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Abstract

In science, one faces the problem of selecting the true theory from a range of al-
ternative theories. The typical response is to select the simplest theory compatible
with available evidence, on the authority of “Ockham’s Razor”. But how can a
fixed bias toward simplicity help one find possibly complex truths? A short survey
of standard answers to this question reveals them to be either wishful, circular, or
irrelevant. A new explanation is presented, based on minimizing the reversals of
opinion prior to convergence to the truth. According to this alternative approach,
Ockham’s razor does not inform one which theory is true but is, nonetheless, the
uniquely most efficient strategy for arriving at the true theory, where efficiency is
a matter of minimizing reversals of opinion prior to finding the true theory.

1 Introduction

Suppose that several or even infinitely many theories are compatible with the infor-
mation available. How ought one to choose among them, if at all? The traditional
and intuitive answer is to choose the “simplest” and to cite Ockham’s razor by way of
justification. Simplicity, in turn, has something to do with minimization of entities, de-
scription length, causes, free parameters, independent principlies, or ad hoc hypotheses,
or maximization of unity, uniformity, symmetry, testability, or explanatory power.

Insofar as Ockham’s razor is widely regarded as a rule of scientific inference, it
should help one to select the true theory from among the alternatives. The trouble
is that it is far from clear how a fixed bias toward simplicity could do so (Morrison
2000). One wishes that simplicity could somehow indicate or inform one of the true
theory, the way a compass needle indicates or informs one about direction. But since
Ockham’s razor always points toward simplicity, it is more like a compass needle that
is frozen into a fixed position, which cannot be said to to indicate anything. Nor does
it suffice to respond that a prior bias toward simplicity can be corrected, eventually,
to allow for convergence to the truth, for alternative biases are also correctable in the
limit.
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This paper reviews some standard accounts of Ockham’s razor and concludes that
not one of them explains successfully how Ockham’s razor helps one find the true
theory any better than alternative empirical methods. Thereafter, a new explanation
is presented, according to which Ockham’s razor does not indicate or inform one of the
truth like a compass but, nonetheless, keeps one on the straightest possible route to
the true theory, which is the best that any inductive strategy could possibly guarantee.
Indeed, no non-Ockham strategy can be said to guarantee so straight a path. Hence,
a truth-seeker always has a good reason to stick with Ockham’s razor even though
simplicity does not indicate or inform one of the truth in the short run.

2 Standard Accounts

The point of the following review of standard explanations of Ockham’s razor is just to
underscore the fact that they do not connect simplicity with selecting the true theory.
For the most part, the authors of the accounts fairly and explicitly specify motives other
than finding the true theory—e.g., coherence, data-compression, or accurate estimation.
But the official admonitions are all too easily forgotten in favor of a vague and hopeful
impression that simplicity is a magical oracle that somehow extends or amplifies the
information provided by the data. None of the following accounts warrants such a
conclusion, even though several of them invoke the term “information” in one way or
another.

2.1 Simple Virtues

Simple theories have attractive aesthetic and methodological virtues. Aesthetically,
they are more unified, uniform and symmetrical and are less ad hoc or messy. Method-
ologically, they are more severely testable (Popper 1968, Glymour 1981, Friedman 1983,
Mayo 1996), explain better (Kitcher 1981), predict better (Forster and Sober 1994),
and provide a compact summary of the data (Li and Vitanyi 1997, Rissanen 19831).
However, if the truth happens not to be simple, then the truth does not possess the
consequent virtues, either. To infer that the truth is simple because simple worlds and
the theories that describe them have desirable properties is just wishful thinking, unless
some further argument is given that connects these other properties with finding the
true theory (van Fraassen 1981).

2.2 Bayesian Prior Probabilities

According to Bayesian methodology, one should update one’s degree of belief P (T ) in
theory T in light of evidence e according to the rule:

p(T |e) =
p(T ) · p(e|T )

p(e)
.

1Rissanen is admirably explicit that finding short explanations is an end-in-itself, rather than a
means for finding the true theory.
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Subjective Bayesians countenance any value whatever for the prior probability p(T ),
so it is permissible to start with a prior probability distribution biased toward simple
theories (Jeffreys 1985). But the mere adoption of such a bias hardly explains how
finding the truth is facilitated better by that bias than by any other.

A more subtle Bayesian argument seems to avoid the preceding circle. Suppose that
S is a simple theory that explains observation e, so that p(e|S) ≈ 1 and that C = ∃θC(θ)
is a competing theory that is deemed more complex due to its free parameter θ, which
can be tuned to a small range of “miraculous” values over which p(e|C(θ)) ≈ 1. Strive,
this time, to avoid any prior bias for or against simplicity. Ignorance between S and C
implies that p(S) ≈ p(C). Hence, by the standard, Bayesian calculation:

p(S|e)
p(C|e) =

p(S) · p(e|S)
p(C) · p(e|C)

≈ p(e|S)
p(e|C)

≈ 1∫
p(e|C(θ)) · p(C(θ)|C) dθ

.

Further ignorance about the true value of θ given that C is true implies that p(C(θ)|C)
is flattish. Since p(e|C(θ)) is high only over a very small range of possible values of
θ and p(C(θ)|C) is flattish, the integral assumes a value near zero. So the posterior
probability of the simple theory S is sharply greater than that of C (Rosenkrantz
1983). It seems, therefore, that simplicity is “truth conducive”, starting from complete
ignorance.

The magic evaporates when the focus shifts from theories to ways in which the
alternative theories can be true. The S world carries prior probability 1/2, whereas
the prior probability of the range of worlds C(θ) in which θ is tuned to explain e is
vanishingly small. That sharp, prior bias in favor of the S world is merely passed along
through the Bayesian computation, accounting entirely for the sharp “confirmation” of
S over C. More generally, Bayesian “ignorance” with respect to one partition of possi-
bilities implies a strong prejudice with respect to another—e.g., “ignorance” between
blue and non-blue together with ignorance between non-blue hues implies a strong bias
against yellow—and that is all that is going on here. The point is not that science
should be entirely free from biases. It is, rather, that direct appeal to one’s bias hardly
explains how that bias is better for finding the truth than alternative biases might
be—every bias flatters itself.

2.3 Objective Prior Probabilities

One way to avoid the subjectivity of the preceding arguments is to select some partic-
ular prior probability distribution as special and to show that Ockham’s razor follows.
For example, R. Carnap (1950) viewed confirmation as a generalized notion of logical
consequence in which p(T |e) supposedly represents the degree to which premise e par-
tially entails conclusion T . This putative degree of entailment is understood in terms of
the total weight of possibilities satisfying T&e divided by the total weight of possibil-
ities satisfying e. “Weight” is explicated in terms of probability, so there is the usual,
Bayesian question of which prior probability measure to impose. Carnap imposed prior
probabilities favoring uniform sequences of observable outcomes, with higher degrees
of confirmation for predictions that resemble the past as a not-so-surprising result.
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The trouble with Carnap’s logical defense of Ockham’s razor is that its prior bias
toward uniformity is not preserved under linguistic translation and, hence, cannot be
logical. On Carnap’s proposal, a long run of green observations strongly confirms at
stage n that the next observation will be green, rather than blue, because an invariantly
green world is more uniform. N. Goodman (1955) responded that one can translate
green/blue into grue/bleen, where grue means “green through n and blue thereafter”
and bleen means “blue through n and green thereafter”. A sequence of observations
is uniform with respect to green/blue if and only if it is non-uniform with respect to
grue/bleen, so uniformity and, hence, confirmation, is not preserved under translation.
Against the objection that green/blue are “natural” predicates whereas grue/bleen
involve a “magic time n”, the predicates green/blue equally involve a magic time n in
the grue/bleen language, so the situation is logically symmetrical. Therefore, Ockham’s
razor must be sought outside of logic.

Goodman, himself, proposed to rule out “grue-like” predicates by appealing to suc-
cess in past inductions, which is a matter of history, rather than of logic. However,
is hard to see how that can help if the “magic” time n still lies in the future, since
then grue and green would have yielded identical success rates. A currently popular
approach, called algorithmic information theory (Li and Vitanyi 1997), seeks unifor-
mity not in pure logic, but in the presumably objective nature of computation. The
algorithmic complexity of a string corresponds (roughly) to the length of the shortest
computer program (in some fixed computer language) that generates the string. The
intuitive idea is that a simple string has structure that a short program can exploit
to reproduce it, whereas a complex or “random” string does not. This gives rise to
the notion that good explanations are short theories that compress the data and that
Ockham’s razor is a matter of minimizing the sum of the lengths of the theory and of
the compressed data. The proposal that one should infer the best explanation in this
sense is called the minimum description length principle or MDL for short (Rissanen
1983). Algorithmic information theorists have developed the notion of a universal prior
probability over bit strings with the property that more compressible strings tend to
have higher prior probability. It can be shown that under certain conditions the MDL
approach approximates Bayesian updating with the universal prior probability (Vitanyi
and Li 2000).

Algorithmic complexity may help to explicate some slippery but important method-
ological concepts, such as interest, beauty, or emergence (Adriaans 2007). The focus
here, however, is on the putative connection, if any, between data-compression and
finding the true theory. Some proponents of the approach (e.g., Rissanen, himself)
deny that there is one and urge data-compression as an alternative aim. One reason
for doubt is that program length depends heavily upon the particular programming lan-
guage assumed in the definition of program length. In algorithmic complexity theory, a
computer language is identified with a universal machine, which simulates an arbitrary
program p, step by step, to produce the output of p. Suppose that, in a “natural” pro-
gramming language L, the shortest program p that generates a random-looking string
σ is almost as long as σ itself. But now one can specify a new programming language
L′ whose universal machine I ′ is just like the universal machine I for L except that,
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when presented with a very short program p′, I ′ simulates I on the long program p,
generating σ. In other words, the complexity of p can be “buried” inside of I ′ so that
it does not show up in the L′ program p′ that generates σ. This arbitrariness makes it
hard to take program length seriously as an indicator of how simple the world really is
unless a theory of “natural” programming languages is provided—but the theory of al-
gorithmic complexity is stated in terms of an arbitrary, Turing-equivalent programming
language.2

Quite aside from the relativity of program length to one’s choice of computer lan-
guage, there is a further question about the process by which observations are encoded
or transduced into the bit-strings presupposed by algorithmic complexity theory. One
transducer could encode green wavelengths as 0 and blue wavelengths as 1, whereas
another, grue-like transducer could reverse these assignments at some random-looking
times. Algorithmic complexity judges the same world to be either extremely complex
or extremely simple depending upon which transducer is employed, but no bias that
depends upon mere conventions about how the data are passed along to the scientist
could plausibly be an indicator of truths lying behind the data-reporting process.

Finally, and most importantly, insofar as there is any theoretical connection be-
tween simplicity and truth in the MDL story, it amounts to the selection of a universal
(i.e., simplicity-biased) prior probability measure, which adds nothing to the standard,
circular, Bayesian account already discussed (cf. Mitchell 1997). Therefore, it is impor-
tant not to be confused by talk of bits and nats into believing that simplicity somehow
provides information about the true theory.

2.4 Over-fitting and Empirical Estimation

Classical statisticians have an alternative account of the connection between simplicity
and truth based on the concept of “over-fitting” (cf. Wasserman 2003). Since this
explanation does not invoke prior probabilities at all, it is free from the shadow of
circularity characteristic of Bayesian explanations. However, the underlying aim is not
to choose the true theory, but to find a false theory that yields accurate empirical esti-
mates at small sample sizes. One might expect that no theory predicts more accurately
than the true theory, but that is emphatically not how “accuracy” is understood in the
over-fitting literature. Hence, the over-fitting explanation of Ockham’s razor avoids cir-
cular appeal to a prior simplicity bias only by adopting a skeptical or instrumentalistic
stance toward theories (Forster and Sober 1994).

