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Abstract

Classical Bayesianism represents ignorance, if at all, by flatness of
prior probabilities. Such probabilities are an essential part of the stan-
dard Bayesian explanation of Ockham’s razor. But flatness as a model
of ignorance is called into question by Ellsberg’s paradox, which has led
to the consideration of incoherent or inexact degrees of belief, both of
which undermine the usual explanation of Ockham’s razor. An alter-
native explanation of Ockham’s razor is presented, according to which
always favoring the uniquely simplest theory compatible with experience
keeps one on the shortest or most direct path to the truth. It turns out
that minimization of total distance to the truth implies coherent degrees
of belief strongly biased toward simplicity. If one focuses on retractions
or drops in credence, then a more reasonably moderate bias toward sim-
plicity results but optimal efficiency then demands either incoherence or
inexact probabilities, both of which are solutions to Ellsberg’s paradox.
Finally, it turns out that dilation, or increasing imprecision in light of new
information, is necessary if agents with inexact probabilities are to mini-
mize total retractions. So, in place of paradox and tension, one obtains a
unified perspective on Ockham’s razor, Ellsberg’s paradox, dilation, and
the justification of inductive inference.

1 Introduction

This paper explores some new connections between several topics of interest
to Henry Kyburg: inductive inference, simplicity, imprecise probabilities, and
the objective truth conduciveness of scientific inference (1961, 1983). Ockham’s
razor is a popular name for the scientific aversion to theoretical complexity.
Ockham’s razor occasions the obvious question how a fixed bias toward simplic-
ity could possibly help one find possibly complex truths. I argue that the usual,
Bayesian explanation of the truth conduciveness of simplicity in inductive infer-
ence begs the question by presupposing a prior probabilistic bias toward simple
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possibilities. An alternative explanation of Ockham’s razor is presented, accord-
ing to which Ockham’s razor keeps one on the shortest or straightest cognitive
path to the truth. In order to minimize cognitive distance traveled to the truth,
one must be coherent and one must start out with a very strong prior bias to-
ward simplicity. In order to minimize retractions of credence en route to the
truth, on the other hand, one’s bias toward simplicity can be more plausibly
moderate, but one must resort occasionally either to sub-additivity or to to
inexact probabilities in order to retreat to a genuine state of ignorance rather
than to a “flat” Bayesian prior. Sub-additivity and inexact probabilities have
also been invoked as possible solutions to Ellsberg’s decision theoretic paradox,
which elicits intuitions inconsistent with Bayesian coherence and has been in-
terpreted as calling “flat” probabilities into question as an adequate model of
ignorance. Thus, efficient convergence to the truth via Ockham’s razor yields a
new, truth-directed, normative argument for Ellsberg intuitions. There is an-
other “paradox” associated with inexact probabilities, which can become even
less exact in light of more data. That phenomenon, known as dilation, is shown
to be a natural and necessary condition for the retraction-efficiency of Ockham
agents employing inexact probabilities. Thus, optimal truth conduciveness also
provides a new, truth-directed explanation of dilation.

2 Synchronic Truth-Conduciveness

Coherence is a mere matter of beliefs “fitting together”, whereas truth is a
special relationship between one’s beliefs and the world. Coherence seems to
have no more to to do with truth than the soundness of a ship’s framing has to
do with the ship being at its intended port. But it is still the case that a ship
that founders due to rot or design flaws must first be raised and repaired before
it can proceed to port, wherever the intended port might be. An analogous
argument can be given for the truth conduciveness of Bayesian coherence, where
coherence corresponds to remaining afloat and the destination port corresponds
to the unknown truth (DeFinetti 1972).1 Suppose that you are interested in
three mutually exclusive and exhaustive theories T1, T2, T3. Then, as far as these
theories are concerned, your degrees of belief can be reduced to a 3-dimensional
vector:

b = (b(T1), b(T2), b(T3)).

Then extremal degrees of belief and assignments of truth values to the respective
theories can both be represented by the basis vectors:

i1 = (1, 0, 0);
i2 = (0, 1, 0);
i3 = (0, 0, 1).

1Rosenkrantz (1981) conjectures that the result works whenever the loss function optimizes
the expected loss of one’s own degrees of belief. Joyce (1998) provides axiomatic sufficient
conditions for the argument. Maher (2002) objects to the premises of Joyce’s argument.
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Consider the set of all “coherent” belief states—the vectors b = (x, y, z) for
which x + y + z = 1. These triples pick out an equilateral triangle with cor-
ners i1, i2, i3 in three-dimensional Euclidean space whose corners are the basis
vectors, corresponding to possible truth assignments (figure 1). Now, suppose
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Figure 1: Coherence and static distance to the truth.

that your degrees of belief b do not lie on the triangle. Consider alternative,
“coherent” degrees of belief b′ that result from projecting b orthogonally onto
the surface of the triangle. Focus, for now, on truth assignment i2. The Eu-
clidean distance from b to i2 is α, which is clearly longer than the distance
β from b′ to i2.2 The same relationship holds for each possible truth assign-
ment i. In decision theory, option A1 dominates option A2 just in case A1

achieves better results than A2 in each possible world. Thus, your “incoher-
ent” degrees of belief b are dominated in terms of distance from the truth by
coherent degrees of belief b′.3 So, if you happen to discover that your degrees
of belief b are incoherent, you should proceed, immediately, to adopt degrees
of belief that are admissible (i.e., not dominated) in distance to the truth; and

2By the triangle inequality and the assumption that γ is non-zero).
3DeFinetti actually employs squared Euclidean distance, which is minimized if and only

if Euclidean distance is minimized. Rosenkrantz (1981) and Joyce (1988) discuss axiomatic
generalizations of squared Euclidean distance, although neither can say how general their
axiomatizations happen to be. Squared Euclidean distance has the comforting property of
being a proper scoring rule in the sense that the expected distance from the truth of one’s own
belief profile b always turns out to look best from the viewpoint of b, so that the scoring rule
would never leave one unsatisfied with one’s current position. Joyce does not insist on that
principle and neither do I. To insist on proper scoring rules is evidently to beg the question
in favor of a fully subjective Bayesianism that imposes no normative restrictions on prior
probability.
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all such degrees of belief lie on the triangle of coherence. If, in addition, you
want to revise your current degrees of belief as little as possible—a plausible,
“epistemic” consideration—you should adopt the orthogonal projection b′ of b
onto the triangle. In particular, a Pyrrhonistic skeptic who adopts belief profile
0 = (0, 0, 0) to reflect total disbelief in everything is dominated in distance to
the truth by the uniform probability measure d = (1/3, 1/3, 1/3), which seems
to support the plausible idea that ignorance should be represented coherently
as a flat probability distribution.

