Popper sees this as a way of stating Hume’s problem of induction.
Again,

in my view, all that can possibly be “positive” in our scientific knowl-
edge is positive only in so far as certain theories are, at a certain
moment of time, preferred to others in the light of ... artempted
refutations. (P. 20)

For Popper, we should not rely on any hypothesis, at most we should
prefer one. But why should we prefer best-tested hypotheses? It is alto-
gether unsatisfactory for Popper to reply as he does that he simply does
“not know of anything more ‘rational’ than a well-conducted critical
discussion” {(p. 22).

L too, argue that hypotheses that pass genuinely severe tests gain
merit thereby. How do I avoid Popper’s problem? Popper's problem

1.1t has been raised, for example, by Wesley Salmon {1966), Adolf Griitnbaum
(1978), and Alan Musgrave (1978).
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ere is that the grounds for the badge of “best-tested hypothesis of the
oment” would also be grounds for giving the badge to an infinite
umber of (not yet even thought of) hypotheses, had they been the
nes considered for testing. If a nonfalsified hypothesis H passes the
ests failed by all the existing rivals, then H is best-tested, H gets
he badge. Any other hypothesis that would also pass the existing tests
ould have to be said to do as well as H—by Popper’s criteria for judg-
-ing tests. But this is not the case for the test criteria I shall be setting
at. These test criteria will be based on the idea of severity sketched
bove. A hrypothesis H that passes the test failed by rival hypothesis &’
“tand by other alternative hypotheses considered) has passed a severe
test for Popper—but not for me. Why not? Because for H to pass a
‘severe test in my sense, it must have passed a test that is highly capable
of probing the ways in which H can err, And the test that alternative
hypothesis H' failed need not be probative in the least so far as the
‘errors of H go, So long as two different hypotheses can err in different
‘ways, different tests are needed to probe them severely. This point is
‘the key to worries about underdetermination (to be discussed in chap-
‘fer 6).

b. Corroboration Does Not Yield Reliability

There is a second variant of the objection that passing a severe test
n Popper’s sense fails to count in favor of a hypothesis. It is that saying
‘ahypothesis is well tested for Popper says nothing about how success-
ful it can be expected to be in the future.

= According to Popper, the more severe the test a hypothesis has
passed, the higher its corroboration. Popper regards the degree of cor-
roboration of a hypothesis as “its degree of testability; the severity of
tests it has undergone; and the way it has stood up to these tests” (Pop-
per 1979, 18). Not only does Popper deny that we are entitled to con-
sider well-corroborated claims as true, but we are not even to consider
them as reliable. Reliability deals with future performance, and corrob-
oration, according to Popper, is only a “report of past performance. Like
preference, it is essentially comparative. . . . But it says nothing whatever
about future performance, or about the "reliability’ of a theory” (p. 18). {Nor
would this point be affected, Popper adds, by the finding of a quantita-
tive measure of correboration.)

&+ At least part of the reason for this criticism, as well as for Popper’s
admission, is the prevalence of the view that induction or ampliative
inference requires some assignment of probability, credibility, or other
evidential measure to hypotheses. This view is shared by the majority
of Popper’s critics, and it is one Popper plainly rejects. The present view
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of experimental learning, like Popper’s, will not be in terms of as-

signing a degree of probability, credibility, or the like to any hypothesis

or theory. But quite unlike Popper’s view, this does not preclude our
inferring a hypothesis reliably or obtaining reliable knowledge. The
needed reliability assignment, I shall argue, is not only obtainable but
is more in line with what is wanted in science.

Except in very special cases, the probability of hypotheses can only
be construed as subjective degrees of belief, and I will argue that these

vield an unsatisfactory account of scientific inference. As C. 8. Peirce

urged in anticipation of modern frequentists, what we really want to
know is not the probability of hypotheses, but the probability with
which certain outcomes would occur given that a specified experiment
is performed. It was the genius of classical statisticlans, R. A. Fisher,
Jerzy Neyman, Egon Pearson, and others, to have developed ap-
proaches to experimental learning that did not depend on prior proba-
bilities and where probability refers only to relative frequencies of
types of outcomes or events. These relative frequency distributions,
which may be called experimental distributions, model actual experimen-
tal processes.