2Algorithmic complexity theorists respond to the preceding concern as follows. The first universal
machine I has a program pI′ that simulates universal machine I ′. Let p′ be the shortest program
producing some string σ according to I ′. Then the result p of chaining together the programs pI′ and
p′ generates σ in L. Chaining pI′ onto p′ adds only constant length to p′, so there exists a constant k
that bounds the difference in length of the shortest program in L from the length the shortest program
in L′ that generates an arbitrary string σ. But that is scant comfort when one applies Ockham’s razor
in a particular instance, for it is still the case that an arbitrarily complex theory in the first universal
machine could be the simplest possible theory for the second. The constants connecting systems can
be arbitrarily large, so no matter how many reversals of simplicity ranking one wishes to effect, one
could fish for an alternative universal machine that effects them.
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To see how false theories can predict more “accurately” than true ones, imagine a
marksman firing a rifle at a target from a tripod that can be locked in both the vertical
and the horizontal dimensions. When both locks are off, the best marksman produces
a cloud of shots centered on the bull’s eye. Suppose that the inaccuracy of a marksman
is measured in terms of the expected distance from the bull’s eye of a single shot. Call
this the marksman’s “risk” (of missing the bull’s eye). A good marksman’s risk is due
entirely to the spread or variance of his shots around the bull’s eye. Now consider a
lazy marksman, who locks the tripod in both dimensions, so every shot hits at the
same point at a distance b from the bull’s eye. The lazy marksman has no variance,
but has bias b, because his average shot hits at distance b from the bull’s eye. There
is a critical bias b > 0 below which the lazy marksman is more “accurate” than the
good marksman as measured by risk. Think of the bull’s eye as the true value of an
empirical parameter and of a shot as an empirical estimate of the parameter based on a
random sample. Free aim corresponds to an empirical estimate using a complex theory.
The locked tripod corresponds to a fixed empirical estimate based on a simple theory
with no free parameters. The bias of the simple theory implies its falsehood (it rules
out the true sampling distribution). So even if the true theory is very complex and
is known in advance, risk minimization argues for using a false, over-simplified theory
for estimation purposes. Hence, over-fitting hardly explains how Ockham’s razor helps
one find the true theory. That conclusion may sound odd in light of popular glosses of
over-fitting such as the following:

It is overwhelmingly probable that any curve that fits the data perfectly
is false. Of course, this negative remark does not provide a recipe for
disentangling signal from noise. We know that any curve with perfect fit
is probably false, but this does not tell us which curve we should regard
as true. What we would like is a method for separating the trends in the
data from the random deviations from those trends generated by error. A
solution to the curve fitting problem will provide a method of this sort
(Forster and Sober 1994).

One might naturally conclude that the trend in the data is the true signal and that the
aim is to strike the true balance between signal and noise, which only the true theory
can do. However, as the authors of the passage later explain with care, over-fitting
and under-fitting are defined in terms of estimation risk at a given sample size, rather
than in terms of the true curve: “under-fitting” occurs when sub-optimal risk is due
to bias and “over-fitting” occurs when sub-optimal risk is due to variance. Thus, as
discussed above, if the sample size is small and the truth is not as simple as possible, risk
minimization recommends selection of an over-simplified theory that falsely explains
true signal as noise.

In the scientific case, one does not know the true sampling distribution a priori, so
one does not know the bias and, hence, the risk, of using a given theory for estima-
tion purposes. One can estimate the risk from the sample by calculating the average
squared distance of data points from predictions by the theory. But the estimated risk
of a complex theory is biased toward optimism because risk is estimated as fit to the
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data and a sufficiently complex theory can fit the data exactly, even if the true risk
of estimation is considerable due to noise. To assuage this systematic estimation bias,
the risk estimate must incorporate a tax on free parameters. Then one can choose, for
estimation purposes, a theory whose corrected estimated risk is minimal. This is the
basic logic between such standard, classical estimation procedures as Akaike’s informa-
tion criterion (AIC)) (1973), cross-validation, and Mallow’s statistic (cf. Wasserman
2003).

Structural risk minimization (SRM) is an interesting generalization and extension of
the over-fitting perspective (Vapnik 1998). In the SRM approach, one does not merely
construct an (approximately) unbiased estimate of risk; one solves for objective, worst-
case bounds on the chance that estimated risk differs by a given amount from actual
risk. A crucial term in these bounds is called the Vapnik Chervonenkis dimension or
VC dimension for short. The VC dimension is a measure of the range of possible
samples the theory in question has the “capacity” to accommodate, which suggests a
connection to simplicity and Ockham’s razor. As in the over-fitting account, one can
seek the “sweet spot” between simplicity (low VC-dimension) and fit (estimated risk)
that minimizes the worst-case bound on the error of the risk estimate. Then one can
choose the parameter setting that minimizes estimated risk within that theory.

Again, the aim is not to find the true theory. And yet, the SRM approach can
explain other approaches (e.g., MDL and Bayesianism) as respectable ways to con-
trol worst-case estimation risk, eliminating the circular appeals to prior simplicity
biases (Vapnik 1998). The moral is skeptical. If risk minimization is the last word
on Ockham’s razor, then the apparent rhetorical force of simplicity is founded upon
a fundamental confusion between theories as true propositions and theories as useful
instruments for controlling variability in empirical estimates.

It is tempting, at this point, to ask whether theoretical truth really matters—
accurate predictions should suffice for all practical purposes. That is true so far as
passive prediction is concerned. But beliefs are for guiding action and actions can alter
the world so that the sampling distribution we drew our conclusions from is altered
as well—perhaps dramatically. Negligible relativistic effects are amplified explosively
when a sufficient quantity of uranium ore is processed. A crusade to eliminate ash
trays breaks the previously observed, strong correlation between ash trays and cancer,
undermining the original motivation for the policy. Theories that guide action are
supposed to provide accurate counterfactual estimates about what would happen if the
world (and, hence, the sampling distribution) were altered in various ways (Spirtes et
al. 2000). An accurate estimate of the true sampling distribution is not enough in such
cases, because distributions corresponding to complex theories can be arbitrarily similar
to distributions corresponding to simple theories, that have very different counterfactual
import. This point will be sharpened below, when the details of the contemporary
literature on causal discovery are discussed.

Finally, it is clear that the over-fitting story depends, essentially, upon noise in
the data and, hence, in the shots at the truth taken by the estimator, since non-
noisy estimates involve no variance and, hence, no bias-variance balance. However,
Ockham’s razor seems no less compelling in deterministic settings. One would prefer
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that the connection between simplicity and theoretical truth not depend essentially
upon randomness.

2.5 Convergence

The preceding explanations promise something in the short run, but theoretical truth
cannot be guaranteed in the short run, even with high chance, because complex effects
in nature may be two small or subtle to notice right away. Bayesians address this diffi-
culty by circular appeal to the very bias to be explained. Risk minimization responds
by shifting the focus from theoretical truth to predictive risk. A third option is to relax
the demand for immediate success. Arbitrarily small, complex effects requiring free
parameters to explain them can be detected eventually, as more data are collected, as
more regions of the universe are explored, and as observational technology improves,
so if it is assumed in advance (as in polynomial curve fitting) that there are at most
finitely many such effects to be found, then at some point all the effects are noticed
and Ockham’s razor converges to the true theory. For example, it can be shown that,
in a wide range of cases, Bayesian updating armed with a simplicity-biased prior prob-
ability does converge to the true theory in the limit. However, if indication or pointing
to the true theory is too stringent to be feasible, mere convergence to the true theory
is too weak to single out Ockham’s razor as the best truth-finding policy in the short
run. Convergence requires merely that a prior simplicity bias “wash out”, eventually,
in complex worlds. But the question is not how to overcome a prior simplicity bias;
it is, rather, how such a bias helps one find the truth better than alternative biases.
Convergence, alone, cannot answer that question, since if a method converges to the
truth, so does every finite variant of that method (Salmon 1967). Hence, mere conver-
gence says nothing about how the interests of truth-finding are particularly furthered
by choosing the simplest theory now. But that is what the puzzle of simplicity is about.

3 Diagnosis

To recapitulate, the two standard notions of finding truth are (1) indication or inform-
ing of the truth in the short run and (2) convergence in the long run. The former aim
is too strong to support an a priori explanation of Ockham’s razor, since an arbitrarily
complex world can appear arbitrarily simple in the short run, before the various di-
mensions of complexity have been detected. The latter aim is too weak to support an
a priori explanation of Ockham’s razor, since a prior bias toward complexity can also
be washed out by further information. Therefore, if the apparent connection between
simplicity and theoretical truth has an explanation, it should be sought somewhere
between these two extremes: Ockham’s razor should somehow help one converge to the
true theory better or more efficiently than alternative strategies. Just such an account
will now be presented. The basic idea is that a bias toward simplicity neither points at
the truth nor merely converges to it, but converges to it in the most efficient or direct
manner possible, where efficiency is measured in terms of errors, reversals of opinion,
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and the time delay to such reversals.3

4 Traveler’s Aid

To state the simplicity puzzle in its most basic terms, how could fixed, one-size-fits-
all advice be guaranteed to help one find something that might be anywhere—in a
sense stronger than merely guaranteeing that one will find it by exhaustive search?
It happens every day. Suppose that a city dweller is lost in a small town on a long
automobile journey6. He asks a local resident for directions. The resident directs him
to the freeway entrance ramp. The traveler follows the advice and travels as directly
as possible to the freeway, which is by far the most direct route home—in spite of a
few, unavoidable curves around major geographical features.

Now suppose that the traveler stubbornly ignores the resident’s advice. Indeed,
suppose that, in so doing, the traveler follows a road on the true compass heading to
his destination, whereas getting on the freeway requires a short jog in the opposite
direction. The chosen route narrows and begins to meander through the mountains.
The traveler finally concedes that it wasn’t a good idea and retraces his route back to
the resident. He then follows the resident’s directions to the freeway and proceeds home
via the best possible route. The traveler’s reward for ignoring the resident’s advice is
a humiliating U-turn right back to where he started, followed by all the unavoidable
twists and turns encountered on the freeway over the mountains. Had he heeded the
advice, he would have encountered only the unavoidable curves along the freeway. So
he should have heeded it.

In connection with the simplicity puzzle, this unremarkable tale has some remark-
able features.

1. The resident’s advice is the best possible advice in the sense that it puts one on
the most direct route to the goal, for violating it incurs at least one extra, initial
U-turn.

2. The advice is the best possible even if it aims the traveler in the wrong direction
initially.

3. The resident can give precisely the same, fixed advice to every stranger who asks,
even though she does not know where they are headed—no Ouija board or other
occult channel of information is required.

3The basic idea of counting mind-changes is originally due to H. Putnam (1965). It has been
studied extensively in the computational learning literature— for a review cf. (Jain et al. 1999). But
in that literature, the focus is on categorizing the complexities of problems rather than on singling out
Ockham’s razor as an optimal strategy. I viewed the matter the same way in (Kelly 1996). Schulte
(1999a, 1999b) derives short-run constraints on strategies from retraction minimization. (Kelly 2002)
extends the idea, based on a variant of the ordinal mind-change account due to (Freivalds and Smith
1993), but that approach does not apply to cases like curve fitting, in which theory complexity is
unbounded. Subsequent steps toward the present approach may be found in (Kelly 2004, 2006) and in
(Kelly and Glymour 2004).
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So directions to the nearest freeway entrance ramp satisfy all the apparently arcane
and paradoxical demands that a successful explanation of Ockham’s razor must satisfy.
It remains to explain what the freeway to the truth is and how Ockham’s razor keeps
one on it.

5 Some Examples

For some guidance in the general developments that follow, consider some familiar
examples.

Polynomial structures. Let S be a finite set of natural numbers and suppose
that the truth is some unknown polynomial law:

y = f(x) =
∑

i∈S

aix
i,

where for each i ∈ S, ai 6= 0. Say that S is the structure of the law, as it determines
the form of the law as it would be written in a textbook. Suppose that the problem is
to infer the true structure S of the law. It is implausible to suppose that for a given
value of the independent variable x one could observe the exact value of the dependent
variable y, so suppose that for each queried value of x at stage k of inquiry, the scientist
receives an arbitrarily small, open interval around the corresponding value of y and that
repeated queries of x result in an infinite sequence of open intervals converging to {y}.