Inquiry is more than a mere matter of remaining afloat: it involves navigation
to the intended destination—the truth. In lieu of a compass, scientists employ
Ockham’s razor, an instinctive bias against needless theoretical complexity. But
how could a fixed bias toward simplicity help science arrive at possibly complex
truths? I consider that question next.

3 Ockham’s Razor

Ockham’s razor is a central, characteristic, and indispensable principle of sci-
entific inference. The rule is roughly that, when faced with a choice between
alternative theories compatible with experience, one should select or favor only
the simplest one, where simplicity is a matter of minimizing causes, entities,
independent principles, or free parameters. Since at least the time of Kant, it
has been a foundational puzzle how such a systematic bias could help one find
hidden, possibly complex truths. The argument couldn’t be that a bias toward
complexity is dominated in distance to the truth by a bias toward simplicity,
since the truth might be complex.

Bayesians have an easy solution to the problem: just impose higher prior
degrees of belief on simpler theories, in which case simpler theories are “more
probably true”.4 But that just pushes the question back by a trivial step, for
why, in the interest of finding the truth, should one start with higher degrees of
belief on simpler theories?

There is a more subtle Bayesian explanation that focuses on prior likeli-
hoods rather than prior probabilities (Rosenkrantz 1981). It is an immediate
consequence of Bayes theorem that for arbitrary probability measure p:

p(T1 | e)
p(T2 | e)

=
p(T1)
p(T2)

· p(e | T1)
p(e | T2)

;

= c · p(e | T1)
p(e | T2)

.

The first factor of the product, the ratio of prior probabilities, is constant as
evidence increases. Therefore, the crucial factor governing the impact of data
e on belief is the second factor of the product, which is called the Bayes factor

4That is known as the “minimum description length” (MDL) principle (Rissannen 1983).
It should be mentioned, however, that some advocates of MDL, including Rissannen, view the
aim of inquiry as syntactic compression of the data rather than as finding the truth.
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(Kass and Raftery 1995) for T1, T2, e. It is tempting to say that p(e | T ) is
objective if T happens to be a statistical theory that entails some unique chance
cT (e) for e, in which case, in the absence of other relevant information:5

p(e | T ) = cT (e).

But that is no longer the case if T is a composite statistical hypothesis with a
free parameter θ:

T ≡ (∃θ) Rθ,

for in that case:

p(e | T ) =
∫

p(e | R(θ) · p(R(θ) | T ) dθ

=
∫

cRθ
(e) · p(R(θ) | T ) dθ.

The objective chances cRθ
(e) are now weighted by the subjective prior beliefs

p(Rθ |T ) so that p(e | T ) is a subjective quantity. That point is crucial in connec-
tion with Ockham’s razor, since many observers, including Kyburg (1961), have
understood simplicity in terms of minimization of free parameters. Suppose, for
an elementary example, that theory T1 predicts phenomena e outright and that
T2 ≡ (∃θ) Rθ has discrete, free parameter θ ranging over the natural numbers
from 0 to n, so that:

T2 ≡ (R0 or R1 or . . . or Rn).

Moreover, suppose that R0 entails e and every other disjunct is refuted by e.
It is intuitive to say that e “severely tests” T1, but is merely used to “set” the
value of the free parameter θ in T2 to the value θ = 0. Setting θ = 0 in light of e
is an “ad hoc” response to e that merely “accommodates” e. One can spice the
discussion with militaristic, Popperian metaphors about T1 “passing muster”,
“running the gauntlet” or “proving its mettle” while T2 “shrinks from the fray”.
No medals of valor for T2.

The apparent virtue of surviving a severe test as opposed to mere accom-
modation is explained by the Bayes factor, assuming that there is not too much
bias toward T2:

p(T1) ≈ p(T2);

and, equally importantly, that there is not too much subjective bias toward
some value of the free parameter θ given that T2 is true, so that:

p(Ri | T2) ≈ p(Rj | T2),

5This ignores the considerable problem, of central interest to Kyburg, of what counts as
other relevant information.

5



where i, j are distinct Boolean values. For then one has:

p(T1 | e)
p(T2 | e)

=
p(T1)
p(T2)

· p(e | T1)
p(e | T2)

;

≈ p(T1)
p(T2)

· 1∑
i≤n p(e | Ri) · p(Ri | T2)

;

=
p(T1)
p(T2)

· 1
1/n

= n.

So the more equally plausible ways a theory can be true and the fewer of these
ways that explain the data, the worse the theory does compared to a simple
competitor that explains the same data without adjustable parameters. As
the number of parameter values approaches infinity, the advantage becomes
overwhelming.

4 Ignorance vs. Ignoredge

The Bayes factor computation seems to explain, from a standpoint of pure ig-
norance, why the simpler theory is “more likely to be true” than the complex
theory in light of simple evidence. But it still hinges on a prior bias against com-
plexity. Ignorance between T1 and T2 means that p(T1) ≈ p(T2) and ignorance
about the true value of the parameter i given T2 yields p(Ri | T2) ≈ p(Rj | T2),
for distinct, Boolean i, j. Additivity then enforces a strong prior bias in favor of

T1 R0 R1 R2 R3 R4 R5

Figure 2: Bayes factor argument.

p(T1) over p(R0) (figure 2). That should give one pause. Objectively speaking,
T1 and R0 entail the same predictions:

p(e | T1) ≈ 1 ≈ p(e | R0).

Therefore, the only reason T2 does not end up as “likely to be true” as T1 in light
of e in the Bayes factor computation is the strong prior bias p(T1) À p(R0), for:

p(T1 | e)
p(R0 | e)

=
p(T1)
p(R0)

· p(e | T1)
p(e | R0)

≈ p(T1)
p(R0)

.

Had one adopted, instead, an “ignorant” distribution over possibilities T1, R0, . . . , Rn,
the result would be a strong bias toward T2 over T1 and parity between T1 and
R0 after updating on e (figure 3). So, after all, the Bayes factor explanation
of Ockham’s razor reduces to the selection of a prior bias against complex pos-
sibilities over a prior bias against simple theories. There is no neutral place
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T1 R0 R1 R2 R3 R4 R5

Figure 3: Alternative “ignorance”.

to stand: a skeptic who confesses utter ignorance is offered a fool’s bargain be-
tween two sharp biases. The point is the familiar: “indifference” depends on the
question one asks: “indifference” regarding blue vs. non-blue induces a strong
bias against yellow and “indifference” over a range of colors induces a strong
bias against blue. The inconsistencies that arise when “indifference” is imposed
simultaneously over coarser and more refined partitions of the underlying pos-
sibilities are known collectively as paradoxes of indifference.