Learning that hypothesis H is reliable, I propose, means learning

that what H says about certain experimental results will often be close
to the results actually produced—that H will or would often succeed
in specified experimental applications. (The notions of “closeness” and
“success” must and can be made rigorcus.) This knowledge, I argue,
results from procedures (c.g., severe tests) whose reliability is of pre-
cisely the same variety. My aim will be to show how passing a severe
test teaches about experimental distributions or processes, and how
this, in turn, grounds experimental knowledge.

The Emerging View of Experimental Knowledge

In summary, let me say a bit more about the view of experimental
knowledge that emerges in my approach. I agree with Popper’s critics
that Popper fails to explain why corroboration counts in favor of a.
hypothesis—but not because such credit counts only in favor of a hy-
pothesis if it adds to its credibility, support, probability, or the like, The
problem stems from two related flaws in Popper’s account: First, wear-
ing the badge “best-tested so far” does not distinguish a hypothesis
from infinitely many others. Second, there are no grounds for relying
on hypotheses that are well corroborated in Popper’s sense. I have also
sketched how I will be getting around each flaw.

Popper says that passing a severe test (i.e., corroboration) counts
in favor of a hypothesis simply because it may be true, while those that
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od:the tests are false. In the present view, passing a severe test
ats because of the experimental knowledge revealed by passing.
sed, my reason for promoting the concept of severity in the first
ace is that it is a test characteristic that is relevant as regards some-
inig that has passed the test. To figure out what an experiment re-
als; one has to figure out what, if anything, has passed a severe test.
& experimental inference that is licensed, in other words, is what
has passed a severe test. What is learned thereby can be made out in
#ms of the presence or absence of an error. Even if the test cannot be
garded as having severely tested any claim, that fact alone is likely
‘Be relevant.

ince the severe test that a hypothesis H passes is at the same time
test that fails some alternative hypothesis (i.e., H's denial), the
owledge gained from passing can also be expressed as learning from
failing a hypothesis. (For example, passing H: the disease is present, is
o-fail H': the disease is absent.) So in failing as well as passing, the
present account accentuates the positive.

- The centerpiece of my account is the notion of severity involved.
Uniike accounts that begin with evidence ¢ and hypothesis H and then
_veek to define an evidential relationship between them, severity refers
0. a method or procedure of testing, and cannot be assessed without
considering how the data were generated, modeled, and analyzed to
obtain relevant evidence in the first place. I propose to capture this by
saying that assessing severity always refers to a framework of experi-
wmental inguiry.

i In my account of experimental testing, experimental inquiry is
viewed in terms of a series of models, each with different questions,
stretching from low-level theories of data and experiment to higher
Jevel hypotheses and theories of interest. (I will elaborate in detail in
chapter 5.) Whether it is passing or failing, however, what is learned
will always be in terms of a specific question in a given model of ex-
perimental inquiry. Later we will see how such bits of learning are

By Popper’s own admission {e.g., Popper 1979, 19), corroboration
fails to be an indicator of how a hypothesis would perform in experi-
ments other than the ones already observed. Yet I want to claim for
my own account that through severely testing hypotheses we can learn
about the (actual or hypothetical) future performance of experimental
processes—that is, about outcomes that would occur with specified
probability if certain experiments were carried cut. This is experimental
knowledge. In using this special phrase, I mean to identify knowledge
of experimental effects (that which would be reliably produced by car-
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rying out an appropriate experiment}—whether or not they are part -
of any scientific theory. The intent may be seen as providing a home
for what may be very low-level knowledge of how to reliably bring

about certain experimental results. To paraphrase lan Hacking, it may

be seen as a home in which experiment “lives a life of its own” apart
from high-level theorizing. But it is to be a real home, not a life in the -

street; it has its own models, parameters, and theories, albeit experi-

mental ones. And this is so whether the experimental effects are “in -
nature,” whether they are deliberately constructed, or even whether

they exist only “on paper” or on computers.
Popper’s problems are insurmountable when hypothesis appraisal
is considered as a matter of some formal or logical relationship between

evidence or evidence statements and hypotheses; but the situation is
not improved by appealing to larger units such as Lakatosian research

programs. Appealing to an experimental framework and correspond-

ing experimental strategies, I will argue, offers a fresh perspective and

fresh tools for solving these problems.