It is impossible to be sure that one has selected S correctly by any finite time, since
there may be some i ∈ S such that a1 is set to a very small value in f , making it appear
that the monomial aix

i is missing from f . Ockham’s razor urges the conclusion that
i /∈ S until the corresponding monomial is noticed in the data.

There is a connection between the complexity of the true polynomial structure and
what scientists and engineers call effects. Suppose that S0 = {0}, so for some ai > 0,
f0(x) = ai. Let experience e0 present a finite sequence of interval observations of the
sort just described for f0. Then there is a bit of wiggle room in each such interval, so
that for some suitably small a1 > 0, the curve f1(x) = a1x + a0 of form S1 = {0, 1}
is compatible with e0. Eventually, some open interval around y = a0 is presented that
excludes f0. Call such information a first-order effect. If e1 extends that information
and presents an arbitrary, finite number of shrinking, open intervals around f1 then,
again, there exists suitably small a2 > 0 such that f2(x) = a2x

2 +a1x+a0 of form S2 =
{0, 1, 2} passes through each of the intervals presented in e1. Eventually, the intervals
tighten so that no linear curve passes between them. Call such information a second-
order effect, and so forth. The number of effects presented by a world corresponds
to the cardinality of S, so there is a correspondence between empirical effects and
empirical complexity. A general account of empirical effects is provided in section 16
below.

Linear dependence. Suppose that the truth is a multivariate linear law

y = f(x) =
∑

i∈S

aixi,
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where for each i ∈ S, ai 6= 0. Again, the problem is to infer the structure S of f . Let
the data be presented as in the preceding example. As before, it seems that complexity
corresponds with the cardinality of S which is connected, in turn, to the number of
effects presented by nature if f is true.

Conservation laws. Consider an idealized version of explaining reactions with
conservation laws, as in the theory of elementary particles (Schulte 2001, Valdez-Perez
1996). Suppose that there are n observable types of particles, and it is assumed that
they interact so as to conserve n distinct quantities. In other words, each particle of
type pi carries a specific amount of each of the conserved quantities and for each of the
conserved quantities, the total amount of that quantity going into an arbitrary reaction
must be the total amount that emerges. Usually, one thinks of a reaction in terms of
inputs and outputs; e.g.,

r = (p1, p1, p1, p2, p2, p3 → p1, p1, p2, p3, p3).

One can represent the inputs by a vector in which entry i is the number of input
particles of type pi in r, and similarly for the output:

a = (3, 2, 1);
b = (2, 1, 2);
r = (a → b).

A quantity q (e.g., mass or spin) is an assignment of real numbers to particle types, as
in q = (1, 0, 1), which says that particles a1, a3 both carry a unit of q and a2 carries
none. Quantity q is conserved in r just in case the total q in is the total q out. That
condition is just:

3∑

i=1

qiai =
3∑

i=1

qibi,

or, in vector notation,
q · a = q · b,

which is equivalent to:
q · (a− b) = 0.

Since reaction r enters the condition for conservation solely as the vector difference
a − b, there is no harm, so far as conservation is concerned, in identifying reaction r
with the difference vector:

r = a− b = (1, 1,−1).

Then the condition for r conserving q can be rewritten succinctly as:

q · r = 0,

which is the familiar condition for geometrical orthogonality of q with r. Thus, the
reactions that preserve quantity q are precisely the integer-valued vectors orthogonal
to q. In this example, r does conserve q, for:

(1, 0, 1) · (1, 1,−1) = 1 + 0− 1 = 0.
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But so do reactions u = (1, 0,−1) and v = (0, 1, 0), which are linearly independent.
Since the subspace of vectors orthogonal to q is two-dimensional, every reaction that
conserves q is a linear combination of u and v (e.g., r = u + v). If the only conserved
quantity were q, then it would be strange to observe only scalar multiples of r. In that
case, one would expect that the possible reactions are constrained by some other con-
served quantity linearly independent of q, say q′ = (0, 1, 1). Now the possible reactions
lie along the intersection of the planes respectively orthogonal to q and q′, which are
precisely the scalar multiples of r. Notice that any two linearly independent quantities
orthogonal to r would suffice—the quantities, themselves, are not uniquely determined.

Now suppose that the problem is to determine how many quantities are conserved,
assuming that some conservation theory is true and that every possible reaction is ob-
served, eventually. Let an “effect” be the observation of a reaction linearly independent
of the reactions seen so far. As in the preceding applications, effects may appear at
any time but cannot be taken back after they occur and the correct answer is uniquely
determined by the (finite) number of effects that occur.

In this example, favoring the answer that corresponds to the fewest effects corre-
sponds to positing the greatest possible number of conserved quantities, which cor-
responds to physical practice (cf. Ford 1963). In this case, simplicity intuitions are
consonant with testability and explanation, but run counter to minimization of free
parameters (posited conserved quantities).

Discovering causal structure. If one does not have access to experimental data,
due to cost, feasibility, or ethical considerations, one must base one’s policy recommen-
dations on purely observational data. In spite of the usual advice that correlation does
not imply causation, sometimes it does. The following setup is based upon (Spirtes et
al. 2000). Let V be a finite set of empirical variables. A causal structure associates
with each unordered pair of variables {X, Y } one of the following statements:

X → Y ; X ← Y ; X‖Y ;

interpreted, respectively, as X is a direct cause of Y , Y is a direct cause of X, and X,Y
have no direct causal connection. The first two cases are direct causal connections and
the fourth case denies such a connection. A causal structure can, therefore, be presented
as a directed, acyclic graph (DAG) in which variables are vertices and arrows are direct
causal connections. The notation X−Y means that there is a direct connection in either
direction between X and Y without specifying which. A partially oriented graph with
such ambiguous edges is understood, for present purposes, to represent the disjunction
of the structures that result from specifying them in each possible way.

At the core of the approach is a rule for associating causal structures with prob-
ability distributions. Let p be a joint probability distribution on variables V . If S
is a subset of V , let (X q Y )|S abbreviate that X is statistically independent of Y
conditional on S in p. A sequence of variables is a path if each successive pair is im-
mediately causally connected. A collision on a path is a variable with arrows coming
in from adjacent variables on the path (e.g., variable Y in path X → Y ← Z). A path
is activated by variable set S just in case the only variables in S that occur on the
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path are collisions and every collision on the path has a descendent in S. Then the key
assumption relating probabilities to causal structures is simply:

(X q Y )|S if and only if no path between X and Y is activated by S.

Let Tp denote the set of all causal structures satisfying this relation to probability
measure p.

To see why it is intuitive to associate Tp with p, suppose that X → Y → Z and
that none of these variables are in conditioning set S. Then knowing something about
Z tells one something about X and knowing something about the value of X tells one
something about Z. But the ultimate cause X yields no further information about Z
when the intermediate cause Y is known (unless there is some other activated path
between X and Y ). On the other hand, suppose that the path is X → Y ← Z with
collision Y . If there is no further path connecting X with Z, knowing about X says
nothing about Z (X and Y independent causes of Y ), but since X and Z may cooperate
or compete in a systematic way to produce Y , knowing the value of Y together with
the value of X yields some information about the corresponding setting of Z. The
dependency among causes given the state of the common effect turns out to be an
important clue to causal orientation.

It follows from the preceding assumption that there is a direct connection X − Y
just in case X and Y are dependent conditional on each set of variables not including
X,Y . There is a collision (X → Y ← Z) if (X − Y − Z) holds (by the preceding rule)
and (X − Z) does not hold (by the preceding rule) and, furthermore, X,Z are depen-
dent given every set of variables including Y but not X, Z (Spirtes et al. 2000, theorem
3.4). Further causal orientations may be entailed in light of background assumptions.
These rules (actually, more computationally efficient heuristic versions thereof) have
been implemented in “data-mining” software packages that search for causal structures
governing large sets of observational variables. The key points to remember are that
(1) a direct causal connection is implied by the appearance of some set of statisti-
cal dependencies and (2) edge orientations depend both on the appearance of some
statistical dependencies and on the non-appearance in the future of further statistical
dependencies.

The above considerations are taken to be general. However, much of the literature
on causal discovery focuses on two special cases. In the discrete multinomial case, say
that G ∈ Dg if and only if G ∈ Tp and p is a discrete, joint distribution over a finite
range of possible values for each variable in G. In the linear Gaussian case, say that
G ∈ Lp if and only if G ∈ Tp and p is generated from G as follows: each variable in
G is assumed to be a linear function of its parents, together with an extra, normally
distributed, unobserved variable called an error term and the error terms are assumed
to be uncorrelated. For brevity, say that G is standard for p if and only if G ∈ Dp or
G ∈ Lp. The following discussion is restricted to the standard cases because that is
where matters are best understood at present.

In practice, not all variables are measured, but assume, optimistically, that all
causally relevant variables are measured. Even then, in the standard cases, the DAGs
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in Tp cannot possibly be distinguished from one another from samples drawn from p, so
one may as well require only convergence to Tp in each p compatible with background
assumptions.4

Statistical dependencies among variables must be inferred from finite samples, which
can result in spurious causal conclusions because finite samples cannot reliably distin-
guish statistical independence from weak statistical dependence. Idealizing, as in the
preceding examples, suppose that one receives the outputs of a data-processing lab-
oratory that merely informs one of the dependencies5 that have been verified so far
(at the current, growing sample size) by a standard statistical dependency test, where
the null hypothesis is independence.6 Think of an effect as data verifying that a par-
tial correlation is non-zero. Absence of an effect is compatible with noticing it later
(the correlation could be arbitrarily small). If it is required only that one infer the
true indistinguishability class T (p) for arbitrary p representable by a DAG, then effects
determine the right answer.

What does Ockham say? In light of the preceding examples, something like: as-
sume no more dependencies than one has seen so far, unless background knowledge
and other dependencies entail them. It follows, straightforwardly, that direct causal
connections add complexity, and that seems intuitively right. Causal orientation of
causal connections is more interesting. It may seem that causal orientation does affect
complexity, because, with binary variables, a common effect depends in some manner
that must be specified upon four states of the joint causes whereas a common cause
affects each effect with just two states. Usually, free parameters contribute to com-
plexity, as in the curve-fitting example above. But given the overall assumptions of
causal discovery, a result due to Chickering (2003) implies that these extra parameters
do not correspond to potential empirical effects and, hence, do not really contribute to
empirical complexity. In other words, given that no further edges are coming, one can
afford to wait for data that decide all the discernable facts about orientation (Schulte
2007). Standard MDL procedures that tax free parameters can favor non-collisions
over collisions before the data resolve the issue, risking extra surprises.7

4It is known that in the linear, non-Gaussian case, causal structure can be recovered uniquely if
there are no unobserved variables (Shimizu et al. 2006). The same may be true in the non-linear
Gaussian case.

5In the standard cases, it is known that all of the over-identifying constraints follow from conditional
independence constraints (Richardson and Spirtes 2002). That is known to be false in the linear, non-
Gaussian case (Shimizu et al. 2006), so in that case simplicity must be relativized to a wider range
of potential effects. Indeed, in the linear, non-Gaussian case, the set of possible empirical effects is so
rich that there are no proper inclusion relations among the sets of effects corresponding to alternative
causal models, so the simplicity ranking is flat.

6Also, the significance level is tuned down at a sufficiently slow rate to ensure that the test converges
in probability to the right answer. At the end of the paper, some of the issues that arise in a serious
application to statistical model selection are raised.