The paradoxes of indifference are sometimes presented as arguments in favor
of subjective Bayesianism: since there is no unique thing as true ignorance,
anything goes as far as prior biases are concerned—indeed, some such bias is
rationally compulsory. In applications, however, Bayesians sometimes slide into
describing the resulting biases as “knowledge” or “information” and emphasize
the ability of the Bayesian framework to incorporate the agent’s “information”
in a smooth and uniform way. In some concrete applications, some aspects of
prior probability can represent a kind of knowledge or information. But when
science applies Ockham’s razor to theory choice in an alien application such as
subatomic particles—precisely where Ockham’s razor is most indispensable—
it is hard to view a sharp bias against complex possibilities as arising from
anything but pure ignorance. Therefore, I coin the term ignoredge to better
describe the equivocal status of prior probabilities in Bayesian explanations of
Ockham’s razor.

5 Ignoredge and Ellsberg’s Paradox

The essential difference between ignorance and ignoredge is laid bare in a cele-
brated counterexample to expected utility theory due to Daniel Ellsberg (1961).
Subjects are informed that an urn contains thirty balls, ten of which are color
1, and twenty of which are either color 2 or color 3. Let Ti be the proposition
that the color is i. There is a ninety dollar prize at stake and subjects are asked
to choose one gamble from each of the following pairs:

T1 vs. T2,

T1 or T3 vs. T2 or T3.

Most humans choose T1 from the first pair and T2 or T3 from the second pair,
for a fairly obvious reason: the objective chance of winning is at least 1/3 for
T1 but could be zero for T2, whereas the objective chance of winning is at least
2/3 for T2 or T3 but could be as low as 1/3 for T1 or T3. These preferences are
incompatible with expected utility theory, which affords no way to represent
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the intuitive distinction between pure ignorance between three possibilities and
knowledge that one of the possibilities occurs with chance 1/3. Note that since
the colors are mutually exclusive:

p(T1) > p(T2) iff p(T1) + p(T3) > p(T2) + p(T3)
iff p(T1 or T3) > p(T2 or T3).

Moreover, subjects persist unabashedly in their preferences when their devia-
tion from expected utility theory is explained. Perhaps, everyone is irrational—
or maybe Bayesian ignoredge equivocates fatally between knowledge and igno-
rance.

One potential, neo-bayesian resolution of the paradox (e.g., Schmeidler 1989)
is to drop the probabilistic axiom of finite additivity in favor of finite sub-
additivity, defined by:

p(A) + p(B) ≤ p(A or B) + p(A and B).6

The Ellsberg preferences can be recovered by computing “expected utility” with
respect to sub-additive degrees of belief b defined by:7

b(T1) = 1/3;
b(T2) = 0;
b(T3) = 0;

b(T1 or T3) = 1/3;
b(T2 or T3) = 2/3.

In figure 4, b = (1/3, 0, 0) is seen to fall off of the triangle of coherent measures.
Now, pyrrhonistic ignorance can be represented as 0 = (0, 0, 0), as opposed to
the Bayesian state of ignoredge d = (1/3, 1/3, 1/3). That also addresses the
paradoxes of indifference, for in the coarsened partition T1 vs. T2 or T3, sub-
additive ignorance can still be represented by (0, 0), whereas ignoredge induces
the bias: (1/3, 2/3).8

Another possible neo-bayesian response to the Ellsberg paradox (e.g., Levi
1974, Gilboa, Schmeidler 1989, and Walley 1991) is to allow for inexact proba-
bilities modeled as interval-valued probabilities or as sets of probabilities. The

6This property is called “convexity” in (Schmeidler 1989). Schmeidler provides a unique
representation theorem for sub-additive probabilities in terms of ratioal preference.

7In fact, an arbitrarily small violation of additivity suffices to recover the Ellsberg phe-
nomenon. Note, also, that an incoherent belief profile b is not uniquely determined by the
vector b of values on partition T1, T2, T3. It is understood in such cases that b is defined for
every disjunction of theories.

8Although the prospect theory of (Kahneman and Tversky 1979) allows for sub-additive
weights on probabilities, Fox and Tversky (1995) do not invoke sub-additive probabilities
to explain Ellsberg’s paradox because of results suggesting that the values of the uncertain
Ellsberg’s gambles go down only in comparison with the risk version of the same gamble. The
empirical results are disputed by Arló-Costa and Helzner (2008). But, in any event, Fox and
Tversky do not view their treatment of the phenomenon as normative.
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Figure 4: Ignorance as sub-additive probability

two ideas are related,9 for each set B of probabilities determines upper and lower
probabilities:10

bB(T ) = inf
b∈B

p(T );

bB(T ) = sup
b∈B

p(T );

and, thus, the interval-valued probability function:

bB(T ) = (bB(T ), bB(T )).

Kyburg (1983) explicitly recommended that the intervals reflect known intervals
around objective chances. In the case of the Ellsberg problem, that idea picks
out the set S of all probability measures compatible with the initial information
provided, namely, that b(A) = 1/3. Set B, representing genuine ignorance about
T2, T3, is depicted in figure 5 along with measure d, representing ignoredge in
the same situation. The sub-additive function b depicted in figure 5 is seen to
be the projection of the end-points of B. Then:

9For a detailed discussion, see the introduction to (Gilboa and Schmeidler 1989).
10The set picture and the interval picture are not identical, since each set B determines bB

uniquely, but bB does not determine B uniquely. That can matter decision theoretically, For
example, Isaac Levi (1980) and (Seidenfeld et al. 1999) recommend admissibility over B (i.e.,
elimination of dominated alternatives over B). Dominance can depend upon exactly which
set B is chosen to represent pB . But the results that follow don’t depend on these differences.
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Figure 5: Ignorance as imprecise probability

bB(T1) = (1/3, 1/3);
bB(T2) = (0, 2/3);
bB(T3) = (0, 2/3);

bB(T1 or T3) = (1/3, 2/3);
bB(T2 or T3) = (2/3, 2/3).

Each probability measure b in B determines an expected value for each bet
mentioned in the Ellsberg choices. The Ellsberg preferences are then recovered
by always selecting the bet whose minimum expectation over B is maximum
(i.e., by maximin-ing expectations over B).11 Following that rule, the minimum
expected value for betting on T1 is 30 dollars (recall that the prize is ninety
dollars) whereas the minimum expected value for betting on T2 is 0 dollars.
In the second choice, the minimum expected value of betting on T1 or T3 is
30 dollars whereas the minimum expected value of betting on T2 or T3 is 60
dollars.12 Like sub-additivity, inexact probabilities allow for a clear distinction
between ignorance and ignoredge, for if B contains every probability measure

11The maximin rule is recommended by I. Levi after dominated alternatives are eliminated.
Again, the relative merits of that view are not directly relevant to our discussion. Other
advocates of sets of probabilities (Seidenfeld et al.1999) do not recommend any uncertain
choice rules beyond admissibility over B, so for them both the Ellsberg preference and the
usual preference are admissible.