The idea that focusing on experiment might offer new and largely
untapped tools for grappling with problems regarding scientific infer-
ence is not new; it underlies a good deal of work in the philosophy of
science of the last decade. As promising as this new experimentalist
movement has been, it is not clear that the new attention to experi-
ment has paid off in advancing solutions to these problems. Nor is it
clear that those working in this movement have demarcated a program
for developing a philesophy or epistemology of experiment. For sure,
they have given us an important start: their experimental narratives
are rich in illustrations of the role of experimentation and instrumen-
tation in scientific inference. But something more general and more
systematic seems to be needed to show how this grounds experimental
knowledge and how this knowledge gets us around the problems of
evidence and inference. Where we should look, I will argue, is to the
already well worked out methods and models for designing and ana-
lyzing experiments that are offered in standard statistical praciice.

Experimental knowledge, as 1 understand it, may be construed in
a formal or informal mode. In its formal mode, experimental knowl-
edge is knowledge of the probabilities of specified outcomes in some
actual or hypothetical series of experiments. Its formal statement may
be given by an experimental distribution (a list of outcomes and their
associated probabilities), or by a standard “random” process such as
a coin-tossing mechanism. Typically, the interest is only in some key
characteristic of this distribution—a parameter—such as its arithmetic
mean. In its informal mode, the one the practitioner is generally en-
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aged in, experimental knowledge is knowledge of the presence or ab-
z¢ of errors. (For example, a coin-tossing model or its correspond-
‘Binomial distribution might serve as a formal model of an informal
ifn:about a spurious correlation.) I will stress the informal mode.

‘As we proceed, we will come to see the considerable scope of what
be learned from answers to questions about experimental pro-
ses and effects. How far experimental knowledge can take us in un-
derstanding theoretical entities and processes is not something that
: ould be decided before exploring this approach much further, fut-
her even than I can go in this book. So, for example, I will not argue
r against different realist views. What I will argue is that experi-
ntal knowledge is sufficient and, indeed, that it is the key to answer-
ng the main philosophical challenges to the objectivity and rationality
‘science.

1.4 REVISITING THE THREE DECISIONS

e Popperian problems of the last section emanate from the concern
th which we began: the three (risky) decisions required to get a Pop-
perian test off the ground. By the various techniques of learning from
rror, I said, we can substantiate the information needed. This necessi-
ates an approach to experimental learning radically different from
opper’s. Nevertheless, it may be of interest to see how the three con-
erns translate into arguments for checking one or more experimental
istakes. The connections are these:

© » The acceptance of observation or basic statements (decision 1) is
addressed by arguments justitying the assumptions of the experimen-
tal data.
» The elimination of auxiliary factors {decision 2) is addressed by
rguments that the experiment is sufficiently controlled.

* The falsification of statistical claims {decision 3} is accomplished
‘by standard statistical tests.

The first two involve justifying assumptions about a specific testing
‘context. In both cases the justifications will take the form either of
‘showing that the assumptions are sufficiently well met for the experi-
mental learning of interest or showing that violations of the assump-
tions do not prevent specific types of information from being obtained
from the experiment. As important as it is to avoid error, the center-
‘piece of the approach I recommend is its emphasis on procedures that
permit a justification of the second type—Ilearning despite errors, or
robustness. I will champion a third sort of justificatory argument: even
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if a mistake goes undetected, we will, with high probability, be able to
find this out.