7A similar issue arises in the inference of regular sets from positive examples. The most liberal
automaton is a one-state universal acceptor with a loop for each input character. But assuming that
the language is learned from positive examples only, that is the most complex hypothesis in terms of
empirical effects. In typical scientific applications, such as curve fitting, extra parameters imply extra
effects. But not always, and then it is the effects, rather than the parameters, that determine retraction
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For example, when there are three variables X,Y, Z and (X − Y − Z) is known,
then, excluding unobserved causes, there are two equivalence classes of graphs: the
collision orientation (X → Y ← Z) in one class C and all the other orientations in
the complementary class ¬C. Looking at the total set of implied dependencies for
C, C ′, it turns out that the only differences are that C entails ¬((X q Z)|Y ) but
not ¬(X q Z), whereas ¬C entails ¬(X q Z) but not ¬((X q Z)|Y ), so there is no
inclusion relationship between the dependencies characterizing C and the dependencies
characterizing ¬C. Therefore, both hypotheses are among the simplest compatible
with the data, so Ockham’s razor does not choose among them. Moreover, given that
the truth is (X − Y − Z), nature must present either ¬(X q Z) or ¬((X q Z)|Y )
eventually (given that the causal truth can be represented by some graph over the
observable variables) so it seems that science can and should wait for nature to resolve
the matter instead of racing ahead—and that is just how Ockham’s razor is interpreted
in the following discussion. Regardless of which effect nature elects to present, it
remains possible, thereafter, to present the other effect as well, in which case each
variable is connected immediately to every other and one can infer nothing about causal
directionality. This situation involves more effects than either of the two preceding
cases, but another direct causal connection is also added reflecting the increase in
complexity.

The preceding evolution can result in spectacular reversals of causal conclusions as
experience increases, not just in terms of truth, but in terms of practical consequences
as well. Suppose that it is known that (X → Y − Z) and none of these variables
has yet exhibited any dependence with W . Then discovery of ¬((X q Z)|Y ), back-
ground knowledge, and Ockham’s razor unambiguously imply (X → Y ← Z), a golden
invitation to exploit Z to control Y . Indeed, the connections may be obvious and
strong, inviting one to invest serious resources to exploit Z. But the conclusion rests
entirely on Ockham’s razor, for the further discovery of ¬(X qZ) is incompatible with
(X → Y ← Z) and the new Ockham answer is (X → Y − Z) with edge (X − Z)
added. Further discovery that ¬((Z qW )|X, Y ) and that ¬((Y qW )|Z) results in the
conclusion Y → Z ← W , reversing the original conclusion that Y can be controlled by
Z.8 The orientation of the direct causal connection Y − Z can be flipped n times in
sequence by assuming causes X0, . . . Xn of

Y in the role of X and potential collisions W0, . . . , Wn in the role of W . There
is no way that a convergent strategy can avoid such discrete flips of Y − Z; they are
an ineluctable feature of the problem of determining the efficacy of Z on Y from non-
experimental data, no matter how strong the estimate of the strength of the cause
Y → Z is prior to the reversal. Indeed, standard causal discovery algorithms exhibit
the diachronic retractions just discussed in computer simulations. The practical conse-
quences of getting the edge orientation wrong are momentous, for if Z does not cause
Y , the policy of manipulating Z to achieve results for Y will have no benefits at all to
justify its cost. Indeed, in the case just described, sample size imposes no non-trivial

efficiency.
8I am indebted to Richard Scheines for suggesting this example.
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bound on arbitrarily large mis-estimates of the effectiveness of Y in controlling Z (cf.
Robins et al. 2003, Zhang and Spirtes 2003). A skeptical stance toward causal inference
is tempting in the standard cases:

We could try to learn the correct causal graph from data but this is dan-
gerous. In fact it is impossible with two variables. With more than two
variables there are methods that can find the causal graph under certain
assumptions but they are large sample methods and, furthermore, there is
no way to ever know if the sample size you have is large enough to make
the methods reliable (Wasserman 2003, p. 275).

This skepticism is one more symptom of the unrealizable demand that simplicity should
reliably point toward or inform one of the true theoretical structure, a popular—if
infeasible—view both in statistics and philosophy (Goldman 1986, Mayo 1996, Dretske
1981). The approach developed below is quite different: insofar as finding the truth
makes reversals of opinion unavoidable, they are not only justified but laudable—
whereas, insofar as they are avoidable, they should be avoided. So the best possible
strategies are those that converge to the truth with as few course-reversals as possible.
That is what standard causal inference algorithms tend to do, and it is the best they
could possibly do in the standard cases.

To summarize, an adequate explanation of Ockham’s razor should isolate what is
common to the simplicity intuitions in examples like the preceding ones and should
also explain how favoring the simplest theory compatible with experience helps one
find the truth more directly or efficiently than competing strategies when infallibility
or even probable infallibility is hopeless. Such an explanation, along the lines of the
freeway metaphor, will now be presented. First, simplicity and efficient convergence to
the truth must be defined with mathematical rigor and then a proper proof must be
provided that Ockham’s razor is the most efficient possible strategy for converging to
the truth.

6 Inference of Theoretical Structure

In light of the preceding examples, say that an empirical effect is experience that (1)
may take arbitrarily long to appear due to its subtlety or difficulty to produce and
that (2) never disappears once it has been seen. Furthermore, (3) at most finitely
many effects appear for eternity and (4) the correct theoretical structure is uniquely
determined by the (finite) set of effects one encounters for eternity. In light of (4), one
may as well understand the problem of finding the true theory as a matter of inferring
which finite set of effects (corresponding to some structure or other) one will encounter
for eternity.

Accordingly, let E be a countable set of potential effects satisfying (1-4) which,
for the time being, will not be analyzed further (a deeper analysis, explaining what
effects are, is provided below). Let Ω denote the set of all finite subsets of E. It may
happen that one knows a priori that some theoretical structures are impossible (e.g.,
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not every finite set of statistical dependencies corresponds to a causal graph). Let
Γ ⊆ Ω be the set of possible sets of effects compatible with background knowledge. An
empirical world w is an infinite sequence of mutually disjoint, finite subsets of E that
converges to ∅, where the finite set w(i) corresponds to the set of as-yet unobserved
effects encountered for the first time at stage i of inquiry. Let W denote the set
of all such worlds. If no new effects are encountered at i, then w(i) is empty. Let
w|k = (w0, . . . , wk−1), the finite initial segment of w of length k. The finite set of all
effects presented by w (or by finite sequence e = w|k) is given by:

Sw =
∞⋃

i=0

w(i); Se =
k−1⋃

i=0

w(i).

For each w ∈ W define the modulus of w to be the first moment from which no more
new effects appear:

µ(w) = the least k such that Sw = Sw|k.

The background restriction Γ ⊆ Ω on sets of effects can be viewed as a material
restriction on empirical worlds as follows:

KΓ = {w ∈ W : Sw ∈ Γ}.

Recall that each theoretical structure T corresponds uniquely to some finite set S of
effects. Let theoretical structure TS corresponding to finite set S ⊆ E be identified
with the set of all worlds in which TS is correct—namely, the set of all worlds that
present exactly S:

TS = {w ∈ W : Sw = S}.
The set:

ΠΓ = {TS : S ∈ Γ}
partitions W into mutually exclusive and exhaustive alternative propositions called
potential answers and will be referred to as the question posed by the problem of
inferring theoretical structures. Then TSw is the unique answer in ΠΓ that contains (is
true of) w. Finally, the theoretical structure inference problem with possible structures
Γ is represented by the ordered pair:

PΓ = (KΓ,ΠΓ),

where ΠΓ is the empirical question and KΓ is the empirical background presupposition.
Every concept and proposition that follows is relative to Γ so, to eliminate some

symbolic clutter, think of Γ as a “global variable” held fixed in the background, to be
referred to as clarity demands.
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7 Empirical Strategies and Convergent Solutions

What makes science unavoidably fallible is that one does not get to see the entire em-
pirical world w all at once; rather, one sees incrementally longer, finite, initial segments
of w as time passes. The set of all possible finite sequences the scientist might see as
time passes is given by:

FΓ = {w|i : w ∈ KΓ and i ∈ N}.

When e is a finite, initial segment of e′ (i.e., there exists i such that e = e′|i), say that
e ≤ e′. When e is a sub-sequence but not necessarily an initial segment of e′, then
abuse notation by writing e ⊆ e′. Let e ∗ e′ denote sequence concatenation, where it is
always understood that e is finite and that e′ may be finite or infinite. Finally (in the
proofs in the Appendix), if x is some generic set-theoretic object, let x∞ denote the
infinite sequence in which only x occurs.

An empirical strategy M for problem PΓ is a mapping of type:

M : FΓ → Π ∪ {‘?’}.9

In other words, M maps each finite sequence e ∈ FΓ either to an answer TS ∈ Π or to
‘?’, indicating refusal to choose an answer. Then in world w ∈ KΓ, M produces the
unending sequence of outputs:

M [w] = (M(w|0),M(w|1),M(w|2), . . .),

where the square brackets are a reminder that M does not get to see w “all at once”.
After seeing finite input sequence e, background presupposition KΓ entails that one

must live in a world w ∈ KΓ that extends e, so let:

KΓ|e = {w ∈ KΓ : w ≥ e}

denote the set of all such extensions. Then one may resrict ΠΓ to the answers compat-
ible with e as follows:

ΠΓ|e = {T ∈ ΠΓ : T ∩KΓ|e 6= ∅}.
Say that M solves PΓ in the limit given e if and only if for each w ∈ KΓ|e,

lim
i→∞

M(w|i) = TSw ,

in which case, say that M is a convergent solution to PΓ given e. A convergent solution
to PΓ is just a convergent solution given the empty sequence ().

One obvious, convergent solution to PΩ (i.e., no finite set of effects is ruled out a
priori) is just:

M(e) = TSe ,

9In a more realistic setup, M could output disjunctions of answers in ΠΓ or degrees of belief dis-
tributed over ΠΓ. The ideas that follow extend to both situations.
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for if w ∈ KΓ, new effects stop appearing, eventually—say by stage n—so for all
m ≥ n, M(w|m) = TSw|m = Tw. But there are infinitely many alternative, convergent
solutions as well—each finite variant of the obvious, convergent solution is a convergent
solution—and it is not trivial to say how and in what sense the obvious strategy helps
one to find the truth better than these do. That is the question answered by the
following argument.

8 Empirical Complexity Defined in Terms of Effects

If Γ = Ω, as in the polynomial structure problem, then an obvious definition of the
empirical complexity of world w given e is

c(w, e) = |Sw| − |Se|,
the number of new effects presented by w after the end of e (cf. Kelly 2007). When
Γ ⊂ Ω, as in the causal inference problem (some finite sets of partial correlations
correspond to no causal graph), a slightly more general approach is required.10 The
basic idea is that effects, relative to a problem, correspond to successive opportunities
for nature to force the scientist to switch from one answer to another. Restrict Γ to
those sets of effects compatible with e:

Γ|e = {S ∈ Γ : Se ⊆ S}.
This set includes all the possible theoretical structures that might serve as potential
interpretations of what has been presented by e. Say that a path in Γ|e is a finite, non-
repetitive, ascending sequence of elements of Γ|e. If S, S′ ∈ Γ|e, let πe(S, S′) denote the
set of all paths in πe that start with S and terminate with S′. Then πe(∗, S′) denotes
all paths in Γ|e that terminate with S′ and πe(S, ∗) denotes all paths in Γ|e that start
with S. So πe(∗, S) represents all the possible paths nature might have taken to S from
some arbitrary starting point in Γ|e. Then for e ∈ FΓ, w ∈ KΓ|e, and P ⊆ KΓ, define
empirical complexity as follows:

c(w, e) = max{length(p) : p ∈ πe(∗, Sw)} − 1;
c(P, e) = min{c(w, e) : w ∈ P ∩KΓ|e}.

Then since (S) ∈ πe(∗, S) if S ∈ Γ|e and lengths are discrete, it is immediate that:

Proposition 1 (empirical complexity is non-negative) If w ∈ KΓ|e, P ∈ Π|e,
then c(w, e), c(P, e) assume values in the natural numbers.

Hence, answers with complexity zero are simplest. Define:

(Γ|e)min = {S ∈ Γ|e : for all S′ ∈ Γ|e, S′ 6⊂ S},
and say that S is minimally compatible with e if and only if S ∈ (Γ|e)min.