12The same preferences emerge from less draconian ignorance: as long as B contains any
two points on the dark line on either side of the mid-point of the triangle the same preferences
result.
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than the probability intervals are vacuously (0, 1) for each possible disjunction
of propositions T1, T2, T3.

Distinguishing ignorance from ignoredge in some manner or other is a good
idea. But then one must also revisit the pivotal role played by ignoredge in the
Bayes factor explanation of Ockham’s razor. Sub-additivity allows one to set:

b(T1) = b(T2) = b(R0) = . . . = b(Rn) = 0.

Now a true, pyrrhonistic ignoramus is no longer forced to play favorites either
at the level of theories or at the level of parameter settings, so the Bayes’
factor argument for Ockham’s razor based on ignoredge collapses. Similarly, a
true ignoramus can adopt the set of all probability measures over the algebra
of propositions generated by T1, R0, . . . , Rn, respectively. Again, symmetry is
respected in both partitions and the Bayes’ factor explanation collapses.

So extensions of classical Bayesianism that deal with the Ellsberg paradox
undermine the explanation of Ockham’s razor. Does the Ellsberg paradox,
therefore, unmask Ockham’s razor as an illusion born of a misguided model
of ignorance?

6 Ockham’s Razor and Truth Conduciveness

The Bayesian explanation of Ockham’s razor presupposes a counter-intuitive
model of ignorance. But aside from that, the crux of the simplicity puzzle is
to explain, without unedifying circularity, why a prior bias toward simplicity is
better for finding the truth, whatever the truth might happen to be. That may
seem hopeless, for how could favoring a complex theory do worse if that very
theory happens to be true?

Nonetheless, an argument can be given. Inquiry is pursuit of truth. A
strategy of pursuit is more conducive to its goal insofar as it keeps the pursuer
on a shorter or more direct path to the goal. The best path may, perforce, reverse
course any number of times if there are obstacles in the way or if some search
or guesswork is required. Nonetheless, the strategy of pursuit that keeps one
on the most direct cognitive path to the truth is still the most truth conducive
and is, therefore, justified by the aim of finding the truth. In fact, one can
argue that Ockham’s razor is uniquely optimally truth-conducive in the sense
of achieving the minimum achievable bound on the length of one’s cognitive
path to the truth. The argument may be viewed as a diachronic extension of
the usual, static, distance-from-the-truth argument for probabilistic coherence
described above.

Consider a simplistic example, in which you are watching a black box that
may emit at most two marbles, at any times whatever. Let Ti be the proposition
that the box emits at most i−1 marbles, for i ranging from 1 to 3. This marble
arrangement gives rise to nested problems of induction: any amount of marble
free experience is compatible with another marble appearing later, until three
marbles have been seen. Ockham’s razor seems to suggest not counting your
marbles until they appear, since marbles are “entities” and Ockham’s razor
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prohibits one from positing entities without necessity. A pure implementation
of Ockham’s razor would, therefore, output belief profile i1 until the first marble
is seen, belief profile i2 until the second marble is seen, and belief profile i3
thereafter, which is guaranteed to converge to the truth. This Ockham strategy
corresponds to the dashed line around the edges of the triangle in figure 6.
Each side of the triangle has length

√
2, so the Ockham strategy travels at most

Actual world

2

2

i2

i1

i3

Figure 6: Ockham’s razor

distance (n− 1) · √2 to the truth if the truth is in, (for n = 1, 2, 3).
Furthermore, no method that converges to the truth can do better. For sup-

pose that nature withholds marbles forever. Then the convergent method must
move ever closer to i1 on pain of failure to converge to the truth. When the
convergent method is close to i1, nature is free to extend the data presented
so far with one marble followed by no more marbles. Again, on pain of failure
to converge to the truth, the method must move ever closer to belief profile i2.
When the method is arbitrarily close to i2, nature can present another marble,
forcing the method to converge to i3. Thus, if the truth is n ∈ {1, 2, 3}, then
the method travels a distance arbitrarily close to (n− 1) · √2.

Figure 7 depicts garden-variety Bayesian performance. Starting with some
uncertainty between the three theories, a long run of marble-free experience
results in movement toward T1. Seeing the first marble refutes T1, resulting in
a leap to some point of uncertainty between T2 and T3. Failure to see more
marbles results produces motion toward T2. Seeing the final marble results in
an immediate leap to T3. The initial motion toward T1 and the subsequent
motion from T3 toward T2 are added to the motions performed by the simple
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Figure 7: Bayesian approximation to Ockham

Ockham method depicted in figure 6. Indeed, by the triangle inequality, any
deviation from the path taken by simple Ockham method follows a longer path
to T3. But the pure Ockham strategy corresponds to the strongest possible bias
toward simplicity at every stage. So even if the truth is complex, the strongest
possible bias toward the truth minimizes the length of one’s path to the truth
in the worst case (taking the worst case with respect to time of appearance of
the two marbles).13

Next, consider a slightly different example. Suppose that the task is to
determine how many marbles of each color you will ever see. Furthermore, you
know that you will see at most one marble.14 Ockham’s razor favors T1 a priori.
Now, suppose that a marble is heard bouncing down the spout of the emitter
before its color is seen. At that point, the only possible truths are T2, T3, so
consistency with the data rules out probability mass on T1. Ockham’s razor
cannot choose between i2 and i3, which are equally simple, so it adopts belief
profile d′ = (0, 1/2, 1/2). Ockham’s razor then moves to i2 or to i3 depending on
the color observed (cf. figure 8). If the color of the marble is seen immediately,
Ockham’s razor instructs you to proceed immediately to i2 or to i3, depending
on the color observed. The method just described travels distance 0 if no marble

13Bayesian updating precludes the strongest possible bias toward simplicity, since no basis
vector i can be changed by conditioning. So Bayesian updating can approach optimality but
cannot ever achieve it exactly.

14The point of the restriction to one marble is merely to restrict the question to three
answers so that you can continue to use the three dimensional convergence diagram. The
point is general.
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i2
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Figure 8: Ockham in suspense

appears, which is obviously optimal. It travels at worst distance
√

3/2+
√

2/2 if
a marble is heard before it appears. Since nature is free to choose the color of the
marble, waiting midway between i2 and i3 is the best an arbitrary convergent
method that respects consistency with the data can do to reduce the length of
its path to the truth.15

I refer to optimality results of the preceding sort as Ockham efficiency the-
orems. A few general comments are in order about such theorems.

(1) Even if you know only that you will see some finite number of marbles,
moving directly from Tk to Tk+1 incurs distance

√
2, because the Euclidean

distance between ik and ik+1) is still computed by taking the difference ik − ik′
and computing the Euclidean norm:

‖ik − ik+1‖ =
√

(1− 0)2 + (0− 1)2 =
√

2.