“The Empirical Basis” Becomes the Assumptions of the
Experimental Data

To arrive at the basic (or test) statements for Popper, two decisions

are required. The first is to decide which theories to deem “observa--

tional,” which for Popper means not that they are literally observa-
tional, but rather that they may be deemed unproblematic background
knowledge for the sake of the test. Such information is often based on

well-understood theories of instruments, for example, on theories of

microscopes. The second is to decide which particular statements to
accept—for example, that the instrument reads such and such.* Popper

claims that although we can never accept a basic statement with cer--

tainty, we “must stop at some basic statement or other which we decide
to accept.” Otherwise the test leads nowhere.
at a procedure according to which we stop only at a kind of statement
that is especially easy to test. . . . at statements about whose acceptance

or rejection the various investigators are likely to reach agreement™
{Popper 1959, 104). Nevertheless, for Popper, we can no more rely on

these than on other corroborated hypotheses. They, too, are merel

conjectures, if at a lower level and easier to test. They are not literally:

basic statements, but more like “piles driven into a swamp.”

But even these singular observation statements are not enough:

to get a Popperian falsification off the ground. We need, not singula

observations, but observational knowledge; the data must warrant a

hypothesis about a real or reproducible effect:

We say that a theory is falsified only if we have accepted basic state-
ments which contradict it. . . . This condition is necessary, but not suf-
ficient; for we have seen that non-reproducible single occurrences
are of no significance to science. Thus a few stray basic statements
contradicting a theory will hardly induce us to reject it as falsified.
We shall take it as falsified only if we discover a reproducible effect
which refutes the theory. In other words, we only accept the falsifi-
cation if a low-level empirical hypothesis which describes such an
effect is proposed and corroborated. (Popper 1959, 86)

He calls this low-level hypothesis a falsifying hypothesis (p. 87).

Here Popper is recognizing what is often overlooked: the empmcal
data enter hypothesis appraisal in science as a hypothesis about the

2. Basic statements are “statements asserting that an observable event is o
curring in a certain individual region of space and time” (Popper 1959, 103). Asa
example he gives “This clock reads 30 minutes past 3” (Popper 1962, 388).

“{Wile arrive in this way.
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.-Accounts of hypothesis appraisal that start with evidence e as
n vastly oversimplify experimental learning. This recognition,
however, only means trouble for Popper. In order for the acceptance
alsifying hypothesis to be more than a conventional decision,
there need to be grounds for inferring a reliable effect—the very thing
pper says we cannot have, We cannot rely on hypotheses about real
r reproducible effects for Popper, because they are based on lower-
vel: (singular) observation statements that may themselves be mis-
taken. “[Alnd should we try to establish anything with our tests, we
ould be involved in an infinite regress” (Popper 1962, 388).
Herein lies a presupposition commonly harbored by philosophers:
ely, that empirical claims are only as reliable as the data from
which they are inferred. The fact is that we can often arrive at rather
: rate claims from far less accurate ones. Scattered measurements,
or example, are not of much use, but with a little data massaging (e.g.,
eraging} we can obtain a value of a quantity of interest that is far
more accurate than individual measurements. Our day-to-day learners
m error know this fact but, to my knowledge, the only philosopher
ttach deep significance to this self-correcting ability is C. S. Peirce.
+The present approach rejects both the justificationist image of
tilding on a firm foundation (e.g., protocol statements) and the Pop-
erian image of building on piles driven into a swamp. Instead, the
image is one of shrewd experimental strategies that permit detecting
ors and squeezing reliable effects out of noisy data. What we rely
n, I will urge, are not so much scientific theories but methods for pro-
cing experimental effects,

Ruling Out Auxiliaries as Arguing for Experimental Control

- The need to rule out alternative auxiliary factors (decision 2) gives
pper the most trouble. In order for an effect (e.g., an anomaly or
ed prediction) to be attributed to some flaw in a hypothesis H, it is
quired to affirm a ceteris paribus claim, that it is not due to some
ther possible factor. As Lakatos notes, one can test a ceteris paribus
lause severely by assuming that there are other influencing factors,
pecifying them, and testing these assumptions. “If many of them are
efuted, the ceteris paribus clause will be regarded as well-corroborated”
Lakatos 1978, 26). Lakatos found this too risky.