10E.g., suppose that Γ = {∅, {a, b}}. Then seeing a implies that one will see b, so a and b are not
independent effects. They are more like correlated aspects of one effect, so they should not be counted
separately.
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Proposition 2 (characterization of zero complexity) Let w ∈ KΓ|e and e ∈ FΓ

and TS ∈ ΠΓ|e. Then:

1. c(w, e) = 0 if and only if Sw ∈ (Γ|e)min;

2. c(TS , e) = 0 if and only if S ∈ (Γ|e)min.

Maximum simplicity is minimum complexity. Borrowing a standard re-scaling trick
from information theory, one can convert complexity degrees to simplicity degrees in
the unit interval as follows:

s(P, e) = exp(−c(P, e)).

Unconditional complexity and simplicity are definable as:

c(P ) = c(P, ());
s(P ) = s(P, ()).

9 Ockham’s Razor

The Ockham answer given e, if it exists, is the unique answer T ∈ ΠΓ|e such that
c(T, e) is minimal over all alternative theories T ′ ∈ ΠΓ|e. In light of proposition 1, the
Ockham answer is the unique answer in T ∈ ΠΓ|e such that c(T, e) = 0. Empirical
strategy M satifies Ockham’s razor (or is Ockham, for short) at e iff

M(e) is Ockham given e or M(e) = ‘?’.11

Furthermore, M is Ockham from e onward iff M is Ockham at each e′ extending e; and
M is Ockham if M is Ockham at each e ∈ FΓ.

When S is in Γ|e and S is a subset of each R ∈ Γ|e, say that S is the minimum in
Γ|e. The Ockham answer, if it exists, can be characterized both in terms of uniquely
minimal compatibility and in terms of being minimum.

Proposition 3 (Ockham answer characterization) Let e ∈ FΓ and TS ∈ ΠΓ|e.
Then the following statements are equivalent:

1. TS is Ockham given e;

2. (Γ|e)min = {S};
3. S is the minimum in Γ|e.

11If M is allowed to output disjunctions of answers in ΠΓ, then Ockham’s razor requires that
⋃{TS :

S ∈ (Γ|e)min} ⊆ M(e).
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10 Stalwartness and Eventual Inormativeness

Ockham’s razor does not constrain suspension of judgment in any way, but it would be
odd to adopt the Ockham answer T at e and then to drop T later, even though T is
still the Ockham answer—further effect-free experience would only seem to “confirm”
the truth of T . Accordingly, let e ∈ FΓ and let e ∗ S denote the extended, finite
input sequence along which finite S ⊆ E is reported right after the end of e. Say that
strategy M is stalwart at e ∗ S if and only if for each answer T ∈ ΠΓ, if M(e) = T and
M(e∗S) 6= T then T is not the Ockham answer at e∗S (i.e., an answer is dropped only
if it is not the Ockham answer when it is dropped). As with the Ockham property,
itself, one may speak of M being stalwart from e onward or as just being stalwart,
which means that M is stalwart at each e.

Similarly, it would be too skeptical never to conclude that no more effects are forth-
coming, no matter how much effect-free experience has been collected. Accordingly, say
that a strategy is eventually informative from e onward if there is no world w ∈ KΓ|e
on which M converges to ‘?’. Then M is eventually informative if M is eventually
informative from the empty input sequence onward.

Finally, a normal Ockham strategy from e onward is an eventually informative,
stalwart, Ockham strategy from e onward and a normal Ockham strategy is normally
Ockham from the empty sequence onward. The normal Ockham strategies are intu-
itively quite plausible. Such a strategy M may wait for a while but eventually chooses
the Ockham answer and retains it until it is no longer Ockham. Furthermore, after
each new effect is encountered, there is some finite amount of effect-free experience that
lulls M to plump for the simplest theory once again. That is pretty much what people
and animals do, and also describes, approximately, the behavior of a simplicity-biased
Bayesian agent who selects only the theory whose posterior probability is above some
high threshold. But plausibility and rhetoric are not the points at issue—finding the
true theory is—so it is more pertinent to observe that normally Ockham strategies are,
at least, guaranteed to converge to the truth.

Proposition 4 (normal Ockham Convergence) If M is normally Ockham for PΓ

from e onward, then M is a solution to PΓ from e onward.

Furthermore, eventual informativeness is a necessary condition for being a solution, for
a strategy that is not eventually informative evidently fails to converge to any theory
in some world w:

Proposition 5 (convergence implies eventual informativeness) If M solves PΓ

from e onward, then M is eventually informative from e onward.

So there is always a motive to be eventually informative, if one wishes to find the truth
at all. The same is not clear, yet, for Ockham’s razor and stalwartness, since there
are infinitely many eventually informative, non-Ockham solutions. For example, an
alternative solution favors some set S of size fifty until the anticipated fifty effects fail
to appear for ten thousand stages, after which it concedes defeat and reverts back to
Ockham’s razor. So it remains to determine how, if at all, Ockham strategies are better
at finding the true theory than these variants are.
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11 Epistemic Costs of Convergence

As in the parable of the traveler, the aim is to show that normal Ockham strategies are
the properly most efficient strategies for finding the truth, where efficiency is a matter
of minimizing epistemic costs en route to convergence to the truth.

(1) Since the aim is to find the truth, an evident cost of inquiry is the number of
times one selects a false answer prior to convergence.

(2) Nobody likes it when science changes its tune, but the intrinsic fallibility of
theory choice makes some reversals of course unavoidable. Therefore, the best one
can demand of an optimally truth-conducive strategy for theory choice is that it not
reverse course more than necessary. A method retracts its previous answer whenever its
current answer fails to entail its previous answer.12 In the narrow context of methods
that produce answers in Π ∪ {‘?’} (where ‘?’ is interpreted as the most uninformative
answer W ), strategy M retracts at e∗S if and only if M(e) 6= ‘?′ and M(e∗S) 6= M(e).

Retractions have been studied as an objective feature of the complexity of problems,
both computational and empirical. H. Putnam (1965) noticed that the concept of com-
putability can be extended by allowing Turing machines to “take back” their answers
some fixed number of times and called properties having such generalized decision pro-
cedures n-trial predicates. In a similar spirit, computational learning theorists speak
of mind-changes and have studied bounds on the number of mind-changes required to
find the truth in various empirical questions (Jain et al. 1999). The body of results
obtained makes it clear that mind-changes are an invariant feature both of empirical
and of purely formal inquiry. The idea here is to shift the focus from problems back to
methods.

(3) A third cost of inquiry is elapsed time to each retraction. Theories are used to
derive conclusions that tend to accumulate through time. When the theory is retracted,
all of these subsidiary conclusions are called into question with it. The accompanying
angst is not merely practical but cognitive and theoretical, and it should be minimized
by getting retractions over with as soon as possible. Also, aside from such subsidiary
conclusions, there is a tragic aspect of unwittingly “living a lie” when one is destined to
retract in the future, even if the retracted theory happens to be true. The insouciance
is all the worse if one is destined to retract many times. It would be better to relieve
the hubris as soon as possible.13

Taken together, errors, retractions, and retraction times paint a fairly representative
picture of what might be termed the quality or directness of a strategy’s connection
with or route to the truth. If e is an input stream, let the cumulative cost or loss
of strategy M on e ∈ KΓ be given by the pair λ(M, w) = (b, τ), where b is the total

12In belief revision theory, a belief change that adds content is an expansion, a belief change that
removes content is a contraction and a belief change that does any of the above is a revision (Gardenfors
1988). In that terminology, a retraction is any revision in which content is lost and, hence, may be
expressed as a non-trivial contraction followed by an expansion. In spite of this connection, belief
revision theorists have not begun to examine the normative consequences of minimizing contractions
(or of finding the truth).

13Elimination of hubris as soon as possible is a Platonic theme, arising, for example, in the Meno.
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number of false answers produced by M along e and τ is the sequence of times at which
the successive retractions performed by M along e occur. The length of τ (which is
finite for convergent strategies) is, then, the total number of retractions performed.

It would be a shame if Ockham’s razor were to rest upon some idiosyncratic, sub-
jective weighting of errors, retractions, and retraction times but, happily, the proposed
argument for Ockham’s razor rests only on comparisons that agree in all dimensions
(i.e. on Pareto comparisons). First, consider retractions and retraction times. If σ, τ
are finite, ascending sequences of natural numbers, define:14

σ ≤ τ iff there exists a subsequence γ of τ such that
for each i ≤ length(σ), σ(i) ≤ γ(i).

For example, (1, 3, 7) ≤ (2, 3, 4, 8) in virtue of sub-sequence (2, 3, 8). Then if (b, σ) and
(c, τ) are both cumulative costs, define:

(b, σ) ≤ (c, τ) iff b ≤ c and σ ≤ τ ;
(b, σ) ≡ (c, τ) iff (b, σ) ≤ (c, τ) and (c, τ) ≤ (b, σ);
(b, σ) < (c, τ) iff (b, σ) ≤ (c, τ) and (c, τ) 6≤ (b, σ).

12 Worst-case Cost Bounds

Non-Ockham strategies do not necessarily incur greater costs prior to convergence: na-
ture could be so kind as to present the extra effects posited by a non-Ockham strategy
immediately, in which case it would beat all Ockham competitors in the race to the
truth. The same point is familiar in the theory of computational complexity: if an
inefficient algorithm is optimized for speed on a single input, even the best algorithms
will fail to dominate it in terms of computational resources expended before the an-
swer is found. For that reason, algorithmic efficiency is ordinarily understood to be a
matter of optimizing worst-case cost (Garey and Johnson 1979). Adoption of a similar
approach to empirical strategies and to Ockham’s razor requires some careful attention
to worst-case bounds on total costs of inquiry. Let ω denote the first infinite ordinal
number. A potential cost bound is a pair (b, σ), where b ≤ ω and σ is a finite or infinite,
non-descending sequence of entries ≤ ω in which no finite entry occurs more than once.
If (b, σ) is a cost vector and (c, τ) is a cost bound, then (b, σ) ≤ (c, τ) can be defined
just as for cost vectors, themselves. Cost bounds (c, τ), (d, γ) may now be compared as
follows:

(c, τ) ≤ (d, γ) iff for each cost vector (b, σ), if (b, σ) ≤ (c, τ) then (b, σ) ≤ (d, γ);
(c, τ) ≡ (d, γ) iff (c, τ) ≤ (d, γ) and (d, γ) ≤ (c, τ);
(c, τ) < (d, γ) iff (c, τ) ≤ (d, γ) and (d, γ) 6≤ (c, τ).

Thus, for example, (4, (2)) < (ω, (2, ω)) < (ω, (0, 1, 2, . . .)) ≡ (ω, (ω, ω, ω, . . .)). Now,
each set C of cost vectors has a unique (up to equivalence) least upper bound sup(C)

14Context will distinguish whether ≤ denotes this relation or the initial segment relation.
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among the potential upper bounds (Kelly 2007). Suppose that finite input sequence e
has already been seen. Then one knows that possibilities incompatible with e cannot
happen, so define the worst-case cost of M at e as:

λe(M) = sup
w∈KΓ|e

λ(M, w).

13 Relative Efficiency

The final hurdle in arguing for the efficiency of Ockham’s razor is the triviality of worst-
case cost bounds: for each e and for each convergent solution M to PΩ, the worst-case
cost bound achieved by M at e is just:

λe(M) = (ω, (ω, ω, ω, . . .)).

For let m be an arbitrary, natural number and let {a0, . . . an, . . .} be an arbitrary
enumeration of the set E of possible effects. Nature can present ∅ until, on pain of not
converging to the truth, M produces answer T∅ at least m times consecutively. Then
Nature can present {a0} followed by repetitions of ∅ until, on pain of not converging
to the truth, M produces T{e0} at least m times, consecutively, etc. Hence, normal
Ockham strategies are not distinguished from alternative, convergent solutions in terms
of worst-case efficiency.