So the preceding arguments generalize: the theoretically optimal convergence
distance bound over worlds in which n marbles appear is (n− 1)

√
2, the bound

achieved by the Ockham strategy of moving through the theories in order of
increasing complexity.

(2) Among philosophers, I sometimes encounter the response that efficient
convergence to the truth is a merely “pragmatic” consideration, as opposed to a

15Methods that violate consistency with the data can do better by waiting at i1 after T1

is refuted and then leaping straight to T2 or to T3, depending on the color observed. Here,
suffice it to say that consistency with the data is not the mystery to be explained—Ockham’s
razor is. More engagingly, it will be shown below that a different measure of cost allows one
to explain both consistency with the data and Ockham’s razor.
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genuinely philosophical, “epistemic” consideration. The idea is that happy end-
ings or threats are pragmatic reasons to believe whereas evidence is a properly
epistemic reason to believe. But what would count as a purer or more Platonic
explication of “epistemic justification” than optimal truth conduciveness? And
what could be more truth conducive than a strategy that minimizes the length
of one’s path to the truth?

(3) It may seem as though efficient convergence could not be the true justifi-
cation of Ockham’s razor because justifications should promote credence in what
they justify. The preceding argument allows for the unavoidable possibility of
any number of arbitrarily bad surprises in the future after Ockham’s razor is ap-
plied, which may, upon reflection, decrease confidence in simple theories. Hence,
it cannot be a justification. I respond that to specify rhetorical causes of belief
is one thing and to justify such causes as the right or best causes for purposes of
finding the truth is quite another. Ockham’s razor’s rhetorical force is a given.
That force may engender vague hopes that simplicity is a magical divining rod
that points directly and immediately toward hidden truths. A philosophical
justification should be praised rather than discredited for displacing that sort
of vague, unfounded, wishful thinking.

(4) The structure underlying the Ockham efficiency argument is a hybrid of
maximin and dominance; namely, dominance in terms of worst-case performance
bounds over each empirical complexity class of possible worlds, where empirical
complexity corresponds simply to the number of marbles presented. That form
of argument is commonplace in the computer science literature on algorithmic
efficiency. One examines worst-case resource consumption of the algorithm over
inputs of a given size and compares these bounds across algorithms.

(5) The Ockham efficiency argument could not be a pure dominance argument—
an Ockham violator could anticipate a marble before it is seen and nature could
be so kind as to present the marble before the violator loses confidence (as
she must, if she converges to the truth at all). If empirical complexity is un-
bounded, neither could the argument be a pure maximin argument, since then
the worst case distance bound would be infinite. Nor is the argument an ex-
pected case argument, and for good reason: modeling ignorance as uniform
ignoredge forces either a question-begging bias against complex possibilities or
a question-begging bias against simple theories. The worst-case logic of the
Ockham efficiency theorem avoids both biases.

(6) Worst-case reasoning is admittedly brittle—for example, if you might
possibly be killed if you leave your house, no information short of logical cer-
tainty in your safety could ever coax you out of doors. That would be a fair
objection to the Ockham efficiency theorem if the intention were to show uni-
versally and unequivocally that Ockham’s razor must preempt every material
consideration to the contrary, but the aim is far less ambitious: it is to obtain
some sort of non-circular but truth-directed explanation why Ockham’s razor
should serve as a defeasible default bias that may be preempted by genuine
material considerations. For example, Ptolemy’s astronomy was preferred to
Copernicus’ simpler account due to a mistaken presupposition that heliocen-
trism cannot be squared with terrestrial phenomena. The history of science is
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replete with similar examples.16

(7) Another concern about worst-case reasoning in epistemological contexts
is that it tends to yield implausibly timid or skeptical conclusions compared
with expected case reasoning. But the Ockham efficiency argument yields the
conclusion that a sharp bias toward simplicity is the best possible policy for
finding possibly complex truths. That is not blandly skeptical; it is remarkable.
Too remarkable, perhaps. It is plausible to come to believe the simplest theory
after a run of experience convinces one that no further, complicated effects
are forthcoming—e.g., after the marble emitter is covered with cob-webs and
forgotten in the basement or after persistent attempts to locate the ether drift
have yielded null results. It is less plausible to demand full credence in the
simplest explanation immediately after refutation of simpler possibilities. Such
Ockham extremism is avoided below by restricting attention to reductions in
credence. But first, I motivate the marble counting setup as a model of inductive
inference among theories that differ in simplicity.

7 Marbles, Effects, and Empirical Simplicity

The force of the preceding discussion depends on the aptness of marble counting
as a model of science, so I digress in this section to explain why the model
captures the fundamental features of empirical simplicity.17 Kyburg (1961),
like Harold Jeffreys (1985) and many others, viewed simplicity as a matter of
minimizing free parameters. Each free parameter corresponds to an empirical
effect, which functions, evidentially, like the marbles in our trivial example. For
example, for i = 1, 2, 3, let Ti denote the theory that y is a polynomial function
of x of degree i but not of degree i− 1:

(∃θ1) . . . (∃θi−1)(∃θi)(∀x)(∀y) y = θ1x
1 + . . . + θi−1x

i−1 + θix
i;

(∀θ1) . . . (∀θi−1)(∃x)(∃y) y 6= θ1x
1 + . . . + θi−1x

i−1.

Real-valued data are not exact, but become ever more accurate as sample size
increases. By way of idealization, suppose that the scientist can specify an
arbitrary, rational value of x any number of times and would eventually receive
arbitrarily small open intervals around x if x were to be queried infinitely often.
The scientist can query an infinitely repetitive enumeration of rational values of
x to guarantee ever more precise open intervals around x. Suppose the truth is
T2. Then the scientist will eventually receive three open intervals through which
no line fits. Call that a second-order effect. Suppose the truth is T3. Then the
scientist will eventually receive four intervals through which no parabola fits.

16Special creationists resisted Darwin’s common ancestry explanation of structural homolo-
gies across species due, in part, to the observed resistance of species to change under artificial
selection. Newton rejected the elegant wave theory of light in favor of his complicated particle
theory due to a faulty hunch that such a theory could never explain geometrical shadows. In
light of such examples, Thomas Kuhn (1962) concluded that simplicity is merely a value sui
generis that can be offset by others, which opens inquiry to the objection of being an extended
exercise in wishful thinking (van Fraassen 1981).

17Extended motivational discussions may be found in (Kelly 2007, 2008).
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Call that a third-order effect. Empirical effects are like marbles—they can be
arbitrarily subtle and, therefore, may appear arbitrarily late. Furthermore, each
theory (in this case, polynomial degree) corresponds to some finite set of effects
each of which appears eventually.