Ruling out auxiliaries is thought to be so problematic because it is
ssumed that there are always infinitely many causes for which we
ave not controlled. What is overlooked is the way in which experi-
ents may be designed to deliberately isolate the effect of interest so
hat only a manageable number of causal factors (or types of factors)
nay produce the particular experimental outcome. Most important,
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literal control is not needed: one need only find ways of arguing so as -
to avoid the erroneous assignment of the cause of a given effect or -
anomaly. Several ways were discussed in section 1.2. Another example :
{(under pretrial planning} would be to mimic the strategy of random-
ized treatment-control studies. The myriad of possible other causes—
even without knowing what they are—are allowed to influence the :
treated and the conirol groups equally. In other cases, substantive al-
ternative causes cannot be subtracted out in this manner. Then severe -
tests against hypotheses that these causes are responsible for the given :
experimental effect must be carried out separately. :

Tn the present approach, ruling out alternative auxiliaries is tanta
mount to justifying the assumption either that the experiment is suffi-
ciently well controlled or that the experiment allows arguing as if it
were sufficiently controlled for the purpose of the question of pri
mary interest.

with effective before- and after-trial planning and checking, learn
ing that an anomaly cannot be due to specific background factors may -
finally show some primary hypothesis to be at fault. Even this rejection
has an affirmative side. Precisely because the background checks have
been. required to be severe, such a rejection pinpoints a genuine effec
that needs explaining or that calls for a specific revision. One literally
learns from the error or anomaly. Note that ne alternative hypothesis.
to the one rejected is needed in this testing model.

cal methods, his discussion of decision 3 gets to the heart of a fun-
mental type of error statistical test. While extremely rare events may
iir Popper notes, “such occurrences would not be physical effects,
ause, on account of their immense improbability, they are not repro-
sz[e at will. . . . H, however, we find reproducible deviations from a
cro effect . . . deduced from a probability estimate . . . then we must
sume that the probability estimate is falsified” (Popper 1959, 203).

‘The basic idea is this: A hypothesis may entail only that deviations
4 certain magnitude are rare, so that an observed deviation from
hat is predicted does not sirictly speaking contradict the prediction.
tatistical test allows learning that a deviation is not rare but is repro-
ducible at will—that is, can be brought about very frequently. If we
Jearn this, then we have found a real physical effect that is denied by
1d 50, in this sense, contradicts the statistical hypothesis. Rather than
ewing this as a conventional decision, it will be seen to rest on solid
eplstemologicai grounds, These grounds may be cashed out in two
ays: {1) To construe such reproducible effects as unsystematic will
yér_'y often be mistaken. So unreliable a method would be an obstacle
sing data to distinguish real from spurious effects—it would be an
stacle to learning from error. (2) Tt is extremely improbable that one
ould be able to regularly reproduce an effect if in fact it was acciden-
The hypothesis asserting that it is a “real effect” passes a severe test.

Falsifying Statistical Claims by Statistical Hypothesis Testing 1.5 PIECEMEAL LEARNING FROM ERRORS

My approach takes as the norm the need to deal with the rejection
of statistical hypotheses—decision 3. Even where the primary theory:
or hypothesis of interest is nonstatistical, a variety of approximations;
inaccuracies, and unceriainties results in the entry of statistical consid-
erationts in linking experimental data to hypotheses. A hlerarchy of ;
models of experimental inquiry will be outlined in chapter 3,

In an interesting footnote, Lakatos remarks that statistical rejectio
rules constitute “the philosophical basis of some of the most interestin
developments in modern statistics. The Neyman-Pearson approac
rests completely on methodological falsificationism” (Lakatos 1978, 25