Again, a similar difficulty is familiar in the assessment of computer algorithms:
typically, the number of steps required by an algorithm is not finitely bounded across
all possible inputs since larger inputs require more steps of computation. The problem
disappears if worst-case bounds are taken over problem instances (inputs) of a given
size, rather than over all possible problem instances, for there are at most finitely many
such inputs, so the worst-case performance of an algorithm over inputs of a given size is
guaranteed to exist (Garey and Johnson 1979). Then one compares the worst-case cost
bounds over each instance size as instance size increases. In PΩ, every problem instance
(input stream) is of infinite length, so length is no longer a useful notion of instance
size. But empirical complexity c(w, e), defined above, is such a notion. Furthermore,
each normal Ockham strategy is a convergent solution that retracts at most n times
over instances of empirical complexity n, so non-trivial cost bounds are achievable.
Accordingly, define the nth empirical complexity class Ce(n) of worlds in KΓ|e as:

Ce(n) = {w ∈ KΓ|e : c(w, e) = n}.
Then one may define the worst-case cost of strategy M given e over Ce(n) as follows:

λe(M,n) = sup
w∈Ce(n)

λ(M, w).

Now it is possible to compare strategies in terms of their worst-case costs over problem
instances of various sizes.

M ≤e M ′ iff (∀n) λe(M,n) ≤ λe(M ′, n);
M <e M ′ iff M ≤e M ′ and M ′ 6≤e M ;
M ≺e M ′ iff (∀n) if Ce(n) 6= ∅ then λe(M, n) < λe(M ′, n).
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When M ≤e M ′, say that M is as efficient as M ′ given e. If M <e M ′ say that M
is (weakly) more efficient than M ′ given e. Finally, when M ≺e M ′, say that M is
strongly more efficient than M ′.

The concept “more efficient than” is a hybrid, lying between dominance (doing as
well in each world and better in some world) and worst-case (minimax) reasoning (doing
better in the worst case overall). The hybrid character of “more efficient than” is just
what is required to expose the superiority of normal Ockham strategies: dominance is
too strict because non-Ockham strategies can get lucky and the worst-case overall is
too loose because even normal Ockham strategies guarantee no nontrivial, worst-case
bound.

14 Optimality

Suppose that a scientist facing problem PΓ has been using strategy M for a while and
that the final datum in finite input sequence e = (x1, . . . , xn) has just been presented.
Let the data e− observed just prior to the end of e be defined by:

e−(()) = ();
e−((S0, . . . , Sn, Sn+1)) = (S0, . . . , Sn).

At e, past actions along e− directed by the scientist’s strategy M can no longer be
“taken back” at e. Hence, an alternative strategy M ′ cannot possibly be adopted and
implemented at e unless its outputs agree with those of M all along e−, in which case
write M ³e− M ′. Define:

M is optimal at e iff M is a solution at e and for each strategy M ′ ³e− M that
is a solution at e, M ≤e M ′.

It is not enough for strategy M to be optimal at e. If the user of M is not to have
reason to dispense with M later, it had best be the case that M is always optimal:

M is always optimal iff for each e ∈ FΓ, M is optimal at e.

When e is empty, say simply that M is optimal.

15 Unique Optimality of Normal Ockham Strategies

Here is the promised, non-circular argument, based entirely on truth-finding efficiency,
for always following Ockham’s razor. The results are relative to a fixed problem PΓ.

Theorem 6 (optimality) If M is a normal Ockham strategy, then M is always an
optimal solution.

But that is not enough. One trouble with much of the standard literature on Ockham’s
razor is that it shows only that Ockham’s razor is sufficient for, say, convergence to
the truth, but what is required is an argument that Ockham’s razor is necessary for
optimal truth-conduciveness. Here is such an argument:
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Theorem 7 (unique optimality) Let e ∈ FΓ. If M ′ is a convergent solution that
violates Ockham’s razor for the first time at e, then every strategy M ³e− M ′ that is
always normally Ockham is a more efficient solution than M ′ at e;

The proof (cf. the Appendix) is closely analogous to the parable of the traveler discussed
above, with extra cases added to allow for the possibility of branching freeway ramps.
The two theorems jointly imply the following corollary, which summarizes the proposed
argument for Ockham’s razor.

Corollary 8 (Ockham efficiency characterization) The following statements are
equivalent:

1. M is always a normal, Ockham strategy;

2. M is always an optimal solution;

3. no solution M ′ is ever a more efficient solution than M .

In other words, the normally Ockham methods are coextensive with the always effi-
cient strategies and with the strategies such that no alternative strategy is ever more
efficient.15

16 A General Definition of Empirical Complexity

In the preceding development, empirical effects were stipulated, by appeal to intuition,
for each of the examples considered and the effects appealed to were quite different
from case to case. Empirical effects will now be defined in a general way that explains
the apparently ad hoc choices in the examples.16 The idea is to locate effects and,
hence, empirical complexity, in the power of nature to force an arbitrary, convergent
method to change its answer to the problem to be solved. Thus, empirical complexity
is a structural, semantic feature of the problem to be solved, rather than a matter of
syntactic or computational brevity. As such, it is invariant under grue-like translations.

An empirical problem is a pair P = (K, Π) where K is now an arbitrary set of
infinite sequences of inputs drawn from some arbitrary set I and Π is an arbitrary
partition of K. The elements of I are just inputs (e.g., boolean bits in a binary coding
scheme for meter readings or what-not). Answers are just arbitrary, mutually exclusive
and exhaustive propositions over K. This is a very general conception of empirical
problems. An empirical strategy takes finite, initial segments of elements of K as

15It is a further question whether it is always better to follow Ockham’s razor even after violating it.
The answer is negative: let Γ = {{a}, {b}, {b, c}}, let M((∅)) = M ′((∅)) = T{b}, and let M((∅, ∅)) = ‘?’
whereas M ′((∅, ∅)) = T{b}. Then M uses one extra retraction in reaching theory T{b,c} after seeing
e = (∅, ∅), so λe(M, 2) 6≤ λe(M

′, 2).
There is still something to say in favor of Ockham, however. Method M is strongly Ockham at e

if M never favors an answer TS such that some alternative S′ compatible with e has a longer path
through Γ|e. Then one can argue, along the same lines, that at each strong Ockham violation and at
each violation of stalwartness by M , some alternative, convergent M ′ is more efficient.

16Preliminary versions of the following ideas can be found in (Kelly 2007).
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inputs and outputs potential answers in Π ∪ {‘?’} in response. Convergence and many
other concepts like M [w], F |e, K|e extend to this more general setting in an obvious
way. It remains to reconstruct Γ and the concepts that presuppose it.

Let some problem P = (K, Π) be understood to be fixed in the background. An
answer pattern is a finite sequence of elements of Π without immediate repetitions (non-
immediate repetitions are allowed). Pattern s is forcible by nature given e of length
k if and only if for each convergent solution M , there exists w ∈ K|e such that from
stage k onward, M produces a sequence of answers of which s is a sub-sequence. In
other words, no convergent solution can avoid producing the successive conclusions in
s in the worst case, given e. Let ∆e denote the set of all patterns forcible by nature
given e. Restrict attention to problems P such that:

Axiom 1 (forcible path convergence) for each w ∈ K, limi→∞∆w|i exists, in the
sense that the sequence {∆w|i : i ≥ 0} stabilizes to a fixed set eventually.

Define:

∆w = lim
i→∞

∆w|i;

Γ|e = {∆w : w ∈ K|e};
Γ = Γ|().

Elements of Γ|e serve the same purpose as before—they are the possible, permanent
stopping places for nature given e because each element ∆w of Γ is converged to in
world w and world w is compatible with e. Call the elements of Γ empirical problem
states. Define epistemic accessibility among states in the following way:

X ≤ Y if and only if for each e ∈ F such that ∆e = X, there exists e′ ∈ F such
that e′ ≥ e and ∆e′ = Y .

Let πe(X, Y ) denote the set of all ≤-paths between two states in Γ with respect to order
≥. Finally, define c(w, e) and c(P, e) in terms of these paths, as before, with ∆w in
place of Sw. Let the new, more general concepts so defined be marked with a prime, as
in c′(w, e), to distinguish them from the notions defined in terms of stipulated effects.17

The general concept of empirical complexity just defined agrees with the effect-
based definition.

Proposition 9 (recovery) Let (Γ′,≤′) be constructed from problem (KΓ, ΠΓ) in the
manner just described. Then for each e ∈ F , the mapping φ(Sw) = ∆w is well-defined
and witnesses:

(Γ|e,⊆) is order-isomorphic to (Γ′|e,≤′).
17The structure (Γ′|e,≤′) can be viewed as a model of an epistemic logic, in which elements of Γ′|e

are worlds and increasing information e “chops down” the set of worlds, in accordance with what is
known as dynamic epistemic logic (Van Benthem 2006). What is new is a motivated constraint on
accessibility and the idea that empirical complexity is a matter of maximum accessibility path length
into a world.

27



Thus, for each w ∈ K:

c′(w, e) = c(w, e);
c′(P, e) = c(P, e).

Something far more interesting is also true. Let (K, Π) be any one of the examples
considered above (e.g., the conservation law problem) prior to being represented in
the form (KΓ, ΠΓ). The problem (K,Π) does not wear its empirical effects “on its
sleeve”—the reactions may be presented in some obscure or even grue-like code that
is highly misleading. But it is still the case that applying the preceding construction
directly to (K, Π) results in (Γ′,≤′) order-isomorphic to (Γ,⊆) and, hence, to the
same empirical complexity concept c(w, e). Depending on the structure of the problem
P, empirical complexity reflects extra parameters, extra conserved quantities, extra
causes, etc., regardless of how gerrymandered the data-gathering process happens to
be.18 Therefore, the set Γ assumed in each case reflects more than mere notation,
convention, or whim—it is an intrinsic, structural feature of the original problem that
survives every sort of re-description that preserves the meanings of the background
presupposition K and of the question Π.

17 A Word on Stochastic Applications

In real curve-fitting and causal discovery problems, the data are not merely inexact, but
random. The above treatment of these problems in terms of collapsing open intervals
around the true observations is intended only as an indication of how a fully statistical
story might go (think of the intervals as idealizations of high probability quantiles).
This section sketches some promising pieces of a fully statistical version of the theory.

A world is an objective probability distribution of interest (e.g., the distribution
induced by a polynomial curve with normally distributed measurement error). A ques-
tion is a partition of worlds. A method maps samples of arbitrary size to answers to the
question. A method is consistent just in case the probability that the method produces
the true answer converges to unity as sample size increases. The retraction in chance
of answer T by method M at sample size n + 1 in distribution p is definable as the
drop in chance that M outputs T from sample size n to sample size n + 1:

pn(M = T )− pn+1(M = T ).

The total retractions in chance in p are the sums of the retractions in chance for all
T ∈ Π, and for all sample sizes n.

A sequence of answers is forcible in chance if and only if nature can force an arbi-
trary, consistent method to produce the first answer in the sequence with arbitrarily
high chance followed by the second answer in the sequence with arbitrarily high chance,
etc. For a simplistic illustration of how this works (a similar argument applies in causal

18Contrast this result with the preceding discussion of algorithmic complexity, which is relative both
to the choice of a computer language and to the encoding of observations.
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discovery), let K consist of independent, bivariate normal means of fixed, known vari-
ance and let the possible answers correspond to the number of non-zero components
of the true mean vector µ = (µX , µY ), so answer Ti is the set of all p ∈ K such that
exactly i components of µ are non-zero. Let M be a consistent method. Let p0 ∈ T0

and let ε > 0 be as small as desired. Since M is consistent, there is a sample size n0

such that
pn0
0 (M = T0) > 1− ε.

Since the chance of a fixed measurable event is continuous in µ, there exists p1 ∈ T1

such that
pn0
1 (M = T0) > 1− ε.

Since M is consistent, there exists sample size n1 > n0 such that

pn1
1 (M = T1) > 1− ε.