Here is another example, drawn from the literature on inferring causal rela-
tions from non-experimental data (Spirtes et al. 2000). Assume that if there is
a causal connection between two variables such as “smoking” and “lung cancer”
if and only if smoking is correlated with lung cancer and the correlation is not
broken by conditionalizing on any other variable.18 Then each causal connec-
tion corresponds to a set of conditional correlations. Idealizing again, one may
think of these conditional correlations as being arbitrarily small or subtle and,
therefore, as taking an arbitrarily long time to notice, so the set of conditional
correlations corresponding to a direct causal connection may be viewed as a
marble that might appear at any time. It is usually thought that more causes
make for a more complex theory than fewer causes, so again, more complex
theories imply more effects.

The problem of multiple simplest theories also arises naturally in causal
inference. Now, consider the orientation (direction) of direct causal connections
rather than just their existence. A linear triple of variables is a triple of variables
with immediate causal connections arranged as: X − Y − Z. In this case, Y
is the middle of the linear triple. A linear triple admits of four possible causal
orientations:

X → Y → Z,

X ← Y ← Z,

X ← Y → Z,

X → Y ← Z.

In the first three arrangements, X is correlated with Z, but only in virtue of
Y , so conditional on Y the correlation between X and X disappears. In the
last arrangement (a causal collision), X is not correlated with Y (they are
independent causes) but since X and Z conspire in producing Y , it follows that
X is correlated with Z given Y . The problem is to converge to as much truth
as possible about causal structure. Suppose that you previously had no sign of
causal connections between X, Y, Z and that you suddenly learn that X−Y −Z
holds. It is now destined that a new effect deciding between the collision and
the other cases will be seen. Ockham’s razor (as well as some standard software
packages for learning causal networks from correlational data) demands that
one wait until nature decides the matter.19

18That is a consequence of the so-called “causal Markov” and “faithfulness” assumptions
(Spirtes et al. 2000).

19Strictly speaking, nature does not provide either open intervals around predicted quan-
tities or a determinate verdict on correlations. In real applications, the open intervals are
replaced with confidence intervals and correlations are concluded when a statistical test of
zero correlation rejects and convergence to the truth is understood to be convergence in prob-
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So marbles and empirical effects are analogous, but what, exactly, are em-
pirical effects? It is tempting, from the examples, to say that an empirical effect
occurs when all theories of a lower complexity are refuted—but that is circular
if empirical complexity is also defined in terms of implied effects. The circle
can be broken as follows. Let K denote a set of infinite input sequences, which
I will refer to as possible empirical worlds. Let Π be a countable partition of
K into empirical propositions. The pair (K, Π) is an empirical question with
presupposition K and potential answers Π. Now, say that nature can force a
sequence (T1, . . . , Tn) of possible answers drawn from Π if and only if nature has
a strategy for presenting data to an arbitrary, convergent scientific method such
that (T1, . . . , Tn) is a sub-sequence of the sequence of theories the method out-
puts through time in response to nature’s inputs. In the curve-fitting question,
nature can present ever smaller open intervals around a line until the convergent
method says “linear”. Since the intervals are all open and but finitely many of
them have been presented, nature can add on a quadratic term with a suffi-
ciently small coefficient to pass through each such interval and can continue to
present ever smaller open intervals around this parabola until the convergent
method says “quadratic”. Then nature can add on a cubic term with sufficiently
small coefficient to fit through all the open intervals presented so far until the
convergent scientist says “cubic”. Hence, (“linear”, “quadratic”, “cubic”) is
forcible from science. The order of this sequence corresponds to intuitions of
simplicity (e.g., to the number of free parameters in the respective theories).
Moreover, no non-trivial permutation of this sequence is forcible by nature, for
Ockham’s razor converges to the truth without ever producing such a sequence.

I propose that empirical simplicity is most fundamentally a reflection of
the forcibility order and that the usual marks of empirical complexity (extra
entities, extra causes, extra verbiage, extra free parameters, extra independent
principles, less testability) are all reflections of this underlying concept.20 Since
convergence to the truth and forcibility depend on the question the method is
to converge to the truth about, the proposed concept of empirical simplicity
depend essentially on the semantics of that question. It does not, however,
depend on notation or on how the question is asked. In that sense, the idea is
more fundamental than any syntactic approach like counting free parameters,
but will agree with such accounts when parameters are materially linked to the
presentation of data in the usual way. For example, when the problem is to
infer conservation laws explaining reactions in particle physics (Schulte 2000),
each conserved quantity makes the theory simpler (more testable, symmetric,
etc.) but each such quantity introduces new free parameters (the amount of
the conserved quantity carried by each particle type). For a simpler example,
suppose that instead of a box emitting marbles, we are shown a box with a false
floor that reveals increasingly more empty space at irregular intervals until it
comes to rest on top of the marbles. Now Ockham’s razor says, properly, that

ability. Ockham efficiency has not yet been established for statistical inference, but it has been
established for random empirical methods conceived very generally (Kelly and Mayo-Wilson
2008).

20For more explicit and general definitions of empirical complexity, cf. (Kelly 2007, 2008).
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one should infer as many marbles as are compatible with current experience.

8 The Thrill of Incoherence and the Agony of
Retreat

The Ockham efficiency argument presented above assumes that the relevant
measure of cognitive cost of convergence is cognitive distance traversed prior
to convergence, which weights increases and decreases in credence equally. But
there are other measures of epistemic cost. For example, C. S. Peirce (1878)
saw a crucial asymmetry between the fixation of belief, which relieves one from
the pain of doubt, and retracting or losing a belief, which re-introduces the pain
of doubt.21 That suggests focusing not on total distance traveled to the truth,
which folds together both increases and decreases in credence, but just on loss
of credence along the way.

Following classical Bayesian intuitions, one might define the retraction from
b to b′ as total distance traveled toward the state of ignoredge d at the center
of the triangle:

r′(b,b′) = ρ(b,d) −̇ ρ(b′,d),

where cutoff subtraction is defined by:

x −̇ x′ = max(0, x− x′).

Unfortunately, all retraction efficient methods must still leap immediately to the
next simplest hypothesis as soon as the currently simplest hypothesis is refuted.
To see why, consider figure 9. It follows immediately from the definition of r′

that:

r′(d, i1) = r′(d, c) = r′(b, i2) = r′(c, i2) = r′(c, i3) = 0;

r′(i1,d) =
√

2/3;

r′(i1,b) = r′(i2, c) =
√

2/3−
√

1/6.