6). Still, neither he nor Popper attempts to use the Neyman-Pearso
methods in his approach. By contrast, I shall make fundamental use o
this approach, albeit reinterpreted, as well as of cognate methods (e.g.
Fisherian tests). My use of these methods, I believe, reflects their actua
uses in science and frees them from the confines of the particular phi
losophies of statistics often associated with them. Thus freed, thes
methods make up what I call (standard) ervor statistics. '

Although Popper makes no explicit attempt to appeal to error sta

My account of the growth of experimental knowledge is a result of
having explored the consequences of the thesis that we learn from
mistakes. It is not an attempt to reconstiruct after-the-fact scientific
ferences or theory changes, but to give an account of forward-
oking methods for learning. These methods revolve around tests of
w-level or local hypotheses. These hypotheses have their home in
iperimental models and theories, While experimental hypotheses
ay be identical to substantive scientific claims, they may also simply
' “claims about experimental patterns, real or constructed, actual or
pothetical. Local experimental inquiries enable complex scientific
problems to be broken down into more manageable pieces—pieces
at admit of severe tests. Even when large-scale theories are being
vestigated or tested, these piecemeal tests are central to the growth
-experimental knowledge.?

3. Popper puts the burden on the hypothesis to have high information content
d s0 be the most testable. The present approach puts the burden on the experi-
€ntal test—it is the test that should be severe. The basis for tests with appropri-
ely high severity is the desire to learn the most,
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I propose that the piecemeal questions into which experimental
inquiries are broken down may be seen to refer to standard types of
errors. Strategies for investigating these errors often run to type
Roughly, four such standard or canonical types are

a. mistaking experimental artifacts for real effects; mistaking chance

effects for genuine correlations or regularities;

b. mistakes about a quantity or value of a parameter;

¢. mistakes about a causal factor;

d. mistakes about the assumptions of experimental data. .
These types of mistakes are not exclusive (for example, checking d may
involve checking the others), nor do they even seem to be on a par .
with each other. Nevertheless, they often seem to correspond to dis-
tinct and canonical types of experimental arguments and strategies.

1 suggest that methodological rules should be seen as strategies for
conducting reliable inquiries into these standard or “canonical” types :
of errors. Examples of methodological rules are the use of controlled
experiments in testing causal hypotheses, the use of randomization,
the preference for novel facts and the avoidance of “ad hoc” hypothe-
ses, the strategy of varying the evidence as much as possible, and the
use of double-blind techniques in experimenting on human subjects.

The overarching picture, then, is of a substantive inquiry being
broken down into inquiries about one or more canonical errors in such:
a way that methodological strategies and tools can be applied in in- mental results, and to build up our tool kit of techni 1 i
vestigating those errors. One example (to be fleshed out later) is an = rom error to determine how successful they h Cb "ques o carning

inquiry into whether a treatment causes an increased risk of some sort,: ioms. Yy have been in past applica-
It might be broken down into two canonical mquiries: first, to establish : e
a real as opposed to a spurious correlation between the treatment and mrl:; Oarsiiigﬁznit; ?}fed;i: :Islt cfcfgsi?b;?ty tOI.hYPOt.heses are re-
the effect; second, to test quantitatively the extent of the effect, if there stead, passing a severe test yields positive ex aénrip latl‘:la llnfﬁrence. o
is one. One possible methodological strategy would be a treatment- orresponding to a strong argument from erf . ilent d.(H;)Wledge by
control experiment and an analysis by way of statistical significance not in terms of increasing or revising proba?)iiitycggsrigilighggirte'ss
tests. erms of the growth of experimental knowledge, including advanc:er;
techniques for sustaining experimental arguments. Such features of
1y account stand in marked contrast to the popular Bayesian Way in
he philosophy of science.