Again, by continuity, there exists p2 ∈ T2 such that:

pn0
2 (M = T0) > 1− ε;

pn1
2 (M = T1) > 1− ε.

Again, by consistency, there exists n2 > n1 such that:

pn1
2 (M = T2) > 1− ε.

Hence, the sequence of answers (T0, T1, Tn) is forcible by nature in chance. The only
premise required for this forcing argument is convergence to the truth, so a Bayesian’s
degree of belief in each successive answer can also be forced arbitrarily high. A
Bayesian’s retraction in chance of T at n + 1 in p can be measured in terms of the
drop in his expected degree of belief in T at sample size n+1 in p.19 Simplicity can be
defined in terms of statistically forcible sequences of answers, just as in the determin-
istic case. It remains to recover a suitable analogue of corollary 8 in the setting just
described.

18 Ockham, Fallibility, and “Information”

Like it or not, we do infer theoretical forms, they are subject to the problem of induc-
tion, and we may have to take them back. Indeed, there is no bound on the number of
times science might have to change its tune as new layers of complexity are successively
revealed in nature. Ockham’s razor merely keeps science on the straightest path to the
truth, crooked as it may be. For millennia, fallibility has been thought to undermine
the justification of science, resulting in the usual, circular, metaphysical, or skeptically
evasive justifications of Ockham’s razor. The proposed account reverses the traditional

19Bayesians are sub-optimal: moving from ignorance (.5/.5) to knowledge (.99/.01) implies a retrac-
tion of nearly one half that could have been avoided by modeling ignorance as (0/0), as Schafer (1976)
proposed.
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reasoning—Ockham’s razor is justified not because it points straight at the truth, but
because its path to the truth, albeit crooked, is uniquely straightest. The Ockham
path is straightest because its unavoidable kinks are due to the intrinsic fallibility of
theory choice. Therefore, the ineluctable fallibility of theory choice justifies, rather
than undermines, Ockham’s razor. That is why the proposed account is not circu-
lar, metaphysical, or evasive of the connection between method and true theoretical
structure.

Ockham’s razor is, nonetheless, so firmly anchored in our animal spirits that it
feels as if, somehow, simplicity informs us about the true theory in a way that the
data alone do not, just as a compass needle augments the information provided by
one’s native sense of direction. Then there must be some benevolent cosmic cause
behind the correlation of simplicity and truth—a mysterious, undetected agency that
operates across evolutionary time and across domains from subatomic particles to cell
metabolism to social policy—the irony of defending Ockham’s razor with such hidden,
metaphysical fancies notwithstanding (Koons 2000).

Therein lies a concern about the association of information-theoretic terminology
with Ockham’s razor, as in the MDL approach. When information theory is applied to
a telephone line, as originally intended, it really has something to do with informative
signals from a source. If one wishes to minimize expected message length to maxi-
mize the line’s capacity, it makes sense to adopt shorter codes for more frequently sent
words. But applications of information theory to theory choice are not about sending
information over a line. They are a formal recipe either for constructing short codes for
plausible explanations or (contrariwise) for assigning high plausibility to short expla-
nations. Either way, the ultimate connection between simplicity and truth is stipulated
rather than explanatory. But since the stipulated connection is formulated in the lan-
guage of “information”, it is all too readily confused, in the popular mind, with a deep
theoretical revelation that simplicity does provide a magical communication channel to
the truth that amplifies the only real information available—the data. Better not to
mention “information” at all than to kindle that perennial wish.
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21 Appendix: Proofs and Lemmas

Proof of proposition 1. Immediate. a

Proof of proposition 2. For (1), suppose that w ∈ KΓ and that c(w, e) = 0.
Then each p ∈ πe(∗, Sw) has unit length and terminates with Sw, so since Sw ∈ Γ|e,
πe(∗, Sw) = {(Sw)}. Hence, Sw ∈ (Γ|e)min. Conversely, suppose that Sw ∈ (Γ|e)min.
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Then for each R ∈ Γ|e, R 6⊂ Sw. So πe(∗, Sw) = {(Sw)}, so c(w, e) = 0.

For (2), suppose that TS ∈ ΠΓ|e and that c(TS , e) = 0. Then there exists w ∈ TS such
that c(w, e) = 0. So by (1), S = Sw ∈ (Γ|e)min. Conversely, suppose that S ∈ (Γ|e)min.
Let w = e ∗ (S \ Se) ∗ ∅∞. Then w ∈ TS and Sw = S ∈ (Γ|e)min. So by part (1),
c(w, e) = 0. So c(TS , e) = 0. a

Proof of proposition 3. The equivalence (1) ⇔ (2) is by part 2 of proposition 2.
Equivalence (2) ⇔ (3) is an elementary property of ⊆ over a collection of finite sets. a

Proof of proposition 4. Suppose that w ∈ KΓ|e. Let k ≥ µ(w) so that Sw = Sw|k.
Then (Γ|(w|k))min = {Sw}, so by proposition 3, TSw is Ockham given e. Since M is
eventually informative from e onward, M produces some answer from ΠΓ after e in w.
Since M is Ockham from e onward, the answer M chooses is TSw . Since M is stalwart
from e onward, M never drops TSw thereafter. So limi→∞ M(w|i) = TSw . a

Proof of proposition 5. Immediate. a

Proof of theorem 6. Let M be a strategy that is always normally Ockham. Hence,
M is a solution, by proposition 4. Let e ∈ FΓ have length k. Let M ′ be an arbitrary
solution given e such that M ′ ³e− M . Let d denote the maximum, over all w ∈ Ce(0),
of the number of errors committed by both M and M ′ along e− and let the retraction
times for M, M ′ along e− be (r1, . . . , rm). Consider the case in which M retracts at e.
Since M is always stalwart and Ockham, it follows that TS = M(e−) is Ockham at e−
but not at e, so by proposition 3, (Γ|e−)min = {S} and (Γ|e)min 6= {S}. So by lemma
9, S /∈ (Γ|e)min.

Suppose that w ∈ Ce(0). By parts (1) and (2) of lemma 2, M never retracts or commits
an error from stage k + 1 onward in w. Hence:

λe(M, 0) ≤ (d, (r1, . . . , rm, k)).

Since M retracts at e, there exists S ⊆ E such that

M(e−) = M ′(e−) = TS 6= M(e).

Since e ∈ FΓ, lemma 6 implies that there exists w′ ∈ Ce(0) such that Sw′ 6= S. Since
M ′(e−) = TS and M ′ is a solution, it follows that M ′ retracts after e− along w′. So
since M ′ commits at least d errors in some world in C0(e) (they do not have to be
committed in w′ to affect the worst-case lower bound):

λe(M, 0) ≤ (d, (r1, . . . , rm, k)) ≤ λe(M ′, 0).

Now suppose that w ∈ Ce(n + 1). By part 1 of lemma 2, M retracts at most n + 1
times in w from k + 1 onward, so allowing for the extra retraction at k:

λe(M,n + 1) ≤ (ω, (r1, . . . , rm, k, ω, . . . , ω︸ ︷︷ ︸
n+1

))).
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Suppose that there exists w ∈ Ce(n+1). By lemma 1, there exists path (S0, . . . , Sn+1)
and w′ ∈ Ce(n) such that (1) S0 ∈ (Γ|e)min and (2) Sw′ = Sw and for each i ≤ n + 1,
M ′ produces TSi at least b times in immediate succession in w′ after the end of e. It
was shown above that S /∈ (Γ|e)min. So, since S0 ∈ (Γ|e)min, it follows that S0 6= S.
So M ′ retracts from TS to TS0 no sooner than stage k. By incrementing b, w can be
chosen so that the retractions of M ′ between answers TS0 , . . . , TSn+1 along w′ occur
arbitrarily late and M ′ produces arbitrarily many errors along w′, so:

λe(M ′, n + 1) ≥ (ω, (r1, . . . , rm, k, ω, . . . , ω︸ ︷︷ ︸
n+1

))) ≥ λe(M, n).

For the case in which M does not retract at e, simply erase the k’s from the bounds in
the preceding argument. a

Proof of theorem 7. Let e ∈ be of length k. Let M ′ be given and let M ³e M ′ be a
strategy that is normally Ockham from e′ onward. Hence, M is a solution given e′, by
proposition 4. Let b ≥ 0. Let d denote the maximum, over w ∈ Ce(0) of the number of
errors committed by both M and M ′ along e− and let the retraction times for M,M ′

along e− be (r1, . . . , rm).

Suppose that solution M ′ violates Ockham’s razor at e ∈ FΓ of length k but not at
any proper, initial segment of e. So TS = M ′(e) is not Ockham at e. By proposition
3, (Γ|e)min 6= {S}. Thus, there exists S′ 6= S such that S′ ∈ (Γ|e)min. Let w ∈ Ce(0).
Since M is Ockham from e onward, if M(e) = TS′ then TS′ is Ockham at e so, by
proposition 3, (Γ|e)min = {S′} and, hence, w ∈ TS′ so M commits no error at e in w.
So by lemma 2:

λe(M, 0) ≤ (d, (r1, . . . , rm, k)).

Let w ∈ TS′ . Then w ∈ C0(e), since S′ ∈ (Γ|e)min. Since M ′ is a solution, M ′ converges
to TS′ in w, so M ′ retracts TS properly later than stage k in w. Since M ′ commits at
least d errors in some world in C0(e) (they do not have to be committed in w′ to affect
the worst-case lower bound):

λe(M ′, 0) > (d, (r1, . . . , rm, k)) ≥ λe(M, 0).

Suppose that there exists w ∈ Ce(n + 1). As in the proof of proposition 6,

λe(M, n + 1) ≤ λe(M ′, n + 1).

Next, suppose that M ′ violates stalwartness at e of length k. Then TS = M ′(e−) =
M(e−) is Ockham at e, so by proposition 3, (Γ|e)min = {S}. Since M is stalwart from e
onward, M(e) = TS , so M does not retract at e. Let w ∈ Ce(0). Then, by proposition
2, Sw ∈ (Γ|e)min, so Sw = S. So M commits no error at e. So by lemma 2:

λe(M, 0) ≤ (d, (r1, . . . , rm));
λe(M, n + 1) ≤ (ω, (r1, . . . , rm, ω, . . . , ω︸ ︷︷ ︸

n+1

))).
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By lemma 6, there exists w ∈ Ce(0). Since M ′ retracts at e:

λe(M ′, 0) ≥ (d, (r1, . . . , rm, k)) > λe(M, 0).

Suppose that there exists w ∈ Ce(n+1). By lemma 1, there exists w′ ∈ Ce(n+1) such
that Sw′ = Sw and in w′, M ′ produces n + 2 distinct blocks of answers in KΓ|e after
the end of e, each block having length at least b. So in w′, M ′ retracts at e and at
the end of each block prior to the terminal block. By incrementing b, w can be chosen
so that the retractions occur arbitrarily late and there are arbitrarily many errors, so
including the assumed retraction at k,

λe(M ′, n + 1) ≥ (ω, (r1, . . . , rm, k, ω, . . . , ω︸ ︷︷ ︸
n+1

)) > λe(M, n + 1).

a

Proof of corollary 8. The equivalence (1) ⇒ (2) is by proposition 4 and theorem 6.
Equivalence (2) ⇒ (3) is immediate from the definitions. (3) ⇒ (1) is by proposition 5
and theorem 7. a

Proof of proposition 9. When the problem is (KΓ, ΠΓ), the following relations hold:

i. Sw = Sw′ if and only if ∆w = ∆w′ ;
ii. Sw ⊆ Sw′ if and only if ∆w ≤ ∆w′ .