Suppose that T1, T2, T3 are ordered by increasing complexity, so every convergent
method can be forced by nature to move from i1 to i2 to i3. The extreme Ockham
strategy that moves straight from one vertex of the triangle to the next incurs
the retractions along path:

(i1, i2, i3),

which adds up to 2(
√

2/3 −
√

1/6) retractions. A more plausibly moderate
Bayesian would traverse the path:

(d, i1, c, i2, i3),

which incurs
√

1/6 more retractions. It is pretty clear from considerations of
continuity that any deviation from the extreme Ockham path from i1 to i2 would

21The idea is that ignorance is only “bliss” when it is masked by false belief. That admittedly
contradicts the ancient skeptics, who viewed belief as the source of risk and anxiety.
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Figure 9: Retreat to ignoredge

result in some extra retractions. Furthermore, there remains the nagging ob-
jection that ignoredge, unlike true ignorance, is not invariant under coarsenings
of the partition defining the empirical question to be answered. For example,
suppose that the unseen marble might have three different colors. Any method
that is optimal with respect to ignoredge in that problem will fail to be optimal
in the coarsened problem that disjoins two of the colors (the usual paradox of
indifference). On the proposed definition of retraction efficiency, however, the
sub-additive Ockham method in figure 11 is optimal both in the original problem
and in the coarsened problem, since 0 represents ignorance in both cases.

Those objections are avoided if retractions are measured as overall drops
in credence, rather than as overall motion toward ignoredge. When computing
Euclidean distance between two belief states b = (x, y, z) and b′ = (x′, y′, z′),
one computes:

ρ(b,b′) = ‖b− b′‖
=

√
(x− x′)2 + (y − y′)2 + (z − z′)2.

One can define the total retractions22 r(b,b′) incurred by the move from belief
22Note that r is not a metric because symmetry fails:

r(0, i1) = 0 < r(i1,0)

and the triangle inequality fails:

r(d, i1) < r(d,0) + r(0, i1).
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state b to belief state b′ by replacing subtraction x − x′ in the definition of ρ
with cutoff subtraction:

x −̇ x′ = max(0, x− x′),

so that:

r(b,b′) = ‖b −̇ b′‖
=

√
(x −̇ x′)2 + (y −̇ y′)2 + (z −̇ z′)2.

It follows, for each belief state b, for each b′ orthogonal to b, and for each
coherent belief state p distinct from the state of ignoredge d that:23

r(0,b) = 0;
r(d,p) > 0;
r(b,b′) = r(b,0) + r(0,b).

Recall the example in which at most two marbles might be seen. When the cost
of inquiry is measured in terms of retractions, one obtains the tidy result that in
complexity class Cn, the best achievable cumulative retraction bound is exactly
n−1 and that the Ockham method achieves this bound.24 Again, synchronically
coherent enquirers can come arbitrarily close to the best achievable bound.

The corresponding uniqueness result is plausibly weakened, however, for
it is no longer necessary to leap to the uniquely simplest theory immediately
(figure 10. To minimize retractions, an efficient method can start at the state
of true ignorance 0 (by the first property). Thereafter, each time the currently
simplest theory Ti is refuted, it costs no more to retreat all the way to 0 prior
to advancing to the next full belief profile ii+1 than it does to advance to ii+1

directly (by the third property). It is not efficient, however, to retreat to the
state of ignoredge d (by the second property). That is a new, truth-directed
justification for distinguishing ignorance from ignoredge.

Moreover, recall the example in which one marble of unknown color will be
seen. By properties already enumerated, the method that retreats to a state of
ignorance when i1 and that waits for nature to determine which of i2 or i3 to
move to next converges to the truth with 0 retractions if the world has simplicity
0 and with 1 retraction if the world has simplicity 1, which is optimal (figure
11). This method is also logically consistent, in the sense that it never puts

23The last statement is a probabilistic version of the Levi identity for belief revision (Levi
1980, Gärdenfors 1988). It says that each change in credence from b to b′ can be represented,
for purposes of calculating total retractions, as a pure retraction first from b to ignorance
0 followed by a pure expansion from 0 to b′, since movement from 0 incurs no retractions
according to the first statement. Carrying that idea further, define the total expansion or rise
in credence e(b,b′) to be ‖b′ −̇ b‖. Then:

ρ(b,b′)2 = r(b,b′)2 + e(b,b′)2

= r(b,0)2 + e(0,b′)2.

24This result agrees with the qualitative retraction bounds established in (Kelly 2002, 2004,
2007a, 2007, 2008) for methods that output theories rather than degrees of belief.

21



0

1

0

1

i2

i1

i3
actual world

1

1

0

0

Figure 10: Ignorance as safe haven

credence in a refuted theory. But no consistent, synchronically coherent agent
is efficient because retractions are incurred by any motion within the plane of
the triangle of coherence. In fact, the best retraction bound a coherent agent
can achieve is 3/2 > 1. So minimization of retraction distance requires retreat
to a genuine (sub-additive) state of ignorance rather than to a Bayesian state
of ignoredge. That is a new, normative, purely truth-directed motive for the
intuitions underlying the Ellsberg paradox.

So far, I have merely stipulated consistency with the data, but it is better
to explain consistency in terms of retraction efficiency as well. Suppose that,
in addition to minimizing retractions, one wishes to get one’s retractions over
with as soon as possible. That minimizes the number of subsidiary conclusions
and technological applications that must be retracted along with the theory.
More fundamentally, even a true belief that is destined to be retracted in light
of true information fails to constitute knowledge (Gettier 1963), so the search
for knowledge as opposed to merely justified, true belief argues for getting the
retractions over as soon as possible. Now, suppose that you were to remain at i1
after T1 is refuted. Had you moved immediately to 0, you would have incurred
1 retraction right away. But by remaining at i1, you are destined to retract later
and any path either to i2 or to i3 incurs at least one retraction. So in terms of
the joint (Pareto) ranking of retractions and retraction times, you lose on the
time dimension and the method that departs right away does just as well on the
overall retraction dimension.25 It is left as an easy exercise to verify that the

25For the fully general formal details of this argument, cf. (Kelly 2007, 2008).
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same Pareto-dominance argument for consistency fails for Euclidean distance
(cf. figure 8).

9 Inexact Probability

It has just been shown that if ignorance is understood sub-additively as 0,
then retraction-efficiency implies incoherence. But incoherent belief profiles are
dominated in terms of distance to the truth, as discussed above. In this section,
it is argued that representing ignorance as inexact probability allows one both
to be retraction efficient and to avoid short-run dominance in terms of distance
to the truth.

Inexact probabilities have been recommended for a number of reasons, by a
number of authors, including Walley (1991), Kyburg (1977, 1983), Levi (1977,
1980), Suppes (1974), and Seidenfeld et al. (1999). Kyburg’s epistemic probabil-
ities are intervals corresponding to known bounds on chance. Kyburg proposed a
rule of direct inference for associating epistemic probabilities with propositional
knowledge about chance, so the entire setup is based on objective frequencies.
The imprecise probabilities of Walley and Levi, are convex sets of personal prob-
abilities and are updated by Bayesian conditioning. Seidenfeld et al. drop the
convexity requirement.