ta—or, more generally, learning from the data. The former includes
about how specific errors are likely to be avoided or circum-
d, the latter, rules about checking the extent to which given er-
rs are committed or avoided in specific contexts.
Methodological rules do not rest on a priori intuitions, nor are they
matters to be decided by conventions (e.g., about what counts as sci-
ce or knowledge or rational). They are empirical claims or hypothe-
es about how to find out certain things by arguing from experiments.
cordingly, these hypotheses are open to an empirical appraisal: their
h depends upon what is actually the case in experimental inquiries.
ence, the account I propose is naturalistic. At the same time it is
ormative, in that the strategies are claims about how to actually pro-
d in given contexts to learn from experiments.
“Since the rules are daims about strategies for avoiding mistakes
nd learning from errors, their appraisal turns on understanding how
thods enable avoidance of specific errors. One has to examine the
methods themselves, their roles, and their functions in experimental
quiry. A methodological rule is not empirically validated by de-
mining whether its past use correlates with “successful” theories.*
Rather, the value of a methoedological rule is determined by undesz-
standing how its applications allow us to avoid particular experimental

Normative Naturalism in Experimental Methodology

The present model for an epistemology of experiment is both’
normative and naturalistic. I have in mind this picture of experimental
methodology: methodological rules for experimental learning are:
strategies that enable learning from common types of experimental
mistakes, The rules systematize the day-to-day learning from mistakes:
delineated above. From the history of mistakes made in reaching a
type of inference, a repertoire of errors arises; methodological rules:
are technigues for circumventing and uncovering them. Some refer t
before-trial experimental planning, others to after-trial analysis of th

Next Step

The response to Popper’s problems, which of course are not just
opper’s, has generally been to “go bigger,” to view theory testing in
tms of larger units—whole paradigms, research programs, and a va-
ety of other holisms. What I have Jjust proposed instead is that the

4. This is essentially Larry Laudan’s {1987, 1990b, 1996) normative naturalism.
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lesson from Popper’s problems is to go not bigger but smaller. More-

over, I propose that this lesson is, in a sense, also Thomas Kuhn'’s, de-

spite his being a major leader of the holistic movement. Let us there-

fore begin our projeci by turning to some Kuhnian reflections on':

Popper.

CHAPTER TWO

Ducks, Rabbits, and Normal Science:
Recasting the Kuhn's-Eye View of Popper

orTiY AFTER the publication of his enormously influential book The
fructure of Scientific Revolutions, Thomas Kuhn offered “a disciplined
mparison” of his and Popper’s views of science in the paper “Logic
Discovery or Psychology of Research?” It begins with these lines:

My obiect in these pages is to juxtapose the view of scientific develop-
ment outlined in my book [Structure], with the better known views
of our chairman, Sir Karl Popper. Ordinarily I should decline such an
undertaking, for I am not so sanguine as Sir Karl about the utility of
confrontations. . . . Even belore my book was published two and a
half years ago, I had begun to discover special and often puzzling
characteristics of the relation between my views and his. That relation
and the divergent reactions I have encountered to it suggest that a

disciplined comparison of the two may produce peculiar enlighten-
ment. (Kuhn 1970, 1)

“Peculiar enlightenment” is an apt description of what may be found
in going back to Kuhn's early comparison with Popper and the re-
sponses it engendered. What makes my recasting of Kuhn peculiar is
that while it justifies the very theses by which Kuhn effects the contrast
with Popper, the picture that results is decidedly u#n-Kuhnian. As such
T'do not doubt that my recasting differs from the “peculiar enlighten-
ment” Kuhn intended, but my task is not a faithful explication of what
Kuhn saw himself as doing. Rather it is an attempt, at times deliber-
ately un-Kuhnian, to see what philosophical mileage can be gotten
_from exploring the Kuhnian contrast with Popper. This exercise will
serve as a springboard for the picture of experimental knowledge that
1 want to develop in this book.

Kuhn begins by listing the similarities between himself and Popper
that place themn “in the same minority” among philosophers of science
of the day (Kuhn 1970, 2). Both accept theory-ladenness of observa-
tion, hold some version of realism (at least as a proper aim of science),
and reject the view of progress “by accretion,” emphasizing instead
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