For (i), suppose that Sw = Sw′ . Suppose that s = (TS1 , . . . , TSk
) ∈ ∆w. So S1, . . . , Sk

are distinct elements of Γ and for each m, nature can force the successive, distinct an-
swers TS1 , . . . , TSk

from an arbitrary, convergent method M starting from w|m. Hence,
Sw′ = Sw ⊆ S1 ⊂ . . . ⊂ Sk. So for each m, nature can force S1 ⊂ . . . ⊂ Sk from M
starting with w′|m, so s ∈ ∆w′ . Thus, ∆w ⊆ ∆w′ . For the converse inclusion, reverse
the roles of w and w′. For the converse implication, suppose that ∆w = ∆w′ . Suppose
that s = (TS1 , . . . , TSk

) ∈ ∆w. Then for each m, nature can force M to produce s
wtarting from w|m. Since M is a convergent solution, there exists m′ ≥ n such that
M(w|m′) = TSw . Nature can still force M to produce TSw ∗ s starting from w|m′.
Hence, (a) for each s ∈ ∆w, for each m, TSw ∗s is forcible by nature starting from w|m.
By a similar argument, (a) also holds as well for w′. Call that statement (a′). Since for
each m, nature can force (TSw) given w|m, (TSw) ∈ ∆w. Suppose, for reductio, that
Sw 6= Sw′ . Then by (a′), (TSw′ , TSw) ∈ ∆w′ and by (a), (TSw , TSw′ , TSw) ∈ ∆w and,
hence, is forcible. So Sw ⊆ Sw′ ⊆ Sw, so Sw = Sw′ . Contradiction.

For (ii), suppose that Sw ⊆ Sw′ . Suppose that s ∈ ∆w. Then for each m, sequence
s = (TS1 , . . . , TSk

) is forcible starting with w′|m. Let ∆e = ∆w. Recall from case
(i) that (TSw) ∈ ∆w, so TSw is forcible starting with e and, hence, Se ⊆ Sw. Since
Sw ⊆ Sw′ , choose e′ ≥ e such that Se′ = Sw′ . Since forcibility in PΓ depends only
on presentation of effects, ∆e′ = ∆w′ . Hence, ∆e ≤ ∆e′ . Conversely, suppose that
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Sw 6⊆ Sw′ , so let effect a ∈ Sw \ Sw′ . Choose e such that Se = Sw, since Sw is finite.
Since forcibility in PΓ depends only on presentation of effects, ∆e = ∆w. Recall from
part (i) that (TSw′ ) ∈ ∆w′ . But a ∈ Se \ Se′ = Sw′ , so Nature cannot force (TSw′ ) at
arbitrary e′ ≥ e such that ∆e′ = ∆w′ . Hence, ∆w 6≤ ∆w′ , completing the proof of (ii).

Let e ∈ F . The mapping φ : Γ|e → Γ′|e defined by:

φ(Sw) = ∆w

is well-defined, by property (i). To see that φ is onto, let ∆w ∈ Γ′|e. Then w ∈ KΓ|e,
so Sw ∈ Γ|e, so φ(Sw) = ∆w. To see that φ is injective, let Sw 6= Sw′ . Without loss of
generality, let a ∈ Sw \ Sw′ . Then (TSw) ∈ ∆w \∆w′ , so φ(Sw) = ∆w 6= ∆w′ = φ(Sw′).
Finally, φ is order-preserving by (ii), so φ is the required order-isomorphism. It follows
immediately that c(w, e) = c′(w, e) and c(P, e) = c′(P, e). a

Lemma 1 (lower cost bound for arbitrary solutions) If M is a convergent so-
lution given e ∈ FΓ and w ∈ Ce(n), and b > 0, then there exists w′ ∈ Ce(n) and there
exists path (S0, . . . , Sn) ∈ πe(∗, Sw′) such that

1. S0 ∈ (Γ|e)min;

2. Sw′ = Sw;

3. M produces TSi at least b times in immediate succession after the end of e (if
n = 0) or after the end of ei−1 (if n > 0) in w′;

Proof. Let e ∈ FΓ and w ∈ Ce(n). Then there exists a path p = (S0, . . . , Sn) ∈ πe(∗, Sw)
of length n+1 whose length is maximal among paths in πe(∗, Sw). Property (1) follows
from lemma 3. Let w′ = (en ∗ ∅∞). For property (2), note that by part 2 of lemma 4,
Sen = Sn. By construction, Sw′ = Sen . Since p = (S0, . . . , Sn) ∈ πe(∗, Sw), Sn = Sw.
So Sw = Sw′ . Property (3) is part 3 of lemma 4. a

Lemma 2 (upper cost bound for normal Ockham strategies) Suppose that e ∈
FΓ and e ∈ KΓ|e and M is normally Ockham from e onward, where length(e) = k. Then
for each n ≥ 0:

1. if c(w, e) ≤ n, then M retracts at most n times in w from stage k + 1 onward.

2. if c(w, e) = 0, then M commits no error in w from stage k onward.

Proof. For statement (1), suppose that M retracts > n times along w ∈ KΓ|e from
stage k + 1 onward, say at stages j0 + 1 < . . . < jn + 1, where k ≤ j0. Let index i
range between 0 and n. Then there exists (S0, . . . , Sn) such that M(w|ji) = TSi and
M(w|ji + 1) 6= TSi . Since M is a normal Ockham method, proposition 3 implies that

i. (Γ|(w|ji)))min = {Si};
ii. (Γ|(w|(ji + 1)))min 6= {Si}.
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Also, by part 1 of lemma 10, there exists j > jn+1 such that (Γ|(w|j))min = {Sw}. Then,
by (i) and lemma 8, S0 ⊆ . . . ⊆ Sn ⊆ Sw. So by (ii) and lemma 9, S0 ⊂ . . . ⊂ Sn ⊂ Sw,
so p = (S0, . . . , Sn, Sw) ∈ πe(∗, Sw). Observe that length(p) = n + 2. So c(w, e) > n.
For statement (2), suppose that c(w, e) = 0. Then by part 1 of proposition 2, Sw ∈
(Γ|e)min. Let k′ ≥ k. By part 2 of lemma 10, Sw ∈ (Γ|(w|k′))min. So by proposition 3
and the fact that M is Ockham from w|k onward, either M(w|k) = TSw or M(w|k) =
‘?’, neither of which is an error. a

Lemma 3 (minimal beginning of maximal path) Suppose e ∈ FΓ and S ∈ Γ|e
and p ∈ πe(∗, S) has maximal length in πe(∗, S). Then p(0) ∈ (Γ|e)min.

Proof. Suppose that p(0) /∈ (Γ|e)min. Since p ∈ πe(∗, S), p(0) ∈ Γ|e, so there exists
S′ ⊂ p(0) such that S′ ∈ Γ|e. Then S′ ∗p ∈ πe(∗, S), so p does not have maximal length
in πe(∗, S). a

Lemma 4 (optimal strategy for nature) If M is a convergent solution given e ∈
FΓ and if w ∈ Ce(n), and p = (S0, . . . , Sn) ∈ πe(∗, Sw) and b > 0, then there exists
sequence (e0, . . . , en) of elements of FΓ|e such that for each i such that 0 ≤ i ≤ n and
for each j such that 0 ≤ j < n:

1. e < ej < ej+1;

2. Sei = Si;

3. M produces TSi at least b times in immediate succession in ei after the end of e
(if n = 0) or after the end of ei−1 along w (if n > 0);

4. (en ∗ ∅∞) ∈ KΓ ∩ Ce(n).

Proof by induction on length(p). Base case: p = (). Then the lemma is trivially true,
because () 6∈ Πe(∗, Sw). Induction: let p = (S0, . . . , Sn) ∈ Πe(∗, Sw). Let e−1 = e
and let S−1 = Se. Let Rn = Sn \ Sen−1 . Let en be the least initial segment of
wn = (en−1 ∗ Rn ∗ ∅∞) extending en−1 ∗ Rn by which M selects theory TSn at least
b times without interruption after the end of en−1. There exists such an en, since
M is a convergent solution and Swn = Sn ∈ Γ|e, so wn ∈ KΓ|e. Properties (1-3)
are immediate by construction and by the induction hypothesis. For property (4),
observe that (en ∗ ∅∞) = (en−1 ∗ Rn ∗ ∅∞) = wn. By the induction hypothesis, Swn =
Sen = Sen−1 ∪ Rn = Sn−1 ∪ (Sn \ Sn−1) = Sn. So since (S0, . . . , Sn) is maximal in
πe(∗, Sw) = πe(∗, Sn), wn ∈ KΓ ∩ Ce(n). a

Lemma 5 (non-triviality) Let e ∈ FΓ. Then (Γ|e)min 6= ∅.

Proof. Since e ∈ FΓ, there exists w ∈ KΓ|e such that e < w. Hence, Sw ∈ Γ|e.
Since each member of Γ|e is finite and Γ|e 6= ∅, let S′ ∈ Γ|e be ⊆-minimal in Γ|e, so
S′ ∈ (Γ|e)min. a
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Lemma 6 (simple alternative world) Suppose that e ∈ FΓ and (Γ|e)min 6= {S}.
Then there exists w ∈ Ce(0) such that Sw 6= S.

Proof. Since (Γ|e)min 6= {S}, lemma 5 implies that there exists S′ ∈ (Γ|e)min such that
S′ 6= S. Let w = (e∗(S′\Se)∗∅∞). By construction, Sw = S′ ∈ (Γ|e)min and w ∈ KΓ|e,
so w ∈ Ce(0), by proposition 2. a

Lemma 7 (simple world existence) Let e ∈ FΓ. Then there exists w ∈ KΓ|e such
that c(w, e) = 0.

Proof. Let S ∈ (Γ|e)min, by lemma 5. Let w′ = (e ∗ (S \ Se) ∗ ∅∞). Then Sw = S ∈
(Γ|e)min. So by proposition 2, c(w′, e) = 0. a

Lemma 8 (monotonicity) Suppose that e, e′ ∈ FΓ. Then:

if e ≤ e′ and (Γ|e)min = {S} and (Γ|e′)min = {S′}, then S ⊆ S′.

Proof. Since S′ ∈ Γ|e′ and e ≤ e′, S′ ∈ Γ|e. Since (Γ|e)min = {S}, S is minimal in Γ|e
by proposition 3, so S ⊆ S′. a

Lemma 9 (down and out) Suppose that e, e′, e′′ ∈ FΓ. Then:

if e < e′ ≤ e′′ and (Γ|e)min = {S} and (Γ|e′)min 6= {S}, then S /∈ Γ|e′′.

Proof. Suppose that e, e′, e′′ ∈ FΓ and e < e′ ≤ e′′ and (Γ|e)min = {S} and S ∈ Γ|e′′.
It suffices to show that (Γ|e′)min = {S}. Since S ∈ Γ|e′′ and e < e′, S ∈ Γ|e′. Suppose
S′ ∈ Γ|e′. Then S′ ∈ Γ|e, since e < e′. Since (Γ|e)min = {S}, proposition 3 yields that
S ⊆ S′. So S′ 6⊂ S, so S ∈ (Γ|e′)min. Now, suppose that R ∈ (Γ|e′)min. Then R ∈ Γ|e,
since e < e′, so by lemma 3, S ⊆ R. But since R ∈ (Γ|e′)min, S 6⊂ R. So S = R. So
(Γ|e′)min = {S}. a

Lemma 10 (stable arrival) Suppose that w ∈ KΓ. Then

1. if k ≥ µ(w), then (Γ|(w|k))min = {Sw};
2. if Sw ∈ (Γ|(w|i))min and i ≤ i′, then Sw ∈ (Γ|(w|i′))min.

Proof. For (1), let k ≥ µ(w). Then Sw = Sw|k, so Sw ∈ Γ|(w|k) and for each R ∈
Γ|(w|k), Sw = Sw|k ⊆ R, so Sw ∈ (Γ|(w|k))min = {Sw}. For (2), suppose that i ≤ i′

and Sw ∈ (Γ|(w|i))min. Note that Sw ∈ Γ|(w|i′). Suppose that there exists R ∈ Γ(w|i′)
such that R ⊂ Sw. Then R ∈ Γ(w|i), so Sw /∈ (Γ(w|i))min, which is a contradiction. So
Sw ∈ (Γ(w|i′))min. a
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