A method M with set-valued degrees of belief converges uniformly to the
true answer to question (K, Π) just in case:

for each world w in K and for each ε > 0 there exists stage of inquiry n
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such that for all stages m ≥ n, if B is the output of M at m in w, then:

sup
b∈B

ρ(b, iw) < ε;

where iw is the probability measure that assigns unit probability to the theory
T in Π that contains w.

Next, it is necessary to define the retraction r(B,B′) that occurs when B is
replaced with B′. Taking the problem in parts, it is natural to define:

r(B, {b′}) = inf
b∈B

r(b,b′).

This corresponds to the case with distance: one’s distance from Missouri is one’s
distance to the nearest point in Missouri. Then define:

r(B,B′) = sup
b′∈B′

r(B, {b′}).

The idea here is that if B′ sends a protrusion out from B, the total retractions
of B by B′ are the total retractions of the most distant point in the protrusion
(figure 12). This definition has an important and plausible consequence that is

0

B

B

i2

i1

i3

r

Figure 12: Retraction measure for imprecise probability

crucial to our argument: tightening one’s imprecise probabilities does not count
as a retraction of prior belief. Let cl(B) denote the topological closure of B with
respect to the usual Euclidean metric topology induced by open balls. Then:

B′ ⊆ cl(B) implies r(B, B′) = 0.
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Consider how sets of probability measures could be updated so as to implement
Ockham’s razor in the case of the one marble problem in which one must deter-
mine whether there will be a marble and, if so, what its color is. Initialize the
method with a small, open triangle B of probability measures whose boundary
coincides with the boundary of the triangle of coherent measures and includes
the vertex i1, as depicted in figure 13.26 Assuming that the measures in B all

0

i2

i1

i3

Figure 13: Iterated update of imprecise probabilities

determine the same likelihood for data given T0, iterated conditionalization of
these measures will shrink B toward i1 as marble-free experience accumulates.
Since each successive triangle is a subset of its predecessor, no retractions are
incurred during this phase of inquiry (by the property mentioned above). Next,
suppose that nature presents a marble. Now, the method outputs the set of all
points on the line connecting i2 with i3, except for the endpoints. That amounts
to a total retraction of 1. When the color of the marble is revealed, the method
leaps to the singleton containing the corresponding endpoint. Since the endpoint
is contained in the closure of the line, the above property again entails that no
retractions are incurred. So the method achieves the best possible bound of one
retraction for arbitrary, convergent methods. Since no method that produces a

26The point i1 is a member of the boundary of S, not S itself. In light of the dilation results of
(Seidenfeld and Wasserman 1993) one might worry whether it is possible to implement uniform
convergence to a corner of the triangle. However, those results concern the ubiquitous ability
to find some event that dilates, not the ubiquity of dilation of a fixed event. In the marble
case, suppose that all measures in the triangle have identical versions of the likelihoods b(e|Ti)
for i ∈ 1, 2, 3 and differ only in the prior probabilities assigned to the respective theories (that
is implicit in the diagram, since differences in likelihood are not even represented). Every
(countably additive) convex subset B of the interior of the triangle will converge uniformly to
T1 on increasing, marble-free data.
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precise probability distribution at each stage can match that bound, we have a
new, normative, objective, truth-directed argument for imprecise probability.

What of Ockham’s razor? It is still enforced, but in a plausibly weakened
form. Full efficiency demands that measures arbitrarily close to the simplest the-
ory be included in the initial set of measures, but each time the simplest theory
compatible with experience is refuted, it is admissible to skeptically adopt the
set of all remaining coherent distributions. Further simple experience contracts
the set around full belief in the simplest theory compatible with experience.

10 Dilation

Imprecise probabilities can become even less precise in light of new informa-
tion, which “goes against our seeming intuition that when we condition on new
evidence, upper and lower probabilities should shrink toward each other” (Sei-
denfeld and Wasserman 1993).27 Kyburg’s epistemic probability theory (1977)
embodied a stipulation against dilation.28 The preceding discussion explains,
however, why dilation is both natural and necessary for optimal truth conducive-
ness. For after lengthy exposure to marble-free data, the interval between upper
and lower probabilities for both T2 and T3 collapses on 0, but when the marble
is heard but not yet seen, the intervals both for T2 and T3 leap to (0, 1). That
is as it must be, for any constraint on the interval for either answer would open
the agent to extra retractions.

11 Conclusion

This paper sketches some new connections between some themes urged by Ky-
burg, including objectivity of scientific inference, simplicity, and imprecise prob-
ability. It has been argued that a standard, Bayesian explanation of Ockham’s
razor in terms of Bayes factors runs afoul of the usual paradoxes of indifference
and Ellsberg. An alternative vindication of Ockham’s razor in terms of minimal
path length to the truth was given, but it has the implausible consequence that
efficient methods must leap to the simplest theory immediately. Focusing on
retractions of credence, rather than expansions of credence, allows for a more
plausible Ockham efficiency theorem, according to which suspension of belief
is possible prior to advancing to the next simplest hypothesis. However, that
result requires, as does Ellsberg’s paradox, that ignorance be represented more
deeply than as Bayesian indifference. Both incoherence (sub-additivity) and im-
precise probabilities have been entertained as models of ignorance in response
to Ellsberg’s paradox and both allow one to prove a natural Ockham efficiency

27Elsewhere, Seidenfeld and Wasserman adopt the much more circumscribed view that
dilation is only odd when it occurs “no matter what”. The following explanation does not
motivate that extreme case.

28The rule for associating intervals of probability with information states selects the narrow-
est interval associated with information entailed by the information available (cf. Seidenfeld
2007).
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theorem, but imprecise probabilities have the further advantage of avoiding
dominance in terms of distance to the truth in the short run. Furthermore,
in order to achieve retraction efficiency, imprecise probabilities must exhibit a
maximum degree of “dilation” or increase in imprecision in light of new informa-
tion. Thus, one arrives at a new, unified, normative explanation in terms truth
conduciveness of the intuitions underlying Ockham’s razor, Ellsberg’s paradox,
and dilation of imprecise probabilities.

More generally, I hope this study focuses more attention on truth conducive-
ness as a source of normative methodological explanations. It is regrettable
that some Bayesian epistemologists now define truth conduciveness as what-
ever raises Bayesian credence (e.g., Shogenji 1999, Olsson 2005, Bovens and
Hartmann 2004), an idea dispelled by a quick glance at the Bayesian grand tour
depicted in figure 6. Real truth conduciveness is just what it sounds like: finding
the truth more directly than alternative strategies. Taking truth conduciveness
seriously is the key, at least, to obtaining a unified, non-circular, truth-directed,
normative explanation of Ockham’s razor, the Ellsberg Pardox, and the dilation
phenomenon.
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